@phdthesis{Pamperin2019, author = {Mathias Pamperin}, title = {Effective modeling of charge-transferring atom-surface collisions}, journal = {Effektive Modellierung von ladungs{\"u}bertragenden Atom-Oberfl{\"a}chenst{\"o}{\"s}en}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-33939}, pages = {107}, year = {2019}, abstract = {In this work, we theoretically investigate both aspects of charge-transferring atom-surface collisions: local-moment-type correlations and emission of secondary electrons from surfaces. Ideally, one chooses an approach that keeps as many electronic and lattice degrees of freedom at an ab-initio level as possible. In practice, however, this sophistication is hard to maintain. In this work, we do not aim to perform a description from first principles which could utilize density functional theory or quantum-chemical techniques. Instead, we keep only the most important degrees of freedom of the scattering process and use effective models for them. These are basically the Anderson-impurity model leading to time-dependent Anderson-Newns Hamiltonians and Gadzuk’s semiempirical approach to describe the projectile-target interaction from classical image shifts. In direct comparison with the description from first principles, the semiempirical approach offers a flexible basis for the modeling of a great variety of projectile-target combinations. The addition of further effective models to increase the general quality of the results is possible since the approach is very modular. The clear physical interpretation of each effective model, as well as the requirement for only a few and generally available parameters are further advantages of this approach. Rewritten in terms of Coleman’s pseudo-particle operators, the model is then numerically analyzed. This is done within a non-crossing approximation for the hybridization self-energies which are utilized by contour-ordered Green functions for each relevant electronic state of the projectile.}, language = {en} }