@phdthesis{Trnka2018, author = {Daniel Trnka}, title = {Functional characterization of human class I and class II mitochondrial glutaredoxins}, volume = {2018}, journal = {Funktionelle Charakterisierung von humanen mitochondrialen Klasse I und Klasse II Glutaredoxinen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-27636}, pages = {136}, year = {2018}, abstract = {Class I and class II glutaredoxins (Grxs) are glutathione (GSH)-dependent proteins, that function as oxidoreductases (class I) or mediate cellular iron trafficking (class II). Some members of class I Grxs like human Grx2 are able to complex a [2Fe-2S] cluster and form a dimeric holo complex, which renders them catalytically inactive and is the basis for their function as redox sensors. Class II Grxs like human Grx5 also complex [2Fe-2S] clusters, however these proteins transfer the clusters to other proteins. Both functionally distinct classes share a similar thioredoxin fold and conserved interaction sites for the non-covalently binding of GSH, which is required to complex the [2Fe-2S] cluster. Furthermore, the proteins from both classes contain a highly nucleophilic active site cysteine that would allow both classes to catalyze GSH-dependent oxidoreduction reactions. Despite of these similar features, only class I Grxs are able to form a mixed disulfide with GSH and to reversibly transfer it to protein thiols (de-/glutathionylation). Interestingly, neither class I Grxs nor class II Grxs can effectively compensate the loss of an essential member of the other class. Even though some structural differences were described earlier, the basis for their different functions remained unknown. In particular, the lack of catalytic activity of class II Grxs as oxidoreductases could not be explained. Here, we demonstrate that the different conformations of a conserved lysyl side chain are the molecular determinant of the oxidoreductase or Fe-S transfer activity of class I and II Grxs, respectively. A specific loop structure that is conserved in all class II Grxs determines one lysyl conformation that prevents the formation of a mixed disulfide of the active site cysteinyl thiol with GSH. Using engineered mutants of hGrx2 and hGrx5, we demonstrated that the exchange of the distinct loop between the classes results in a loss of oxidoreductase function of class I hGrx2 and the gain of oxidoreductase activity of class II hGrx5. The altered GSH binding mode also profoundly changes the [2Fe-2S] cluster binding of the engineered mutants and thereby also influences stability of the holo complexes, a pre-determinant for [Fe-S] cluster transfer activity. With the minor shift of 2 {\AA} in a conserved lysyl side chain orientation we were not only able to modify the catalytic activity of two small human mitochondrial proteins, but on a much larger scale also provided evidence for the previously unknown structural basis that determines the function of all class I and class II Grxs. The oxidoreductase activity of hGrx2 was also analyzed in vivo in a model of doxorubicin cell toxicity. Applying a mass spectrometrical approach, we identified various mitochondrial proteins as targets for redox regulation. Furthermore, our results gave reason to reconsider some common assumptions regarding doxorubicin-induced apoptosis and the protective function of mitochondrial Grx2.}, language = {en} }