@phdthesis{Himmel2011, author = {Sebastian Himmel}, title = {Histidine phosphorylation in proteins - A characterization of phosphohistidines in the bacterial transcription factor GlcT of Bacillus subtilis}, journal = {Histidin Phosphorylierung in Proteinen - Eine Charakterisierung der Phosphohistidine im bakteriellen Transkriptionsfaktor GlcT von Bacillus subtilis}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001139-5}, year = {2011}, abstract = {The present work provides new insight concerning histidine phosphorylation in proteins, which is an essential regulatory posttranslational modification. To study histidine phosphorylation, a newly developed NMR approach, the HNP experiment, is presented in this thesis. The HNP experiment provides specific experimental evidence of phosphorylated histidines in proteins. It allows for the determination of the regiochemistry of phosphohistidines on the basis of three individual peak patterns for distinguishing all three phosphohistidines i.e. 1- and 3-phosphohistidine and 1,3-diphosphohistidine. This novel NMR approach allows the investigation of histidine phosphorylation in proteins under physiological conditions without resorting to chemical shift comparisons, reference compounds, or radioactively labelled phosphate. In this thesis, histidine phosphorylation in the regulatory domains PRDI and PRDII of the Bacillus subtilis antiterminator protein GlcT was intensely studied. GlcT is a transcription factor, which regulates the phosphotransferase system (PTS) by modulating the expression level of PTS-enzymes (Enzyme I, HPr, Enzyme II) on a transcriptional level. Upon the phosphorylation of conserved histidines in PRDI and PRDII, the function of GlcT is regulated through its aggregation state. In this thesis, it is shown that histidines in both PRDs are primarily phosphorylated at their N(Epsilon-2), forming 3-phosphohistidine. In addition, we found, by newly optimized mass spectrometry conditions, that both PRDs are dominantly onefold phosphorylated. By using tandem mass spectrometry to study PRDI, we identified histidine 170, which is the second of two conserved histidines (His 111 and His 170), as the phosphorylation site. In this thesis, it is also shown through comprehensive mutational studies that both conserved histidines (His 218 and His 279) in PRDII can be individually phosphorylated. This is in good agreement with mass spectrometry results that indicated an additional twofold phosphorylation in PRDII. This can be explained as follows: an intra-domain phosphate transfer between both conserved histidines in PRDII might be involved in the phosphorylation reaction, finally leading to a mainly onefold phosphorylated PRDII at one of the two conserved histidines. This minor twofold phosphorylation has also been found in PRDI. However, the specific peak pattern in the HNP-spectra of PRDI strongly suggest that this additional phosphorylation originates from a 1,3-diphosphohistidine, most likely at histidine 170. Furthermore, for the first time the existence of 1,3-diphosphohistidine in a protein was found. We also show that the phosphorylation of PRDI can be achieved in the absence of Enzyme II which is in contrast to the literature. Shown by analytical gel filtration, the monomeric aggregation state of PRDI obtained upon Enzyme II-free phosphorylation is identical to the monomeric aggregation state which was proposed for the Enzyme II-dependent phosphorylation of GlcT. As shown in this thesis, the combined results of HNP-NMR, mass spectrometry and analytical gel filtration deepen our understanding of regulatory histidine phosphorylation in the individual PRDI and PRDII domains of the Bacillus sub- tilis GlcT. I anticipate that this approach will be applicable to study histidine phosphorylations in other phosphoproteins.}, language = {en} }