@phdthesis{Ullah2006, author = {Ehsan Ullah}, title = {Synthesis of Carba- and Heterocycles based on novel One-Pot Cyclization of 1,1-Bis(trimethylsilyloxy)ketene Acetals and 1,3-Bis(Silyl Enol Ethers)}, journal = {Synthese von Carba- und Heterocyclen basierend auf einer neuen Eintopf-Cyclisierung von 1,1-Bis(trimethylsilyloxy)keten Acetalen und 1,3-Bis(Silyl Enol Ethern)}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000325-8}, year = {2006}, abstract = {1,1-Bis(trimethylsilyloxy)ketene acetals represent useful synthetic building blocks which can be regarded as masked carboxylic acid dianions. In recent years, a number of cyclization reactions of 1,1-bis(trimethylsilyloxy)ketene acetals have been reported. Functionalized maleic anhydrides represent important synthetic building blocks, which have been employed, for example, in the synthesis of γ-alkylidenebutenolides, maleimides, 5-alkylidene-5H-pyrrol-2-ones. Substituted maleic anhydrides are available by Michael reaction of nucleophiles with parent maleic anhydride and subsequent halogenation and elimination. Oxalyl chloride is an important synthetic tool for the synthesis of O-heterocycles. 3-hydroxymaleic (1-3) anhydrides were synthesised by one-pot cyclization of 1,1-bis(trimethylsilyloxy)ketene acetals with oxalyl chloride using TMSOTf as a catalyst. The Me3SiOTf mediated reaction of 1,1-bis(trimethylsilyloxy)ketene acetals with 3-silyloxyalk-2-en-1-ones, such as (4), afforded 5-ketoacids, such as (5). Treatment of the latter with TFA in CH2Cl2 afforded pyran-2-ones, such as (6-8). It has been found that 1,1-bis(trimethylsilyloxy)ketene acetals can behave as dinucleophile. Functionalized benzo-azoxabicyclo[3.3.1]nonanones (9-12), were prepared by regio- and diastereoselective condensation of 1,1-bis(silyloxy)ketene acetals with isoquinolinium and quinolinium salts and subsequent regioselective and stereospecific iodolactonization. Our next target was the reaction of silyl ketene acetals with pyrazine and quinoxaline. These reactions provide a facile access to a variety of 2,3-benzo-1,4-diaza-7-oxabicyclo[4.3.0]non-2-en-6-ones and 1,4-diaza-7-oxabicyclo[4.3.0]non-2-en-6-ones (13-14). The second part of my research work was concentrated on bis(silyl enol ethers). The TiCl4-mediated [3+3] cyclization of 2,4-bis(trimethylsilyloxy)penta-1,3-diene with 3-silyloxyalk-2-en-1-ones afforded 2-acetylphenols (15), which were transformed into functionalized chromones (16). The Me3SiOTf-mediated condensation of the latter with 1,3-bis(silyl enol ethers) and subsequent domino ′retro-Michael–aldol–lactonization′ reaction afforded 7-hydroxy-6H-benzo[c]chromen-6-ones (17-18). With regard to our on going investigation with bis(silyl enol ethers), we significantly extended the preparative scope of the methodology. We have successfully developed regioselective cyclizations of unsymmetrical 1,1-diacylcyclopentanes, such as 1-acetyl-1-formylcyclopentane, and also studied cyclizations of 2,2-diacetylindane, 1,1-diacetylcyclopent-3-ene and 3,3-dimethylpentane-2,4-dione. In addition, the mechanism of the domino process was studied. We have synthesised spiro[5.4]decenones (19) and that were transfored into bicyclo[4.4.0]deca-1,4-dien-3-ones (20-21), by domino ′Elimination–Double-Wagner-Meerwein-Rearrangement′ reactions. The Lewis acid mediated domino ′[3+3]-cyclization-homo-Michael′ reaction of 1,3-bis-silyl enol ethers with unsymmetrical 1,1-diacylcyclopentanes, such as 1-acetyl-1-formylcyclopentane, allows an efficient one-pot synthesis of functionalized salicylates containing a halogenated side-chain (22-23). A great variety of substitution patterns have been realized by variation of the starting materials and of the Lewis acid. The mechanism of the domino process was studied.}, language = {en} }