@phdthesis{Gellert2017, author = {Manuela Gellert}, title = {A thiol-disulphide switch in the regulation of cytoskeletal dynamics}, journal = {Ein Thiol-Disulfid-Schalter in der Regulation der Zytoskelettdynamik}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002870-7}, year = {2017}, abstract = {Numerous signalling pathways orchestrate the development, the functions, and the survival of cells, mostly in response to external stimuli. An overwhelming amount of data supports the concept of specific, spatio-temporal redox signalling pathways that affect the redox state of protein cysteinyl side chains and thus the biological function of these proteins. Glutaredoxins (Grxs) and thioredoxins (Trxs) catalyse reversible thiol-disulphide exchange reactions. The cytosolic Grx2 isoform Grx2c is essential for brain development and axonal outgrowth. A reversible dithiol-disulphide switch of CRMP2 has been identified as one of the major targets regulated by Grx2c. This CRMP2 redox switch is toggled in neuronal differentiation. Reduction of CRMP2 thiols induces profound conformational changes, modifying interactions and downstream elements of this redox switch. In [article I] and [manuscript V], we identified the Cys504 of CRMP2 to be the redox regulated residue. We used various in vitro assays with recombinant protein and molecular dynamics simulations to characterise the conformational change. The changes involve the solvent accessible surface area of at least one known phosphorylation site at the C-terminus of the protein. In [article III], we analysed the function of Grx2 and Trx1 in a model for perinatal asphyxia. Trx family proteins exhibit a very complex, cell-type and tissue specific expression pattern following hypoxia/ischemia and reoxygenation, especially Trx1 and Grx2. The results imply the clinical relevance for both proteins in perinatal asphyxia as well as many other neurological disorders. In agreement with the results presented in [articleI], Grx2 may be required for the re-establishment of neuronal integrity and connectivity. Cell shape, all forms of intracellular transport, and cell movement depend on the cytoskeleton, particularly on the fine tuned complex regulation of the dynamic re-arrangement of actin filaments and microtubules. In [article IV], we discuss the redox regulation of this dynamic cytoskeletal remodelling. Taking recent discoveries into account, we focus on redox signalling mechanisms, e.g. reversible thiol and methionyl switches. These switches are specifically controlled by enzymes such as Trx1 and Grx2c, for instance, and not the result of random modification by unspecific oxidants. Methionyl sulphoxidation of actin can be reversed by methionyl sulphoxide reductase (MsrA), promoting actin polymerisation. Human cells express two different Msr enzymes (MsrA and MsrB), that can reduce S- and R-methionyl sulphoxide, respectively. In the gram-positive Streptococcus pneumoniae, on the other hand, both Msr genes and thus enzymes were fused during evolution. In [article II], we characterised the surface-exposed thioredoxin family lipoproteins Etrx1 and 2 and regulators of this Msr (SpMsrAB). A loss of function of both Etrx proteins or SpMsrAB dramatically reduced pneumococcal virulence, enhanced the bacterial uptake by macrophages, and accelerated pneumococcal killing by H2O2 or free methionine sulphoxide. Identification and characterisation of components of this redox regulated system may contribute to the design of new antimicrobials. In [manuscript VI], we investigated the effects of Grx2c expression on cell morphology, migration, and invasion behaviour of cancer cells. Grx2c expressing cancer cells developed dramatic changes in phenotype, including alterations in cytoskeletal dynamics and significantly increased motility and invasiveness. We used quantitative proteomics and phopshoproteomic approaches to characterise the underlying mechanisms. Proteins and pathways regulating cytoskeletal dynamics, cell adhesion, and receptor-mediated signal transduction were detected to be specifically altered. We started a clinical pilot study with patients suffering from clear cell renal cell carcinoma (ccRCC). Grx2c was expressed with significantly higher frequency in ccRCC compared to healthy kidney tissue, associated with a strong trend for locally more advanced tumour stages and a clear tendency for a decreased cancer-specific survival, compared to patients without detectable Grx2c. These results were supported by data from \"The Cancer Genome Atlas\". In synopsis, the results presented and discussed in these articles and manuscripts, support the concept of specific redox signalling in different models and model organisms. They also demonstrate the importance of the specific redox control of signalling pathways that, in the case of errors or misinterpretations, contribute to pathophysiological alterations. The regulation of the CRMP2 redox switch by Grx2c, for instance, is physiologically essential for brain development, but might lead to cancer progression, if \"switched on\" in adult tissue. Identification of further interaction partners as well as the development of compounds modulating this redox switch and CRMP2s conformations, will be part of our future research.}, language = {en} }