@phdthesis{PinhodosReis2018, author = {Vin{\´i}cius Pinho dos Reis}, title = {The role of integrins in flavivirus infection}, journal = {Die Rolle von Integrinen bei Flavivirus-Infektionen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-24835}, pages = {183}, year = {2018}, abstract = {The Flavivirus genus (Flaviviridae family) comprises the most important arboviruses in the world such as dengue virus, West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus and yellow fever virus (YFV). Every year, several outbreaks caused by flaviviruses are reported worldwide (i.e.: ZIKV and YFV outbreaks in South America) with a huge impact on economy and public health. In the last few decades, many aspects of the flavivirus biology and the interaction of flaviviruses with host cells have been elucidated. However, many underlying mechanisms concerning receptor usage, entry process and viral interaction with host cell factors are still not completely understood. Integrins, the major class of cell adhesion molecules have been implicated in the infectious cycle of different viruses including flaviviruses. A previous report proposed that a particular integrin, the αVβ3 integrin, might act as a cellular receptor for WNV. However, this hypothesis was not confirmed by other groups. In the present study, murine cell lines lacking the expression of one or more integrin subunits were used to evaluate the involvement of different integrins in the flavivirus infection cycle. Mouse fibroblasts lacking the expression of β1 integrin (MKF-β1-/-) or β3 integrin (MEF-β3-/-) subunits or αVβ3 integrin (MEF-αVβ3-/-) as well as their corresponding wild-type cells were utilized. A second model using Chinese hamster ovary cells (CHO-K1), a cell line that has been described to be refractory to some flaviviruses, were modified to express either αV (CHO-αV+/+) or β3 (CHO-β3+/+) integrin subunits. All cell lines were first characterized by confocal laser microscopy, flow cytometry and functional assays prior to infection to assess their integrin expression. The cell lines were then inoculated with different flaviviruses of public health relevance: WNV, YFV-17D, Usutu virus (USUV), Langat virus (LGTV) and ZIKV. Infection assays were designed in order to evaluate whether integrins influence i) cell susceptibility; ii) binding; iii) internalization and iv) replication of the investigated flaviviruses. Our findings clearly demonstrate that β1, β3 and αVβ3 integrins do not act as flavivirus cellular receptor or attachment factor since their ablation does not completely abrogate flavivirus infection in the investigated cell lines. Flavivirus binding to the cell surface of MEFs, MKFs and CHO cells was not disturbed by the genomic deletion of the above-mentioned integrins. The deletion of β1 and β3 integrin subunit did not affect internalization of any of the flaviviruses tested. In contrast to that, loss of αVβ3 integrin in the MEF-αVβ3-/- cells showed a statistically significant decrease in WNV and USUV internalization while ZIKV, YFV-17D and LGTV internalization remained unaffected suggesting that αVβ3 integrin might be involved in the internalization process of at least some flaviviruses. On the other hand, flavivirus replication was substantially impaired in the integrin-deficient cell lines in comparison to their corresponding wild-type cells. Both, MEF-β3-/- and MKF-β1-/- cells showed a statistically significant reduction on viral load for all flaviviruses tested in comparison to their respective wild-type cells. The MEF-αVβ3-/- cells in particular, showed a strong inhibition of flavivirus replication with a reduction of up to 99\% on viral loads for all flaviviruses tested. Levels of flavivirus negative-strand RNA were substantially decreased in MEF-αVβ3-/- cells indicating that integrins might influence flavivirus RNA replication. The ectopic expression of either αV or β3 integrin subunits in CHO cells slightly increased the replication of all flaviviruses tested. Taken together, this is the first report highlighting the involvement of integrins in ZIKV, USUV, LGTV and YFV infection. The results strongly indicate that the investigated integrins play an important role in flavivirus infection and might represent a novel host cell factor that enhances flavivirus replication. Although the exact mechanism of interaction between integrins and flaviviruses is currently unknown, the results provided in this study deepen our insight into flavivirus - host cell interactions and open doors for further investigations.}, language = {en} }