@phdthesis{Muschiol2016, author = {Jan Muschiol}, title = {Engineering of enzymatic redox cascades involving oxygenases}, journal = {Optimierung enzymatischer Redoxkaskaden mit Oxygenasen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002577-5}, year = {2016}, abstract = {Cascade reactions are not only of interest to chemists and biotechnologists, but also to life in general, because every metabolic reaction resembles a cascade reaction. This principle of substrate/intermediate channeling was only adapted by scientists. That way especially one-pot reactions became very attractive as for this no isolation of intermediates is necessary. Furthermore, unstable or toxic intermediates are only produced in low amounts and directly transformed in situ. In this PhD thesis two previously established cascade reactions were subject of further optimization. In the first part, a cascade reaction established in a DFG-funded project (Bo1862/6-1)in cooperation with the Vienna Technical University (Austria) for the production of chiral lactones was further optimized and extended. Therefore, on the one hand the genes encoding the needed enzymes were cloned for co-expression into a single plasmid in different arrangements to be expressed in pseudo-operon mode, with the aim to lower the metabolic burden of the cascade host cell. One out of the welve created constructs showed a reasonable activity of 15.3 ± 1.2 U · gCDW-1. On the other hand, this cascade reaction was aimed to be extended by the use of a hydroxylating enzyme to enable the use of limonene as renewable and chiral precursor for the proposed production of chiral polymers. Therefore, the feasibility of cytochrome P450-monooxygenases was studied. These turned out to be not applicable due to their bad regioselectivity for the hydroxylation of limonene or due to the difficulties of activity reconstitution. As alternative system for an initial hydroxylation step the use of a Rhodococcus equi strain, which was isolated from Cellulosimicrobium cellulans EB-8-4 and which is capable of very regioselective limonene-hydroxylation, was investigated. Therefore, the dioxygenase cluster responsible for the desired reaction was identified and especially the recombinant expression in a suitable host (Pseudomonas putida S12) was further studied. The results from these experiments revealed that the recombinant expression needs to be further optimized to enable the use of the recombinant dioxygenase in combination with the other enzymes for cascade reactions. The third part of this PhD thesis dealt with the immobilization of an established cascade reaction for the synthesis of poly-[caprolactone] precursors. Therefore, the use of a rotating bed reactor (RBR) was investigated. Preliminary studies using single enzymes involved in the desired cascade reaction demonstrated the general feasibility of this reactor concept. Especially the reusability of the catalysts was highly improved, because the catalytic particles were protected very effectively from mechanical forces within the voids of the reactor. For further work-flow optimization the immobilization was transformed into an in situ process by the application of a gas-shear device, which leads to decreased capsule size and thereby to increased mass transfer inside the particles. The developed methods were applied for encapsulation of the cells containing the enzymes needed for the reaction. After additional improvement of the reaction parameters a conversion of 93\% (based on substrate depletion) was reached using catalysts produced by the established encapsulation procedure. In summary, the described cascade reactions were successfully optimized by either co-expression, extension applying a dioxygenase or immobilization. Furthermore, the general feasibility of an RBR was demonstrated.}, language = {en} }