@phdthesis{Gehrmann2018, author = {Anna Gehrmann}, title = {The multi-stage structural development of the Upper Weichselian Jasmund Glacitectonic Complex (R{\"u}gen, NE Germany)}, journal = {Die mehrphasige strukturelle Entwicklung des oberweichselzeitlichen glazitektonischen Komplexes von Jasmund (R{\"u}gen, Nordostdeutschland)}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-24751}, year = {2018}, abstract = {Glacitectonic deformation in the Quaternary caused the tectonic framework of large-scale folds and displaced thrust sheets of Maastrichtian (Upper Cretaceous) chalk and Pleistocene glacial deposits in the southwestern Baltic Sea area. A wide spectrum of methods has been compiled to unravel the structural evolution of the Jasmund Glacitectonic Complex. The analyses of digital elevation models (DEM) suggest a division into two structural sub-complexes – a northern part with morphological ridges striking NW–SE and a southern part with SW–NE trending ridges. Geological cross sections from the eastern coast (southern sub-complex) were constructed and restored using the software Move™ and the complementary module 2D Kinematic Modelling™. The final geometric model of the southern sub-complex shows a small-scale fold-and-thrust belt. It includes three different orders of architectural surfaces (see PEDERSEN, 2014): erosional surfaces and the d{\´e}collement (1st order), thrust faults (2nd order), and beds outlining hanging-wall anticlines as well as footwall synclines (3rd order). Thrust faults of the southern structural sub-complex are mainly inclined towards south, which indicates a local glacier push from the S/SE. The glacitectonic structures have a surface expression in form of sub-parallel ridges and elongated valleys in between. Geomorphological mapping and detailed landform analyses together with the structural investigations provide an insight into the chronology of sub-complexes formation. The northern part of the glacitectonic complex is suggested to have been formed before the southern one, considering the partly truncated northerly ridges and their superimposition by the southern sub-complex. Although there is a high number of scientific publications on the glacitectonic evolution of Jasmund, these presented models often lack a consistent theory for the development integrating all parts of the 100 km2 large complex. Therefore, the combination of all results leads to a more self-consistent genetic model for the entire Jasmund Glacitectonic Complex.}, language = {en} }