@phdthesis{Pauker2018, author = {Viktoria Isabella Pauker}, title = {Proteome analysis of chicken lymphocytes after infection and transformation by the oncogenic Marek’s disease virus}, journal = {Eine Proteomanalyse von Lymphozyten nach Infektion und Transformation mit dem onkogenen Virus der Marek’schen Krankheit}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-22756}, pages = {154}, year = {2018}, abstract = {The highly oncogenic alphaherpesvirus Marek’s disease virus (MDV) causes immense economic losses in the poultry industry. The main targets of in vivo MDV infection are primary B and T lymphocytes. The cytolytic infection of B cells leads to depletion of lymphoid cells results in severe immunosuppression. Infected B cells recruit and activate T cells. The close interaction between B cells and T cells enables efficient intercellular transfer of MDV. During infection of T cells, the virus enters a latent state. Infection of T cells can lead to transformation of these cells and formation of lymphoma, which manifest in various visceral organs. This study aimed at the characterization of the proteomes of MDV-infected lymphocytes during the lytic and latent phases of infection. Previous in vitro studies concerning the MDV pathogenesis and host-virus interactions have been mainly conducted with primary fibroblasts or kidney cells, due to the short lifespan of primary lymphocytes in cell culture. Recently, a cultivation system has been established that extents the lifespan of primary lymphocytes through the addition of cytokines to the growth medium. This allowed the infection of B cells in vitro and to conduct quantitative proteomic analysis of primary lymphocytes. Infection with GFP labelled virus recombinants allowed the isolation of infected cells by FACS for the proteome analysis of MDV infected B lymphocytes. An efficient quantitative proteomic workflow was developed, which consisted of a filter-aided (FASP) digest of the extracted proteins, followed by differential dimethyl chemical labeling of the peptides for quantitative evaluation prior to LC-MALDI TOF/TOF mass spectrometry. Only few alterations of the protein and transcript expression profiles were observed after infection of primary B cells with the very virulent RB-1B and the live-attenuated vaccine strain CVI988/Rispens. Relevant changes in relative protein levels were found for only twelve and six interesting host proteins after RB1B and CVI988 infection, respectively. However, the regulations were confirmed by inspection of the spectra from all experiments. The identified candidates play a role in immune response, translation and inflammatory response. To confirm the potential infection markers, RNA-seq analysis of three biological replicates of each RB-1B -, CVI988- and mock-infected B cells was performed. Eighty expressed MDV transcripts could be identified, which were associated with lytic infection. The same MDV proteins were identified after infection with RB-1B or CVI988. However, transcriptome and proteome analysis of MDV-infected primary B cells showed only poor correlation. This indicates that the changes in protein expression profiles are mostly due to posttranscriptional events. Infection marker candidates were identified by the RNA-seq analysis, for which the gene expression was altered by MDV infection. Although almost 12,000 transcripts were identified, only few transcript levels changed markedly after MDV infection. The biological processes immune response, apoptotic process, signal transduction, cell migration and response to virus were enriched after MDV infection. The RNA-seq results confirm the observation that alterations of protein levels early after MDV infection are rare. Most notably, MDV induces transformation of lymphocytes leading to malignant T-cell lymphomas in visceral organs with mortalities of up to 100 \%. While several factors involved in MDV tumorigenesis have been identified, the transformation process is not fully understood. Therefore, we set out to fill this knowledge gap using proteome analysis of transformed T-cells ex vivo. In addition, the role of the viral telomerase RNA during transformation was assessed by comparison of tumors that had formed after infection with WT-virus or a telomerase RNA negative mutant. A major obstacle for tumor proteome analyses is the preparation of sufficient amounts of homogenous tumor tissue, as tumors appear with a dispersed morphology in the affected organs. The quantitation of cell types within the tumors indicated varying portions of hepatocytes, connective tissue, and CD3+ lymphocytes even with the same virus strain in different animals. However, the ∆vTR-induced tumors contained lower levels of hepatocytes and higher levels of CD3+ lymphocytes compared to WT tumors in all tested tumor samples. Thus, ∆vTR tumors were chosen for determination of differences in protein expression profiles of tumors and na{\"i}ve T cells for their lower content of liver cells. We developed a workflow for the proteome analysis of T cell tumors from livers of MDV-infected chickens. Samples included laser capture micro-dissected tissue cuts from tumors and surrounding healthy liver tissue as well as na{\"i}ve T-cells prepared from thymus. To enable quantitative proteome analysis, samples were digested using the FASP protocol and peptides were isotope-coded by differential dimethyl labeling. To improve proteome analysis peptides were fractionated by preparative isoelectric focusing prior to nano-HPLC MALDI/TOF-TOF mass- spectrometric analysis. Proteomic analyses of LCM dissected ΔvTR tumor compared to na{\"i}ve T cells, the main targets of transformation, identified nineteen potential transformation markers but again only minor changes in relative levels were observed. Several of the identified markers could also be verified by RT-qPCR on transcript level. The identified transformation candidates were associated with nucleosome assembly, regulation of transcription, inflammatory response, immune response and oxidation-reduction process. However, further functional analyses are necessary to fully elucidate the role of the identified markers during MDV infection and transformation.}, language = {en} }