@phdthesis{Biernacki2018, author = {Mateusz Biernacki}, title = {Microbial production of Poly(3-hydroxybutyrate-3- hydroxyvalerate)-copolymers from starch-containing byproducts}, journal = {Mikrobielle Produktion von P-(HB-HV)-Copolymeren aus st{\"a}rkehaltigen Nebenprodukten}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-26004}, pages = {130}, year = {2018}, abstract = {Currently, plastic materials are an integral part of our lives, but their production mostly bases on fossil fuels or derivatives, which resources are decreasing. Extraction and processing of non-renewable resources have also negative impact on environment. One of the most promising and environmentally friendly approaches is use of microorganism. This PhD dissertation presents the non-conventional yeast Arxula adeninivorans as a host for production of bio-based and biodegradable poly(hydroxyalkanoates) plastics poly(hydroxybutyrate) and co-polymer poly(hydroxybutyrate-co-hydroxyvalerate). Additionally, the constructed yeast strain was able to secrete enantiomerically pure (R)-3-hydroxybutyric acid. The production of PHAs requires three enzymes: β-ketothiolase, acetoacetyl-CoA reductase and PHA synthase. The strategy followed in this project was divided into two parts. While all three enzymes are responsible for intracellular production of PHA polymer, first two only lead to secretion of (R)-3-HB into culture media, which was used in a first stage of work to establish and optimize polymer production. Both, different bacterial strains and yeast A. adeninivorans were taken into account in screening of the genes encoding aforementioned enzymes. Bacterial genes were chemically synthesized using codon optimization pattern and endogenous genes were obtained using PCR and genomic DNA template from A. adeninivorans LS3 wild-type strain. Each gene was cloned into Xplor2 vector between TEF1 constitutive promoter and PHO5 terminator. Vector containing both thiolase and reductase genes was used for A. adeninivorans transformation. The best combination of heterologous genes was overexpression of β-ketothiolase gene from Clostridium acetobutylicum and acetoacetyl-CoA reductase gene from Cupriavidus necator which led to secretion of 4.84 g L−1 (R)-3-HB, at a rate of 0.023 g L−1 h−1 over 214 h in shaking flask cultivation. Further optimization by fed-batch culturing with glucose as a carbon source did not improve (R)-3-HB secretion, but the rate of production was doubled to 0.043 g L−1 h−1 [3.78 g L−1 of (R)-3-HB at 89 h]. The product of acetoacetyl-CoA reductase is (R)-3-HB-CoA and further removing of CoA moiety is needed for acid secretion into culture media. A. adeninivorans is able to conduct this process without any additional modification but the conversion rate is unknown. Two thioesterases, cytosolic TesBp encoded by TesB gene from E. coli and mitochondrial ATes1p encoded by ATES1 gene from A. adeninivorans, were analysed to enhance secretion process. Additionally, a cytosolic version of ATES1 gene (ATES1cyt) was tested. All three genes were expressed in A. adeninivorans cells under TEF1 constitutive promoter together with thiolase and reductase genes. Despite detected enzymatic activity the yield of (R)-3-HB synthesis and secretion was not increased. Moreover, overexpressed thioesterases negatively influenced cell growth, indicating that they act on other metabolic components. The results provided two sets of information, first, the endogenous secretion system is sufficient for (R)-3-HB production; second, further screening of suitable genes needs to be performed. Based on optimization of (R)-3-HB synthesis, thiolase gene (thl) from C. acetobutylicum and reductase gene (phaB) from C. necator were chosen to combine with PHA synthase gene (phaC) for creating the PHB-V producing strain. The PHA synthase expression module, containing TEF1 promoter and PHO5 terminator, was cloned into Xplor2 vector together with thiolase and reductase expression modules and used for A. adeninivorans transformation. The engineered strain accumulated up to 7.47\% PHB of dcw. During the set of cells passaging A. adeninivorans lost the ability to accumulate polymer with maximal 23.1 \% of primary accumulation level. Additionally, use of a vector including hygromycin B antibiotic resistance marker (instead of auxotrophic marker in Xplor2) did not improve polymer accumulation and stability. To counteract the effect of loss of accumulation stability, phasin gene (phaP1), originated from C. necator, was introduce together with PHA pathway genes. First screening cultivations resulted in stabilizing of polymer production reaching 9.58 \% PHB of dcw and only 12.0 \% loss of production ability. Further experiments increased PHB content with 19.9\% PHB of dcw (3.85 g L-1) after 180 h of cultivation using rich medium. Use of another thiolase gene, the second thiolase from C. necator (bktB), which theoretically should induce production of PHBV copolymer, led to accumulation only 11.4\% PHB of dcw after 139 h and no PHV fraction was detected. Variation of the ratio between flask volume and amount of media influences the level of aeration. Importantly, decrease of aeration level significantly increased polymer synthesis. Additionally, PHB-V copolymer accumulation has been induced by use of different carbon source co-substrates. Use of rich media supplemented with ethanol allow the strain with thl thiolase to accumulate up to 42.9 \% PHB of dcw without PHV fraction and with bktB thiolase to 30.5 \% PHB of dcw. Nevertheless, despite of lower total amount of polymer, supplementation with 1-propanol allow both strains to accumulate PHB-V copolymer with 7.30 \%mol and 22.5 \%mol of PHV for thl and bktB strains, respectively. Optimization based on genetic engineering further enhanced polymer production yield led to exceeding of 50 \% PHB-V of dcw. For doubling the gene dosage, PHA synthesizing strains of A. adeninivorans were again transformed with Xplor2 vector containing PHA pathway genes. Resulting strains exhibited twice the level of enzymatic activities of thiolase and reductase compared with strains transformed once with expression vector. In a shaking flask experiment the strain transformed twice with vector containing bktB thiolase reached after 240 h 52.1\% PHB-V of dcw (10.8 g L-1) with 12.3 \%mol of PHV fraction which is the highest level found in yeast. As another genetic approach, a fusion strain has been created. Two different strains have been established and merged using protoplast fusion technique. Doubling of genetic material resulted in similar level of copolymer produced by Arxula as in former experiments (50.2\% of dcw, 10.7 g L-1). Culture conditions were optimized in controllable cultivation using fed-batch mode. Although optimal oxygen and pH level and continuous carbon source and nitrogen feeding were maintained, final polymer level in \% of dry mass was around three times lower than for shaking flask experiment. Nevertheless, efficient growth of Arxula in fed-batch mode led to increase of total copolymer level in g L-1 (16.5 g L-1 compare to 10.8 g L-1 for shaking flasks) showing the feasibility of using Arxula strain for up-scaling production of copolymer. Acetyl-CoA is a main precursor in synthesis of PHB-V copolymer and change of its pool was investigated. ATP citrate lyase is a cytosolic enzyme converting citrate into oxaloacetate and acetyl-CoA, supporting the biosynthesis of fatty acids. Two genes encoding Acl subunits from Aspergillus nidulans (AnAcl1 and AnAcl2) were again cloned into Xplor2 vector and transformed into A. adeninivorans PHA producing strain. Despite of higher enzymatic activity of AnAclp, accumulation of polymer was around three times higher for control without expression of lyase genes. Expectedly, the strain expressing AnAcl1/2 genes accumulated larger amount of each stearic, palmitic and oleic acid in both standard and fatty acid inducing conditions (lower nitrogen level). Thus, overexpression of AnAcl1/2 genes in A. adeninevorans cells may improve biosynthesis of fatty acids but is ineffective for PHB polymer accumulation. The aim of the project was use of starch-based media, manufactured as by-products, for polymer production. Genetically engineered Arxula strains were cultivated using these media instead of glucose-based media. Although yeast cells were both able to secrete (R)-3-HB and to accumulate PHB, the yield was lower than for previous media. Additionally, only trace of PHV was found at the end of cultivation time when 1-propanol was supplemented. Obtained results showed that use of cheaper media is a promising approach to decrease production costs but further optimization needs to be performed especially for extended scale of production. Determination of produced copolymer has been done based on microscopic analysis and studies of physical and chemical properties. Results revealed that Arxula accumulated PHA polymer in cytosolic granules with a similar size range compared to the ones produced by bacteria. The physicochemical study showed that produced polymer exhibited slightly different properties in comparison to bacterial polymer with similar content of PHV, i.e. very-low molecular mass, higher melting and glass transition temperature. All above results showed that A. adeninivorans is a promising host for PHB-V production. Expression of phasin greatly increased production and stability of polymer, which led to an accumulation level never found before in yeast. Further optimization in higher production scale using cheap starch-based media may establish Arxula strain as a valuable tool for industrial production of PHB-V copolymer.}, language = {en} }