@phdthesis{Emicke2012, author = {Philipp Emicke}, title = {Proteome dynamics of non-thermal atmospheric plasma treated airway epithelial cells}, journal = {Proteomdynamiken von S9- Atemwegsepithelzellen nach atmosph{\"a}risch nicht-thermischer Plasmabehandlung}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001302-0}, year = {2012}, abstract = {Non-thermal atmospheric pressure plasma has recently been shown to have broad application potential for medical as well as industrial purposes. Improved wound healing and tissue decontamination have been described as consequences of non- thermal plasma treatment. However, thus far the underlying molecular mechanisms in human tissues have only been partially characterized. In this work a two-dimensional difference in-gel electrophoresis (2D-DIGE) approach was used and an analysis-workflow to study the response of human cells to atmospheric pressure non-thermal plasma was established. Human S9 bronchial epithelial cells were used as a model for airway epithelial cells. They were treated with atmospheric pressure plasma jet (APPJ) for different periods of time. Subsequently, time-resolved comparative proteome analysis was used to study the complex cellular adaptation reactions after a 120 sec plasma treatment, which accelerated wound healing in a clinically relevant model. The results indicate, that intracellular oxidative stress due to the non-thermal plasma treatment either leads to cell death or to proliferation. The oxidative stress response, mediated by Nrf2, appears to play a pivotal role in molecular signalling and might be a key pathway determining the fate of stressed cells. This thesis demonstrates changes in Nrf2-expression after non-thermal plasma treatment. Furthermore, potential protein biomarker candidates for evaluation of oxidative stress after non-thermal plasma treatment were identified. Finally, it is shown, that the cytosolic concentrations of IL-1beta and IL-33 were decreased following non-thermal plasma treatment. Thus, modulation of innate immune response by non-thermal plasma treatment of epithelial cells (ENTplas treatment) is concluded.}, language = {en} }