@phdthesis{Bui2013, author = {Khanh Chi Bui}, title = {Regulatory mechanisms of the disulfide stress response and the role of the bacillithiol redox buffer in Gram-positive bacteria}, journal = {Regulatorische Mechanismen der Disulfidstress-Antwort und die Rolle des Bacillithiol-Redoxpuffers in Gram-positiven Bakterien}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001496-2}, year = {2013}, abstract = {Reactive oxygen species (ROS) can damage all cellular macromolecules and also produce secondary reactive intermediates, like reactive electrophilic species (RES) that include quinones or aldehydes. Low molecular weight (LMW) thiols are small thiol-containing compounds that play essential roles in the defense against ROS and RES in all organisms. The best studied LMW thiol is the tripeptide glutathione (GSH). Firmicutes bacteria including Bacillus und Staphylococcus species have been recently discovered to utilize the redox buffer bacillithiol (BSH). LMW thiols function as redox buffers to maintain the reduced state of the cytoplasm. Under conditions of oxidative stress, LMW thiols also react with protein thiols to form mixed LMW thiol – protein disulfides, termed S-thiolations, as major protection mechanism. Investigating the role of BSH in oxidative stress response and ROS-induced S-thiolations in Firmicutes bacteria was one subject of this PhD thesis. Specifically, the regulatory mechanisms and post-translational thiol-modifications in response to NaOCl stress were studied in the model bacterium for low-GC Gram-positive bacteria Bacillus subtilis. The transcriptome profile after NaOCl stress was indicative of disulfide stress and overlapped strongly with the response to diamide. NaOCl stress caused induction of the thiol- and oxidative stress-specific Spx, CtsR, PerR and OhrR regulons. Thiol redox proteomics identified only few NaOCl-sensitive proteins with reversible thiol-oxidations. Using mass spectrometry, eleven proteins were identified that were oxidized to mixed BSH protein disulfides (S-bacillithiolated) in B. subtilis cells after NaOCl-exposure. Methionine synthase MetE is the most abundant S-bacillithiolated protein in B. subtilis and other Bacillus species after NaOCl exposure. S-bacillithiolation of OhrR repressor leads to upregulation of the OhrA peroxiredoxin that confers together with BSH specific protection against NaOCl. S-bacillithiolation of MetE, YxjG, PpaC, and SerA causes hypochlorite-induced methionine starvation as supported by the induction of the S-box regulon. To further assess the conservation of targets for S-bacillithiolations in other Firmicutes bacteria, we studied the S-bacillithiolomes of Bacillus megaterium, Bacillus pumilus, Bacillus amyloliquefaciens, and Staphylococcus carnosus under NaOCl stress conditions. In total, 54 S-bacillithiolated proteins were identified, including 29 unique proteins and 8 conserved proteins involved in amino acid and cofactor biosynthesis, nucleotide metabolism, translation, protein quality control, redox and antioxidant functions. Together our data support a major role of BSH redox buffer in redox control and thiol protection of conserved and essential proteins against irreversible oxidation by S-bacillithiolations in Firmicutes bacteria. In response to ROS and RES, bacteria also activate the expression of antioxidant and detoxification enzymes, such as catalases, peroxidases, thiol-dependent peroxiredoxins and other specific oxidoreductases to detoxify ROS and RES. These defense mechanisms are often controlled by redox-sensitive transcription factors. B. subtilis encodes redox-sensing MarR-type regulators belonging to the OhrR and DUF24-families that are conserved among bacteria. Hence, we were further interested in this PhD thesis to study at the molecular and structural level the redox-sensing mechanisms of novel redox-sensing MarR/DUF24-type regulators in B. subtilis. We have characterized the regulatory mechanisms of HypR, YodB and CatR that sense and respond to hypochlorite, diamide and quinones stress. HypR is the first DUF24-family regulator whose crystal structure was resolved. HypR senses specifically disulfide stress and controls positively expression of the flavin oxidoreductase HypO after NaOCl and diamide stress. HypR resembles a 2-Cys-type regulator with a reactive nucleophilic N-terminal Cys14 and a second C-terminal Cys49. Besides HypR, B. subtilis encodes further MarR/DUF24-family members including the paralogous YodB and CatR repressors that sense quinones and diamide. YodB controls the azoreductase AzoR1, the nitroreductase YodC, and the Spx regulator. YodB resembles a 2-Cys-type MarR/DUF24-family regulator with three Cys residues (Cys6, Cys101, and Cys108) that form intermolecular disulfides in vivo under oxidative stress. YodB and its paralog CatR were further identified as repressors of the catDE operon encoding a catechol-2,3-dioxygenase that also contributes to quinone resistance. Although CatR is a 1-Cys-type regulator, our data showed that CatR also forms intermolecular disulfide in response to diamide and quinones in vitro. Thus, HypR, YodB and CatR are controlled by 2-Cys-type thiol-disulfide redox switches to sense disulfide and RES stress conditions, and to control specific RES detoxification enzymes.}, language = {en} }