@phdthesis{Weigel2018, author = {Robert Weigel}, title = {Temperate Deciduous Forests in Europe Under Climate Change: Impacts Across Spatial Scales and Sensitivity to Winter Soil Temperature Variation}, journal = {Gem{\"a}{\"s}igte Laubw{\"a}lder in Europa im Klimawandel: Auswirkungen {\"u}ber verschiedene r{\"a}umliche Skalen und Sensitivit{\"a}t gegen{\"u}ber Schwankungen der Bodentemperatur im Winter}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-26780}, pages = {129}, year = {2018}, abstract = {The rapid anthropogenic climate change that is projected for the 21st century is predicted to have severe impacts on ecosystems and on the provision of ecosystem services. With respect to the longevity of trees, forestry in particular has to adapt now to future climate change. This requires profound multidisciplinary knowledge on the direct and indirect climate sensitivity of forest ecosystems on various spatial scales. Predictions on growth declines due to increasing drought exposition during climate change are widely recognized for European beech (Fagus sylvatica L.), which is the major forest tree in European temperate deciduous forests. However, research from other continents or other biomes has shown that winter climate change may also affect forest growth dynamics due to declining snow cover and increased soil cooling. So far, this winter cold sensitivity is largely unexplored in Europe. Thus, particularly focussing on forest growth dynamics and winter cold sensitivity, the goal of this PhD-project was to explore how climate sensitivity of forest ecosystems differs regionally. By doing so, the project aimed to deliver insights about possibilities and limits of upscaling regional knowledge to a global understanding of climate sensitivity. To achieve these goals, this PhD-project integrated five studies (Manuscripts 1–5) that investigated the climate sensitivity of biogeochemical cycles, plant species composition in forests, and forest growth dynamics across spatial scales. In particular, a large-scale gradient-design field experiment simulated the influence of winter climate change on forest ecosystems by snow cover and soil temperature manipulations (Manuscript 1). This study indicated that soil cooling and decreased root nutrient uptake may indirectly reduce growth of adult forest trees. Moreover, this study indicated uniform ecological sensitivity to soil temperature changes across sites along a large winter temperature gradient (ΔT = 4 K across 500 km), irrespective of the site-specific history of snow cover conditions, which motivates upscaling from local winter climate change studies to the regional scale. Although regional climate drives growth of adult forest trees, local factors, such as site-specific edaphic conditions, might control plants in the forest understory. This assumption was tested by mapping the forest understory composition along the same winter temperature gradient as introduced above (Manuscript 2). Across sites, this study found that edaphic conditions explained the spatial turnover in the forest understory composition more than climate, which might moderate direct climate change impacts on the forest understory composition. However, edaphic conditions, forest structure, and climate are linked by triangular interactions. Thus, climate change might still indirectly affect the forest vegetation dynamics. Moreover, a dendroecological study focussed on the same winter temperature gradient from central to cold-marginal beech populations as above in order to identify gradual changes in summer drought and winter cold sensitivity in tree growth (Manuscript 3). Towards the cold distribution margin, the influence of drought on tree growth gradually decreased, while growth reductions were increasingly related to winter cold due to harsher winter climate. By a large-scale dendroecological network study assessed the relationship of growth dynamics to climate and reproductive effort in beech forests across Europe (Manuscript 4). Indeed, this study found the general pattern across the distribution range of beech that high temperature controlled growth indirectly via resource allocation to reproduction. However, the strong, direct drought signal that could be generally detected from dry-marginal to central populations vanished towards the cold-marginal populations, where the more focussed study of Manuscript 3 identified a stronger relationship of tree growth to winter cold. Further extending the scope of this PhD-thesis to global scales, litter decomposition rates were assessed across biomes (Manuscript 5). This study found a robust relationship between climate and decomposition rates, but it also demonstrated large within-biome variability on a local scale. These local scale differences might depend on habitat conditions that, in turn, could be modulated by climate change, which calls for a better exploration of indirect climate sensitivity. In conclusion, this PhD-thesis highlighted that multidisciplinary research can advance the understanding of ecological interactions in forest ecosystems under changing climate scenarios. In this PhD-project, a winter climate change experiment, where site-representative target trees were selected by means of dendroecology, contributed to a mechanistic understanding of winter cold sensitivity in forest growth dynamics. Dendroecological investigations then put the findings in a broader temporal and spatial context by describing local climate sensitivity of tree growth on different spatial scales. This thesis further shows that global generalizations about the relationship of climate and ecological processes in ecosystem models have to be critically reviewed for the need of local and regional adjustment because these processes might experience considerable regional- or local-scale variation. However, this thesis reports uniform sensitivity of ecological processes to altered winter soil temperature regimes across a large winter temperature gradient. Thus, upscaling from insights of previous winter climate change experiments to regional scales is encouraged.}, language = {en} }