@phdthesis{Reder2012, author = {Alexander Reder}, title = {Integration of the sigmaB regulon into the regulatory network of Bacillus subtilis}, journal = {Integration des sigmaB Regulons in das regulative Netzwerk von Bacillus subtilis}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001289-1}, year = {2012}, abstract = {The general stress response comprises approximately 200 genes and is driven by the alternative sigma factor SigB. Besides the process of sporulation with approximately 500 involved gene products under initial control of Spo0A are the two most significant and extensive cellular responses that can be observed in B. subtilis. The general stress response provides vegetative growing as well as non-growing and non-sporulating cells with a comprehensive cross-protective and preventive multiple stress resistance to various hostile environmental conditions. In contrast, the endospore is the most resistant but also dormant cell type produced by B. subtilis. The scope of this study was the identification of regulatory cascades driven by the general stress response sigma factor SigB to further elucidate the structure and function of the general stress regulon itself and to uncover potential intersections between the SigB response and other major developmental programs in the regulatory network of B. subtilis. It could be shown that the general stress regulon member yqgZ encodes a functional paralogue of Spx, the global regulator of the diamide stress regulon in B. subtilis. Global transcriptome and proteome studies led to the characterization of an YqgZ sub-regulon consisting of 53 positively and 18 negatively regulated genes. Due to its stringent SigB-dependent expression as well as its concerted action with SigB in regulation of its target genes YqgZ was renamed to MgsR which stands for “modulator of the general stress response”. Activity control of MgsR is stringently controlled at multiple levels. In addition to induction by SigB these mechanisms include (i) a positive autoregulatory loop of MgsR on the transcription level of its own structural gene, (ii) a post-translational redox-sensitive activation step by the formation of an intramolecular disulfide-bond within a conserved -CXXC-motif and (iii) rapid proteolytic degradation of MgsR by the ClpCP and ClpXP proteases, resul ting in extremely short in vivo half-lifes below 6 minutes. It was demonstrated that the activation of SigB is a prerequisite but not sufficient for a full expression of all general stress genes and that the SigB-dependent expression of MgsR provides the opportunity for additional redox-sensitive signal-reception, -processing and -integration beyond the primary decision of SigB activation. Our results describe a regulatory cascade integrating secondary oxidative stress signals into a SigB mediated regulatory cascade that is aimed at a precise fine tuning of target gene expression whose products are necessary for proper management of oxidative stress. Although primary oxidative stress stimuli do not typically induce SigB, our observation of redox-sensitive control by MgsR and several other reports that pointed at the implication of the general stress proteins in oxidative stress management led to the proposal that secondary oxidative stress may be a common component of multip le severe physical stress stimuli. This assumption could be supported by the results of a comprehensive phenotype screening of 94 mutants in single general stress genes upon treatment with hydrogen peroxide and the superoxide generating agent paraquat. A substantial amount of 62 mutants (66\%) displayed significantly decreased survival rates in response to oxidative stress. The information gained by this phenotypic screening analysis provides a valuable basis for more directed assays to elucidate the biochemical functions of many so far uncharacterized general stress proteins and demonstrates that the SigB response and the regulatory fine tuning by MgsR plays a pivotal role in protection from secondary oxidative stress. Furthermore, it has been intensively discussed throughout the literature of the last years that the general stress response and the process of sporulation may represent mutually exclusive survival strategies of a non-growing B. subtilis cell, but the molecular basis for this assumption was missing until recently. By the identification of a functional SigB-type promoter (PsigB) adjacent to the spo0E, this gene was newly assigned to the general stress regulon. The spo0E gene encodes a phosphatase that specifically inactivates the master regulator of sporulation Spo0A~P by dephosphorylation. The SigB dependent induction of spo0E causes a block of sporulation specific transcription and produces a sporulation deficient phenotype. This effect was overcome by a deletion of the spo0E-SigB promoter, thus clearly addresses SigB activity. This regulatory mechanism is the first example for an integration of SigB inducing stimuli into the decision making process of sporulation initiation that provides a link to interconnect these two dominant and very likely mutually exclusive responses in the regulatory network of B. subtilis. The data presented here provide deeper insights into the structure and function of the general stress regulon in stress management.}, language = {en} }