@phdthesis{Sedzielewska2012, author = {Kinga Anna Sedzielewska}, title = {A molecular approach to characterize the arbuscular mycorrhizal fungus, Glomus sp. AMykor isolate}, journal = {Molekulare Charakterisierung eines arbuskul{\"a}ren Mykorrhizapilz-Isolates Glomus sp. AMykor}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001241-9}, year = {2012}, abstract = {The arbuscular mycorrhizal fungi (AMF) interaction with plants has a major impact on the soil ecosystem. However, so far, only a few studies on AMF genetics have been performed and molecular information on the genetic diversity of AMF is limited. In this study a fundamental genetic characterization of the industrial isolate, Glomus sp. AMykor (AMykor GmbH, Bitterfeld, Germany) has been undertaken to increase the understanding of AMF genetic diversity. Based on phylogenetic analysis of partial rDNA sequences, Glomus sp. AMykor isolate was proposed to belong to the G. irregulare species together with the reference isolate, DAOM197198. To investigate if both isolates differ in their ploidy level, fluorescence in situ hybridization (FISH) was performed and mainly one or two hybridization signals per nucleus were observed in both isolates. It is suggested that they harbour at least two major rDNA sites and possibly two minor sites. The DNA content was estimated by means of flow cytometry (FC) and confirmed by Feulgen densitometry (FD). The calculated average DNA content per nucleus is 153.0 ± 3.6 Mb for the G. irregulare AMykor isolate and 154.8 ± 6.2 Mb for the DAOM197198 isolate. Since there are plenty criticisms coming recently of using rDNA sequence for fungal barcoding there is necessity of development other system for the identification to species level of Glomeromycotan fungi. The focus of this part of the study was the GiFRD gene encoding fumarate reductase enzyme for use as a potential candidate for AMP species determination. Unfortunately, observed sequence variations do not allow the discrimination of Glomeromycotan species. However, further analysis of enzyme encoded by GiFRD showed a possible role of fumarate reductase in AMF redox balance maintaining under oxygen deficient conditions. Using a yeast expression system, it has been demonstrated that the protein encoded by GiFRD has fumarate reductase activity. The functional expression of GiFRD in the S. cerevisiae fumarate reductase deletion mutant restored the ability of growth under anaerobiosis which indicated that Gifrdp is able to functionally complement the S. cerevisiae missing genes. The fact that GiFRD expression was present only in the asymbiotic stage confirmed existence of at least one metabolic pathway involved in anaerobic metabolism and suggested that AMF behave as a facultative anaerobe in asymbiotic stage.}, language = {en} }