@phdthesis{Schella2014, author = {Andr{\´e} Schella}, title = {Finite 3D dust clouds beyond the crystalline state}, journal = {Finite 3D Staubwolken jenseits der kristallinen Phase}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001997-9}, year = {2014}, abstract = {During the past decade, various physical properties of the Yukawa ball, like structure and energy states, were unraveled using experiments. However, the dynamical features served further attention. Therefore, the main aim of my thesis was to investigate and understand how a finite system-represented by Yukawa clusters-evolves from a solid, crystalline structure to a liquid-like system, how it behaves in this phase and in what manner the reordering back into the solid state can be described. As a method of choice to reach this goal, laser heating has been proven successful. Moreover, the special importance of wakefields for dust clusters confined at low neutral gas pressure was addressed. Melting of finite dust clouds can be induced in two ways, either by altering the properties of the ambient plasma or by laser heating. The latter was shown to be a generic melting scenario, allowing to estimate a critical coupling parameter at the melting point. Moreover, the melting transition of finite 3D dust systems was found to be a two-step process where angular order is lost before the radial order starts to diminish at higher energies. Next, the mode dynamics of finite 3D dust ensembles in the solid and the liquid phase was studied. Crystal and fluid modes revealed the main spectral properties of the system. The normal modes are mainly suited to describe crystalline states. Fluid modes were excited naturally and via laser heating, with excitation frequencies almost independent of the coupling parameter in the solid and the liquid-like regime. Tuning the plasma parameters can be used to vary the particle-particle interaction via the ion focus. Both methods, even though assuming equilibrium situations, allowed to hint at these wakefields. The corresponding peaks in the fluid and normal mode spectra were no eigenmodes, confirming the nonequilibrium character of the ion focusing effect. First steps to extend the normal mode theory to achieve the dynamics of wake-affected nonequilibrium dust clusters were presented. Statistical quantities were obtained evaluating long-run experiments and transport coeffcients for finite dust systems were calculated via the instantaneous normal mode technique. Diffusion was found considerably higher for 3D than for 2D dust clusters. Using the configurational entropy, we have shown that in 2D and 3D disorder increases with increasing size of the system, in agreement with simulations. The temperature dependence of the configurational entropy differs for 2D and 3D dust clouds, with a threshold behavior found for finite 2D ensembles only. Finally, using instantaneous normal modes to reveal the total fraction of unstable modes, the predictive connection of Keyes (Phys Rev E 62, p7905, 2000), between transport and disorder was tested and verified for 2D, but not for 3D clusters. The reason for this has to be left open. Finally, laser-mediated recrystallization processes of finite 3D dust clouds were investigated. First, the temporal evolution of the Coulomb coupling parameter was traced during heating and recrystallization. A cooling rate has been determined from the initial phase of recrystallization. This cooling rate is lower than damping by the neutral gas, in agreement with simulations. We have observed a large fraction of metastable states for the final cluster configurations. Further, we have revealed that the time scale for the correlation buildup in the finite 3D ensemble was on even slower scales than cooling. Thus, different time scales can be attributed to the fast emergence of the shells and to the slower individual ordering within the shells.}, language = {en} }