@phdthesis{Schaetzle2012, author = {Sebastian Sch{\"a}tzle}, title = {Identification, characterization and application of novel (R)-selective amine transaminases}, journal = {Identifizierung, Charakterisierung und Anwendung neuer (R)-selektiver Amin-Transaminasen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001171-7}, year = {2012}, abstract = {In this thesis, two novel assay systems had been developed, which allow a fast and easy screening for amine transaminase activity as well as the characterization of the amino donor and acceptor specificity of a given amine transaminase. The assays overcome some limitations of previously described assays but of course have some limitations themselves. The relatively low wavelength of 245 nm, at which the production of acetophenone is detected with the spectrophotometric assay, limits the amount of protein/crude extract that can be applied, which eventually results in a decreased sensitivity at higher enzyme loads due to an increased initial absorbance. Otherwise, this assay can be used very easily for the investigation of the amino acceptor specificity and both pH and temperature dependencies of amine transaminases. The conductometric assay is – by its very nature – limited to low-conducting buffers, a neutral pH and constant temperatures. In summary, the assays complement one another very well and the complete characterization of the most important enzyme properties can be accomplished quickly. Furthermore, we developed and applied a novel in silico search strategy for the identification of (R)-selective amine transaminases in sequence databases. Structural information of probably related proteins was used for rational protein design to predict key amino acid substitutions that indicate the desired activity. We subsequently searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 (R)-selective amine transaminases. In theory, this strategy can be applied to other enzyme classes and fold types as well and for this reason constitutes a new concept for the identification of desired enzymes. Finally, we applied the seven most promising candidates of the identified proteins to asymmetric synthesis of various optical pure amines with (R)-configuration starting from the corresponding ketones. We used a lactate dehydrogenase/glucose dehydrogenase system for the necessary shift of the thermodynamic equilibrium. For all ketones at least one enzyme was found that allowed complete conversion to the corresponding chiral amine with excellent optical purities >99\% ee. Bearing in mind that until last year there was only one (R)-selective amine transaminase commercially available and two microorganisms with the corresponding activity described, the identification of numerous enzymes is a breakthrough in asymmetric synthesis of chiral amines.}, language = {en} }