@phdthesis{Chandode2013, author = {Rakesh Kantilal Chandode}, title = {Molecular mechanisms regulating the recruitment of phagocytes to inflammation}, journal = {Molekulare Regulationsmechanismen der Phagozytenrekrutierung bei Entz{\"u}ndungen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001518-9}, year = {2013}, abstract = {Inflammation is an adaptive response that is triggered by noxious stimuli and conditions, such as infection and tissue injury. Neutrophils, eosinophils, monocytes, tissue macrophages and dendritic cells can all ingest bacteria, tissues debris and apoptotic cells after injury or infection. These cells derived from bone marrow progenitors, circulate in the blood and migrate to peripheral tissues. Macrophages produce and secrete a cascade of pro-inflammatory and anti-inflammatory cytokines, such as interleukin-6 (IL-6), IL-10, and IL-12 that are trafficked and secreted by constitutive exocytosis. IL-10 and IL-6 are known to be rapidly induced during infection and / or injury, which make them possible mediators of early phagocyte recruitment. This thesis work aimed at detailed investigation of role of these cytokines in peritoneal inflammation. Under normal physiological conditions peritoneal cavity of normal BALB/c mice contains mainly CD45+ lymphocytes and CD11b+ myeloid cells with typical macrophage phenotype. The resident peritoneal cells play an important role in organismal homeostasis by taking part in innate and adaptive immunity. To explore this in detail, the physiological properties of peritoneal resident macrophage populations were studied under steady state and during inflammation conditions. Upon rapid induction of sterile inflammation by thioglycollate or lipopolysaccharide, the resident peritoneal cells could no longer be recovered in a peritoneal wash 6h after treatment. During ceacal content (CC) peritonitis, these cells were lost even more rapidly. Neutrophils, monocytes and lymphocytes replace the resident peritoneal phagocyte populations. During sepsis the absence of peritoneal macrophages decreases neutrophils recruitment to the inflammatory site and subsequently increases sepsis. Upon peritoneal wash cell transfer, total peritoneal cells could be recovered from the peritoneum of non infected mice, whereas these cells disappeared after CC infection in mice. The fate of resident peritoneal cells and their migration into lymphoid organs such as omentum and parathymic lymph nodes was further studied following induction of peritoneal infection. The CC infection induced lost cells from peritoneum were emigrated into omentum and parathymic lymph nodes but not in mesenteric lymph nodes. R1 cells were mostly observed in parathymic lymph nodes after 72h of infection but not after 1h, whereas, R2 cells were selectively observed in omentum just 1h after infection and 72h as well. These results were further confirmed by adoptive transfer showing emigration of R2 cells into omentum 1h after infection. Additionally, analysis of cytokine production after CC peritonitis showed early production of IL-10 and IL-6, which is in agreement with earlier findings and further supports the importance of these cytokines in phagocyte recruitment. The role of IL-10, IL-6 and other cytokines as possible mediators of early inflammation and in the recruitment of monocytes, neutrophils or eosinophils to the peritoneum during inflammation was determined by cytokine application. The intraperitoneal application of IL-10 recruited monocytes, neutrophils, T cells, B cells and eosinophils to the peritoneum. However, IL-10 knockout mice showed even increased recruitment of leucocytes to the peritoneal cavity in CC infection suggesting their IL-10 independent recruitment with the exception of eosinophils. Even though eosinophils are effector cells which are recruited to the site of inflammation; during homeostasis eosinophils constitute an abundant leukocyte population in the gastrointestinal tract. Therefore, possible role of eosinophils in bacterial infection was further studied using Δdbl GATA mice which lack mature eosinophils. In the absence of eosinophils, the monocyte and neutrophil recruitment was unaffected after CC infection, while there was increased T and B cell recruitment at the same time. The Δdbl GATA mice also showed reduced production of IL-4, 18h after infection. The eosinophils secrete IL 4 which may induce alternative macrophage activation. These results together with cytokine administration and IL-10 ko mouse data suggest a novel and major role of IL-10 in attracting and in recruiting eosinophils after peritoneal infection. Altogether, present thesis work demonstrates a new aspect of IL-10 interaction with eosinophils in mouse peritoneal environment during peritonitis. It gives a new insight for understanding the possible role of eosinophils in modulating the peritoneal environment in resolution of bacterial infection and can be useful in designing new approaches for therapeutic strategies in combating sepsis and peritoneal inflammation.}, language = {en} }