@phdthesis{Rackow2016, author = {Kristian Rackow}, title = {Emitter erosion in fluorescent lamps during steady-state operation}, journal = {Emittererosion in Leuchtstofflampen w{\"a}hrend des station{\"a}rer Betriebes}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002490-8}, year = {2016}, abstract = {With the growing importance of advanced lighting technologies, customers expect additional functionality and higher comfort from fluorescent lamps. However, the ability to regulate light intensity (dimmed operation), in particular, exerts enormous stress on fluorescent lamps’ electrodes, leading to increased electrode erosion and significantly reduced lifetimes. During the operation of a fluorescent lamp, free barium (the main compound of the electrode emitter) is produced at the electrode responsible for lowering the work function in order to enable energy-efficient and durable electrodes with lifetimes of up to 20,000 hours. Despite their relatively long lifetimes, electrodes remain the lifetime-limiting factor of a fluorescent lamp. Therefore, for practical applications (e.g., maintaining quality control, adjusting operational parameters, and evaluating new electrode designs), electrode erosion is of special interest. The actual erosion-measurement methods determine a time-averaged erosion level over several hundred operation hours. Thus, a quasi-instantaneous measuring method (short measurement) is still necessary to determine erosion during operation. Such a method would allow us to compare erosion under different discharge conditions (currents, frequencies, or heating currents) from the same electrode in the same lamp. This work focuses on the determination of absolute electrode erosion during the stationary operation of commonly used fluorescent lamps. Commercial T8 lamps (fluorescent lamps with a diameter of 8/8 inch) are investigated at the operating mode of commonly used electronic ballasts with frequencies of several kHz. Operations under standard and dimmed conditions with an additional heating current to reduce electrode erosion are investigated. Electrode erosion is characterized by the erosion of barium, the main compound of the electrode. Therefore, laser-induced fluorescence (LIF), which is the most sensitive method for this application, is applied to determine the absolute densities of the eroded barium in the electrode region. These densities are affected by the plasma in the electrode region and do not directly represent the absolute barium erosion. To overcome this limitation, a new method based on a special measurement technique in combination with a barium-diffusion-model is developed to determine the absolute barium erosion based on the measured densities. It has been found that the barium densities in the electrode region are lower than the equilibrium pressures produced by the reduction of the barium oxide. This could be caused either by a reduced reaction rate, the reduced diffusion of the reactant (primarily barium oxide) or by reduced barium transport through the porous emitter. However, these results suggest that barium erosion depends on temperature and emitter structure, which vary over an electrode’s lifetime. For currents significantly higher than the nominal lamp current, a drastic increase in emitter evaporation is found. Such, an increase in the lamp current from 300 mA to 500 mA leads to an increase in emitter evaporation by a factor of five. Using the lamp for a long period of time under these conditions therefore reduces the lifetime by a factor of five. Notably, at this dramatically increased erosion level, the hot spot temperature only increases from 1120 K to 1170 K. Investigation of various frequencies from 50 Hz to 5 kHz revealed no significant dependence of emitter evaporation on frequency.}, language = {en} }