@phdthesis{Fricke2013, author = {Katja Fricke}, title = {Influence of Non-thermal Plasma-based Biological Decontamination Processes on the Surface Properties of Plasma-exposed Polymers}, journal = {Einfluss nichtthermischer plasmabasierter biologischer Dekontaminationsverfahren auf die Oberfl{\"a}cheneigenschaften plasmabehandelter Polymere}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001387-7}, year = {2013}, abstract = {The biological decontamination and sterilization is a crucial processing step in producing and reprocessing of medical devices. Since polymer-based materials are increasingly used for the production of medical devices, the application of conventional sterilization processes are restricted to a certain extent. Conventional sterilization techniques on the basis of high temperatures, toxic gases, or ionizing radiation can be detrimental to the functionality and performance of polymeric materials. For this reason, alternative, gentle, and efficient decontamination processes are required. One possible approach is the use of non-thermal physical plasmas. Especially atmospheric pressure plasma is receiving great interest due to the absence of vacuum systems which is highly attractive for the practical applicability. Its mechanisms of action enable the efficient killing and inactivation of micro-organisms which are attributed to the interaction of plasma-generated reactive oxygen and nitrogen species (ROS, RNS) as well as plasma-emitted (V)UV radiation. Owing to the moderate gas temperatures (near or at room temperature) so-called cold plasmas are well-suitable for the treatment of heat-sensitive materials, such as polymers, without affecting their bulk properties. The present work focuses on the investigation of atmospheric pressure plasma processes for the biological decontamination of polymers. The objective is to help elucidate on the one hand the impact of varied plasma process parameters on the inactivation of micro-organisms and on the other hand the influence of plasma on the surface properties of the substrate. The investigations were performed by means of a high-frequency driven plasma jet (from the product line kINPen) operated with argon and argon-oxygen mixtures. Three main aspects were analyzed: 1. The effect of plasma on the viability of micro-organisms dependent on working gas, treatment time, and the sample distance (distance between the jet nozzle and the substrate). 2. The plasma-based removal of microbial biofilms. 3. The effects of the plasma treatment on the surface properties of selected polymers. Additionally to the capability of the applied plasma jet in killing microbes the efficacy of this plasma jet for the removal of complex biological systems (e.g. biofilms) is shown. To model cell constituents of bacteria different synthetic polymers were chosen to gain insight into the decomposition process responsible for biofilm degradation. By investigating the impact of atmospheric pressure plasma on physico-chemical surface properties of various synthetic aliphatic and aromatic polymers the interaction mechanisms between plasma and plasma-exposed material are discussed. These studies are accompanied by applying different optical plasma diagnostic techniques (optical emission spectroscopy and two-photon absorption laser induced fluorescence spectroscopy) to obtain information on the plasma gas phase which contributes to the elucidation of the reaction mechanisms occurring during plasma exposure. Moreover, it is presented to which extent the plasma treatment influences the surface properties of polymers during the plasma-based bio-decontamination process and further, the benefits of surface-functionalized polymers for biomedical application is discussed.}, language = {en} }