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1 Introduction 

1.1 Background and aim 

Understanding the causes of common diseases and estimating their risk factors are biomedical research's 

fundamental goals to develop new treatments and medications. Many of the most common diseases, known 

as complex diseases, are caused by multiple environmental, lifestyle, and genetic risk factors. Lifestyle 

modifications and medications have been quite successful in treating various ailments. Nevertheless, a better 

understanding of the molecular mechanisms underlying complex diseases and their potential interactions 

with other factors is necessary to identify possible causes of diseases and develop more effective treatments. 

This thesis aims to contribute to our understanding of the genetic basis of complex human diseases by 

utilizing multi-omics data, including DNA polymorphism variation, and integrating various levels of 

molecular data to uncover the biological mechanisms underlying the findings. The primary objective is 

identifying novel genetic markers related to kidney function by conducting trans-ethnic GWAS meta-

analyses of multiple studies with large sample sizes. To identify additional independent genetic markers, a 

statistical method called the quasi-adaptive method has been developed which assesses the significance level 

of secondary signals in GWAS conditional analysis. Furthermore, the method has been improved and applied 

to a prior report on kidney function to reveal more trait-associated genetic variants. This research aims to 

gain insights into the underlying mechanisms of complex diseases, paving the way for more effective 

treatments and medications. 

1.2 Identifying genetic susceptibility loci 

1.2.1 Genetic markers 

A genetic marker is a sequence of DNA with a known physical location on a chromosome used to identify 

individuals, populations, species, or genes involved in inherited disease. The genome of an individual may 

differ from others in numerous ways, including base differences known as single nucleotide polymorphisms 

(SNPs), insertions or deletions (INDELs), or differences in the number of copies of a sequence or gene (copy 

number variations (CNV)). The most common type of genetic marker are SNPs (Figure 1) occur when a 

single nucleotide adenine (A), thymine (T), cytosine (C), or guanine (G) in the genome differs between 

individuals.  

Genetic markers can refer to genes associated with various complex traits or common diseases. When SNPs 

occur in coding or non-coding regions (a regulatory region), they may significantly affect the function of the 

gene(s) and influence diseases. In this context, identifying associated genetic loci is the first step toward 

deciphering disease-related biological pathways and understanding the etiology of a specific illness.  
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Figure 1. Depicts two sequenced DNA fragments from different individuals containing a difference in a single nucleotide A and G. 

This variation in the DNA sequence is referred to as an SNP with two alleles, A and G. Reprinted from “Single nucleotide 

polymorphisms as genomic markers for high-throughput pharmacogenomic studies” by Lonetti A. et al. (2016), Methods Mol Biol, 

1368, 143-59. Copyright © 2016, Springer Science Business Media New York. 

1.2.2 Haplotype and linkage disequilibrium (𝑳𝑫)  

A haplotype is a collection of specific SNPs alleles at adjacent loci belonging to the same chromosome that 

are statistically associated and tend to be inherited together. Identification of these statistical associations 

and fewer alleles of a particular haplotype sequence can facilitate the identification of all other nearby 

polymorphic sites on a chromosome. Such information is critical for research into the genetics of common 

diseases. For example, if there are SNPA with two alleles, T and G, at locus one and SNP𝐵 with two alleles, 

G and A, at locus two, the corresponding plausible haplotypes are TG, TA, GG, and GA. Theoretically, if 

the association between the allele T and G is supposed to be random and the allele frequency 𝑃𝐴(𝑇) and 

𝑃𝐵(𝐺) are known. In this case, the frequency for each haplotype, for instance, 𝑃𝐴𝐵(𝑇𝐺) can be calculated as 

𝑃𝐴𝐵(𝑇𝐺) =   𝑃𝐴(𝑇) ×  𝑃𝐵(𝐺). Sometimes there is a difference between the theoretical haplotype frequency 

and empirical haplotype frequency in a population. This difference 𝐷 = 𝑃𝐴𝐵(𝑇𝐺) − 𝑃𝐴(𝑇) 𝑃𝐵(𝐺) is a 

measure of linkage disequilibrium (𝐿𝐷), which refers to a non-random association between tightly linked 

SNPs at different loci in a given population1.  

Since the range of 𝐷 depends on the frequencies of the alleles to which it refers, this is not straightforward 

to compare the extent of linkage disequilibrium between different pairs of alleles. Lewontin, R. C. (1964)2 

suggested normalizing 𝐷 as follows:  

𝐷´ = 
𝐷

𝐷𝑚𝑎𝑥
      where,     𝐷𝑚𝑎𝑥 = {

max{−𝑃𝐴(𝑇) 𝑃𝐵(𝐺),−(1 − 𝑃𝐴(𝑇))(1 − 𝑃𝐵(𝐺))} ,          𝐷 < 0

min{𝑃𝐴(𝑇)(1 − 𝑃𝐵(𝐺)), 𝑃𝐵(𝐺)(1 − 𝑃𝐴(𝑇))} ,                  𝐷 > 0
  

An alternative to 𝐷´ is the pairwise correlation coefficient (𝑟2) between two SNPs as follows: 

𝑟2 = 
𝐷2

𝑃𝐴(𝑇)(1 − 𝑃𝐴(𝑇))𝑃𝐵(𝐺)(1 − 𝑃𝐵(𝐺))
 

Two SNPs are in complete 𝐿𝐷 if 𝐷´ = 1 and 𝑟2 < 1 and are in perfect 𝐿𝐷 if 𝐷´ = 1 and 𝑟2 = 1. 
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1.2.3 Genome-wide association study (GWAS) 

Genome-wide association study (GWAS) is an observational approach widely used to identify genetic 

variants, mainly SNPs, statistically associated with a particular complex trait or a common disease3,4. GWAS 

examines SNPs across the entire set of DNA (the whole genome) from a large group of participants to 

identify variations that account for disease risk. These participants may be people with a disease (cases) and 

people without the disease (controls), or people with different phenotypes for a particular trait. 

To perform GWAS, first, each individual must be genotyped using available genotyping arrays or 

sequencing technologies. Second, the disease outcome or non-disease-related trait is measured for each 

individual. Third, a statistical association test is performed at the genome-wide level to look for genetically 

associated SNPs. The associated SNPs are then considered to highlight the genomic regions that may 

influence disease risk. 

1.2.3.1 Sample description 

I conducted the analyses based on individual-level data using the Study of Health in Pomerania (SHIP)5 and 

UK-Biobank (UKBB)6.  

SHIP cohort 

SHIP is a population-based epidemiological study in Western Pomerania, the northeast area of Germany, 

comprising two prospective independent cohorts, SHIP-Start (The initial cohort SHIP was renamed to SHIP-

Start to avoid confusion) and SHIP-Trend. Both cohorts were collected from the general adult population 

aged 20–79. First Baseline examinations of SHIP-Start (SHIP-Start-0) were performed from 1997-2001, 

with the final sample of 4,308 participants (response 68.8%). The mean age of the SHIP-Start-0 baseline 

sample was 50.3 years (±16.4 years) and 50.9% of participants were women. First Baseline examinations of 

SHIP-Trend (SHIP-Trend-0) were performed from 2008-2012, with the final sample of 4,420 participants 

(response 50.1%). The mean age of the SHIP-Trend-0 baseline sample was 52.0 years (±15.5 years), with 

51.4% women included. The main objective of SHIP is to assess the prevalence and incidence of common 

diseases and their risk factors. The study design has been previously described in detail in the respective 

publication5. 

UKBB cohort 

The UKKB is a large prospective cohort study with deep genetic data and a wide variety of phenotypic 

information collected on approximately 500,000 individuals aged between 40 and 69 across the United 

Kingdom. The first baseline information was collected between 2006 and 2010. The study continues to 

collect detailed information about participants' demographic, lifestyles, health-related factors, and physical 
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measures. The mean age of the UKBB baseline sample was 56.53 years (±15.87 years) and 54.4% of 

participants were women. The UKBB aims to offer samples for different studies undertaking vital research 

into the most common and life-threatening diseases. The study design has been previously described 

comprehensively in the respective publications6,7. 

The CKDGen consortium 

The CKDGen consortium8 [https://ckdgen.imbi.uni-freiburg.de/], focusing on the genetic basis of kidney 

function, was conducted in international consortia to increase the power of the statistical analyses by 

increasing the sample size. Samples from multiple cohorts (including SHIP) were analyzed individually 

according to a centrally generated analysis plan and then subjected to meta-analysis. The projects carried 

out within this consortium include more than 100 individual studies with more than one million samples. 

1.2.3.2 Array-based genotyping analyses 

SHIP cohort 

In 2008, 4252 samples from the SHIP-Start were genotyped at 909,622 SNPs and 946,000 additional non-

polymorphic copy number probes by the Affymetrix Genome-Wide Human SNP Array 6.0 at Affymetrix, 

Inc. (Santa Clara, CA, USA) using the Birdseed2 clustering algorithm. Following this, at the end of 2010, a 

subset of SHIP-Trend (SHIP-Trend multi-OMICS) including 1000 samples, was selected for genotyping at 

2.45 million genetic variants using the Illumina Human Omni 2.5 array. Genotyping was performed at the 

Helmholtz Zentrum München, Munich, Germany.  

The genotyping quality was checked for all arrays, and the corresponding SNPs were called and quality 

controlled (𝑄𝐶) using an established workflow. The 𝑄𝐶 steps included filters for both low array genotyping 

efficiency (< 94% or < 92% depending on array type), SNPs call rates (< 95%), Hardy-Weinberg equilibrium 

(𝑝𝐻𝑊𝐸 ≤  10−4), monomorphic SNPs, and excessive heterozygosity as indicators of genotyping errors 

(more than ±4 standard deviations of the mean). Additional filters included mismatches between reported 

and genetically estimated gender, individuals call rates (< 94%), and duplicate samples. Furthermore, sample 

outlier detection was applied using principal component analyses (more than ±8 standard deviations of the 

mean for the first 10 principal components and five iterations).  

UKBB cohort 

Two similar genotyping arrays were used to assay 488,377 participants involved in the UKBB. A subset of 

49,950 participants in the UKBB Lung Exome Variant Evaluation (UK BiLEVE) study was genotyped 

(807,411 markers) using the Applied Biosystems™ UK BiLEVE Axiom™ Array by Affymetrix. The rest 

https://ckdgen.imbi.uni-freiburg.de/
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of the 438,427 participants were genotyped (825,927 markers) using the closely-related Applied 

Biosystems™ UK Biobank Axiom™ Array9.  

The QC steps included filters for variants that showed batch effects, plate effects, departures from HWE, 

sex effects, array effects, discordance across control replicates, SNPs call rates (< 95%), and MAF < 10-4. 

In addition, samples with ancestry outliers, outliers for heterozygosity, and missingness (high heterozygosity 

or > 5% missing rate) were removed as described comprehensively in the respective publication9.  

1.2.3.3 Imputation of genotype SNPs 

An essential step in most GWAS is the imputation of genotype SNPs. This process dramatically increases 

the number of SNPs that can be tested for association, increases the power of the study, and facilitates meta-

analysis of GWAS across distinct cohorts10. Different datasets may have used different genotyping platforms 

and may have different genotyped variants containing a non-overlapping set of SNPs. Each study imputed 

the genotype data before running GWAS by imputation methods. These methods integrate the 𝐿𝐷 structure 

obtained from an SNP reference data set such as the HapMap11,12, the 1000 Genomes13, or the Haplotype 

Reference Consortium (HRC)14 to infer the alleles of missing SNPs in the study.  

SHIP cohort 

Genotyped SHIP data were imputed based on the HapMap II (nSNPs=2.5 million), the 1000 Genomes 

(nSNPs=16 million), and the HRC (nSNPs=40 million) reference panels. The imputation to the HRC panel 

was performed using the Michigan15 [https://imputationserver.sph.umich.edu/] and Sanger16 

[https://imputation.sanger.ac.uk/] imputation servers. The imputation to the HRC was performed by myself 

using the Michigan imputation server. The SNPs were annotated according to the GRCh37 (hg19) reference 

build.  

UKBB cohort 

Genotyped UKBB data were imputed using the HRC (as the main imputation reference panel). The UK10K 

and 1000 Genomes phase 3 reference panels were merged by the IMPUTE4 program 

(https://jmarchini.org/software/) to approximately 90 million autosomal SNPs, short indels, and large 

structural variants in 487,442 individuals. The genotype imputation process used in the UKBB study has 

been thoroughly discussed in the corresponding publications6,7,9. 

1.2.3.4 GWAS workflow 

GWAS was performed using a linear regression model for a quantitative trait (continuous) and a binary 

logistic regression for a dichotomous trait (cases and controls). In regression models, the trait was used as a 

https://imputation.sanger.ac.uk/
https://jmarchini.org/software/
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response variable and the amount of coded allele of SNP as an exposure variable (SNP`s allele dosages). For 

example, for SNP with two alleles, A and G (G as a coded allele), allele dosages were coded as 0 for AA, 1 

for AG, and 2 for GG genotypes. The regression models typically adjusted for sex, age, family structure, 

and population stratification (genetic principle component) to correct for the possible influences of other 

parameters during association testing. GWAS tested the association of coded allele with desire trait, the 

effect estimate of the coded allele against deviation from the null hypothesis (no association).   

In the SHIP studies (SHIP-Start and SHIP-Trend), no further adjustment to the family structure was made 

in the association model because participants in the studies were predominantly unrelated. Other adjustments 

(study-specific covariates) in the association models were described in the respective publications3,4. GWAS 

was performed using the software Efficient and Parallelizable Association Container Toolbox (EPACTS) 

(https://genome.sph.umich.edu/wiki/EPACTS), adding the SNP’s allele dosage to a linear regression model 

via “q.linear” test for quantitative and a logistic regression model via “b.wald” test for binary phenotypes. 

EPACTS was able to work with the imputed genotypes output, Variant Call Format (VCF) file, from the 

Michigan imputation server.  

In the UKBB study, genetic association analysis was performed by the BOLT-LMM mixed model 

algorithm17, an efficient mixed model for identifying genetic associations and avoiding confounding. 

Compared to the standard infinitesimal mixed model, BOLT-LMM requires only a small number of time 

iterations and accordingly increases the power to detect associations. The BOLT-LMM adapts the mixed 

model via modeling non-infinitesimal genetic architectures with a Bayesian mixture prior to SNP effect sizes 

that better accommodate both small and large effect loci.  

1.2.3.5 Quality control and visualization of GWAS results 

Population structure, including population stratification and cryptic relatedness, can lead to spurious 

associations in GWAS. Consequently, GWAS results have to be quality controlled. Typically, a Quantile-

Quantile (𝑄𝑄) plot (plot of the observed p-value of the meta-analysis association test versus the expected 

distribution under the null hypothesis of no association) is generated to discover the undetected problems in 

GWAS results. In addition, genomic control (𝐺𝐶) can then be applied to adjust test statistics at individual 

loci when the genomic inflation factor λ𝐺𝐶  reflects the evidence of inflation of the GWAS p-values. λ𝐺𝐶 is 

defined as the median of the observed chi-squared test statistic divided by the median of the corresponding 

chi-squared distribution with one degree of freedom. The 𝑄𝑄 plot and λ𝐺𝐶  can help to detect and correct the 

possible inflation of the results in terms of the unexpectedly high number of low p-values from genotype 

associations with the outcome.   

A standard method for visualizing the GWAS results is generating a genome-wide Manhattan plot or a 

detailed association plot of the specific region (regional association plot-locus zoom plot). In both cases, 

SNPs are displayed on the x-axis according to their position on each chromosome versus the −log10(p) of 

the association on the y-axis. More significant associations show higher peaks on the y-axis.  

https://genome.sph.umich.edu/wiki/EPACTS
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Before meta-analysis, study-specific GWAS files were quality-controlled (GWAS-QC) based on effective 

sample size, imputation quality score (INFO), genotyping callrate, MAF, effect size (Beta), standard error 

(SE), and p-value. 𝐺𝐶 correction was applied when the λ𝐺𝐶 within the study was greater than one. GWAS-

QC has been discussed in the corresponding publications3,4.  

1.2.4 Meta-analysis of GWAS results 

In complex diseases, the causative common genetic variants have relatively small effect sizes, and single 

studies are underpowered to detect true positive associations. Meta-analysis of GWAS is a statistical 

technique that increases the sample size and examines more variants throughout the genome by combining 

the results of multiple smaller independent GWAS studies (on the same research question). Meta-analysis 

improves the power to detect genetic variants with small to moderate effect sizes and investigates the 

consistency or inconsistency (heterogeneity) of detected associations across diverse datasets and study 

populations.  

A meta-analysis combines directly genotyped or imputed genotyped variants across studies up to several 

millions of common variants18.   

The fixed and random effects models are two basic approaches to meta-analysis. In the fixed effects meta-

analysis model, all studies in the meta-analysis are assumed to have a common true effect size, and the 

combined effect is the estimate of this value. The differences in the observed effect sizes are due to the 

random error inherent in each study. By contrast, the random effects model assumes a distribution of true 

effect sizes (not one true effect size), and the combined estimate is the average distribution of effects. The 

differences in the observed effect sizes are due to a combination of true difference and random error. The 

random effects meta-analysis model needs a larger number of studies and is less used in GWAS.  

I ran a trans-ethnic meta-analysis of GWAS across diverse populations using fixed effects inverse-variance 

weighted meta-analysis implemented by METAL19 for the respective publication3. Heterogeneity between 

studies was assessed using I2 statistic20, indicating the percentage of total variation between studies due to 

heterogeneity rather than chance. Study-specific variant filtering and QC, followed by fixed-effects inverse-

variance weighted meta-analysis, were described in the respective publication3. 

Trans-ethnic meta-analysis may increase the power to detect complex trait loci when causal variants are 

shared between ancestry groups. However, at these loci, heterogeneity in allelic effects between GWAS 

correlated with ancestry may occur for several reasons. This may occur due to differences in 𝐿𝐷 structures 

of the causal variant(s) between ethnic groups. Or it may be due to the interaction between causal variant(s) 

with different environmental risk factors that affect exposure differently across populations or with SNPs 

that differ in allele frequency in different ethnic groups. Finally, the quality of imputation may vary between 

populations depending on the reference panel used. This introduces a downward bias in allelic effect 

estimates within ethnic groups where genotypes are less well predicted. Trans-ethnic meta regression21 was 

developed to assess the contribution of ancestry to heterogeneity in effects between GWAS. In this approach, 

a matrix of mean pairwise allele frequency differences between GWAS (genome-wide metrics of diversity 
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among populations) is used to derive axes of genetic variation by multi-dimensional scaling (MDS). Allele 

effects of a variant across GWAS, weighted by their corresponding standard errors, are modeled in a linear 

regression framework with the axes of genetic variation included as covariates. To evaluate heterogeneity 

correlated with ancestry, I implemented the meta-regression model, including the three axes explaining the 

largest genetic variation, using Meta-Regression of Multi-Ethnic Genetic Association (MR-MEGA 

v0.1.2.25)21 software for the respective publication3. 

1.2.5 Significance level corrections for multiple comparisons 

In genome research, e.g., GWAS and gene expression data analysis, simultaneous association tests of a large 

number of genetic variants increase the risk of false discovery rate22. For multiple hypothesis testing, the 

family-wise error rate (𝐹𝑊𝐸𝑅) is the probability of making at least one type I error for the family of 𝑁 

independent tests corresponding to 𝑁 (null) hypotheses 𝑯 = (𝐻1, 𝐻2, … , 𝐻𝑁)
22,23. To avoid many false 

positives, the significance threshold must be lowered to control the 𝐹𝑊𝐸𝑅 at a significant level of 𝛼 (𝐹𝑊𝐸𝑅 

≤ 𝛼). The 𝐹𝑊𝐸𝑅 can be written as equation (1), where 𝛼[𝑃𝑇] is the probability of making a false discovery 

rate for a single test. 

𝐹𝑊𝐸𝑅 = 1 − (1 − 𝛼[𝑃𝑇])𝑁                                                                    (1) 

Equation (1) can be rewritten by equation (2) to find 𝛼[𝑃𝑇] when 𝐹𝑊𝐸𝑅 is kept at the fixed 𝛼 level. 

𝛼[𝑃𝑇] = 1 − (1 − 𝛼)
1

𝑁                                                                             (2) 

Equation (2), called the Šidàk correction24, illustrates that the value of 𝛼[𝑃𝑇] must be adjusted to control the 

𝐹𝑊𝐸𝑅 at level 𝛼. Let 𝑝𝑗 donates the p-value associated with the hypothesis 𝐻𝑗 (1 ≤ 𝑗 ≤ 𝑁). In the Šidàk 

correction if  𝑝𝑗 ≤ 1 − (1 − 𝛼)
1

𝑁, then reject 𝐻𝑗.  

Using the first term of a Taylor expansion of the Šidàk equation, a simpler approximation known as 

Bonferroni25 was derived, calculated by 𝛼[𝑃𝑇] ≈  
𝛼

𝑁
. In the Bonferroni correction if  𝑝𝑗 ≤ 

𝛼

𝑁
, then reject 𝐻𝑗. 

The Šidàk and Bonferroni corrections are widely used to control 𝐹𝑊𝐸𝑅 for multiple hypothesis testing. For 

instance, in GWAS, a fixed established genome-wide significance level of 𝛼 = 5 × 10−8 is frequently 

applied to determine the association between a common genetic variant and a trait of interest. However, they 

have limited statistical power and become very conservative when the number of tests increases or when the 

tests are not independent26,27. The power of multiple testing corrections can be increased by using weighted 

p-values28. To this end, Kang et al. (2009)27 proposed a weighted Šidák correction by incorporating a set of 

nonnegative weights  𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑁) specified for 𝑁 independent tests associated with 𝑯 =

(𝐻1, 𝐻2, … , 𝐻𝑁), respectively into the Šidák correction. The weighted Šidák correction assigns specific 

𝛼[𝑃𝑇𝑗] to every single test (j) by equation (3) while controlling the 𝐹𝑊𝐸𝑅 at level 𝛼. 

𝛼[𝑃𝑇𝑗] = 1 − (1 − 𝛼)
𝑤𝑗

𝑁 ,    where  
1

𝑁
∑ 𝑤𝑗 = 1
𝑁
𝑗=1 ,           𝑗 = 1,2,… ,𝑁      (3) 

In the weighted Šidák correction if  𝑝𝑗 ≤ 1 − (1 − 𝛼)
𝑤𝑗

𝑁 , then reject 𝐻𝑗.  
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The weights can be determined by prior available information. For example, in GWAS, 𝐿𝐷 structure can be 

used as prior information to estimate the optimal weights in multiple testing frameworks. However, how to 

use prior information to estimate the optimal weight is an open problem28. 

1.2.6 Conditional analysis of GWAS summary statistics  

Despite the success of GWAS in identifying thousands of genetic variants associated with various diseases 

and traits, interpreting the discovered variants remains a challenging task. Only a handful of the GWAS-

associated variants are true causal due to extensive 𝐿𝐷 structure. In association studies, causal variants are 

responsible for association signals and have a biological effect on a disease or trait. The 𝐿𝐷 structure creates 

both opportunities and difficulties in gene mapping. On the one hand, GWAS has been greatly facilitated by 

using knowledge of 𝐿𝐷 structure to predict variation in the genome by genotyping only a small fraction of 

polymorphic sites. On the other hand, it is difficult to identify true causal variants in a set of sites in strong 

𝐿𝐷 by using only association data. Detection of causal variants is complicated because the index SNP (the 

SNP with the smallest p-value) at the given locus (the ±500kb-region around index SNP) may not be casual 

but instead be in high 𝐿𝐷 with an unknown functional variant. In addition to the 𝐿𝐷 structure, the presence 

of multiple genetic variants at the same locus (allelic heterogeneity) is a common characteristic of complex 

traits. Consequently, the total phenotypic variance explained by genetic variation might be underestimated 

under the simplifying assumption that each GWAS-associated locus harbors exactly one causal variant or if 

only index SNPs were considered causal variants. To address these issues, conditional analysis was 

developed to detect multiple conditionally independent association signals at GWAS loci. Conditionally 

independent association signals define as signals that remain or become significantly associated after 

conditioning on other nearby signals, which are more significant. The conditional analysis is an interactive 

process starting with an index SNP at a locus. It is performed by including the allele dosages of index SNP 

as a covariate in an association model. The process is followed by the stepwise procedure of selecting 

additional significant SNPs, one by one, according to the conditional p-values. After the first iteration of 

conditional analysis (conditioning on the index SNP at a locus), the marginal statistics of all remaining 

variants are re-computed. A locus is considered to have conditionally independent signals when the 

conditional p-value for at least one of the variants is less than a predefined threshold. The predefined 

threshold is referred to as the stopping threshold. Usually, the established genome-wide significance level 

of 𝛼 = 5 × 10−8 is applied as a significance threshold. The conditional analyses are performed by 

conditioning on index SNP and all SNPs selected in previous steps until no additional multiple independent 

signals are found at a locus. This standard method can be applied to either summary statistics or individual-

level data sets. 

Approximate conditional and joint genome-wide association analysis29 implemented in GCTA30 software 

(GCTA COJO Slct algorithm) performs the conditional analysis while utilizing the GWAS summary 

statistics. The method does not depend on genotype and phenotype data at the individual level, except for 

an 𝐿𝐷 reference sample with individual-level genotype data. The method can use summary-level statistics 
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from a meta-analysis of GWAS and estimate the 𝐿𝐷 from a reference sample. To estimate the unbiased 𝐿𝐷 

correlation, the reference sample should be from either one of the participating studies of the meta-analysis 

or an ancestry-matched population with a large sample size > 2,00029.  

1.3 Additional OMICS data as a basis for locus discovery  

Epigenetic mechanisms involve modifications to genomic DNA, affecting transcript abundance and 

influencing common diseases and complex traits. They may not be accounted for in SNP-based association 

studies, hence alternative approaches are needed to unravel the biology underlying diseases. The technique 

includes epigenetic changes like DNA methylation, which can be applied by the epigenome-wide association 

study (EWAS) to increase our understanding of the role of methylation in many diseases.  

EWAS investigate the association between a phenotype of interest and genome-wide epigenetic variants, 

most commonly DNA methylation at CpGs. DNA methylation can occur at the DNA sites, where a C 

nucleotide is followed by a G nucleotide, cytosine-phosphate-guanine (CpG). They regulate gene expression 

through the presence or absence of a methyl group on CpG dinucleotides. The methylation level at each site 

was measured and modeled as the dependent variables with phenotype being either continuous or binary 

variable.  

In SHIP-Trend study, DNA methylation level assessed from blood samples of 256 participants via the 

Illumina Human Methylation Bead Chips, which covers 850,000 DNA methylation sites per array. The 

methylation level at each site was calculated as β-value. β-value is the estimate of methylation level using 

the ratio of the methylated probe intensity and the overall intensity (sum of methylated and unmethylated 

probe intensities and 100 array probe intensity values).   

I performed study-specific EWAS for SHIP-Trend for the respective populations48-50. 

1.4 Association with gene expression and colocalization  

1.4.1 Expression quantitative trait loci (eQTL) study 

In recent years, much effort has been devoted to the analysis of genome function, particularly in the context 

of genome variation. One of the most important directions is the expression quantitative trait loci (eQTL) 

study31, which uses gene expression measurements derived from microarray32 or RNA sequencing33 studies 

as an outcome trait for the GWAS design and identifies variants influence the expression level of genes in 

different tissues and cell types (Figure 2).  
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Figure 2. Illustrates the statistical associations between genotype and gene expression levels in different tissues. A Shows a 

significant association between genotype and gene expression level when mRNA levels are significantly higher in one allele than 

the other allele, while B shows no difference in mRNA levels between genotype groups. 

The eQTLs are typically classified according to their relative locations of the eQTLs and the gene(s) they 

affect, and the type of mechanism by which they affect gene expression. eQTLs can be divided into cis and 

trans-eQTL. Cis-eQTL has local effects, which commonly refers to the genetic variant within 1-Mb on either 

side of a gene’s transcriptional start site (TSS) directly affects the expression of its associated local gene. 

While trans-eQTL refers to the genetic variant with distant effects located at least 5-Mb downstream or 

upstream of the TSS or on a different chromosome. In Trans-eQTL, gene expression is affected through 

possibly complex effects involving the genetic variant (Figure 3). 

 

Figure 3. Illustrates cis and trans-eQTL testing. Cis-eQTL tests all SNPs within 1-Mb on either side of a gene’s transcriptional start 

site (TSS) and trans-eQTL tests all other SNPs located in higher distance commonly at least 5-Mb downstream or upstream of the 

TSS or on a different chromosome. 

The Genotype-Tissue Expression (GTEx) project (https://gtexportal.org) is a comprehensive public resource 

to study tissue-specific gene expression and regulation. GTEx has generated gene expression levels of 

different tissues and the eQTL dataset, which is publicly available and has been used extensively to help 

interpret GWAS signals from complex traits. Samples for GTEx v8 were collected from 54 non-diseased 

tissue sites across nearly 1000 individuals. However, the human kidney tissues have been poorly covered by 

https://gtexportal.org/
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the GTEx study, and only the kidney cortex with a small sample size is included in this dataset. To overcome 

this limitation, kidney tissue can be investigated using a cis-eQTL dataset from microdissected human 

glomerular and tubulointerstitial kidney portions from 187 individuals from the NEPTUNE study34. 

1.4.2 Colocalization- integration of GWAS and eQTLs 

GWAS has identified many genetic variants in non-coding regions of the genome. These variants may alter 

the individual’s disease risk through their effect on gene expression in different tissues. One approach to 

understanding the biological basis of these GWAS risk loci can be achieved by integrating GWAS and 

eQTLs to assess whether two association signals are consistent with a shared causal variant. The abundance 

of eQTLs in the human genome and across different tissues makes an accidental overlap between eQTLs 

and GWAS signals very likely. Therefore, formal statistical tests must be used to make inferences about 

causality. Colocalization analysis (frequentist35 and Bayesian36 approaches) has emerged as a powerful tool 

to combine GWAS and eQTLs to estimate the relation between gene expression of nearby genes and GWAS 

association signals. 

The Bayesian approach of the colocalization method makes the “one causal variant in a locus" (OCV) 

assumption for each trait (GWAS and eQTL). This specific assumption outlines five different possible 

hypotheses within each region. One: there are no causal variants for either trait (H0). Two: there is only one 

causal eQTL variant but no causal GWAS variant (H1). Three: there is only one causal GWAS variant but 

no causal eQTL variant (H2). Four: there are different causal SNPs for both eQTL and GWAS (H3). Five: 

there is a colocalized signal (H4). Four hypotheses are shown in Figure 4.  

The corresponding posterior probability is calculated for each hypothesis by considering all latent 

association states from GWAS and eQTL data using Bayesian model averaging (BMA). Colocalization 

within each region is quantified by the posterior probability of H4 (PP). A variant was defined as a co-

localized signal (same causal variant underlying both the GWAS and eQTL association) if a variant's 

posterior probability (PP) was greater than 80%. The colocalization method has been described in detail by 

Giambartolomei, C. et al. (2014)36.  

In addition to functional characterization of GWAS risk loci, colocalization provides a systematic approach 

for correlating gene expression levels (not measured directly in the sample of interest) with a trait or disease 

where the data can be obtained from extrinsic individuals. This means individuals can have either measured 

expression levels or assessed disease status. The link between these samples is made via genetics. 

Information on genetic variation must be available from all individuals included in the analysis. 

I ran colocalization by coloc.fast function from the R package “gtx” version 2.1.6 

(https://github.com/tobyjohnson/gtx) which provides an adaptation of Giambartolomei’s colocalization 

method36. Details were described in the respective publication. 

 

https://github.com/tobyjohnson/gtx
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Figure 4. Illustrates four different hypotheses within a region. Variant causality was represented with a binary vector (0,1) of length 

n = 8 (the number of common variants in a region) for each trait (biom (GWAS) and eQTL). A value of 1 means that the variant is 

causally involved in the disease, and 0 means that it is not. The first plot shows the case where only one trait (eQTL) shows an 

association. The second plot shows that both traits show an association, but the causal SNP in GWAS dataset is different compared 

to the eQTL dataset. The third plot shows that the fourth SNP is the underlying causal variant for both GWAS and eQTL. Reprinted 

from “Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics” Giambartolomei, 

C. et al. (2014), PLoS Genet. 10, e1004383. Copyright:  2014 Giambartolomei et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

1.5 Quasi-adaptive method 

The conditional analysis has successfully identified multiple conditionally independent SNPs at loci with 

allelic heterogeneity in GWAS studies. Generally, the established genome-wide significance level (e.g., 𝛼 =

5 × 10−8) is used as the significance threshold in conditional analysis, which is also the significance level 

for the primary GWAS. Unlike the tests for the primary association, conditional tests are not applied 

genome-wide but are restricted to the specific genomic regions surrounding the GWAS index signals. 

Consequently, applying the genome-wide significance level in the conditional analysis is too strict and 

implies an unnecessary loss of power. To address this issue, we developed a quasi-adaptive method to 

establish significance thresholds and evaluate the conditional independence of secondary signals in 

conditional analyses. The method prioritizes SNPs and applies less restrictive significance levels to those 

with higher priority, while maintaining an 𝐹𝑊𝐸𝑅 level at 𝛼 = 0.05 to control type I error rate. 

Our method is based on independent genome-wide significant loci from primary GWAS. The number of 

candidate SNPs from 𝑁2 independent loci is represented by 𝑚2, which was referred to as simply "m" and 

"N" in the respective publication24. Within each locus, an SNP with the smallest p-value is designated as the 
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index SNP, while the remaining SNPs are considered candidate SNPs. The quasi-adaptive method, utilizes 

the weighted Šidák correction (3) to take into account the 𝐿𝐷 structure (pairwise correlation ( 𝑟2) and 

chromosomal distance between the index SNP and candidate SNPs (𝑑)) as the prior information. The method 

estimates optimal weights to prioritize SNPs and assigns an SNP-specific α-thresholds to candidate SNPs in 

conditional analysis. 

The pre-weight (𝑤𝑟2𝑖) based on 𝑟2 with optimal 𝑟2 = 0.3 and a pre-weight (𝑤𝑑𝑖) based on 𝑑 which down-

weighted SNPs at higher distance step-wise-strong are assigned to a candidate SNP(𝑖), (1 ≤ 𝑖 ≤ 𝑚2 ) as: 

𝑤𝑟2𝑖 =  
1 − |𝑟𝑖

2 − 0.3| − 0.3

1 − 0.3
, 

𝑤𝑑𝑖 =

{
 
 

 
 

1
0.5
0.25
0.125
0.0625

          𝑖𝑓 0 < 𝑑 ≤ 1Kb
                𝑖𝑓 1Kb < 𝑑 ≤ 10Kb
                  𝑖𝑓 10Kb < 𝑑 ≤ 50Kb

                    𝑖𝑓 50Kb < 𝑑 ≤ 100Kb
                      𝑖𝑓 100Kb < 𝑑 ≤ 500Kb

 

The pre-weights 𝑤𝑟2𝑖 and 𝑤𝑑𝑖 are combined (with more emphasis on 𝑑 than on 𝑟2) by the geometric mean 

𝑤𝑖 = (𝑤𝑑𝑖
𝑘 × 𝑤𝑟2𝑖)

1

𝑘+1, with 𝑘 = 5, to assign an optimal weight 𝑊𝑖 = 
𝑤𝑖 ×𝑚2

∑ 𝑤𝑖
𝑚2
𝑖=1

  to SNP(𝑖).  

The quasi-adaptive method is applied on 𝑁2 loci, by incorporating 𝑊𝑖 into the weighted Šidák correction. 

The method distributes type I error rate (𝛼) among 𝑚2 candidate SNPs, and assigns the SNP-specific 𝛼-

thresholds to SNP(𝑖) by 𝐺𝑖(𝛼,  𝑟
2, 𝑑 ) as follows: 

𝐺𝑖(𝛼,  𝑟
2, 𝑑 ) =  1 − (1 − 𝛼)

𝑊𝑖
𝑚2,        𝑖 = 1,2, … ,𝑚2.                                                         (4) 

SNP(𝑖) is considered a secondary signal if the conditional p-value is smaller than 𝐺𝑖(𝛼,  𝑟
2, 𝑑 ). The regional 

association plot in Figure 5 illustrates the secondary signal exclusively identified by the quasi-adaptive 

method, with conditional p-value smaller than 𝐺𝑖(𝛼,  𝑟
2, 𝑑 ) and greater than 5 × 10−8. 

 

Figure 5. Regional association plot with secondary signal (red dot) detected exclusively by the quasi-adaptive method. Y-axis is 

−𝑙𝑜𝑔10 of conditional p-value (blue dot) for candidate SNPs from 1-Mb surrounding LD region of an index SNP (x-axis). Forth axis 

is −𝑙𝑜𝑔10 of the SNP-specific α-thresholds assigned by the quasi-adaptive method (green plus sign) to the candidate SNPs. red 

dashed line is −𝑙𝑜𝑔10 (5 × 10
−8). The secondary signal was found by the quasi-adaptive method is shown in red dot with 

corresponding −𝑙𝑜𝑔10 of the SNP-specific α-threshold assigned by the quasi-adaptive method (red plus sign). 
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Details of the quasi-adaptive method, the simulation study, and the power analysis were described in the 

respective publication37.  

1.5.1 Improved quasi-adaptive method 

The quasi-adaptive method was developed to determine one independent signal (secondary signal) at each 

locus. We improved the method to identify plausible multiple independent signals at each locus (a tertiary 

signal, a signal of 4th, a signal of 5th, and beyond).  

To detect independent tertiary signals, only loci with confirmed secondary signals (confirmed according to 

the quasi-adaptive method) were considered. We proceeded according to the idea of the main paper37 but 

performed conditional analysis by adjusting for the primary index SNP and confirmed secondary signal for 

each locus. The number of loci with confirmed secondary signals is represented by 𝑁3 and 𝑚3 denotes the 

number of candidate SNPs (excluding index SNPs and secondary signals) from 𝑁3 loci. Our method was 

applied on 𝑁3 loci following the schema described above and the SNP-specific 𝛼-thresholds were assigned 

to each SNP(𝑖) using equation (5). 

𝐺𝑖(𝛼,  𝑟
2, 𝑑 ) =  1 − (1 − 𝛼)

𝑊𝑖
𝑚3,      𝑊𝑖 = 

𝑤𝑖 ×𝑚3

∑ 𝑤𝑖
𝑚3
𝑖=1

,         𝑖 = 1,2,… ,𝑚3.             (5) 

The improved method is an iterative process that is subsequently performed to detect higher-order 

independent signals (applied to loci with confirmed independent signals from the previous steps) until no 

additional independent signals are found. Finding higher-order independent signals keeps the 𝐹𝑊𝐸𝑅 at 𝛼 =

0.05 because only the number of candidate SNPs and the 𝐿𝐷 structure have to be taken into account, where 

the 𝐿𝐷 structure does not change by analyzing higher-order independent signals. Details were described in 

the respective publication38. 

1.5.2 Conditional analysis in quasi-adaptive method 

The conditional analysis in the quasi-adaptive method proceeds according to the standard conditional 

analysis approach. It is an interactive process that starts by adjusting for the primary index SNP at each 

locus. For each candidate SNP, the assigned SNP-specific 𝛼-level compared to the p-value from the 

conditional analysis, and one secondary signal with the smallest conditional p-value lower than the 

corresponding SNP-specific 𝛼-level is selected at a locus. When a secondary signal is identified at a locus, 

conditional analysis is performed by adjusting for the primary index SNP and the secondary signal to find 

the tertiary. Conditional analyses are performed by adjusting for the primary index SNP and any independent 

SNPs selected in previous steps by the quasi-adaptive method until no additional independent signals are 

found at a locus. Note that the stopping thresholds are the assigned SNP-specific 𝛼-levels by the quasi-

adaptive method for each iteration. Approximate conditional analysis implemented in GCTA (GCTA COJO-

cond algorithm) performs the conditional analysis while utilizing the summary statistics. 
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2 Summary  

2.1 Summary of the thesis 

This thesis focuses on identifying genetic factors associated with human kidney disease progression, with 

three articles presented. Article I describes the identification of loci associated with UACR through trans-

ethnic, European-ancestry-specific, and diabetes-specific meta-analyses. An approximate conditional 

analysis was performed to identify additional independent UACR-associated variants within identified loci. 

The genome-wide significance level of  𝛼 = 5 × 10−8 is used for both primary GWAS association and 

conditional analyses. However, unlike primary association tests, conditional tests are limited to specific 

genomic regions surrounding primary GWAS index signals rather than being applied on a genome-wide 

scale. 

In article II, we hypothesized that the application of 𝛼 = 5 × 10−8 is overly strict and results in a loss of 

power. To address this issue, we developed a quasi-adaptive method within a weighted hypothesis testing 

framework. This method exploits the type I error (𝛼 = 0.05) by providing less conservative SNP specific 

𝛼-thresholds to select secondary signals in conditional analysis. Through simulation studies and power 

analyses, we demonstrate that the quasi-adaptive method outperforms the established criterion 𝛼 = 5 ×

10−8 as well as the equal weighting scheme (the Sidak-correction). Furthermore, our method performs well 

when applied to real datasets and can potentially reveal previously undetected secondary signals in existing 

data. 

In article III, we extended our quasi-adaptive method to identify plausible multiple independent signals at 

each locus (a secondary signal, a tertiary signal, a signal of 4th, and beyond) and applied it to the publically 

available GWAS meta-analysis to detect additional multiple independent eGFR-associated signals. The 

improved quasi-adaptive method successfully identified additional novel replicated independent SNPs that 

would have gone undetected by applying too conservative genome-wide significance level of 𝛼 = 5 ×

 10−8. Colocalization analysis based on the novel independent signals identified potentially functional genes 

across the kidney and other tissues. 

Overall, these articles contribute to the understanding of genetic factors associated with human kidney 

disease progression and provide novel methods for identifying secondary and multiple independent signals 

in conditional GWAS analyses. 

 

 

 

 

 

 

 



 

17 
 

2.2 Summary of the publications 

2.2.1 Genome-wide association meta-analyses and fine-mapping elucidate pathways 

influencing albuminuria (Article I) 

Higher levels of the urinary albumin-to-creatinine ratio (UACR) as a measure of kidney damage are 

associated with adverse clinical outcomes such as end-stage kidney disease, cardiovascular disease (CVD), 

and mortality. Despite the heritability of UACR, the underlying genetic mechanisms are not well understood, 

and identifying genetic loci for UACR through GWAS has been challenging. To this end, the CKDgen 

consortium (round 4) was established to increase statistical power and identify novel genetic markers for 

UACR through a meta-analysis of multiple studies with large sample sizes. 

Data based on 564,257 individuals from 54 studies were combined in a trans-ethnic meta-analysis of UACR, 

including 547,361 of European ancestry (EA), 6,795 African Americans ancestry (AA), 6,324 of East Asian 

ancestry, 2,335 of South Asian ancestry, and 1,442 Hispanics. The GWAS results of 3,199 individuals from 

SHIP-START and 985 individuals from SHIP-Trend were included in the discovery stage of the meta-

analysis. 59 UACR-associated loci were identified through the trans-ethnic meta-analysis, out of which 27 

were considered known and 32 were considered novel (Figure 6).  

 

Figure 6. Genome-wide association results. The circos plot provides an overview of the association results: Red band: −𝑙𝑜𝑔10(𝑝) 
for association in the trans ethnic meta-analysis of urinary albumin-to-creatinine ratio (UACR), ordered by chromosomal position. 

The blue line indicates genome-wide significance (p = 5 × 10−8). Black gene labels indicate novel loci, blue labels indicate known 

loci (known index SNP within ± 500 kb region of current index SNP), gray labels indicate loci not associated with UACR at the 

nominal significance level (p ≥ 0.05) in the 53 CKDGen cohorts without UKBB. Blue band: −𝑙𝑜𝑔10(𝑝) for association with 

microalbuminuria (MA), ordered by chromosomal position. The red line indicates genome-wide significance (p =5 × 10−8). Green 

band: measures of heterogeneity related to the UACR-associated index SNPs, where the dot sizes are proportional to two measures 

of heterogeneity, I² and the −𝑙𝑜𝑔10(𝑝)  for heterogeneity attributed to ancestry (pA) 
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As secondary analyses, an ancestry-specific meta-analysis was performed for EA and 61 loci were identified, 

56 of which overlapped with those from the primary trans-ethnic meta-analysis. Additionally, a diabetes-

specific meta-analysis was performed on 51,541 individuals with diabetes, including 2,345 individuals from 

SHIP-START, and identified 8 loci, 4 of which were not detected in the primary meta-analysis (KAZN, 

MIR4432HG-BCL11A, FOXP2, and CDH2). In total, 68 UACR-associated genetic loci were identified 

including 34 novel loci through primary trans-ethnic GWAS meta-analysis and secondary analyses. The 

workflow of the project is illustrated in Figure 7.  

 

Figure 7. Overview of the analysis workflow for trans-ethnic (a), European ancestry-specific (b), and diabetes-specific (c) genome-

wide association meta-analyses (GWAMA). The Venn diagram in panel (d) shows the number of overlapping loci between the 

different GWAMA. The contribution of the author of the thesis, Sahar Ghasemi, is highlighted in green throughout the workflow, 

showcasing the specific responsibilities and tasks the author carried out. 

Collaborators performed a series of analyses to determine the functional relevance of the identified loci. This 

included genetic correlation analyses and risk score associations in an independent electronic medical 

records database of 192,868 EA participants. The analysis revealed significant association between the 

identified genetic loci and several clinically relevant conditions such as proteinuria, hyperlipidemia, gout, 

and hypertension. Functional enrichment analyses, statistical fine-mapping and integrative trans-Omics 

analyses, including gene expression in 47 human tissues and plasma protein levels, were conducted to 
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prioritize and characterize several of the revealed trait-associated loci in the EA. The analyses identified nine 

genes that colocalized with UACR-associated loci in the kidney tissues including TGFB1, MUC1, PRKCI, 

and OAF). These findings allow for a linking of UACR associations to alter plasma OAF concentrations. 

Several of the disease-associated loci were characterized for their likely causal variants or for functional 

effects using cell culture and animal models. For example, in vivo analyses of Drosophila orthologs 

supported a role of OAF in tubular protein endocytosis, and PRKCI in slit diaphragm formation potentially 

reflecting changes kidney structure.  

2.2.2 Assessment of significance of conditionally independent GWAS signals (Article II) 

As outlined in chapter 1.5, we developed the quasi-adaptive method with the goal of increasing power to 

detect independent secondary signals in conditional analyses. The method utilizes the 𝐿𝐷 structure (𝑟2, 𝑑) 

as prior knowledge to determine optimal weights for prioritizing SNPs and assign SNP-specific 𝛼-thresholds 

to candidate SNPs in conditional analysis. We have established a series of priority functions that are 

determined by a combination of pre-weights based on 𝑟2 and 𝑑. It is important to note that 𝑟2 and 𝑑 operate 

to some extent in opposite directions. Although a high  𝑟2 value may increase the biological prior (via 

haplotype effects), it reduces statistical power by decreasing the amount of independent information. To 

investigate the counter-running effect of 𝑟2 and 𝑑, we evaluated several alternatives for the pre-weights on 

the 𝑟2-component and 𝑑-component in a series of priority functions. The specifics of the SNP weighting 

schemes and the development of priority functions are outlined in the corresponding publication37. 

The validity of the method was assessed by evaluating the deviation of 𝐹𝑊𝐸𝑅 from desired level 𝛼 = 0.05 

via simulation analysis based on imputed genotypes from the SHIP study. Under the null hypothesis of no 

secondary signals, the simulation analyses confirmed appropriate empirical 𝐹𝑊𝐸𝑅 for defined priority 

functions. 

Power simulations were set up under the alternative hypothesis (pre-defined secondary signals) for three 

scenarios, scenario A (selecting secondary signal by random), scenario B (selecting secondary signal 

conditionally at random based on 𝑑, step-wide-moderate), and scenario C (selecting secondary signal 

conditionally at random based on 𝑑, step-wide-strong) to evaluate priority functions' power in detecting 

secondary signals. The quasi-adaptive method (𝐺5-function) had the overall best power (mean power of 

0.7289 and median power of 0.7305) among other priority functions (Figure 8). It showed improved power 

by 22 percentage points (median) over the established criterion 𝛼 = 5 × 10−8 (𝐺14-function) as well as 

four percentage points (median) over the Sidak-correction (𝐺13-function). It also showed the best results in 

application to real data sets. 

As a proof of concept, the quasi-adaptive method was applied to GWAS on free thyroxine (FT4)39, 

inflammatory bowel disease (IBD)40, and human height41. Our algorithm revealed five secondary signals in 

GWAS on FT4, five in the IBD, and 19 in human height that would have gone undetected using the 

established genome-wide significance level of 𝛼 = 5 × 10−8.  



 

20 
 

We analyzed the impact of using different 𝐿𝐷 reference samples on our proposed method by using the SHIP 

and UKBB reference samples, which consist of 4070 and 13,558 individuals respectively, in our analysis of 

the FT4 and IBD GWAS examples. Secondary signals obtained with the SHIP reference sample showed 

overall good agreement with those obtained using UKBB. The results somewhat depend on the reference 

sample, which determines SNP availability and the 𝐿𝐷 structure estimated from it. In this context, we 

recommend using the reference 𝐿𝐷 panel from the same population the study data comes from and beyond 

a sample size of 5,000 for additional accuracy, as also proposed by Yang et al. (2011)29. 

The quasi-adaptive method is easy to use, operates directly with typically already existing GWAMA results, 

and makes use of existing analysis software for conditional analysis (GCTA). The method has the potential 

to reveal previously undetected secondary signals in already available data and to uncover plausible 

underlying gene mechanisms. 

 

Figure 8: Power simulation analysis results across scenario A (selecting secondary signal by random), B (selecting secondary signal 

conditionally at random based on distance, step-wide-moderate), and C (selecting secondary signal conditionally at random based 

on distance, step-wide-strong) for 14 priority functions (𝐺-functions). The numbers above show the median and the mean of power 

analyses across three scenarios for each 𝐺-function, respectively. 

2.2.3 Discovery of novel eGFR-associated multiple independent signals using quasi-adaptive 

method (Article III) 

The quasi-adaptive method was improved (as described in 1.5.1) and applied to the publically available 

GWAS meta-analysis of eGFR4 from the CKDGen consortium to detect additional associated multiple 

independent signals. The quasi-adaptive method identified 87 multiple independent signals (without index 

SNPs from primary GWAS4), of which 27 were novel. The approach detected 60 known loci, of which 54 
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loci comprised the same independent signals identified in the previous GWAS and 6 loci with independent 

signals in high 𝐿𝐷 with the identified independent signals from the aforementioned GWAS. 19 of 27 new 

independent SNPs were subsequently replicated in an independent data set, UK Biobank genotype data 

among EA individuals (n = 408,608). These signals included 5 secondary signals, 5 tertiary signals, 6 signals 

of 4th, 2 signals of 5th, and one signal of 6th (Figure 9). These results would have gone undetected by 

conditional analysis applying the commonly used but too conservative genome-wide significance level of 

𝛼 = 5 × 10−8.  

Of note, the new independent signals rs3904600, rs13227214, rs81205, rs2075251, rs2695565, and 

rs6951593 (identified by the quasi-adaptive method based on meta-analysis of previous GWAS of eGFR4) 

showed smaller p-values in their unconditional eGFR-association analysis within the UKBB compared to 

their corresponding index SNP.  Figure 10 shows regional association plot for index SNP rs3757387 and 

tertiary signal rs13227214 identified by the quasi-adaptive method. 

 

Figure 9. Replication of eGFR-associated multiple independent signals identified by the quasi-adaptive method using the UK 

Biobank (UKBB) genotype data among European-ancestry individuals. The x-axis shows the chromosome number, and the y-axis 

is the −𝑙𝑜𝑔10(𝑃) of the conditional GWAS of eGFR. Color coding reflects evidence of replication, which is coded as replicated 

(blue) and non-replicated (black). Different shapes showed multiple independent signals. 

Colocalization based on the conditional and unconditional eGFR association results with cis-eQTL across 

49 human tissues included in the GTEx project v8 release42 as well as the microdissected human glomerular 

and tubulointerstitial kidney portions from 187 individuals from the NEPTUNE study43 were conducted to 

characterize 17 known eGFR-associated index SNPs and 19 novel independent signals. Colocalization 

identified two potentially causal genes across kidney tissues: TSPAN33 and TFDP2, and three candidate 

genes across other tissues: SLC22A2, LRP2, and CDKN1C. These results were not identified in the original 
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report of eGFR4. Considering these signals in colocalization analyses can increase the precision of revealing 

potentially functional genes of GWAS loci. 

 

Figure 10. Regional association plot based on unconditional eGFR-association analysis within the UKBB with highlighted index 

SNP rs3757387 (7:128576086_T/C) and tertiary signal rs13227214 (7:128740355_C/G). 

2.2.4 Association studies 

The section on revealing disease associated loci provides examples in which I conducted GWAS projects 

including SHIP studies with specific focus on kidney function. The main findings of the kidney function 

projects include 34 novel loci for UACR3, 166 new loci associated with eGFR4, 147 new loci for serum urate 

concentrations44, six new loci for rapid kidney function decline45 . In addition, we identified 11 loci 

associated with heart failure46 and 15 loci associated with muscle weakness47.  

In addition to GWAS, I conducted EWAS and EWAS meta-analysis projects including SHIP-Trend. The 

main finding include 69, 7, 100, and 1 CpG sites where DNA methylation associated with UACR48, eGFR48, 

serum urate levels49, and common carotid intima-media thickness (cIMT)50, respectively.  
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