@phdthesis{Braun2016, author = {Floriane Braun}, title = {In vivo silencing of A20 via TLR9-mediated targeted siRNA delivery potentiates anti-tumor immune response}, journal = {TLR9-vermittelter A20 Knockdown zur Potenzierung der anti-Tumor Immunantwort}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002455-3}, year = {2016}, abstract = {Cancer is one of the leading causes of death in industrialized nations. Nowadays, cancer therapy mainly consists of surgery, radiation and chemotherapy. Thanks to intensive research alternative treatment strategies like gene therapy and especially immunotherapies are on the rise. Immunotherapies base on the idea of stimulating and supporting the patients immune system to generate an effective anti-tumor immune response. Dendritic Cells are perfect targets for this purpose, since these potent antigen-presenting immune cells influence the balance of the immune system by defining the route of action. Stimulation of these cells by activation of cellular signaling pathways results in maturation, upregulation of surface molecules and secretion of cytokines. A20 has been identified as a regulator of dendritic cell maturation and attenuator of their immune stimulating properties. Hence, the blockade of that natural inhibitor reveals an elegant way to activate cellular pathways of DCs. A siRNA against A20 obtains a functional blockade via RNA interference if it can be delivered into the cytoplasm of the target cells. CpG oligodeoxynucleotides can be used for this intracellular transport. CpGs contain DNA motifs similar to those found in bacteria. Innate immune cells can detect this DNA via the toll-like receptor 9 getting activated and stimulated. CpG oligodeoxynucleotides are already in clinical use as adjuvants in vaccines and in cancer therapy approaches. Linking A20-specific siRNA to CpG enables A20 regulation and cell stimulation selectively in toll-like receptor 9 expressing cells, like dendritic cells. Aim of this study was to investigate if these constructs trigger immune cell activation and if they are able to break immune-suppression in the tumor environment to enhance anti-tumor immunity. A long-term growth factor dependent bone marrow-derived dendritic cell culture has been established in order to analyze the CpG-siRNA A20 effects on murine dendritic cells. The constructs were internalized shortly after administration (1 hour) and led to cell stimulation/activation. The intraperitoneal treatment with the constructs induced local cellular activation and systemic IL-6, TNF-α cytokine production in healthy mice. Subcutaneous growing B16 melanoma tumors were treated peritumorally to analyse whether the observed immune-stimulation has effects on established tumors. The silencing of A20 enhances CpG-induced activation of NF-κB followed by elevated expression of IL-6, TNF-α and IL-12 in this tumor model. These changes led to enhanced anti-tumor immune responses manifested by increased numbers of tumor-specific cytotoxic T cells, high levels of tumor cell apoptosis and delayed tumor growth. New constructs were designed and tested on dendritic cells isolated from healthy donors in order to test whether the obtained results for the murine system are applicable to the human system. CpG-siRNA A20 constructs induced cell activation and cytokine expression (IL-6, TNF-α) significantly more than CpG alone. Even though responds of the donor DCs were variable, there are promising similarities to the results of the mouse experiments. The significant role of A20 in controlling the immune-stimulatory activity of DCs has been confirmed in this study. The novel CpG-siRNA A20 constructs provide a strategy for simultaneous A20 silencing and CpG-mediated cell stimulation directly in vivo. This therapeutic approach induces potent adaptive and innate immune responses against established tumors in mouse melanoma model leading to prolongation of survival. CpG-targeted A20 blockade is a new immune-stimulatory approach, which could be suitable for supplementation or optimization of clinical tumor treatments.}, language = {en} }