@phdthesis{Wienholtz2019, author = {Wienholtz, Frank}, title = {Measurements of exotic calcium isotopes by multi-reflection time-of-flight mass spectrometry and further developments and applications}, institution = {Institut f{\"u}r Physik}, year = {2019}, abstract = {This thesis describes mass measurements at ISOLTRAP/ISOLDE/CERN in the region of the neutron-rich calcium isotopes. For the less exotic and more abundantly produced isotopes 51Ca and 52Ca the Penning trap based ToF-ICR technique could be used to validate the available mass data and to improve their precision. For the isotopes 53Ca and 54Ca, a Multi-Reflection Time-of-Flight Mass Spectrometer (MR-ToF MS) was used to determine the mass of these exotic isotopes for the first time experimentally. This also represents the first time an MR-ToF MS was applied to derive the masses of previously unknown radioactive ions from the high precision time-of-flight data that can be gathered with the device. The mass data was then used to benchmark the strength of the N=32 neutron subshell closure and at the same time to compare to state-of-the-art shell-model calculations. Furthermore, the capability of the MR-ToF device to deliver isobarically pure beams to a subsequent experiment was developed further and studied in detail. The new technique is based on the in-trap lift, which is normally used to in- and eject ions into and from the device. With this new selective ejection technique after separation of the ion ensemble in the MR-ToF trap, no external components are required. Additionally, a new stabilization system for voltages supplies, based on a PI-algorithm, was developed and thoroughly tested. The stabilized voltage supply was then used to supply the most sensitive mirror voltage of the MR-ToF MS to significantly increase the short term and long-term mass resolving power of the apparatus.}, subject = {Multi-reflection time-of-flight mass spectrometry}, language = {en} }