@phdthesis{Schlegel2013, author = {Mathias Schlegel}, title = {Host range and spillover infections of rodent- and insectivore-borne hantaviruses}, journal = {Wirtsspektrum und Spillover-Infektionen von Nagetier- und Insektenfresser-assoziierten Hantaviren}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001453-0}, year = {2013}, abstract = {Hantaviruses (family Bunyaviridae) are enveloped viruses with a segmented RNA genome of negative polarity. They can cause two different diseases in humans, the hemorrhagic fever with renal syndrome in Europe and Asia and the hantavirus cardiopulmonary syndrome in America. The transmission to humans is mainly indirect by inhalation of aerosolized virus-contaminated rodent excreta. In contrast to the initial assumption that hantaviruses are mainly carried by rodents, during the last years many novel hantaviruses were detected in shrews, moles and recently in bats. These findings raise important questions about the evolutionary history of hantaviruses, their host association and adaptation, the role and frequency of spillover infections and host switch events. This study aims to prove the presence, geographical distribution and host association of the rodent-borne Tula virus (TULV) and the shrew-associated Seewis virus (SWSV) in Central Europe. For this purpose, novel laboratory techniques for molecular and serological hantavirus detection were developed. Initially, a broad-spectrum molecular assay to identify small mammal species from Central Europe was developed. This novel assay is based on PCR amplification using degenerated primers targeting the cytochrome b (cyt b) gene, nucleotide sequence analysis of the amplified cyt b gene portion and followed by pairwise sequence comparison to published sequences using the BLAST function of GenBank. Different small mammal species prevalent in Central Europe could be determined by this new approach, including not only representatives of various Rodentia and Soricomorpha, but also representatives of the orders Erinaceomorpha, Lagomorpha, Carnivora and Chiroptera. For characterization of insectivore-borne hantavirus Thottapalayam virus (TPMV), specific monoclonal antibodies were generated that detect native virus in infected mammalian cells. For the detection of TPMV-specific antibodies, Asian house shrew Suncus murinus immunoglobulin G (IgG)-specific antibodies were produced in laboratory mice and rabbit. Using this anti-shrew IgG and recombinant TPMV nucleocapsid (N) protein, an indirect enzyme-linked immunosorbent assay (ELISA) was developed allowing the detection of TPMV N protein-specific antibodies in immunized and experimentally TPMV infected shrews. A Pan-Hantavirus SYBR-Green RT-qPCR was developed for the search to novel hantaviruses. By this novel RT-qPCR and other conventional RT-PCR approaches, TULV infections were identified for the first time in the Eurasian water vole Arvicola amphibius from different regions in Germany and Switzerland. The phylogenetic analyses of the different partial TULV small (S)-, medium (M)- and large (L)-genome segment sequences from A. amphibius, with those of Microtus arvalis- and M. agrestis-derived TULV lineages, revealed a geographical, but host-independent clustering and may suggest multiple TULV spillover or a potential host switch from M. arvalis or M. agrestis to A. amphibius. In a further comprehensive study, different shrew species (Sorex araneus, S. minutus, S. coronatus, and S. alpinus) were collected in Germany, Czech Republic, and Slovakia and screened by another L-segment-targeting Pan-Hantavirus RT-PCR approach. This screening revealed hantavirus L-segment sequences in a large number of S. araneus and a few S. minutus indicating a broad geographical distribution of this hantavirus. For detailed analyses, S-segment sequences were obtained, from S. araneus and S. minutus. The sequences demonstrated their similarity to SWSV sequences from Hungary, Finland, Austria and Germany. A detailed phylogenetic analysis showed low intra-cluster sequence variability, but high inter-cluster divergence suggesting a long-term SWSV evolution in local shrew populations. In conclusion, the investigations demonstrated a broad geographical distribution and multiple spillover infections of rodent-borne TULV and shrew-borne SWSV in Europe. The finding of putative spillover transmissions described here and in other studies underline the current problem of the hantavirus reservoir host definition. In contrast to the hypothesis of a long-standing hantavirus–rodent (small mammal) host coevolution, the investigations support a more dynamic evolutionary history of hantavirus diversification including spillover infections and host-switch events. In future in vitro and in vivo infection studies as well as field studies has to define factors determining the host specificity of these hantaviruses.}, language = {en} }