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1 Introduction

1.1 Background and aim

Understanding the causes of common diseases and estimating their risk factors are biomedical research's
fundamental goals to develop new treatments and medications. Many of the most common diseases, known
as complex diseases, are caused by multiple environmental, lifestyle, and genetic risk factors. Lifestyle
modifications and medications have been quite successful in treating various ailments. Nevertheless, a better
understanding of the molecular mechanisms underlying complex diseases and their potential interactions
with other factors is necessary to identify possible causes of diseases and develop more effective treatments.
This thesis aims to contribute to our understanding of the genetic basis of complex human diseases by
utilizing multi-omics data, including DNA polymorphism variation, and integrating various levels of
molecular data to uncover the biological mechanisms underlying the findings. The primary objective is
identifying novel genetic markers related to Kidney function by conducting trans-ethnic GWAS meta-
analyses of multiple studies with large sample sizes. To identify additional independent genetic markers, a
statistical method called the quasi-adaptive method has been developed which assesses the significance level
of secondary signals in GWAS conditional analysis. Furthermore, the method has been improved and applied
to a prior report on kidney function to reveal more trait-associated genetic variants. This research aims to
gain insights into the underlying mechanisms of complex diseases, paving the way for more effective

treatments and medications.

1.2 ldentifying genetic susceptibility loci

1.2.1 Genetic markers

A genetic marker is a sequence of DNA with a known physical location on a chromosome used to identify
individuals, populations, species, or genes involved in inherited disease. The genome of an individual may
differ from others in numerous ways, including base differences known as single nucleotide polymorphisms
(SNPs), insertions or deletions (INDELS), or differences in the number of copies of a sequence or gene (copy
number variations (CNV)). The most common type of genetic marker are SNPs (Figure 1) occur when a
single nucleotide adenine (A), thymine (T), cytosine (C), or guanine (G) in the genome differs between
individuals.

Genetic markers can refer to genes associated with various complex traits or common diseases. When SNPs
occur in coding or non-coding regions (a regulatory region), they may significantly affect the function of the
gene(s) and influence diseases. In this context, identifying associated genetic loci is the first step toward

deciphering disease-related biological pathways and understanding the etiology of a specific illness.
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Figure 1. Depicts two sequenced DNA fragments from different individuals containing a difference in a single nucleotide A and G.
This variation in the DNA sequence is referred to as an SNP with two alleles, A and G. Reprinted from “Single nucleotide
polymorphisms as genomic markers for high-throughput pharmacogenomic studies” by Lonetti A. et al. (2016), Methods Mol Biol,
1368, 143-59. Copyright © 2016, Springer Science Business Media New York.

1.2.2 Haplotype and linkage disequilibrium (LD)

A haplotype is a collection of specific SNPs alleles at adjacent loci belonging to the same chromosome that
are statistically associated and tend to be inherited together. Identification of these statistical associations
and fewer alleles of a particular haplotype sequence can facilitate the identification of all other nearby
polymorphic sites on a chromosome. Such information is critical for research into the genetics of common
diseases. For example, if there are SNP, with two alleles, T and G, at locus one and SNPg with two alleles,
G and A, at locus two, the corresponding plausible haplotypes are TG, TA, GG, and GA. Theoretically, if
the association between the allele T and G is supposed to be random and the allele frequency P,(T) and
Py (G) are known. In this case, the frequency for each haplotype, for instance, P45 (TG) can be calculated as
P,s(TG) = P4(T) X Pg(G).Sometimes there is a difference between the theoretical haplotype frequency
and empirical haplotype frequency in a population. This difference D = P,z(TG) — P,(T) Pg(G) is a
measure of linkage disequilibrium (LD), which refers to a non-random association between tightly linked
SNPs at different loci in a given population?.

Since the range of D depends on the frequencies of the alleles to which it refers, this is not straightforward
to compare the extent of linkage disequilibrium between different pairs of alleles. Lewontin, R. C. (1964)?

suggested normalizing D as follows:

D' = where, D, .. = max{—P4(T) Pz(6), (1 = Pa(M)(1 - Ps(6))}, D <0
Dmax ' max mll’l{PA(T)(l — Pg (G)); Py (G)(l - PA(T))}, D>0
An alternative to D is the pairwise correlation coefficient (r2) between two SNPs as follows:

DZ
2 =
Pa(T)(1 = P4(T))Pp(G)(1 = Pp(G))
Two SNPs are in complete LD if D" = 1 and v < 1 and are in perfect LD if D' = 1 and r? = 1.

r



1.2.3 Genome-wide association study (GWAS)

Genome-wide association study (GWAS) is an observational approach widely used to identify genetic
variants, mainly SNPs, statistically associated with a particular complex trait or a common disease®*. GWAS
examines SNPs across the entire set of DNA (the whole genome) from a large group of participants to
identify variations that account for disease risk. These participants may be people with a disease (cases) and
people without the disease (controls), or people with different phenotypes for a particular trait.

To perform GWAS, first, each individual must be genotyped using available genotyping arrays or
sequencing technologies. Second, the disease outcome or non-disease-related trait is measured for each
individual. Third, a statistical association test is performed at the genome-wide level to look for genetically
associated SNPs. The associated SNPs are then considered to highlight the genomic regions that may

influence disease risk.

1.2.3.1 Sample description

I conducted the analyses based on individual-level data using the Study of Health in Pomerania (SHIP)® and
UK-Biobank (UKBB)®.

SHIP cohort

SHIP is a population-based epidemiological study in Western Pomerania, the northeast area of Germany,
comprising two prospective independent cohorts, SHIP-Start (The initial cohort SHIP was renamed to SHIP-
Start to avoid confusion) and SHIP-Trend. Both cohorts were collected from the general adult population
aged 20-79. First Baseline examinations of SHIP-Start (SHIP-Start-0) were performed from 1997-2001,
with the final sample of 4,308 participants (response 68.8%). The mean age of the SHIP-Start-0 baseline
sample was 50.3 years (£16.4 years) and 50.9% of participants were women. First Baseline examinations of
SHIP-Trend (SHIP-Trend-0) were performed from 2008-2012, with the final sample of 4,420 participants
(response 50.1%). The mean age of the SHIP-Trend-0 baseline sample was 52.0 years (+15.5 years), with
51.4% women included. The main objective of SHIP is to assess the prevalence and incidence of common
diseases and their risk factors. The study design has been previously described in detail in the respective

publication®.

UKBB cohort

The UKKB is a large prospective cohort study with deep genetic data and a wide variety of phenotypic
information collected on approximately 500,000 individuals aged between 40 and 69 across the United
Kingdom. The first baseline information was collected between 2006 and 2010. The study continues to

collect detailed information about participants' demographic, lifestyles, health-related factors, and physical



measures. The mean age of the UKBB baseline sample was 56.53 years (+15.87 years) and 54.4% of
participants were women. The UKBB aims to offer samples for different studies undertaking vital research
into the most common and life-threatening diseases. The study design has been previously described

comprehensively in the respective publications®’.

The CKDGen consortium

The CKDGen consortium® [https://ckdgen.imbi.uni-freiburg.de/], focusing on the genetic basis of kidney

function, was conducted in international consortia to increase the power of the statistical analyses by
increasing the sample size. Samples from multiple cohorts (including SHIP) were analyzed individually
according to a centrally generated analysis plan and then subjected to meta-analysis. The projects carried

out within this consortium include more than 100 individual studies with more than one million samples.

1.2.3.2 Array-based genotyping analyses

SHIP cohort

In 2008, 4252 samples from the SHIP-Start were genotyped at 909,622 SNPs and 946,000 additional non-
polymorphic copy number probes by the Affymetrix Genome-Wide Human SNP Array 6.0 at Affymetrix,
Inc. (Santa Clara, CA, USA) using the Birdseed2 clustering algorithm. Following this, at the end of 2010, a
subset of SHIP-Trend (SHIP-Trend multi-OMICS) including 1000 samples, was selected for genotyping at
2.45 million genetic variants using the Illumina Human Omni 2.5 array. Genotyping was performed at the
Helmholtz Zentrum Miinchen, Munich, Germany.

The genotyping quality was checked for all arrays, and the corresponding SNPs were called and quality
controlled (QC) using an established workflow. The QC steps included filters for both low array genotyping
efficiency (< 94% or < 92% depending on array type), SNPs call rates (< 95%), Hardy-Weinberg equilibrium
(pHWE < 10~%*), monomorphic SNPs, and excessive heterozygosity as indicators of genotyping errors
(more than +4 standard deviations of the mean). Additional filters included mismatches between reported
and genetically estimated gender, individuals call rates (< 94%), and duplicate samples. Furthermore, sample
outlier detection was applied using principal component analyses (more than +8 standard deviations of the

mean for the first 10 principal components and five iterations).

UKBB cohort

Two similar genotyping arrays were used to assay 488,377 participants involved in the UKBB. A subset of
49,950 participants in the UKBB Lung Exome Variant Evaluation (UK BiLEVE) study was genotyped
(807,411 markers) using the Applied Biosystems™ UK BiLEVE Axiom™ Array by Affymetrix. The rest


https://ckdgen.imbi.uni-freiburg.de/

of the 438,427 participants were genotyped (825,927 markers) using the closely-related Applied
Biosystems™ UK Biobank Axiom™ Array?®.

The QC steps included filters for variants that showed batch effects, plate effects, departures from HWE,
sex effects, array effects, discordance across control replicates, SNPs call rates (< 95%), and MAF < 10,
In addition, samples with ancestry outliers, outliers for heterozygosity, and missingness (high heterozygosity

or > 5% missing rate) were removed as described comprehensively in the respective publication®.

1.2.3.3 Imputation of genotype SNPs

An essential step in most GWAS is the imputation of genotype SNPs. This process dramatically increases
the number of SNPs that can be tested for association, increases the power of the study, and facilitates meta-
analysis of GWAS across distinct cohorts. Different datasets may have used different genotyping platforms
and may have different genotyped variants containing a non-overlapping set of SNPs. Each study imputed
the genotype data before running GWAS by imputation methods. These methods integrate the LD structure
obtained from an SNP reference data set such as the HapMap!:*2, the 1000 Genomes®3, or the Haplotype

Reference Consortium (HRC) to infer the alleles of missing SNPs in the study.

SHIP cohort

Genotyped SHIP data were imputed based on the HapMap Il (nSNPs=2.5 million), the 1000 Genomes
(nSNPs=16 million), and the HRC (nSNPs=40 million) reference panels. The imputation to the HRC panel

was performed using the Michigan®® [https://imputationserver.sph.umich.edu/] and Sanger®

[https://imputation.sanger.ac.uk/] imputation servers. The imputation to the HRC was performed by myself

using the Michigan imputation server. The SNPs were annotated according to the GRCh37 (hg19) reference
build.

UKBB cohort

Genotyped UKBB data were imputed using the HRC (as the main imputation reference panel). The UK10K
and 1000 Genomes phase 3 reference panels were merged by the IMPUTE4 program

(https://jmarchini.org/software/) to approximately 90 million autosomal SNPs, short indels, and large

structural variants in 487,442 individuals. The genotype imputation process used in the UKBB study has

been thoroughly discussed in the corresponding publications®’?,

1.2.3.4 GWAS workflow

GWAS was performed using a linear regression model for a quantitative trait (continuous) and a binary

logistic regression for a dichotomous trait (cases and controls). In regression models, the trait was used as a


https://imputation.sanger.ac.uk/
https://jmarchini.org/software/

response variable and the amount of coded allele of SNP as an exposure variable (SNP’s allele dosages). For
example, for SNP with two alleles, A and G (G as a coded allele), allele dosages were coded as 0 for AA, 1
for AG, and 2 for GG genotypes. The regression models typically adjusted for sex, age, family structure,
and population stratification (genetic principle component) to correct for the possible influences of other
parameters during association testing. GWAS tested the association of coded allele with desire trait, the
effect estimate of the coded allele against deviation from the null hypothesis (no association).

In the SHIP studies (SHIP-Start and SHIP-Trend), no further adjustment to the family structure was made
in the association model because participants in the studies were predominantly unrelated. Other adjustments
(study-specific covariates) in the association models were described in the respective publications®4. GWAS
was performed using the software Efficient and Parallelizable Association Container Toolbox (EPACTYS)
(https://genome.sph.umich.edu/wiki/EPACTS), adding the SNP’s allele dosage to a linear regression model

via “g.linear” test for quantitative and a logistic regression model via “b.wald” test for binary phenotypes.
EPACTS was able to work with the imputed genotypes output, Variant Call Format (VCF) file, from the
Michigan imputation server.

In the UKBB study, genetic association analysis was performed by the BOLT-LMM mixed model
algorithm'’, an efficient mixed model for identifying genetic associations and avoiding confounding.
Compared to the standard infinitesimal mixed model, BOLT-LMM requires only a small number of time
iterations and accordingly increases the power to detect associations. The BOLT-LMM adapts the mixed
model via modeling non-infinitesimal genetic architectures with a Bayesian mixture prior to SNP effect sizes

that better accommodate both small and large effect loci.

1.2.3.5 Quality control and visualization of GWAS results

Population structure, including population stratification and cryptic relatedness, can lead to spurious
associations in GWAS. Consequently, GWAS results have to be quality controlled. Typically, a Quantile-
Quantile (QQ) plot (plot of the observed p-value of the meta-analysis association test versus the expected
distribution under the null hypothesis of no association) is generated to discover the undetected problems in
GWAS results. In addition, genomic control (GC) can then be applied to adjust test statistics at individual
loci when the genomic inflation factor A, reflects the evidence of inflation of the GWAS p-values. A5 is
defined as the median of the observed chi-squared test statistic divided by the median of the corresponding
chi-squared distribution with one degree of freedom. The QQ plot and A can help to detect and correct the
possible inflation of the results in terms of the unexpectedly high number of low p-values from genotype
associations with the outcome.

A standard method for visualizing the GWAS results is generating a genome-wide Manhattan plot or a
detailed association plot of the specific region (regional association plot-locus zoom plot). In both cases,
SNPs are displayed on the x-axis according to their position on each chromosome versus the —log,,(p) of

the association on the y-axis. More significant associations show higher peaks on the y-axis.


https://genome.sph.umich.edu/wiki/EPACTS

Before meta-analysis, study-specific GWAS files were quality-controlled (GWAS-QC) based on effective
sample size, imputation quality score (INFO), genotyping callrate, MAF, effect size (Beta), standard error
(SE), and p-value. GC correction was applied when the A, within the study was greater than one. GWAS-

QC has been discussed in the corresponding publications®4,

1.2.4 Meta-analysis of GWAS results

In complex diseases, the causative common genetic variants have relatively small effect sizes, and single
studies are underpowered to detect true positive associations. Meta-analysis of GWAS is a statistical
technique that increases the sample size and examines more variants throughout the genome by combining
the results of multiple smaller independent GWAS studies (on the same research question). Meta-analysis
improves the power to detect genetic variants with small to moderate effect sizes and investigates the
consistency or inconsistency (heterogeneity) of detected associations across diverse datasets and study
populations.

A meta-analysis combines directly genotyped or imputed genotyped variants across studies up to several
millions of common variants?®.

The fixed and random effects models are two basic approaches to meta-analysis. In the fixed effects meta-
analysis model, all studies in the meta-analysis are assumed to have a common true effect size, and the
combined effect is the estimate of this value. The differences in the observed effect sizes are due to the
random error inherent in each study. By contrast, the random effects model assumes a distribution of true
effect sizes (not one true effect size), and the combined estimate is the average distribution of effects. The
differences in the observed effect sizes are due to a combination of true difference and random error. The
random effects meta-analysis model needs a larger number of studies and is less used in GWAS.

I ran a trans-ethnic meta-analysis of GWAS across diverse populations using fixed effects inverse-variance
weighted meta-analysis implemented by METAL® for the respective publication®. Heterogeneity between
studies was assessed using 12 statistic?’, indicating the percentage of total variation between studies due to
heterogeneity rather than chance. Study-specific variant filtering and QC, followed by fixed-effects inverse-
variance weighted meta-analysis, were described in the respective publication®.

Trans-ethnic meta-analysis may increase the power to detect complex trait loci when causal variants are
shared between ancestry groups. However, at these loci, heterogeneity in allelic effects between GWAS
correlated with ancestry may occur for several reasons. This may occur due to differences in LD structures
of the causal variant(s) between ethnic groups. Or it may be due to the interaction between causal variant(s)
with different environmental risk factors that affect exposure differently across populations or with SNPs
that differ in allele frequency in different ethnic groups. Finally, the quality of imputation may vary between
populations depending on the reference panel used. This introduces a downward bias in allelic effect
estimates within ethnic groups where genotypes are less well predicted. Trans-ethnic meta regression?! was
developed to assess the contribution of ancestry to heterogeneity in effects between GWAS. In this approach,

a matrix of mean pairwise allele frequency differences between GWAS (genome-wide metrics of diversity



among populations) is used to derive axes of genetic variation by multi-dimensional scaling (MDS). Allele
effects of a variant across GWAS, weighted by their corresponding standard errors, are modeled in a linear
regression framework with the axes of genetic variation included as covariates. To evaluate heterogeneity
correlated with ancestry, | implemented the meta-regression model, including the three axes explaining the
largest genetic variation, using Meta-Regression of Multi-Ethnic Genetic Association (MR-MEGA

v0.1.2.25)% software for the respective publication?®.

1.2.5 Significance level corrections for multiple comparisons

In genome research, e.g., GWAS and gene expression data analysis, simultaneous association tests of a large
number of genetic variants increase the risk of false discovery rate??. For multiple hypothesis testing, the
family-wise error rate (FWER) is the probability of making at least one type | error for the family of N
independent tests corresponding to N (null) hypotheses H = (Hy, H,, ..., Hy)*?%. To avoid many false
positives, the significance threshold must be lowered to control the FWER at a significant level of « (FWER
< a). The FWER can be written as equation (1), where a[PT] is the probability of making a false discovery
rate for a single test.
FWER =1- (1 — a[PT]DV (1)
Equation (1) can be rewritten by equation (2) to find a[PT] when FWER is kept at the fixed « level.

1
alPT]=1-(1—a)N (2)
Equation (2), called the Sidak correction?*, illustrates that the value of a[PT] must be adjusted to control the

FWER at level a. Let p; donates the p-value associated with the hypothesis H; (1 < j < N).In the Sidak

1
correction if p; <1 — (1 — a)w, then reject H;.
Using the first term of a Taylor expansion of the Sidak equation, a simpler approximation known as

Bonferroni?® was derived, calculated by a[PT] ~ . In the Bonferroni correction if p; < <, then reject H;.

The Sidak and Bonferroni corrections are widely used to control FWER for multiple hypothesis testing. For
instance, in GWAS, a fixed established genome-wide significance level of @ =5 x 1078 is frequently
applied to determine the association between a common genetic variant and a trait of interest. However, they
have limited statistical power and become very conservative when the number of tests increases or when the
tests are not independent??’. The power of multiple testing corrections can be increased by using weighted
p-values?. To this end, Kang et al. (2009)? proposed a weighted Sidak correction by incorporating a set of
nonnegative weights w = (wy,w,, ..., wy) specified for N independent tests associated with H =
(Hy, Hy, ..., Hy), respectively into the Sidék correction. The weighted Sidak correction assigns specific

a[PT;] to every single test (j) by equation (3) while controlling the FWER at level a.

Wi
alPT]=1-(1—-a)¥, where -3V w; =1, j=12.,N (3

w

In the weighted Sidak correction if p;<1—-(1- a)W], then reject H;.



The weights can be determined by prior available information. For example, in GWAS, LD structure can be
used as prior information to estimate the optimal weights in multiple testing frameworks. However, how to

use prior information to estimate the optimal weight is an open problem?,

1.2.6 Conditional analysis of GWAS summary statistics

Despite the success of GWAS in identifying thousands of genetic variants associated with various diseases
and traits, interpreting the discovered variants remains a challenging task. Only a handful of the GWAS-
associated variants are true causal due to extensive LD structure. In association studies, causal variants are
responsible for association signals and have a biological effect on a disease or trait. The LD structure creates
both opportunities and difficulties in gene mapping. On the one hand, GWAS has been greatly facilitated by
using knowledge of LD structure to predict variation in the genome by genotyping only a small fraction of
polymorphic sites. On the other hand, it is difficult to identify true causal variants in a set of sites in strong
LD by using only association data. Detection of causal variants is complicated because the index SNP (the
SNP with the smallest p-value) at the given locus (the £500kb-region around index SNP) may not be casual
but instead be in high LD with an unknown functional variant. In addition to the LD structure, the presence
of multiple genetic variants at the same locus (allelic heterogeneity) is a common characteristic of complex
traits. Consequently, the total phenotypic variance explained by genetic variation might be underestimated
under the simplifying assumption that each GWAS-associated locus harbors exactly one causal variant or if
only index SNPs were considered causal variants. To address these issues, conditional analysis was
developed to detect multiple conditionally independent association signals at GWAS loci. Conditionally
independent association signals define as signals that remain or become significantly associated after
conditioning on other nearby signals, which are more significant. The conditional analysis is an interactive
process starting with an index SNP at a locus. It is performed by including the allele dosages of index SNP
as a covariate in an association model. The process is followed by the stepwise procedure of selecting
additional significant SNPs, one by one, according to the conditional p-values. After the first iteration of
conditional analysis (conditioning on the index SNP at a locus), the marginal statistics of all remaining
variants are re-computed. A locus is considered to have conditionally independent signals when the
conditional p-value for at least one of the variants is less than a predefined threshold. The predefined
threshold is referred to as the stopping threshold. Usually, the established genome-wide significance level
of «a =5x 1078is applied as a significance threshold. The conditional analyses are performed by
conditioning on index SNP and all SNPs selected in previous steps until no additional multiple independent
signals are found at a locus. This standard method can be applied to either summary statistics or individual-
level data sets.

Approximate conditional and joint genome-wide association analysis?® implemented in GCTA® software
(GCTA COJO Slct algorithm) performs the conditional analysis while utilizing the GWAS summary
statistics. The method does not depend on genotype and phenotype data at the individual level, except for

an LD reference sample with individual-level genotype data. The method can use summary-level statistics



from a meta-analysis of GWAS and estimate the LD from a reference sample. To estimate the unbiased LD
correlation, the reference sample should be from either one of the participating studies of the meta-analysis
or an ancestry-matched population with a large sample size > 2,000%.

1.3 Additional OMICS data as a basis for locus discovery

Epigenetic mechanisms involve modifications to genomic DNA, affecting transcript abundance and
influencing common diseases and complex traits. They may not be accounted for in SNP-based association
studies, hence alternative approaches are needed to unravel the biology underlying diseases. The technique
includes epigenetic changes like DNA methylation, which can be applied by the epigenome-wide association
study (EWAS) to increase our understanding of the role of methylation in many diseases.

EWAS investigate the association between a phenotype of interest and genome-wide epigenetic variants,
most commonly DNA methylation at CpGs. DNA methylation can occur at the DNA sites, where a C
nucleotide is followed by a G nucleotide, cytosine-phosphate-guanine (CpG). They regulate gene expression
through the presence or absence of a methyl group on CpG dinucleotides. The methylation level at each site
was measured and modeled as the dependent variables with phenotype being either continuous or binary
variable.

In SHIP-Trend study, DNA methylation level assessed from blood samples of 256 participants via the
Illumina Human Methylation Bead Chips, which covers 850,000 DNA methylation sites per array. The
methylation level at each site was calculated as B-value. B-value is the estimate of methylation level using
the ratio of the methylated probe intensity and the overall intensity (sum of methylated and unmethylated
probe intensities and 100 array probe intensity values).

| performed study-specific EWAS for SHIP-Trend for the respective populations*®-=C,

1.4 Association with gene expression and colocalization

1.4.1 Expression quantitative trait loci (eQTL) study

In recent years, much effort has been devoted to the analysis of genome function, particularly in the context
of genome variation. One of the most important directions is the expression quantitative trait loci (eQTL)
study3!, which uses gene expression measurements derived from microarray®? or RNA sequencing® studies
as an outcome trait for the GWAS design and identifies variants influence the expression level of genes in

different tissues and cell types (Figure 2).
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Figure 2. lllustrates the statistical associations between genotype and gene expression levels in different tissues. A Shows a
significant association between genotype and gene expression level when mRNA levels are significantly higher in one allele than
the other allele, while B shows no difference in mRNA levels between genotype groups.

The eQTLs are typically classified according to their relative locations of the eQTLs and the gene(s) they
affect, and the type of mechanism by which they affect gene expression. eQTLs can be divided into cis and
trans-eQTL. Cis-eQTL has local effects, which commonly refers to the genetic variant within 1-Mb on either
side of a gene’s transcriptional start site (TSS) directly affects the expression of its associated local gene.
While trans-eQTL refers to the genetic variant with distant effects located at least 5-Mb downstream or
upstream of the TSS or on a different chromosome. In Trans-eQTL, gene expression is affected through
possibly complex effects involving the genetic variant (Figure 3).
TSS 1-Mb
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o
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Figure 3. Illustrates cis and trans-eQTL testing. Cis-eQTL tests all SNPs within 1-Mb on either side of a gene’s transcriptional start

site (TSS) and trans-eQTL tests all other SNPs located in higher distance commonly at least 5-Mb downstream or upstream of the
TSS or on a different chromosome.

The Genotype-Tissue Expression (GTEX) project (https://gtexportal.org) is a comprehensive public resource

to study tissue-specific gene expression and regulation. GTEx has generated gene expression levels of
different tissues and the eQTL dataset, which is publicly available and has been used extensively to help
interpret GWAS signals from complex traits. Samples for GTEx v8 were collected from 54 non-diseased

tissue sites across nearly 1000 individuals. However, the human kidney tissues have been poorly covered by
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the GTEX study, and only the kidney cortex with a small sample size is included in this dataset. To overcome
this limitation, kidney tissue can be investigated using a cis-eQTL dataset from microdissected human

glomerular and tubulointerstitial kidney portions from 187 individuals from the NEPTUNE study>*.

1.4.2 Colocalization- integration of GWAS and eQTLs

GWAS has identified many genetic variants in non-coding regions of the genome. These variants may alter
the individual’s disease risk through their effect on gene expression in different tissues. One approach to
understanding the biological basis of these GWAS risk loci can be achieved by integrating GWAS and
eQTLs to assess whether two association signals are consistent with a shared causal variant. The abundance
of eQTLs in the human genome and across different tissues makes an accidental overlap between eQTLSs
and GWAS signals very likely. Therefore, formal statistical tests must be used to make inferences about
causality. Colocalization analysis (frequentist®® and Bayesian®® approaches) has emerged as a powerful tool
to combine GWAS and eQTLs to estimate the relation between gene expression of nearby genes and GWAS
association signals.

The Bayesian approach of the colocalization method makes the “one causal variant in a locus" (OCV)
assumption for each trait (GWAS and eQTL). This specific assumption outlines five different possible
hypotheses within each region. One: there are no causal variants for either trait (HO). Two: there is only one
causal eQTL variant but no causal GWAS variant (H1). Three: there is only one causal GWAS variant but
no causal eQTL variant (H2). Four: there are different causal SNPs for both eQTL and GWAS (H3). Five:
there is a colocalized signal (H4). Four hypotheses are shown in Figure 4.

The corresponding posterior probability is calculated for each hypothesis by considering all latent
association states from GWAS and eQTL data using Bayesian model averaging (BMA). Colocalization
within each region is quantified by the posterior probability of H4 (PP). A variant was defined as a co-
localized signal (same causal variant underlying both the GWAS and eQTL association) if a variant's
posterior probability (PP) was greater than 80%. The colocalization method has been described in detail by
Giambartolomei, C. et al. (2014)%.

In addition to functional characterization of GWAS risk loci, colocalization provides a systematic approach
for correlating gene expression levels (not measured directly in the sample of interest) with a trait or disease
where the data can be obtained from extrinsic individuals. This means individuals can have either measured
expression levels or assessed disease status. The link between these samples is made via genetics.

Information on genetic variation must be available from all individuals included in the analysis.

13 E3]

I ran colocalization by coloc.fast function from the R package “gtx” version 2.1.6

(https://github.com/tobyjohnson/gtx) which provides an adaptation of Giambartolomei’s colocalization

method®. Details were described in the respective publication.
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Figure 4. Illustrates four different hypotheses within a region. Variant causality was represented with a binary vector (0,1) of length
n = 8 (the number of common variants in a region) for each trait (biom (GWAS) and eQTL). A value of 1 means that the variant is
causally involved in the disease, and 0 means that it is not. The first plot shows the case where only one trait (eQTL) shows an
association. The second plot shows that both traits show an association, but the causal SNP in GWAS dataset is different compared
to the eQTL dataset. The third plot shows that the fourth SNP is the underlying causal variant for both GWAS and eQTL. Reprinted
from “Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics” Giambartolomei,
C. etal. (2014), PLoS Genet. 10, €1004383. Copyright: 2014 Giambartolomei et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

1.5 Quasi-adaptive method

The conditional analysis has successfully identified multiple conditionally independent SNPs at loci with
allelic heterogeneity in GWAS studies. Generally, the established genome-wide significance level (e.g., a =
5x 1078) is used as the significance threshold in conditional analysis, which is also the significance level
for the primary GWAS. Unlike the tests for the primary association, conditional tests are not applied
genome-wide but are restricted to the specific genomic regions surrounding the GWAS index signals.
Consequently, applying the genome-wide significance level in the conditional analysis is too strict and
implies an unnecessary loss of power. To address this issue, we developed a quasi-adaptive method to
establish significance thresholds and evaluate the conditional independence of secondary signals in
conditional analyses. The method prioritizes SNPs and applies less restrictive significance levels to those
with higher priority, while maintaining an FWER level at @ = 0.05 to control type | error rate.

Our method is based on independent genome-wide significant loci from primary GWAS. The number of
candidate SNPs from N, independent loci is represented by m,, which was referred to as simply "m" and

"N" in the respective publication?. Within each locus, an SNP with the smallest p-value is designated as the
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index SNP, while the remaining SNPs are considered candidate SNPs. The quasi-adaptive method, utilizes
the weighted Sidak correction (3) to take into account the LD structure (pairwise correlation (72) and
chromosomal distance between the index SNP and candidate SNPs (d)) as the prior information. The method
estimates optimal weights to prioritize SNPs and assigns an SNP-specific a-thresholds to candidate SNPs in
conditional analysis.

The pre-weight (w,z ) based on r? with optimal 2 = 0.3 and a pre-weight (wq,) based on d which down-
weighted SNPs at higher distance step-wise-strong are assigned to a candidate SNP(i), (1 <i <m,) as:

1—|rn2-03]-03

W2 = 1-03 ’
(1 if 0<d<1Kb
[ o5 if 1Kb < d < 10Kb
wg, =4 0.25 if 10Kb < d < 50Kb
0.125 if 50Kb < d < 100Kb
L0.0625 if 100Kb < d < 500Kb

The pre-weights w,2. and w,. are combined (with more emphasis on d than on 72) by the geometric mean
L L

wi Xms,

Tiiw
The quasi-adaptive method is applied on N, loci, by incorporating W; into the weighted Sidak correction.

1
w; = (wé{i X wyz Jk+1, With k = 5, to assign an optimal weight W; = to SNP(i).

The method distributes type | error rate (a) among m, candidate SNPs, and assigns the SNP-specific a-
thresholds to SNP(i) by G;(a, 72,d ) as follows:

Wi

Gi(a, 72, d)=1-(1—-a)™, i=12,..,m,. 4
SNP(i) is considered a secondary signal if the conditional p-value is smaller than G;(a, 72, d ). The regional
association plot in Figure 5 illustrates the secondary signal exclusively identified by the quasi-adaptive
method, with conditional p-value smaller than G;(a, r2?,d ) and greater than 5 x 1078,
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Figure 5. Regional association plot with secondary signal (red dot) detected exclusively by the quasi-adaptive method. Y-axis is
—log,, of conditional p-value (blue dot) for candidate SNPs from 1-Mb surrounding LD region of an index SNP (x-axis). Forth axis
is —log,, of the SNP-specific a-thresholds assigned by the quasi-adaptive method (green plus sign) to the candidate SNPs. red
dashed line is —log;, (5 x 1078). The secondary signal was found by the quasi-adaptive method is shown in red dot with
corresponding —log,, of the SNP-specific a-threshold assigned by the quasi-adaptive method (red plus sign).
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Details of the quasi-adaptive method, the simulation study, and the power analysis were described in the

respective publication®’.

1.5.1 Improved quasi-adaptive method

The quasi-adaptive method was developed to determine one independent signal (secondary signal) at each
locus. We improved the method to identify plausible multiple independent signals at each locus (a tertiary
signal, a signal of 4™, a signal of 5", and beyond).

To detect independent tertiary signals, only loci with confirmed secondary signals (confirmed according to
the quasi-adaptive method) were considered. We proceeded according to the idea of the main paper®” but
performed conditional analysis by adjusting for the primary index SNP and confirmed secondary signal for
each locus. The number of loci with confirmed secondary signals is represented by N; and m5 denotes the
number of candidate SNPs (excluding index SNPs and secondary signals) from N5 loci. Our method was
applied on N3 loci following the schema described above and the SNP-specific a-thresholds were assigned

to each SNP(i) using equation (5).

w

G(a, 73d)=1-(1—-a)ms, W,;=

%1"; i=12,..,ms. (5)

The improved method is an iterative process that is subsequently performed to detect higher-order
independent signals (applied to loci with confirmed independent signals from the previous steps) until no
additional independent signals are found. Finding higher-order independent signals keeps the FWER at a =
0.05 because only the number of candidate SNPs and the LD structure have to be taken into account, where
the LD structure does not change by analyzing higher-order independent signals. Details were described in

the respective publication?®.

1.5.2 Conditional analysis in quasi-adaptive method

The conditional analysis in the quasi-adaptive method proceeds according to the standard conditional
analysis approach. It is an interactive process that starts by adjusting for the primary index SNP at each
locus. For each candidate SNP, the assigned SNP-specific a-level compared to the p-value from the
conditional analysis, and one secondary signal with the smallest conditional p-value lower than the
corresponding SNP-specific a-level is selected at a locus. When a secondary signal is identified at a locus,
conditional analysis is performed by adjusting for the primary index SNP and the secondary signal to find
the tertiary. Conditional analyses are performed by adjusting for the primary index SNP and any independent
SNPs selected in previous steps by the quasi-adaptive method until no additional independent signals are
found at a locus. Note that the stopping thresholds are the assigned SNP-specific a-levels by the quasi-
adaptive method for each iteration. Approximate conditional analysis implemented in GCTA (GCTA COJO-

cond algorithm) performs the conditional analysis while utilizing the summary statistics.
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2 Summary

2.1 Summary of the thesis

This thesis focuses on identifying genetic factors associated with human kidney disease progression, with
three articles presented. Article | describes the identification of loci associated with UACR through trans-
ethnic, European-ancestry-specific, and diabetes-specific meta-analyses. An approximate conditional
analysis was performed to identify additional independent UACR-associated variants within identified loci.
The genome-wide significance level of a =5 x 1078 is used for both primary GWAS association and
conditional analyses. However, unlike primary association tests, conditional tests are limited to specific
genomic regions surrounding primary GWAS index signals rather than being applied on a genome-wide
scale.

In article 11, we hypothesized that the application of « = 5 x 1078 is overly strict and results in a loss of
power. To address this issue, we developed a quasi-adaptive method within a weighted hypothesis testing
framework. This method exploits the type | error (« = 0.05) by providing less conservative SNP specific
a-thresholds to select secondary signals in conditional analysis. Through simulation studies and power
analyses, we demonstrate that the quasi-adaptive method outperforms the established criterion a = 5 X
1078 as well as the equal weighting scheme (the Sidak-correction). Furthermore, our method performs well
when applied to real datasets and can potentially reveal previously undetected secondary signals in existing
data.

In article 111, we extended our quasi-adaptive method to identify plausible multiple independent signals at
each locus (a secondary signal, a tertiary signal, a signal of 4", and beyond) and applied it to the publically
available GWAS meta-analysis to detect additional multiple independent eGFR-associated signals. The
improved quasi-adaptive method successfully identified additional novel replicated independent SNPs that
would have gone undetected by applying too conservative genome-wide significance level of @ = 5 X
1078, Colocalization analysis based on the novel independent signals identified potentially functional genes
across the kidney and other tissues.

Overall, these articles contribute to the understanding of genetic factors associated with human kidney
disease progression and provide novel methods for identifying secondary and multiple independent signals

in conditional GWAS analyses.
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2.2 Summary of the publications

2.2.1 Genome-wide association meta-analyses and fine-mapping elucidate pathways

influencing albuminuria (Article 1)

Higher levels of the urinary albumin-to-creatinine ratio (UACR) as a measure of kidney damage are
associated with adverse clinical outcomes such as end-stage kidney disease, cardiovascular disease (CVD),
and mortality. Despite the heritability of UACR, the underlying genetic mechanisms are not well understood,
and identifying genetic loci for UACR through GWAS has been challenging. To this end, the CKDgen
consortium (round 4) was established to increase statistical power and identify novel genetic markers for
UACR through a meta-analysis of multiple studies with large sample sizes.

Data based on 564,257 individuals from 54 studies were combined in a trans-ethnic meta-analysis of UACR,
including 547,361 of European ancestry (EA), 6,795 African Americans ancestry (AA), 6,324 of East Asian
ancestry, 2,335 of South Asian ancestry, and 1,442 Hispanics. The GWAS results of 3,199 individuals from
SHIP-START and 985 individuals from SHIP-Trend were included in the discovery stage of the meta-
analysis. 59 UACR-associated loci were identified through the trans-ethnic meta-analysis, out of which 27

were considered known and 32 were considered novel (Figure 6).
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Figure 6. Genome-wide association results. The circos plot provides an overview of the association results: Red band: —log,,(p)
for association in the trans ethnic meta-analysis of urinary albumin-to-creatinine ratio (UACR), ordered by chromosomal position.
The blue line indicates genome-wide significance (p = 5 x 10°8). Black gene labels indicate novel loci, blue labels indicate known
loci (known index SNP within + 500 kb region of current index SNP), gray labels indicate loci not associated with UACR at the
nominal significance level (p > 0.05) in the 53 CKDGen cohorts without UKBB. Blue band: —log;,(p) for association with
microalbuminuria (MA), ordered by chromosomal position. The red line indicates genome-wide significance (p =5 x 10°8). Green
band: measures of heterogeneity related to the UACR-associated index SNPs, where the dot sizes are proportional to two measures
of heterogeneity, 12 and the —log,,(p) for heterogeneity attributed to ancestry (pA)
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As secondary analyses, an ancestry-specific meta-analysis was performed for EA and 61 loci were identified,
56 of which overlapped with those from the primary trans-ethnic meta-analysis. Additionally, a diabetes-
specific meta-analysis was performed on 51,541 individuals with diabetes, including 2,345 individuals from
SHIP-START, and identified 8 loci, 4 of which were not detected in the primary meta-analysis (KAZN,
MIR4432HG-BCL11A, FOXP2, and CDH2). In total, 68 UACR-associated genetic loci were identified
including 34 novel loci through primary trans-ethnic GWAS meta-analysis and secondary analyses. The

workflow of the project is illustrated in Figure 7.
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Figure 7. Overview of the analysis workflow for trans-ethnic (a), European ancestry-specific (b), and diabetes-specific (c) genome-
wide association meta-analyses (GWAMA). The Venn diagram in panel (d) shows the number of overlapping loci between the
different GWAMA. The contribution of the author of the thesis, Sahar Ghasemi, is highlighted in green throughout the workflow,
showcasing the specific responsibilities and tasks the author carried out.

Collaborators performed a series of analyses to determine the functional relevance of the identified loci. This
included genetic correlation analyses and risk score associations in an independent electronic medical
records database of 192,868 EA participants. The analysis revealed significant association between the
identified genetic loci and several clinically relevant conditions such as proteinuria, hyperlipidemia, gout,
and hypertension. Functional enrichment analyses, statistical fine-mapping and integrative trans-Omics

analyses, including gene expression in 47 human tissues and plasma protein levels, were conducted to
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prioritize and characterize several of the revealed trait-associated loci in the EA. The analyses identified nine
genes that colocalized with UACR-associated loci in the kidney tissues including TGFB1, MUC1, PRKCI,
and OAF). These findings allow for a linking of UACR associations to alter plasma OAF concentrations.
Several of the disease-associated loci were characterized for their likely causal variants or for functional
effects using cell culture and animal models. For example, in vivo analyses of Drosophila orthologs
supported a role of OAF in tubular protein endocytosis, and PRKCI in slit diaphragm formation potentially

reflecting changes kidney structure.

2.2.2 Assessment of significance of conditionally independent GWAS signals (Article I1)

As outlined in chapter 1.5, we developed the quasi-adaptive method with the goal of increasing power to
detect independent secondary signals in conditional analyses. The method utilizes the LD structure (2, d)
as prior knowledge to determine optimal weights for prioritizing SNPs and assign SNP-specific a-thresholds
to candidate SNPs in conditional analysis. We have established a series of priority functions that are
determined by a combination of pre-weights based on 2 and d. It is important to note that 2 and d operate
to some extent in opposite directions. Although a high r? value may increase the biological prior (via
haplotype effects), it reduces statistical power by decreasing the amount of independent information. To
investigate the counter-running effect of r2 and d, we evaluated several alternatives for the pre-weights on
the r2-component and d-component in a series of priority functions. The specifics of the SNP weighting
schemes and the development of priority functions are outlined in the corresponding publication®.

The validity of the method was assessed by evaluating the deviation of FWER from desired level @ = 0.05
via simulation analysis based on imputed genotypes from the SHIP study. Under the null hypothesis of no
secondary signals, the simulation analyses confirmed appropriate empirical FWER for defined priority
functions.

Power simulations were set up under the alternative hypothesis (pre-defined secondary signals) for three
scenarios, scenario A (selecting secondary signal by random), scenario B (selecting secondary signal
conditionally at random based on d, step-wide-moderate), and scenario C (selecting secondary signal
conditionally at random based on d, step-wide-strong) to evaluate priority functions' power in detecting
secondary signals. The quasi-adaptive method (G5-function) had the overall best power (mean power of
0.7289 and median power of 0.7305) among other priority functions (Figure 8). It showed improved power
by 22 percentage points (median) over the established criterion @ = 5 x 1078 (G14-function) as well as
four percentage points (median) over the Sidak-correction (G13-function). It also showed the best results in
application to real data sets.

As a proof of concept, the quasi-adaptive method was applied to GWAS on free thyroxine (FT4)*,
inflammatory bowel disease (IBD)*°, and human height**. Our algorithm revealed five secondary signals in
GWAS on FT4, five in the IBD, and 19 in human height that would have gone undetected using the

established genome-wide significance level of @ = 5 x 1078,
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We analyzed the impact of using different LD reference samples on our proposed method by using the SHIP
and UKBB reference samples, which consist of 4070 and 13,558 individuals respectively, in our analysis of
the FT4 and IBD GWAS examples. Secondary signals obtained with the SHIP reference sample showed
overall good agreement with those obtained using UKBB. The results somewhat depend on the reference
sample, which determines SNP availability and the LD structure estimated from it. In this context, we
recommend using the reference LD panel from the same population the study data comes from and beyond
a sample size of 5,000 for additional accuracy, as also proposed by Yang et al. (2011)%.

The quasi-adaptive method is easy to use, operates directly with typically already existing GWAMA results,
and makes use of existing analysis software for conditional analysis (GCTA). The method has the potential
to reveal previously undetected secondary signals in already available data and to uncover plausible

underlying gene mechanisms.
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Figure 8: Power simulation analysis results across scenario A (selecting secondary signal by random), B (selecting secondary signal
conditionally at random based on distance, step-wide-moderate), and C (selecting secondary signal conditionally at random based
on distance, step-wide-strong) for 14 priority functions (G-functions). The numbers above show the median and the mean of power
analyses across three scenarios for each G-function, respectively.

2.2.3 Discovery of novel eGFR-associated multiple independent signals using quasi-adaptive
method (Article 111)

The quasi-adaptive method was improved (as described in 1.5.1) and applied to the publically available
GWAS meta-analysis of eGFR* from the CKDGen consortium to detect additional associated multiple
independent signals. The quasi-adaptive method identified 87 multiple independent signals (without index

SNPs from primary GWAS?), of which 27 were novel. The approach detected 60 known loci, of which 54
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loci comprised the same independent signals identified in the previous GWAS and 6 loci with independent
signals in high LD with the identified independent signals from the aforementioned GWAS. 19 of 27 new
independent SNPs were subsequently replicated in an independent data set, UK Biobank genotype data
among EA individuals (n = 408,608). These signals included 5 secondary signals, 5 tertiary signals, 6 signals
of 4" 2 signals of 5", and one signal of 6 (Figure 9). These results would have gone undetected by
conditional analysis applying the commonly used but too conservative genome-wide significance level of
a=5x 1078

Of note, the new independent signals rs3904600, rs13227214, rs81205, rs2075251, rs2695565, and
rs6951593 (identified by the quasi-adaptive method based on meta-analysis of previous GWAS of eGFR?)
showed smaller p-values in their unconditional eGFR-association analysis within the UKBB compared to
their corresponding index SNP. Figure 10 shows regional association plot for index SNP rs3757387 and
tertiary signal rs13227214 identified by the quasi-adaptive method.
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Figure 9. Replication of eGFR-associated multiple independent signals identified by the quasi-adaptive method using the UK
Biobank (UKBB) genotype data among European-ancestry individuals. The x-axis shows the chromosome number, and the y-axis
is the —log,,(P) of the conditional GWAS of eGFR. Color coding reflects evidence of replication, which is coded as replicated
(blue) and non-replicated (black). Different shapes showed multiple independent signals.

Colocalization based on the conditional and unconditional eGFR association results with cis-eQTL across
49 human tissues included in the GTEX project v8 release*? as well as the microdissected human glomerular
and tubulointerstitial kidney portions from 187 individuals from the NEPTUNE study*® were conducted to
characterize 17 known eGFR-associated index SNPs and 19 novel independent signals. Colocalization
identified two potentially causal genes across kidney tissues: TSPAN33 and TFDP2, and three candidate
genes across other tissues: SLC22A2, LRP2, and CDKN1C. These results were not identified in the original
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report of eGFR*. Considering these signals in colocalization analyses can increase the precision of revealing

potentially functional genes of GWAS loci.
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Figure 10. Regional association plot based on unconditional eGFR-association analysis within the UKBB with highlighted index

SNP rs3757387 (7:128576086_T/C) and tertiary signal rs13227214 (7:128740355_C/G).

2.2.4 Association studies

The section on revealing disease associated loci provides examples in which | conducted GWAS projects

including SHIP studies with specific focus on kidney function. The main findings of the kidney function

projects include 34 novel loci for UACR?, 166 new loci associated with eGFR*, 147 new loci for serum urate

concentrations*, six new loci for rapid kidney function decline® . In addition, we identified 11 loci

associated with heart failure*® and 15 loci associated with muscle weakness*'.

In addition to GWAS, | conducted EWAS and EWAS meta-analysis projects including SHIP-Trend. The

main finding include 69, 7, 100, and 1 CpG sites where DNA methylation associated with UACR*, eGFR*,

serum urate levels*, and common carotid intima-media thickness (cIMT)%°, respectively.
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Genome-wide association meta-analyses and fine-mapping elucidate pathways

influencing albuminuria (Article 1)
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Genome-wide association meta-analyses and
fine-mapping elucidate pathways influencing
albuminuria

Alexander Teumer® et al.”

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher
risk of kidney disease progression and cardiovascular events, but underlying mechanisms are
incompletely understood. Here, we conduct trans-ethnic (n=564,257) and European-
ancestry specific meta-analyses of genome-wide association studies of UACR, including
ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic
correlation analyses and risk score associations in an independent electronic medical records
database (n=192,868) reveal connections with proteinuria, hyperlipidemia, gout, and
hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues
and plasma protein levels implicate genes potentially operating through differential expres-
sion in kidney (including TGFBIT, MUCI, PRKCI, and OAF), and allow coupling of UACR
associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs
in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs
slit diaphragm formation. These results generate a priority list of genes and pathways for
translational research to reduce albuminuria.

Correspondence and requests for materials should be addressed to A.T. (email: ateumer@uni-greifswald.de) or to C.P. (email: cristian.pattaro@eurac.edu)
or to A.Két. (email: anna.koettgen@uniklinik-freiburg.de).
#A full list of authors and their affiliations appears at the end of the paper.
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(UACR) are associated with adverse clinical outcomes,

such as end-stage kidney disease, cardiovascular disease
(CVD), and mortality!=. Elevated UACR is a measure of kidney
damage that is used to diagnose and stage chronic kidney disease
(CKD)®, which affects >10% of adults worldwide’, and represents
a hallmark of diabetic kidney disease®. Even moderate elevations
in UACR predict poorer health outcomes, independently of the
glomerular filtration rate®”. Lowering of UACR by pharmacolo-
gical inhibition of the renin-angiotensin-aldosterone system
(RAAS) is considered renoprotective standard of care to slow
CKD progression.” ! RAAS blockage is associated with a
reduction of albuminuria and lower risk of end-stage kidney
disease!> and CVD events!13-15. However, the risk of CVD
events among CKD patients remains high. A better under-
standing of the pathways related to the development and con-
sequences of albuminuria may facilitate the search for novel
therapies to treat or prevent CKD progression and CVD.

Levels of UACR have a heritable component in population-
based studies and groups at high risk of CKD, such as certain
indigenous populations or persons with diabetes!®=20, However,
the identification of genetic loci for UACR through genome-wide
association studies (GWAS) has proven difficult, and detected loci
showed variable effects across ancestries or disease groups?l.
Initial GWAS of UACR identified only two genome-wide sig-
nificant loci, CUBN?>23 and HBB?*%. A complementary approach
using admixture mapping also identified the BCL2L11 locus?.
One additional finding in patients with type I diabetes?® was not
detected in type II diabetes patients or the general population.
Only very recently, a Mendelian Randomization study assessing a
potentially causal effect of UACR on cardiometabolic traits based
on data from the UK Biobank (UKBB) reported 33 genome-wide
significant single-nucleotide polymorphisms (SNPs) associated
with UACR?. The study supported a causal effect of higher
UACR on elevated blood pressure and postulated that inhibition
of UACR-increasing pathways could have anti-hypertensive
effects and thereby reduce CVD risk.

In this project, we characterize known and identify additional
novel genetic loci for UACR through trans-ethnic meta-analysis
of GWAS from 564,257 participants, including an internal vali-
dation step and secondary analyses among participants with
diabetes. To prioritize the most likely causal variants, genes, tis-
sues, and pathways in associated loci, we perform functional
enrichment analyses, statistical fine-mapping and integrative
trans-Omics analyses, including with gene expression in 47
human tissues and plasma protein levels. Clinical correlates are
identified through genome-wide genetic correlation analyses and
a phenome-wide association scan of a genetic risk score for
UACR in a large independent population. We evaluate translation
to mechanistic insights in proof-of-concept studies for OAF and
PRKCI using an experimental model of albuminuria. Together,
the implicated variants, genes, proteins, tissues, and pathways
provide a rich resource of new targets for translational research.

I I igher levels of the urinary albumin-to-creatinine ratio

Results

The workflow of our study, which identified 68 UACR-associated
loci across primary and secondary analyses, is illustrated in
Supplementary Fig. 1.

Primary analysis: identification of 59 loci for UACR. The data
based on 564,257 individuals from 54 studies were combined in a
trans-ethnic meta-analysis of UACR, including 547,361 of Eur-
opean ancestry (EA), 6795 African Americans (AA), 6324 of East
Asian ancestry, 2335 of South Asian ancestry, and 1442 Hispanics
(Supplementary Data 1). The median of the median UACR across

studies was 7.5 mg/g, and an average of 14.9% (range 3.2-70.9%)
of participants had microalbuminuria (MA, UACR > 30 mg/g).
Study-specific GWAS of UACR were carried out using imputed
genotypes (Methods, Supplementary Data 2). We performed
study-specific variant filtering and quality control (QC), followed
by fixed-effects inverse-variance weighted meta-analysis. There
was no evidence of unaccounted stratification (LD score regres-
sion intercept 0.95; genomic control (GC) parameter Agc 1.03).
Downstream analyses were based on 8,034,757 SNPs available
after variant filtering (Methods). Using SNPs of minor allele
frequency (MAF)>1% across the genome, the heritability of
UACR was estimated as 4.3%.

We identified 59 UACR-associated loci, defined as 1 Mb
genomic segments carrying at least one SNP associated with
UACR with p <5 x 108 (Methods; Fig. 1, Supplementary Data 3).
The index SNP mapped within 500kb of previously reported
index SNPs for UACR at 27 loci, considered known, and the
remaining 32 loci were considered novel. These 59 SNPs explained
0.69% of the variance of the inverse normal transformed UACR
residuals. There was little evidence of between-study heterogeneity
(median I? statistic 3.2%; Supplementary Data 3), with all index
SNPs showing an I2 of<50%. In meta-regression analysis
(Methods), none of the 59 index SNPs showed evidence of
ancestry-related heterogeneity after multiple testing correction
(p<85x10~% Fig. 1; Supplementary Data 3)?%. Regional
association plots of all loci are displayed in Supplementary Fig. 2.

Some of the loci contain biologically plausible candidates in
addition to the known CUBN (cubilin) locus: for example, rare
mutations in COL4A4 (Collagen Type IV Alpha 4 Chain) cause
Alport syndrome, a monogenic disease of basement membranes
that frequently leads to end-stage kidney disease. Recent
sequencing studies show that the phenotypic spectrum of rare
COL4A4 mutations extends to focal segmental glomerulosclerosis,
which typically presents with proteinuria?®3. Our study extends
the genetic spectrum to common COL4A4 variants associated
with UACR in mostly population-based studies. Another example
is NR3C2 (Nuclear Receptor Subfamily 3 Group C Member 2),
which encodes the mineralocorticoid receptor that mediates
aldosterone action. Pharmacological inhibition of the RAAS is the
mainstay treatment to lower albuminuria, illustrating the
potential for pharmacological intervention on pathways identified
in this project.

Lastly, we estimated the number of expected discoveries and
the corresponding percentage of GWAS heritability explained in
future studies of yet larger sample size (Methods)?! and found
that such studies can be expected to detect additional UACR loci
(Supplementary Fig. 3).

Concordance between CKDGen cohorts and UK Biobank. To
assess the influence of the UKBB, the largest study in the dis-
covery sample (n = 436,392), we compared association statistics
for the 59 index SNPs from the UKBB to the corresponding
estimates from the 53 other studies participating in the CKDGen
Consortium (n < 127,865). Effect direction was consistent for all
59 index SNPs (Phinomial test = 3-5 X 10718; Fig. 2a), and 53 showed
nominally significant associations in the CKDGen cohorts alone
(p < 0.05; Supplementary Data 4). Two loci with strong effects in
UKBB but not significant in CKDGen were AHR (aryl hydro-
carbon receptor) and CYPIAI (Cytochrome P450 Family 1
Subfamily A Member 1), potentially reflecting factors related to
standardized sample handling, storage, and measurements in the
UKBB, or population-specific exposures.

Secondary ancestry-specific and diabetes-specific analyses. First,
we conducted ancestry-specific meta-analyses for EA (n=
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Fig. 1 Genome-wide association results. The circos plot provides an overview of the association results: Red band: -log,o(p) for association in the trans-
ethnic meta-analysis of urinary albumin-to-creatinine ratio (UACR), ordered by chromosomal position. The blue line indicates genome-wide significance
(p=5x10"8). Black gene labels indicate novel loci, blue labels indicate known loci (known index SNP within + 500 kb region of current index SNP), gray
labels indicate loci not associated with UACR at the nominal significance level (p > 0.05) in the 53 CKDGen cohorts without UKBB. Blue band: -logo(p) for
association with microalbuminuria (MA), ordered by chromosomal position. The red line indicates genome-wide significance (p = 5 x 10~-8). Green band:
measures of heterogeneity related to the UACR-associated index SNPs, where the dot sizes are proportional to two measures of heterogeneity, |1 and the

-logio(p) for heterogeneity attributed to ancestry (pA)

547,361) and for AA (n = 6795), where ancestry-specific loci have
been described®233. There was little evidence of inflation of the
results (Age 1.06 for AA and 1.01 for EA; Methods). These meta-
analyses identified 61 loci in EA, of which 56 overlapped with
those from the primary trans-ethnic meta-analysis (Supplemen-
tary Data 5 and further discussed below), and no genome-wide
significant loci in AA. The known UACR-associated sickle cell
trait variant rs334 in HBB showed suggestive association in the
AA-specific analysis (p= 6.1 x 1078).

The other secondary analysis was restricted to 51,541
individuals with diabetes, in whom a larger effect of the known
CUBN locus has been reported??. This analysis identified eight

NATURE COMMUNICA

loci (Supplementary Fig. 4), four of which were not detected in
the primary meta-analysis (KAZN [Kazrin, Periplakin Interacting
Protein|, MIR4432HG-BCL11A, FOXP2, and CDH2). Internal
validation of the UKBB (n = 21,703) and CKDGen cohorts (n <
29,812) statistics found the effects to be direction consistent, of
similar magnitude and at least nominally significant in both
subsets at all eight loci (Supplementary Data 6). Index SNPs at
CUBN and HPN (Hepsin) showed larger effect sizes among those
with diabetes compared with the overall sample (Supplementary
Data 6). Among the novel loci, it is noteworthy that BCL1IA, a
transcriptional regulator of insulin secretion, is involved in
fetal-to-adult globin switching, as is the known UACR risk gene
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allele of the trans-ethnic UACR meta-analysis results

HBB. KAZN encodes for a protein with a role in actin
organization and adhesion?’ that is highly abundant in glomeruli.
QQ plots and Manhattan plots of the secondary meta-analyses
are shown in Supplementary Figs. 5 and 6.

Functional enrichment and pathways. We searched for tissues,
cell types, and systems that are enriched for the expression of
genes mapping to the UACR-associated loci (Methods)3¢. Based
on all SNPs with p<5x10~8 from the trans-ethnic meta-

4
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analysis, there was no significant (false discovery rate [FDR] <
0.05) enrichment after correction for multiple testing (Supple-
mentary Data 7). Nominally significant associations (p < 0.05)
were observed for 37 annotations mapping into six systems
(urogenital including kidney, endocrine, digestive including liver,
musculoskeletal, respiratory, sense organs; Supplementary Fig. 7)
and five tissues (exocrine glands, prostate, mucous membrane,
membranes, and respiratory mucosa). These results reveal plau-
sible enrichments although they did not reach significance after
correction for multiple testing.

1S | (2019)10:4130 | https://doi.org /10.1038/541467-019-11576-0 | www.nature.com/naturecommunications

31



ARTICLE

Next, we evaluated whether reconstituted gene sets were
significantly (FDR < 0.05) enriched for genes mapping to UACR-
associated loci, and identified three sets with FDR<0.01
(embryonic development, partial embryonic lethality during
organogenesis, abnormal placental labyrinth vasculature mor-
phology). The remaining significant gene sets included terms that
can be reconciled with existing knowledge about albuminuria,
including “tube development”, “abnormal kidney morphology”,
and several terms related to vascular development and morphol-
ogy (Supplementary Data 8).

UACR-associated loci are associated with MA. Clinical MA
(UACR > 30 mg/g) is associated with increased risk for adverse
kidney and cardiovascular outcomes, as well as mortality®. We
therefore evaluated the association of the 59 UACR index SNPs
with MA by meta-analyzing data from 36 cohorts and 347,283
individuals (Supplementary Data 1; Fig. 1). Figure 2b shows that
for all UACR index SNPs, the allele associated with higher UACR
was associated with an increased risk of MA (Supplementary
Data 3). Of the 59 SNPs, 49 were significantly associated with MA
after correction for multiple testing (p < 0.05/59 = 8.5 x 10~4),
including 17 that reached genome-wide significance. The low-
frequency missense SNP rs45551835 in CUBN showed the largest
effect with an odds ratio (OR) of 1.76 (95% CI 1.67-1.87) per
minor allele. When 232,751 UKBB participants were grouped into
quartiles based on a UACR genetic risk constructed from the 59
index SNPs, each quartile showed a significantly higher OR for
MA compared with the lowest quartile (e.g, OR of 1.69 for
quartile 4 vs. 1, p=3.0 x 107191, Supplementary Table 1).

UACR loci: association with urinary albumin and creatinine.
The UACR is a ratio. Understanding whether a genetic locus is
more strongly associated with its numerator, albumin, or with its
denominator, creatinine, may provide important physiological
insights. We therefore performed separate tests for urinary
albumin and creatinine in the UKBB sample (Nyapumin=
436,398; Nycreatinine = 436,412). Of the 59 index SNPs, 31 were
significantly associated with urinary albumin (p < 8.5 x 10~4), 21
with urinary creatinine, and two with both. The CUBN locus
showed the largest effect on urinary albumin, and was not sig-
nificantly associated with urinary creatinine levels (Fig. 2c), fol-
lowed by ST8SIA6 (ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase  6), PRKCI (protein kinase C iota),
TRIM46/MUCI (Mucin 1, cell surface associated), HNRNPU
L1/TGFBI (transforming growth factor beta 1), FOXD2, KCNKS5,
WIPF3 (WAS/WASL interacting protein family member 3),
LRMDA, and NR3C2.

A genetic UACR score is associated with medical diagnoses.
Next, we evaluated whether a weighted genetic risk score (GRS)
composed of UACR-increasing alleles was associated with clinical
endpoints in a large, independent electronic medical record
database to detect diagnoses with potentially shared genetic
components or co-regulation. We tested associations with 1422
billing code-based phenotypes of up to 192,868 EA participants
of the Million Veteran Program (MVP) from US Veterans’
Administration facilities’”. Significant associations (p < 3.5 x
1073, 0.05/1,422) were detected with 10 diagnoses: proteinuria,
four related to hyperlipidemia, two related to hypertension, two
related to gout, as well as Fuchs’ dystrophy (Fig. 3). While the
association with disorders of lipoid metabolism had the lowest p-
value (p=4.1x10711), the association with Fuchs’ dystrophy
showed the greatest magnitude (OR = 6.68 per SD increase of log
[UACR], 95% CI 3.06-14.59, p =1.9 x 1079), followed by pro-
teinuria (OR=2.7, 95% CI 1.76-4.14, p=5.0x 107%). Many

NATURE COMMUNICA

other associations that approached statistical significance were
related to the kidney and metabolic diseases (Supplementary
Data 9).

The association with Fuchs’ disease, a dystrophy of the corneal
endothelium, was unexpected and assessed in greater detail.
Autosomal-dominant forms of Fuchs’ dystrophy have been
attributed to genetic variation in TCF4 (transcription factor 4)38,
a novel UACR-associated locus identified here (index rs11659764,
p=28x10"15 2 =021, D'= —0.97 with rs613872, a previously
reported Fuchs index SNP3?). After exclusion of the TCF4 index
SNP, the GRS was still significantly associated with proteinuria,
hyperlipidemia codes, gout, and hypertension with nearly identical
ORs, but the association with Fuchs’ dystrophy disappeared (p =
0.2). This illustrates that unexpected significant associations from
PheWAS require careful evaluation.

We also evaluated an association of the GRS with cardiovas-
cular outcomes based on published GWAS and the UKBB
(Supplementary Table 2). This revealed significant (p<0.007,
Methods) positive associations of the GRS with an increased risk
of hypertension (p=2.4x 10721). Conversely, weighted genetic
risk scores based on recently published GWAS of systolic and
diastolic blood pressure as well as of type 2 diabetes were
positively associated with UACR (p = 3.5 x 1073 for systolic and
p=12x10"2* for diastolic blood pressure, p=1x10"10 for
type 2 diabetes; Supplementary Table 2).

Genome-wide genetic correlations of UACR. Albuminuria is
associated with multiple cardiovascular and metabolic traits and
diseases»40-42, In addition to the GRS analyses, we thus also
assessed genome-wide genetic correlations between the EA-
specific UACR association statistics and 517 traits and diseases
(Methods; Supplementary Data 10). Significant genetic correla-
tions (p<9.7 x 1075 [0.05/517]) were observed for 67 traits
(Fig. 4). The strongest negative correlations were observed for
urinary creatinine and other urinary parameters, and the largest
positive genetic correlations with different measures of hyper-
tension. These findings provide support for the observational
association between albuminuria and blood pressure on a genetic
level, the significant associations between the UACR GRS and
hypertension in the MVP population, and the recent Mendelian
Randomization study of UACR?’. Negative genetic correlations
with anthropometric measures are potentially explained by their
positive associations with muscle mass, and hence creatinine
concentrations.

Statistical fine-mapping and secondary signal analysis. Statis-
tical fine-mapping was performed using summary statistics to
prioritize SNPs or sets of SNPs (credible set) driving each asso-
ciation signal (Methods). These analyses were limited to EA,
comprising > 97% of the total sample, for whom large data sets to
estimate reference LD for summary statistics-based fine-mapping
were publicly accessible’344. Based on 57 combined genomic
regions from the 61 genome-wide significant loci in EA (Meth-
ods, Supplementary Data 5), we identified 63 independent SNPs
(Supplementary Data 11). Next, 99% credible sets were computed
based on Approximate Bayes Factors, resulting in a set of SNPs
that with 99% posterior probability (PP) contained the variant(s)
driving the association signal for each of the 63 conditionally
independent signals*®. The credible sets contained a median of 25
SNPs (Quartile 1: 10; Quartile 3: 74). Two credible sets at CUBN
and one at PRKCI consisted of a single SNP (Supplementary
Data 12). The previously described CUBN missense SNP
rs45551835 (p.A2914V) had a PP of causing the association signal
0f >99.9%. There were 11 small credible sets with<5 SNPs,
representing candidate causal variants for further study.
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All 995 SNPs with PP>1% were annotated. Regulatory
potential was assessed via mapping into regions of open
chromatin identified from primary cultures of human tubular
and glomerular cells (GEO accession number GSE115961)4 and
from publicly available kidney cells types (ENCODE and
Roadmaps Projects; Methods). Supplementary Data 12 sum-
marizes annotation information for all variants with PP > 1% that
mapped into small credible sets or those containing a SNP with
PP > 50%. Among these, there were four missense SNPs in CUBN,
CPS1, EDEM3, and GCKR (Fig. 5a; Supplementary Table 3). One
non-exonic SNP near NUMA1I with PP >50% mapped into open
chromatin in both glomerular and tubular primary cell cultures,
and four other SNPs in or near WIPF3, WDR81, CUBN, and
CYP26A1 mapped into putative regulatory regions in other
kidney tissues or cell lines (Fig. 5b, Supplementary Data 12).

Association with gene expression and co-localization. We
investigated whether the UACR-association signals co-localized
with association signals for transcript abundance of any genes in
cis across 47 tissues, thereby implicating effector genes at asso-
ciated loci (Methods). Gene expression was quantified via RNA-
seq in 44 tissues from the GTEx Project [https://gtexportal.org/]
and in kidney cortex from The Cancer Genome Atlas?’, and via
microarray from microdissected glomerular and tubulointerstitial
portions of kidney biopsies from participants of the NEPTUNE
study48 (Methods).

We identified nine genes for which cis eQTLs in kidney tissues
co-localized with the UACR association signals with a high PP
(280%), implicating a shared underlying variant (Fig. 6). These
represent candidate causal genes for further investigation
(Table 1). Alleles associated with higher UACR were associated
with higher expression of MUCI and PRKCI across a range of
tissues. This observation is consistent with a gain-of-function
mechanism proposed for the monogenic kidney disorder caused
by MUCI variation®. Conversely, alleles associated with higher
UACR were associated with lower OAF and TGFBI expression.

NATURE COMMUI

The co-localization with expression of WIPF3 in glomerular
kidney portions illustrates an example of a potentially regulatory
causal variant, rs17158386, which maps into open chromatin in
kidney tissue (Figs. 5b, 6). Across kidney tissues, co-localization
was most often observed in glomerular kidney portions,
consistent with the prominent role of the glomerular filtration
barrier in albuminuria. Altogether, there were 90 significant co-
localizations in at least one of the 47 evaluated tissues
(Supplementary Fig. 8).

Association with gene expression in trans requires large sample
sizes and was thus evaluated for all index SNPs in whole blood.
Excluding the extended MHC region, there was one SNP
associated with expression of one or more transcripts in trans
in more than one study (Supplementary Table 4): genotype at
rs12714144, upstream of PARTICL on chromosome 2, was
associated with the expression of DPEP3, encoded on
chromosome 16.

Association with protein levels and co-localization analyses.
Recently, large GWAS of plasma protein levels have been pub-
lished, which allow for systematic investigations of associated
variants (pQTLs). Using these data, we investigated the associa-
tion of the 61 EA index SNPs in a pQTL study of 3301 healthy EA
participants of the INTERVAL study®’. Genome-wide significant
associations were identified between 17 UACR-associated SNPs
and plasma levels of 53 unique proteins, for a total of 56 asso-
ciations (Supplementary Data 13). Interestingly, concentrations of
three proteins each showed associations with two UACR-
associated index SNPs on different chromosomes, thereby con-
necting the two genetic loci through association with plasma
concentrations of the same protein: SNPs rs34257409 on chro-
mosome 1 and rs838142 on chromosome 19 with plasma
gastrokine-2 (GKN2) concentrations, rs12714144 on chromo-
some 2 and rs1010553 on chromosome 3 with concentrations of
Janus kinase and microtubule interacting protein 3 (JAKMIP3),
and rs1010553 on chromosome 3 and rs2954021 on chromosome
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8 with inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1)
concentrations.

Co-localization of UACR association signals with those for
pQTLs of 38 proteins (Methods, Supplementary Table 5)
provided evidence for a shared underlying SNP for plasma
concentrations of the Out At First Homolog (OAF) protein. This
was consistent with the eQTL co-localization analyses, with the
minor T allele at rs12790943 associated with higher levels of
UACR as well as with both lower OAF transcript levels in
multiple tissues and lower OAF plasma levels (Fig. 7). Association
patterns with UACR (Fig. 7a) and OAF transcript levels (Fig. 7b)
looked similar, as expected for a shared underlying variant. The
pattern looked different for OAF plasma levels, and conditional
analyses revealed two independent SNPs (rs117554512 and
1rs508205; r*=0, D'=0.02 in the 1000 Genomes Project EUR
sample). There was no evidence for a shared variant underlying
the associations of UACR and OAF plasma levels for the signal
tagged by the initial index SNP for OAF plasma levels,
rs117554512 (PP H4 = 0; Fig. 7c), which was also significantly
associated with plasma levels of IL25 in trans (p =13 x 10712,
Supplementary Data 13). Conversely, there was strong evidence
for a shared variant underlying associations with UACR and OAF
plasma levels tagged by the second, independent signal at
rs508205 (PP H4 = 0.99; Fig. 7d), allowing to follow associations
from genetic variants to transcript, protein, and phentoype. The
SNP rs508205 is located upstream of OAF, and was also the index
variant identified in the trans-ethnic meta-analysis of UACR
(r2=094 with 1s12790943 in the 1000 Genomes Pro-
ject EUR sample). It represents an interesting regulatory
candidate variant because of its relatively small credible set of
eight SNPs, a CADD score of 13, and its localization in open
chromatin in kidney tissue.

In vivo analyses of Drosophila orthologs. Finally, we used a
Drosophila model to establish proof-of-principle that prioritized
candidates can be used to gain mechanistic insights into albu-
minuria. Drosophila nephrocytes are specialized cells that harbor
a slit diaphragm formed by the orthologs of the mammalian slit
diaphragm proteins. These cells exhibit size-dependent molecule
filtration across the slit diaphragm, followed by endocytosis via

8 NATURE COMMUNICATIONS | (2019)10:4130 | https://doi.org /10.1

the scavenger receptor Cubilin and finally lysosomal degradation
or storage. Protein endocytosis mainly occurs within a network of
membrane invaginations, the labyrinthine channels. Formation of
the labyrinthine channels depends on presence of functional slit
diaphragms. Thus, these cells reflect aspects of glomerular
(slit diaphragm) and proximal tubular function (protein endo-
cytosis)°!. Studying endocytosis of a tracer molecule able to pass
the slit diaphragm, such as albumin, renders an integrative read-
out of nephrocyte function®% FITC-albumin uptake declines both
through loss of slit diaphragms and also through impaired pro-
tein endocytosis. We selected three candidates for functional
study, based on their associations with urinary albumin (Fig. 2c),
support from downstream fine-mapping and co-localization
analyses (Table 1), and degree of conservation and availability
of at least two independent Drosophila RNAI lines per gene: OAF,
PRKCI, and WIPF3. Orthologs of OAF (oaf), PRKCI (aPKC), and
WIPF3 (Vrpl) were silenced specifically in nephrocytes by
crossing Dorothy-GAL4 with the respective UAS-RNAL line.
Nephrocytes stained with an available antibody for aPKC
showed a strongly reduced signal using two independent aPKC-
RNAI lines (Supplementary Fig. 9A-C). We observed no effect of
Vrpl-RNAi on nephrocyte function studying FITC-albumin
endocytosis (Supplementary Fig. 9D, E). In contrast, we detected
a significant reduction of tracer endocytosis upon silencing oaf
and aPKC (Fig. 8a, b). This indicates a functional requirement of
these genes within nephrocytes and supports a role of their
human orthologs in glomerular filtration or tubular re-uptake of
albumin. To distinguish between these roles, we studied
immunofluorescence of the Drosophila slit diaphragm proteins,
whose staining patterns remain unaltered in isolated defects of
protein endocytosis. Despite the significant impairment of
nephrocyte function, we observed a slit diaphragm staining
pattern comparable to control conditions for oaf-RNAi (Fig. 8c—f).
This suggests that oaf may be dispensable for slit diaphragm
formation, but likely is involved in protein reabsorption.
Accordingly, co-localization with OAF gene expression in human
kidney was observed in the renal cortex, reflecting largely
tubulointerstitial portions, and protein staining in the Human
Protein Atlas is observed in tubules but not glomeruli.
Conversely, silencing the ortholog of PRKCI entailed an extensive
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Fig. 7 Co-localization of association signals of the OAF locus. Regional association plots of the OAF locus in the European ancestry urinary albumin-to-
creatinine ratio (UACR) GWAS (a), with OAF gene-expression levels in healthy kidney tissue sections (b), and with OAF plasma levels (¢, d). The dots are
colored according to their correlation r* with the index SNP estimated based on the 1000 Genomes EUR reference samples (gray for missing data). This
locus has two independent pQTLs for OAF levels, where panel € shows the association between the index pQTL at the locus (rs117554512) conditioned on
its secondary signal (indexed by rs508205), and panel d shows the association with a conditionally independent SNP (rs508205, r2< 0.01 in 1000

Genomes EUR). The secondary signal rs508205 has strong evidence of co-localization with the UACR association signal (posterior probability Hy = 0.99,
Methods), while the signal rs117554512 has not (posterior probability H, = 0). There was strong evidence of co-localization between the UACR association

signal and OAF expression in kidney tissue (posterior probability Hs = 0.97)

loss of slit diaphragm proteins (Fig. 8g, h; 3D reconstruction
Supplementary Fig. 9K). This implies that the polarity factor
aPKC is directly involved in slit diaphragm formation, consistent
with studies in murine podocytes®. Staining patterns were
comparable when silencing oaf and aPKC using second RNAi
lines (Supplementary Fig. 9F-I). In summary, the Drosophila data
support a role of OAF in tubular protein endocytosis and PRKCI
in slit diaphragm formation.

Discussion

In this GWAS meta-analysis of UACR, we identified 68 loci in
total, the majority of which was associated with urinary albumin
concentrations and MA. Statistical fine-mapping and co-
localization analyses with gene expression across 47 human tis-
sues and with plasma protein levels resolved GWAS loci into
novel driver genes and variants. This approach allowed for
translating two genes prioritized in our workflow, OAF and
PRKCI, into mechanistic insights in an in vivo experimental
model of proteinuria. Genome-wide genetic correlation analyses

10 NATURE COMMUNICAT

and a phenome-wide association study of a genetic risk score for
UACR in a large independent population highlighted a common
genetic component or co-regulation with traits and diseases with
renal, hepatic, or endothelial components. Together, these results
represent a comprehensive resource for translational research
into albuminuria.

Until recently, GWAS of UACR in mostly population-based
studies only identified and replicated two loci: CUBN?2%* and
HBB?4, detected through an earlier candidate gene study®3. In
addition to these two loci, we also identified the BCL2L11 locus,
reported in an earlier admixture mapping study?, with the index
SNP mapping to the neighboring ACOXL gene. Our fine-
mapping workflow did not provide strong evidence for either
ACOXL or BCL2L11 as the likely causal gene. We did not identify
genome-wide significant signals at RAB38 and HS6ST1 among
persons with diabetes, which we reported in an earlier study at
suggestive significance?3. Potential reasons include differences in
quantification and statistical transformation of UACR, different
participating studies, and false-positive results in the initial
report. Twenty-eight of the 61 loci detected in EA individuals
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Fig. 8 In vivo results of Drosophila orthologs. The Drosophila orthologs of OAF and PRKCI (aPKC) are both required for nephrocyte function and aPKC-RNAI
affects slit diaphragm formation. a Garland cell nephrocytes were exposed to FITC-albumin. Nephrocytes expressing control RNAi exhibit intense
endocytosis, while expression of RNAi directed against oaf and aPKC (ortholog of PRKCI) decreases tracer uptake. b Quantitation of fluorescence intensity
from FITC-albumin uptake is shown for the indicated genotypes. Values are presented as mean + standard deviation of the ratio to a control experiment.
Statistical significance was calculated using ANOVA and Dunnett's post hoc analysis. A statistically significant difference (defined as p < 0.05) is observed
for oaf-RNAi-1 (N = 4), oaf-RNAi-2 (N = 3), aPKC-RNAI-1 (N = 3), and aPKC-RNAI-2 (N = 4), where ** indicate p < 0.01 and ***p < 0.001. ¢ Staining the slit
diaphragm proteins Sns (ortholog of nephrin) and Kirre (ortholog of NEPH1) in control nephrocytes shows regular formation of slit diaphragms. Airyscan
technology partially allows for distinguishing individual slit diaphragms (insets). d Tangential sections through the surface of control nephrocytes reveals
the regular fingerprint-like pattern of slit diaphragm proteins. e, f Expression of oaf-RNAi-1 does not entail an overt phenotype, suggesting reduced
nephrocyte function may be a consequence of impaired protein reabsorption while slit diaphragm formation is not affected. g, h Expression of aPKC-RNAi-1
results in a clustered and irregular pattern of slit diaphragm proteins (insets in g) and a complete loss of slit diaphragm protein distinct areas on the cell
surface. This suggests the loss of nephrocyte function is a consequence of impaired slit diaphragm formation. All scale bars represent 10 ym
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were also reported in the recent Mendelian Randomization study
of albuminuria?’, which is not surprising given the inclusion of
UKBB data in our meta-analysis. Still, our study identifies 32
additional loci for UACR in the overall sample, as well as four
among people with diabetes. Moreover, results allow for prior-
itization of loci with respect to their association with urinary
albumin, whereas previous studies have not evaluated whether
UACR-associated loci were driven by associations with urinary
albumin, creatinine, or both.

Previous GWAS of albuminuria have not resolved associated
loci into underlying genes and variants. Our workflow identified
co-localization of UACR-associations with differential gene
expression of PRKCI, TGFBI, WIPF3, PTHIR, CYP2SI, and
MUCI in glomerular kidney portions and OAF, SRD5A3, and
CCDC157 in tubulointerstitial tissue. Some of these genes already
have established roles in the function of the glomerular filter in
diabetic (TGFBI1)3>5¢ and monogenic kidney disease (M Uc1®,
while others such as OAF or WIPF3 represent novel candidates
or, as for PRKCI, have not yet been implicated in humans®3. Our
combination of human and Drosophila studies support a role of
PRKCI in glomerular filtration function and of OAF in tubular
protein reabsorption, where reduced endocytosis upon gene
silencing reflects the human allele associated with higher UACR
and lower OAF expression and plasma levels. The lack of a
phenotype upon silencing of the WIPF3 ortholog may reflect the
unclear state of orthology, a lack of evolutionary conservation, or
potentially an insufficient knockdown.

Several insights from our study are of clinical interest. First, the
clinical relevance of genes detected in our screen, CUBN and
COL4A4, is underscored by a respective monogenic disease fea-
turing albuminuria and kidney disease, Imerslund-Grasbeck
(MIM 261100) and Alport syndrome (MIM 203780). Second,
the identification of NR3C2, encoding an essential component of
the RAAS, links this pathway to both albuminuria and adverse
clinical outcomes. Pharmacological inhibition of the RAAS has
been shown to be associated with reduced risk of end-stage kid-
ney disease!? and cardiovascular events!®-13-15, suggesting that
genetic studies of UACR in large human populations may identify
pathways amenable to pharmacological intervention that reduce
both albuminuria and CVD risk. Third, the genome-wide genetic
correlations of UACR and the UACR GRS associations may point
toward diseases with a common genetic basis or to co-regulation
of disease-relevant cell types. The latter could be reflected in the
role of the liver in lipid metabolism and albumin production, the
role of the kidney in urate metabolism and albumin excretion,
and the role of the endothelium in hypertension and glomerular
filtration. A potential role of the endothelium and the vasculature
is further corroborated by the significantly enriched pathway
“abnormal placental labyrinth vasculature morphology” and
many other nominally enriched pathways related to angiogenesis,
as well as the identification of the VEGFA (Vascular Endothelial
Growth Factor A; LINC01512) locus, an important growth factor
for vascular endothelial cell migration and proliferation. Inter-
estingly, a recent Mendelian Randomization analysis of UACR
and blood pressure supported a causal relationship between the
two, but reported that SNPs in CUBN and CYPIAI were only
associated with UACR and not blood pressure. We find that the
index SNPs in CUBN and CYPIAI are related to UACR via
tubular albumin reabsorption and an association with urinary
creatinine but not albumin, respectively. This may indicate that
the increased filtration of albumin in the glomerulus, potentially
as a result of endothelial damage, and not albuminuria per se may
link albuminuria to hypertension and increased CVD risk.
Fourth, albuminuria is a hallmark of diabetic kidney disease and
associated with unfavorable outcomes. Understanding pathways
underlying albuminuria in diabetes may therefore be of particular

relevance, and the four novel diabetes-specific loci identified in
our study may represent a first step into this direction. Lastly,
translation of GWAS loci into differential plasma protein levels as
observed for OAF is of particular interest, as plasma protein levels
represent both potential biomarkers and interventional targets.

Strengths of our study include its standardized approach to
phenotype definition, its large samples size, internal locus vali-
dation, and the study of participants with diabetes. The identifi-
cation of a previous Amerindian-specific locus® in our trans-
ethnic analysis underscores the value of studying diverse ances-
tries, but EA individuals are still strongly overrepresented, which
limits the power to detect heterogeneity correlated with ancestry.
Limitations that are not specific to our study are related to the
accurate quantification of UACR, which is influenced by biologic
variation of urinary albumin, by the sensitivity and variation of
albumin assays, and by standardization to urinary creatinine to
account for urine dilution?3. We addressed these issues by har-
monizing UACR calculation across cohorts, and by separate
assessment of associations with urinary albumin and creatinine.
Across-cohort variation was overcome to some degree by the use
of a central lab in the large UKBB, but may also introduce
findings related to UKBB-specific sample handling, storage,
measurement, or exposures. The statistical fine-mapping focused
on SNPs available in the majority of studies, which might have
limited the discovery of novel associations or the fine-mapping of
population-specific or low-frequency variants. Such analyses
represent avenues for future research. Other fine-mapping
methods such as Bayesian approaches that incorporate priors
based on variant annotation exist, but ultimately all statistically
prioritized variants need to be experimentally validated.

In summary, we identified and characterized 68 loci associated
with UACR and highlight potential causal genes, driver variants,
target tissues, and pathways. These findings will inform experi-
mental studies and advance the understanding of albuminuria
and correlated traits, an essential step for the development of
novel therapies to reduce the burden of CKD and
potentially CVD.

Methods

We set up a collaborative meta-analysis based on a distributive data model. An
analysis plan was developed and circulated to all participating studies via a Wiki
system [https://ckdgen.eurac.edu/mediawiki/index.php/
CKDGen_Round_4_EPACTS_analysis_plan]. Phenotypes were generated and
quality checks performed within cach study in a standardized manner through
scripts provided to all study centers. Before conducting the analyses, studies
uploaded automatically generated PDF and text files. After approval of the phe-
notype quality, ancestry-specific GWAS were performed in each study and
uploaded centrally. Files were quality controlled using GWAtoolbox3” and custo-
mized scripts, harmonized, and meta-analyzed. Details regarding each step are
provided below. Each study was approved by the respective ethics committee, and
all participants provided written informed consent. Drosophila research was car-
ried out in compliance with all relevant ethical regulations. Drosophila experiments
are exempt from a specific regulatory approval.

Phenotype definition. Methods for the measurement of urinary albumin and
creatinine in each study are reported in Supplementary Data 1. Urinary albumin
values below the detection limit of the used assays were set to the lower limit of
detection, and the UACR was assessed in mg/g and calculated as urinary albumin
(mg/l)/urinary creatinine (mg/dl) x 100. MA cases were defined as UACR > 30, and
controls as UACR < 10 mg/g, no other exclusions were applied. These steps were all
included in the distributed phenotyping script. MA GWAS analyses were limited to
studies with 2100 MA cases.

GWAS in individual studies. In each study, genotyping was performed using
genome-wide arrays followed by application of study-specific quality filters prior to
phasing and imputation. Genome-wide data were imputed to the Haplotype
Reference Consortium (HRC) version 1.1, 1000 Genomes Project (1000G) phase 3
v5 ALL, or the 1000G phase 1 v3 ALL reference panels using the Sanger [https://
imputation.sanger.ac.uk/] and Michigan Imputation Server [https://
imputationserver.sph.umich.edu/]. Detailed information on study-specific
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genotyping, imputation, and QC is provided in Supplementary Data 2. Unless
indicated differently, variants are annotated according to the GRCh37 (hg19)
reference build.

The inverse normal transformed age-adjusted and sex-adjusted residuals of log-
transformed UACR, as well as urinary albumin and urinary creatinine levels
separately for the sensitivity analysis in the UKBB sample, were used as the
dependent variable in a linear regression model fitted in cach study-specific GWAS.
For MA, a logistic regression model adjusted for sex and age was used. The models
were adjusted for study-specific covariates, such as recruitment site and genetic
principal components where applicable. Family-based studies used mixed-effect
models by including the relationship of the individuals as a variance component.
Additive genetic models were fitted using the SNP’s allele dosage as an independent
variable. The analysis programs used for the GWAS are provided in Supplementary
Data 2.

GWAS meta-analysis. For UACR, studies contributed a total of 54 GWAS
summary statistics files. After QC, the total samples size was 564,257 (547,361
individuals of European ancestry [EA], 6324 of East Asian ancestry [EAS], 6795
African Americans [AA], 2335 of South Asian ancestry [SA], and 1442 Hispanics;
Supplementary Data 1). For MA, a total of 38 GWAS summary files were con-
tributed, totaling a post-QC samples size of 348,954 (51,861 cases; Supplementary
Data 1). Both meta-analyses included individuals with and without diabetes.

Before meta-analysis, study-specific GWAS files were filtered to retain only
SNPs with imputation quality (IQ) score >0.6 and MAC > 10, effective sample
size 2 100, and a |beta| < 10 to remove implausible outliers. Within study, we
estimated the genomic inflation factor Agc and applied GC correction when Agc
was >1. Fixed effects inverse-variance weighted meta-analysis of the study-specific
GWAS result files was performed using METAL%, which was adapted to obtain
effects and standard errors of higher precision if required (seven decimal places
instead of four). After meta-analysis of 37,915,339 SNPs, we retained only variants
that were present in 250% of the GWAS data files (27 studies) and had a total MAC
of 2400. Across ancestries, this yielded 8,034,757 variants for UACR (8,603,712 in
EA with an observed MAF > 0.3%), and 8,326,000 variants for MA.

The inflation of p-values attributed to reasons other than polygenicity was
assessed by LD score regreﬁsion.i9 The intercept was estimated as 0.95, and thus <1,
indicating that any residual inflation was likely due to polygenicity rather than
confounding. Therefore, p-values were not corrected for a second round of
genomic control after the meta-analysis.

The genome-wide significance level was set at 5x 10~8, Between-study
heterogeneity was assessed using the I statistic®’. Variants were assigned to loci by
selecting the SNP with the lowest p-value genome-wide as the index SNP, defining
the corresponding locus as the +500 kb region around it, and repeating the
procedure until no further genome-wide significant SNP remained. A locus was
considered novel if it did not contain any variant identified by previous GWAS of
UACR. The loci were named according to the nearest gene of the index SNP, the
SNP with the lowest p-value within a locus.

For UACR, we evaluated heterogeneity correlated with ancestry using study-
specific GWAS files filtered for polymorphic SNPs with an 1Q score > 0.3, an
effective sample size = 100, and a |beta| < 10. Analysis was performed using the
software Meta-Regression of Multi-Ethnic Genetic Association (MR-MEGA
v0.1.2.25)8, where the meta-regression model included the three axes explaining
the largest genetic variation estimated from allele frequencies provided in the
study-specific GWAS files.

The narrow-sense heritability of the trait based on all SNPs with a MAF > 1%
was estimated using the genome-wide summary statistics for UACR with the MHC
region removed as input for the LD score regression software®, using the 1000
Genomes phase 3 EUR reference panel for estimating LD. The proportion of
phenotypic variance explained by the index SNPs was estimated as f**2*MAF*(1-
MAF), with 8 representing the SNP effect and accounting for a trait variance of 1
due to the inverse normal transformation of the analyzed trait. Thus, the estimates
provide the proportion of the variance of sex- and age-adjusted log-transformed
UACR that is explained by the respective SNPs. The expected number of
discoveries in future, larger studies and the corresponding percentage of GWAS
heritability explained with increases in sample size was estimated using a recently
published method®!. The summary statistics of the UACR trans-ethnic meta-
analysis were used as input.

Functional enrichment. We used DEPICT?® version 1 release 194 to identify gene
sets and tissue/cell types enriched in UACR-associated loci. DEPICT performs gene
set and tissue-/cell-type enrichment analysis by testing whether genes in GWAS-
associated loci are enriched in 14,461 reconstituted gene sets. These reconstituted
gene sets were generated based on a large number of predefined gene sets from
diverse molecular pathway databases including protein-protein interactions, and
gene sets from mouse gene knockout studies. The function of each gene in 14,461
reconstituted gene sets was predicted from co-regulation analyses of 77,840
expression microarray samples. Tissues and cell-type enrichment was conducted in
DEPICT by testing whether the genes in associated regions were highly expressed
in any of 209 MeSH annotations for 37,427 microarrays. We included all variants
that reached a genome-wide significant p-value of association with UACR (p < 5 x
1078) from the trans-ethnic meta-analysis. DEPICT analysis was conducted with
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500 repetitions to compute FDR and 5000 permutations to compute enrichment
test p-values adjusted for gene length by using 500 null GWAS.

Phenome-wide association study. All analyses were conducted using standard
PheWAS coding methodologies?” using the R-package “PheWAS”. Models were
adjusted for ten genetic principal components and sex, when appropriate. All
analyses were conducted among 192,868 participants of European ancestry in the
Million Veteran Program sample. A weighted genetic risk score was first built using
the 59 UACR-associated SNPs (Supplementary Data 3) where the UACR-
increasing allele was coded as the effect allele. Based on the number of covariates
included in the model, only traits with =100 cases were included in the analysis
resulting in evaluation of 1422 traits. A Bonferroni threshold of 3.5 x 10=° (0.05/
1422) was applied for assessing significance of the association test.

The genetic UACR risk score was also tested for association with additional
outcomes using GWAS summary statistics with association testing implemented in
the function grs.summary() of the R-package “gtx”. The summary statistics for
hypertension and heart failure were calculated in the UKBB prior to the risk score
association analysis. Hypertension cases were defined based on ICD-10 codes (110,
111, I1L0, 1119, 112, 112.0, 112.9, 113, 113.0, 113.1, 113.2, 115, 115.0, 115.1, 115.2,
115.8, and 115.9), as self-reported hypertension or essential hypertension, by
measured systolic blood pressure > 140 mmHg, diastolic blood pressure > 90
mmHg, or by taking blood pressure medication. Hear failure cases were defined
based on ICD-10 codes (111.0, 113.0, 113.2, 125.5, 142.0, 142.5, 142.8, 142.9, 150,
150.0, 150.1, and 150.9), or by self-reported cardiomyopathy, excluding
hypertrophic cardiomyopathy. The summary statistics for other outcomes were
based on results from published GWAS meta-analyses with references provided in
Supplementary Table 2. Statistical significance was defined as p < 0.007 of the
association test after correction for the number of evaluated associations (0.05/7).

Genetic correlation with other traits. Genome-wide genetic correlations between
UACR and UK Biobank traits and diseases were evaluated to investigate whether
there was evidence of co-regulation or a shared genetic basis, both known and
novel. Using LD score regression that can account for overlapping samplesS! and
the EA association summary statistics as input, we evaluated pair-wise genetic
correlations between UACR and each of 517 pre-computed GWAS summary
statistics of UKBB traits and diseases available through the web-platform LDHub.
An overview of the sources of these summary statistics and their corresponding
sample sizes is available at [http://ldsc.broadinstitute.org|. Statistical significance
was assessed at the Bonferroni corrected level of 9.7 x 10~5 (0.05/517).

Second signals within identified loci. To identify additional, independent UACR-
associated variants within the identified loci, approximate conditional analyses
were carried out that incorporated LD information from an ancestry-matched
reference population. We used the genome-wide UACR summary statistics from
the EA meta-analysis as input, because an LD reference sample scaled to the size of
our met: lysis was only available for EA individuals*»%. We randomly selected
15,000 participants from the UK Biobank data set (UKBB; application 1D 2027,
data set 1D 8974). Individuals who withdrew consent and those not meeting data
cleaning requirements were excluded, keeping only those who passed sex check,
had a genotyping call rate of 295%, and did not represent outliers with respect to
SNP heterozygosity. For each pair of individuals, the proportion of variants shared
identical-by-descent (IBD) was computed using PLINK [https://www.cog-
genomics.org/plink/]. We retained only one member of each pair with an IBD
coefficient of 20.1875. Individuals were restricted to those of EA by excluding
outliers along the first two PCs from a principal component analysis using the
HapMap phase 3 release 2 populations as reference. The final data set to estimate
LD included 13,558 EA individuals and 16,969,363 SNPs.

Basis for statistical fine-mapping were the 61 1-Mb genome-wide significant loci
identified in the EA meta-analysis, clipping at chromosome borders. Overlapping
loci as well as pairs of loci whose respective index SNPs were correlated (* > 0.1 in
the UKBB data set described above) were merged, resulting in a final list of 57
regions prior to fine-mapping. Within each region, the GCTA stepwise model
selection procedure (cojo-slct algorithm) was used to identify independent variants
employing a stepwise forward selection approach?¥. We used the default
collinearity cutoff of 0.9 and set the significance threshold to identify independent
SNPs to 5x 1075,

Estimation of credible sets. Statistical fine-mapping was carried out for each of
the 57 merged regions used as input for GCTA cojo-slct. For each region that
contained multiple independent SNPs identified by the GCTA stepwise forward
selection approach, approximate conditional analyses conditioned on all remaining
independent SNP of this region were carried out using the GCTA cojo-cond
algorithm to estimate conditional effect sizes. The derived effect estimates were
used in the Wakefield’s formula as implemented in the R-package'gtx’ version 2.0.1
[https://github.com/tobyjohnson/gtx] to derive approximate Bayes factors (ABF)
from conditional estimates in regions with multiple independent SNPs, and from
the original estimates for regions with a single independent SNP. Given that 95% of
the SNP effects from the UACR GWAS were within +0.03, the standard deviation
prior was chosen as 0.0153 based on formula (8) in the original publication?®. For
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each variant within an evaluated region, the Approximate Bayes Factor obtained
from the effect and its standard error of the marginal (single signal region) or
conditional estimates (multi-signal regions) was used to calculate the PP for the
variant driving the association signal (causal variant). For each region, 99% credible
sets, representing the set of SNPs that contain with a 99% PP the variant causing
the association, were calculated by summing up the PP-ranked variants until the
cumulative PP was >99%.

Functional annotation of identified variants. Functional annotations of index
variants of associated loci and credible set variants were performed by querying the
SNiPA database v3.2 (March 2017) [https://snipa.helmholtz-muenchen.de/snipa/].
SNiPA includes extensive annotations ranging from regulatory elements, over gene
annotations to variant annotations and published GWAS associations. SNiPA
release v3.2 is based on 1000 the Genomes phase 3 version 5 and Ensembl version
87 data sets. The Ensembl VEP tool [https://www.ensembl.org/info/docs/tools/vep/
] was used for primary effect prediction of SNPs. The CADD score®? provided by
SNiPA is based on CADD release v1.3 and presented as PHRED-like transfor-
mation of the C score.

Co-localization of UACR and cis-eQTL associations. Co-localization analysis
was based on the genetic associations with UACR in the EA sample (because the
great majority of gene expression data sets was generated from EA). Gene
expression was quantified from microdissected human glomerular and tubu-
lointerstitial kidney portions from 187 individuals participating in the NEPTUNE
study?®, as well as from the 44 tissues included in the GTEx Project version 6p
release [https://gtexportal.org/]. The eQTL and GWAS effect alleles were harmo-
nized. For each locus, we identified tissue-gene pairs with reported eQTL data
within 100 kb of each GWAS index variant. The region for each co-localization
test was defined as the eQTL cis window defined in the underlying GTEx and
NephQTL studies. We used the default parameters and prior definitions set in the
“coloc.fast” function from the R-package “gtx” version 2.0.1 [https://github.com/
tobyjohnson/gtx], which is an adapted implementation of Giambartolomei’s co-
localization method®. The same package was also used to estimate the direction of
effect as the ratio of the average PP (that was obtained from credible set estimation)
weighted GWAS effects over the PP weighted eQTL effects.

An additional co-localization analysis was performed using a complementary
gene-expression data set derived from healthy human kidney tissue. The
corresponding eQTL data set was generated by correlating genotype with RNA-
seq-based gene expression levels from 96 human kidney samples*’. Co-localization
analysis of GWAS signals and eQTL signals was performed using Coloc53, using
the same distance criteria to identify shared ¢QTL and GWAS regions as
above, including variants within the cis-window (+1 Mb from TSS) of each
identified candidate gene, and the parameters pl =1x 1074, p2 =1x 1074, and
p12=1x1075.

For all co-localization analyses, a PP = 0.8 of the H4 test (one common causal
variant underlying UACR and eQTL association signal) was applied to select a
significant result.

Trans-eQTL analysis. We performed trans-eQTL annotation through LD map-
ping based on the 1000 Genomes phase 3 version 5 European reference panel with
a 12 cutoff of >0.8. We limited annotation to index SNPs with a fine-mapping
PP =1% in at least one fine-mapped-region. Due to expected small effect sizes, only
available genome-wide trans-eQTL studies of either peripheral blood mononuclear
cells or whole blood with a sample size of 21000 individuals were considered,
resulting in five non-overlapping studies®4-6%, For the study by Kirsten et al.5, we
had access to an update with larger sample size combining two nonoverlapping
studies (LIFE-Heart and LIFE-Adult) resulting in a total sample size of 6645. To
improve stringency of results, we focused the analysis on inter-ch | trans-
eQTLs with association test p-values of p <5 x 10~% reported by >2 studies (Sup-
plementary Table 4).

pQTL lookup and co-localization. The pQTL data were generated using an
aptamer-based multiplex protein assay (SOMAscan) to quantify 3622 proteins
from stored EDTA plasma of 3301 healthy participants of the INTERVAL study,
which were genotyped on the Affymetrix Axiom UK Biobank genotyping array and
imputed to a combined 1000 G Phase 3-UK10K reference panel®’. For this
lookup, all pQTLs with p < 1x 10~* were selected.

Co-localization analysis for pQTL data was performed using the same analysis
approach as described for eQTL co-localization. For associations with plasma
protein concentrations, pQTL results of 1927 genetic associations with 1478
proteins obtained by the Somalogic proteomics platform GWAS™ were included.
In a first instance, pQTLs within a+ 500 kb region of each UACR-associated SNP
(Supplementary Data 5) were identified. In case a pQTL region contained multiple
independent index SNPs, additional pQTLs were calculated conditioning on the
respective index SNP. Next, the conditional and unconditional pQTLs (n = 38)
were included in the co-localization analysis using the coloc.abf() function with
default priors of the R-package “coloc” implementing the co-localization method of
Giambartolomei®3.
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The intra-assay coefficient of variation for the OAF protein, for which evidence
for co-localization of the UACR association and OAF plasma levels was identified,
was 5.7% and 16.9% in the two batches of SOMAscan measurements®0.

Dr hila experi Transgenic RNAI studies were performed using the
UAS/GALA4 system, flies were raised on standard agar cornmeal molasses. RNAi
crosses were grown at 30 °C. The RNAi stocks were obtained from the Bloo-
mington Drosophila Stock Center at Indiana University (caf-RNAi-1 BDSC
#40926, aPKC-RNAi-1 BDSC # 35001, aPKC-RNAi-2 BDSC #34332) or the
Vienna Drosophila Resource Center respectively (oaf-RNAi-2 VDRC #38257,
VrpIl-RNAi-1 VDRC #102253, Vrpl-RNAi-2 VDRC #23888). Control RNAi was
directed against EGFP (BSDC# 41553). Dorothy-GAL4 (BDSC #6903) was used to
drive expression in nephrocytes.

To perform the FITC-albumin endocytosis assay, garland cell nephrocytes were
dissected from wandering third instar larvae in PBS and incubated with 0.2 mg/ml
FITC-albumin (Sigma) for 30s. Cells were rinsed briefly with ice-cold PBS four
times and fixed immediately for 5min in 8% paraformaldehyde in presence of
Hoechst 33342 (1:1000). Cells were mounted in Roti-Mount FluorCare (Carl Roth
GmbH) and imaged using a Zeiss .SM 880 confocal microscope. Quantification of
fluorescent tracer uptake was performed with Image] software. Average
fluorescence of the three brightest cells was measured and intensity of the
background subtracted. The results are expressed as a ratio to a control experiment
with EGFP-RNAI that was performed in parallel.

For immunohistochemistry, garland cell nephrocytes were dissected from
wandering third instar larvae, fixed for 20 min in PBS containing 4%
paraformaldehyde, and stained according to the standard procedure. The following
primary antibodies were used: rabbit anti-sns (1:500, gift from S. Abmayr), guinea
pig anti-Kirre (1:200, gift from S. Abmayr), and rabbit anti anti-PKC{ (C20) (1:200,
s¢c-216-G, Santa Cruz Biotechnology) that was previously shown to detect
Drosophila aPKC®. For imaging, a Zeiss LSM 880 confocal microscope was used.
Image processing was done by Image] and Gimp software. Three-dimensional
reconstruction of confocal images was done using Imaris software.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Summary genetic association results are freely available on the CKDGen Consortium
website [https://ckdgen.imbi.uni-freiburg.de/]. The source data underlying Figs. 1, 2, 5-8
and Supplementary Figs. 8 and 9 are provided as a Source Data file. The source data
underlying Figs. 3, 4, and Supplementary Fig. 7 are provided in Supplementary Data 9,
10, and 7, respectively, and the data underlying the Supplementary Figs. 2-6 are based on
the respective downloadable summary genetic association results.

Code availability
The script for generating the phenotypes used in the GWAS is available via GitHub
[https://github.com/genepi-freiburg/ckdgen-pheno].
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Abstract

Motivation: Multiple independently associated SNPs within a linkage disequilibrium region are a common phenom-
enon. Conditional analysis has been successful in identifying secondary signals. While conditional association tests
are limited to specific genomic regions, they are benchmarked with genome-wide scale criterion, a conservative
strategy. Within the weighted hypothesis testing framework, we developed a ‘quasi-adaptive’ method that uses the
pairwise correlation () and physical distance (d) from the index association to construct priority functions G =G(P,
d), which assign an SNP-specific z-threshold to each SNP. Family-wise error rate (FWER) and power of the approach
were evaluated via simulations based on real GWAS data. We compared a series of different G-functions.

Results: Simulations under the null hypothesis on 1,100 primary SNPs confirmed appropriate empirical FWER for all
G-functions. A G-function with optimal r? = 0.3 between index and secondary SNP which down-weighted SNPs at
higher distance step-wise-strong and gave more emphasis on d than on 7 had overall best power. It also gave the
best results in application to the real datasets. As a proof of concept, ‘quasi-adaptive’ method was applied to GWAS
on free thyroxine (FT4), inflammatory bowel disease (IBD) and human height. Application of the algorithm revealed
5 secondary signals in our example GWAS on FT4, 5 secondary signals in case of the IBD and 19 secondary signals
on human height, that would have gone undetected with the established genome-wide threshold (2 = 5 x 10°8).
Availability and implementation: https://github.com/sghasemi64/Secondary-Signal.

Contact: sahar.ghasemi@uni-greifswald.de or tim-becker@uni-greifswald.de

Supplementary information: Supplementary data are available at Bioinformatics online.

a meta-analysis and estimated LD from a reference sample (Yang
et al., 2012). With this approach, conditional analysis becomes feas-
ible on meta-analysis results alone, without the need to access per-
study genotype data.

1 Introduction

Secondary association signals surrounding the linkage disequilib-
rium (LD) region of primary genome-wide association studies

(GWAS) index SNPs are a constantly encountered phenomenon
(Becker and Herold, 2009). There is a rich body of literature on this
topic for instance (Fritsche et al., 2016), identified 52 independent
association signals with age-related macular degeneration at 34 loci,
and Lu et al. (2017) detected 255 signals for lipid levels and coron-
ary artery disease at 41 loci, to mention only two examples. The
most frequently used tool for conditional analysis is the Genome-
wide complex trait analysis (GCTA) (Yang et al., 2011) which
implements an approximate conditional regression analysis. Instead
of explicit evaluation of a logistic/linear regression equation on indi-
vidual genotype data, GCTA tool uses summary-level statistics from

The current convention for confirmation of significance of second-
ary association signals is a P-value of the conditional test below the gen-
ome-wide significance level of &= 5 x 10°% (Teumer et al., 2019),
which is the significance level also for primary association. However, in
contrast to tests for the primary association, conditional tests are not
applied on a genome-wide scale, but are limited to the genomic regions
surrounding primary GWAS index signals. While there are genomic
regions with long-distance LD for example, the major histocompatibil-
ity complex (MHC) or the X chromosome, the typical extension of an
LD region is on average below 100kb. Thus, even in the presence of
many primary GWAS signals distributed throughout the genome, the

©The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3521
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surrounding LD regions will cover only a small portion of the entire
genome and contain only a reduced number of SNPs. It is obvious to
hypothesize that, application of the established genome-wide signifi-
cance level in conditional analyses is too strict and implies an unneces-
sary loss of power. Therefore, we developed a ‘quasi-adaptive’ method
that exploits the type I error by providing SNP-specific x-thresholds to
prioritize candidate SNPs for analysis. In addition, we investigate if the
LD structure, pairwise correlation (%) and physical distance (d) between
the index SNP and each SNP from LD surrounding region, can be used
to improve signal detection. We explored different strategies of priori-
tization and #-spending (Demets and Lan, 1994) and applied the pro-
posed method on different GWAS meta-analysis results.

2 Materials and methods

We prioritize SNPs for conditional analysis and derived SNP-specific a-
thresholds by spending type I error over the SNPs from surrounding LD
regions of index SNPs with a priority function. In essence, SNPs with
higher priority have to meet less stringent a-levels. Physical distance (d)
and LD distance or pairwise correlation (r*) are used to assign prior-
ities. Of note, d and r* operate to some extent in opposite direction:
short distance and high 7* are correlated and short distance increases
the biological priority since SNPs are from the same functional unit.
However, while high * might also increases the biological priority (via
haplotype effects), it reduces statistical power since the amount of inde-
pendent information is reduced. In order to explore these counter run-
ning effects, we assign priorities via G-functions. Those G-functions are
functions of d and r and evaluate the impact of giving different relative
weight on the d-component or the 7-component. The entire algorithm
can be described as follows:

1. Identify primary GWAS index SNPs. Let I, be an index SNP
located within a 1-Mb window size surrounding LD region (S,,),
1= 12000 N.

2. Prune the LD reference panel prior to analysis to remove SNPs
with strong pair-wise LD (> > 0.99). This step is optional to re-
duce the number of computations without loss of information.
The following steps 3 to 8 are done for each I, separately.

3. Retrieve 7 and d between I, and each SNP from S, by using
INTERSNP tool (Herold et al., 2009).

4. Assign pre-weight w, based on 7* to each SNP from S,. 7 = 0
and r* = 0.3 were considered as the optimal values to built w, as
follows:

1-|#-03]-03
w, = 1-03
fl

, if optimal 72 =0.3

. if optimal 7?2 =0

Note that, a secondary signal whose correlation is not ‘too high’
and not ‘too low” with the index SNP is likely to provide much extra
information for association test. Howey and Cordell (2014) showed
that, #* of 0.3 is an optimal correlation to detect secondary signals.

5 Assign pre-weight w, based on d (step-wise-strong or step-wise-
moderate) to each SNP from §,, as follows:

Distance (Kb) (0,1] (1,10] (10,50] (50,100] (100,500]
wy (step-wise-strong) 1 0.5 0.25 0.125 0.0625
w,4 (step-wise-moderate) 1 0.8 0.6 0.4 0.2

6 Combine w, and w, and assign final pre-weight w to each SNP
from S,,. Three different relative weightings of d and r* with k =
5 were considered to construct w as follows:

1
(wa x we)Z . for equal weight on d and r?

1
Y= [wb x w, )BT, for more weight on d than 2

1
(wa x wK)BT ., for more weight on r? than d

7 Run conditional GCTA analysis (-cojo-cond), condition SNPs
from S, on I,,.

8 Joint the results from step 6 and step 7 and get the tabulated re-
sult with w and conditional P-value for each SNPs from §,,.

9 Merge the results from step 8 for N index SNPs and get the com-
bine result for N loci. Let S be a set of all candidate SNPs, i.e.
across N loci (LD regions), and 7 be the number of candidate
SNPs within S.

10 Achieve the SNP-specific a-threshold by spending 2 = 0.050ver

m candidate SNPs from § according to the priority G-function.

wi X m

G;=1-(1-2)%""where, W, = i Dy

™

> wi
i=1

Note that, the G-function is a realization of the weighted Sidak
procedure for multiple hypothesis testing as described in Kang et al.
(2009).

The combinations of pre-weights described in steps 4, 5, and 6
lead to 12 different G-functions which are summarized in Table 1.
In addition, we considered the case of equal prior weight for all
SNPs as further G-function (G13).

11 Fix one G-function and apply it to every SNP in § to retrieve
the SNP-specific 2-threshold.

12 Compared the GCTA P-value with the SNP-specific o-threshold
to assess the significance of each candidate SNP. The ith SNP
from S, i=1,2,....mis genome wide conditionally independ-
ent significant if the conditional P-value (p;) is smaller than G..

3 Simulation

Imputed genotypes [1000 Genomes data (Clarke et al., 2012)] from
the SHIP study (Volzke et al., 2011) served as a basis of our simula-
tion study. The dataset comprises 4070 individuals, for which we
simulated a binary disease phenotype. For the simulation under the
null hypothesis of no secondary signals, we randomly picked a set of
22 independent SNPs, one from each autosome, under the restric-
tion that their minor allele frequency (MAF) > 0.10. We conducted
different simulation series, in which we worked with different SNP
sets, to overcome phenomena specific to the particular choice of the
SNP set.

For each SNP, one of the alleles was assigned randomly as the
risk allele. Each risk allele increases the probability of getting the
(simulated) disease. We assumed that individuals with zero risk al-
lele have a risk of 0.01 to be affected due to the environmental fac-
tors. For each individual, the disease risk was set to be

22
f=0.01 x [] OR}* where, ; is the number of risk allele each pre-

i=1
defined SNP carries and OR,; is the odd ratio of corresponding SNP.
In(OR;) was randomly drawn from normal distribution
N(In(1.15).sd = 0.03). The choice of the value 1.15 is motivated by
effect sizes typically observed in GWAS studies. By construction,
probands with 0 risk alleles have a probability of being a case of
0.01, and with every risk allele, the probability of being a case
increases by OR;.

We simulated a GWAS meta-analysis of three virtual studies. All
three studies have as a basis the SHIP genotype data, but with differ-
ent (simulated) phenotype data. The phenotypes were assigned
according to the number of risk alleles at the pre-defined SNPs. For
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Table 1. Summary of 13G-functions

G-function Distance (d) Optimal r* Relative weighting of d and r*
G1 Step-wise-strong 0.0 Equal weight
G2 Step-wise-strong 0.0 More weight on d
G3 Step-wise-strong 0.0 More weight on ?
G4 Step-wise-strong 0.3 Equal weight
GS Step-wise-strong 0.3 More weight on d
G6 Step-wise-strong 0.3 More weight on 7
G7 Step-wise-moderate 0.0 Equal weight
G8 Step-wise-moderate 0.0 More weight on d
G9 Step-wise-moderate 0.0 More weight on r*
G10 Step-wise-moderate 0.3 Equal weight
G11 Step-wise-moderate 0.3 More weight on d
G12 Step-wise-moderate 0.3 More weight on r*
G13 Weight W; = 1 for all SNPs (Sidak-correction by the number of SNPs)

each individual, a random number x from the uniform distribution
U(0, 1) was drawn. In case x < f, the individual was set to be
affected (status=2), otherwise, we set the affection status of the indi-
vidual to 1. By construction, we obtain three GWAS, all of which
have the same ‘true’ 22 primary SNP associations. It should be noted
that, due to the inherent randomness of the simulation study ap-
proach, not each primary SNP necessary is genome-wide significant
in each replicate. However, in the majority of cases, the primary
SNPs are genome-wide significant within the replicated dataset and
could be evaluated for type I error assessment.

Since in our set-up we simulate only primary associations, all
other significant signals are either due to LD with an index SNP
(and hence are conditional signals and not true unconditional sig-
nals) or are false positives. The latter case should not occur more
than 5 percent of the time in our simulation datasets to control the
family-wise error rate. The simulation scheme can be summarized
for 50 replicates as follows:

1. Randomly pick a set of 22 primary SNPs.

2. Determine the disease risk for each individual and simulate three
virtual GWAS phenotypes.

3. Perform association analysis for three GWAS studies. Since we
had no population structure simulated, we did simple logistic re-
gression with PLINK (Purcell et al., 2007).

4. Perform meta-analysis on three GWAS using METAL (Willer
etal., 2010).

5. Identify all SNPs between pre-defined 22 SNPs that reach gen-
ome-wide significance threshold at x = § x 107%, These are the
index SNPs for the current replicate. Let M; be the number of
significant SNPs between 22 pre-defined SNPs for replicate
§=1200 50.

6. Determine the SNP-specific a-threshold according to the algo-
rithm in method section for G-functions (Table 1). SHIP
imputed individual-level genotype dataset was served as an LD
reference panel to estimate LD structure in steps 3 and 7 in the
method section. SHIP reference panel has been checked for cryp-
tic relatedness and population stratification.

7. Identify index SNPs with at least one secondary signal. Let N; be
the number of index SNPs with secondary signal for
Pl

8. Calculate EFWER = Y~ N,/ Y~ M; for 50 replicates.
=1 =

For power analysis under the alternative hypothesis (pre-defined
secondary signals), an analogous scheme was used, with the follow-
ing modifications: we randomly picked 13 SNPs as primary index
SNPs p; and, for each of these, an additional SNP g; from its LD re-
gion as secondary signal. We required p; and g; with MAF > 0.10
form 1-Mb LD region. Furthermore, we selected g; with0.2 < #* <
0.8 with corresponding p. For p; and g; we randomly assigned their

risk allele. The risk allele effect for p; was chosen from normal distri-
bution N(/7(1.15),0.05) and for g; from N(/n(1.10),0.05). We
counted the total number of risk alleles per individual, summing
both over primary and secondary alleles, and randomly assigned dis-
ease status for three virtual GWAS phenotype as before. To conduct
power analysis, step 3 to step 7 from simulation replicated 25 times,
and the portion of index SNPs with secondary signal calculated as
the power for each G-function.

We considered three different alternative scenarios which we
implemented by imposing additional conditions on the random
choice of the secondary SNPs: in scenario A, we selected g; at ran-
dom from the SNPs fulfilling the above condition to be a secondary
SNP for corresponding p;. In scenario B and C from the eligible
SNPs, g; was picked conditionally at random based on distance to
pi. SNPs with lower d got higher likelihood to be selected but with
different impact of d between scenario B and C. Likelihood
decreased step-wise moderate in scenario B and step-wise strong in
scenario C from low d to high d.

4 Results

Different relative pre-weights depending on 7* and pre-weights de-
pending on d were defined to construct priority G-functions.
Simulations under the null hypothesis of no secondary signal over
50 runs (1,100 primary SNPs) were set up to confirm the validity of

50
the G-functions. In our simulation study, 3~ M; = 982 SNPs out of
=

1,100 pre-defined primary SNPs are significant index SNPs which
allow evaluation of secondary effects. M; has median=19.5 [min-
=17;max=22] over 50 runs. Binomial exact test was used to assess
the deviation of EFWAR from desired level 0.05. The results of
simulation as well as the P-values of binomial exact test for G-func-
tions are listed in Table 2. Deviations from the empirical level are
overall small in size and not significant. P-values confirm that
EFWERs are well controlled by G1 to G12. In addition, to compare
our method against simple Sidak-correction (equal hypothesis
weighting), EFWER was determined for the G13 function. G13 is
also valid and controls type I error in our simulation study. Power
simulations were set up under the alternative hypothesis over 25
runs (325 primary SNPs and 325 secondary signals) to evaluate the
power of G-functions in detecting secondary signals. The results of
power simulations for three scenarios are reported in Table 2 and
Figure 1. G2 and G35 functions show the best median power over
three scenarios. Both functions down-weighted SNPs at higher dis-
tance step-wise-strong and gave more weight on d than 7, but with
different optimal value of r* (Table 1). Note that, G2 and G5 show
equal power in scenarios B and C where the secondary signals with
lower d to the index SNP had more chance to be selected by the al-
gorithm. In these cases, pre-weights on d are the same for both func-
tions and the differences between pre-weights 7> compensate since
the algorithm gave more emphasis on d than 2. On the other hand,
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sample was checked for cryptic relatedness and population stratifi-
cation as described in Teumer et al. (2019) and Wuttke et al.
(2019). Two index SNPs rs6854291 on chromosome 4 and
rs11039355 on chromosome 11 (Supplementary Table S1) were
missing in UKBB reference sample and the method was performed
on 19 out of 21 index SNPs. G5 function found 9 significant sec-
ondary signals (Table 3 and Supplementary Figs S11-19) of those 4
secondary signals rs13205255 (SIMI) on chromosome 6,
rs7038480 (TRMO) on chromosome 9, rs10841679 (SLCO1B3)
on chromosome 12 and rs150816132 (NRXN3) on chromosome 14
were found only by our method (Fig. 2F-G or Supplementary Figs
S12, S14, S16 and S18). G5 could find the secondary signals with
the same nearest gene for 8 index SNPs rs2235544 (DIO1) on

3524 S.Ghasemi et al.
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Figure A: secondary signal (1a182320282) ~SHIP LD reference sample

Figure B: secondary signal (rs 1506085)-SHIP LD reference sample.

Figure C: secondary signal (17038480}~ SHIP LD reference sample.
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Figure E: sscondary signal (131791197)-SHIP LD reference sample
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3 5 " 1
< 2] 2 I3
2. 21 2 i
o oo [ - o
g £ £ T
g 8] 5.
£ . g,
§'r 5 4 2,
1 - & ol
1-Mb surraunding LD egion or index SNP (r225014) i g LD region for i (=1 18 g LD reic 51718556)
Figure G: secondary signal (rs7038480)-UKBB LD reference sample. Figure H: secondary signal (s 10841679)-UKBB LD relerence sample Figure G: secondary signal {rs150816132)-UKBB LD reterence sample

_-leg 0{GCTA P-Vaue)
g 0(GCTA P-Vae) _

D S T e S M

05 e I D NG G0 NG D e w05 s o

_~log10{GCTA P-Velue)

e e e e Y
g LD region kr index SNP {1225014) - chomasame 14

[ S

1-Mb surounding LD region lor ndex SNP 1-00 g LD wgi

SNP (r54149056) 12 1

Fig. 2. (A-G) -log,, of the GCTA P-value (y-axis) for SNPs from 1-Mb surrounding LD region of the index SNP (x-axis). Lower curve indicates -logy, of the SNP-specific o-
threshold for each SNP from surrounding LD region and upper dashed line is -logio(S x 10 *). The secondary signal was discovered exclusively by G $-function is shown by
asterisk. SHIP is the LD reference sample for figures A-E and UKBB is the LD reference sample for figures F-G

1$9356988 (SLC17A4) on chromosome 6, rs10739496 (FOXE1) on
chromosome 9, rs4842131 (LHX3) on chromosome 9, rs4149056
(SLCO1B1) on chromosome 12, rs11626434 (DIO30OS) on
chromosome 14 and rs225014 (DIO2) on chromosome 14 using
two reference samples. More precisely for 4 index SNPs rs2235544
(DIO1) on chromosome 1, rs9356988 (SLC17A4) on chromosome
6, 1510739496 (FOXE1) on chromosome 9 and rs4842131 (LHX3)
on chromosome 9 exactly the same secondary signals were
discovered.

As the second test example, we used meta-analysis summary
data of a GWAS on inflammatory bowel disease (IBD) (Liu et al.,
2015) with 11,555,662 genetic variants and up to 34,652 European
individuals. We defined a locus as a chromosomal region at which
two adjacent significant SNPs are less than 1-Mb distant. By our
definition we identified 42 genome-wide significance (P-value <
2=35x10"%) index SNPs from IBD meta-analysis summary data
(Supplementary Table S2). Our method implemented on 39 out of
42 index SNPs since the index SNPs rs10800314 on chromosome 1,
rs10175585 on chromosome 2 and rs131657 on chromosome 22
were missing in the UKBB reference sample. We discovered 12 index
SNPs with significance secondary signals by G5 function (Table 4
and Supplementary Figs S20-S31) of those 4 secondary signals
rs12128452 (RNF186) on chromosome 1, 1s7797798 (SLC26A3)
on chromosome 7, rs4880099 (NOTCH1) on chromosome 9 and
152129944 (CDC37) on chromosome 19 were found exclusively by
our method (Supplementary Figs S21, $25, $26 and $30). In the fol-
lowing, the method was implemented for current example test using
SHIP reference sample. Correspondingly 13 secondary signals were
found using GS function (Table 4 and Supplementary Figs $32-544)
of those 5 secondary signals rs4233371 (FCGR2A) on chromosome
1, rs10185424 (IL1R2) on chromosome 2, 157797798 (SLC26A3)
on chromosome 7, rs28668598 (JAK2) on chromosome 9 and
1556380902 (GSDMB) on chromosome 17 were identified only by
our method (Supplementary Figs $34, S35, $38, S39 and S42). G5
function identified 8 significant secondary signals for index SNPs
rs11209026 (IL23R) on chromosome 1, rs10737481 (RNF186) on
chromosome 1, rs10045431 (LOC285626) on chromosome 3,
rs4730272 (SLC26A3) on chromosome 7, 154077515 (CARD9Y) on
chromosome 9, 152076756 (NOD2) on chromosome 16,
rs12936409 (ZPBP2) on chromosome 17 and rs6062496 (RTELI1-
TNFRSF6B) on chromosome 20 with the same nearest genes using

both reference samples. Particularly for 6 index SNPs rs10737481
(RNF186), 1s4730272 (SLC26A3), 154077515 (CARDY),
12076756 (NOD2), rs12936409 (ZPBP2) and rs6062496 (RTEL1-
TNFRSF6B) exactly the same secondary signals were identified by
using SHIP and UKBB reference samples.

As the third example, we considered the GWAS meta-analyses
summary data by Wood et al. (2014) with 253,288 European indi-
viduals and 2,550,859 variants on adult human height. 697 second-
ary signals clustered in 423 loci were identified with genome-wide
significance (2 = § x 10~®%) using conditional GCTA (COJO) ana-
lysis in this investigation. We applied our method on 386 genome-
wide significance (2 = 5 x 10~*) index regions identified by our def-
inition on GWAS meta-analyses results (Supplementary Table S3).
Using UKBB reference sample, 134 significant secondary signals
with conditional P-value < SNP-specific z-threshold were identified
by G5 function (Supplementary Table S4). Exclusively, our method
was able to detect 19 out of 134 secondary signals that would have
gone undetected with the established genome-wide threshold
(Supplementary Table $4 and Supplementary Figs $45-566).

5 Conclusion

We presented a new method to assess the significance of secondary
SNPs using SNP location and LD to define SNP-specific significance
thresholds in a weighted hypothesis testing framework. With this
procedure, we remove the current over-counting of the number of
hypotheses considered and in addition, prioritize the hypotheses by
plausible criteria. Via a simulation study, we confirmed the validity
of the approach by evaluating EFWER. A series of different weight-
ing schemes defined by respective G-functions showed improved
power as compared to established criterion as well as in comparison
to an equal weighting scheme (Sidak-correction). A G-function with
optimal #* = 0.3 between index and secondary SNP which down-
weighted SNPs at higher distance step-wise-strong and gave more
emphasis on d than 7* had overall best power and is our recom-
mended default. In addition to the demonstrated power gain, our
method is easy to use and can directly be applied to typically already
existing GCTA results. Via re-analysis of existing GWAMAs, we
found secondary signals that otherwise would have been over-
looked: 5 signals in the case of FT4 levels, 5 in the case of IBD and
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19 signals for human height. For FT4, we found exclusively, for in-
stance, the secondary signals rs1791197 (TTR) and rs7038480
(TRMO) (Table 3). Transthyretin (TTR) belongs to a group of pro-
teins, which includes thyroxine-binding globulin and albumin, that
bind to and transport thyroid hormones in the blood (Power et al.,
2000). TRMO is ubiquitously expressed in thyroid (Fagerberg et al.,
2014). In case of IBD, The ‘quasi adaptive’ method uniquely found
secondary signals rs7797798 (SLC26A3) and rs56380902
(GSDMB) (Table 4). SLC26A3 express in colon and the protein
encoded by this gene is essential for intestinal chloride absorption,
and mutations in this gene have been associated with congenital
chloride diarrhea (Haggie et al., 2018). Soderman et al. (2015)
inspected the biological foundation of IBD and showed that
GSDMB affects IBD susceptibility via effects on apoptosis and cell
proliferation. These examples demonstrate that identification of sec-
ondary signals is not only relevant since it can increase the portion
of explained variance of a genetic trait, but also since it can point to
the functional mechanisms underlying the primary and secondary
association signals.

In analysis of two GWAS examples (FT4 and IBD), we used two
different LD reference panels both from the European population to
evaluate the influence of the LD reference sample on the proposed
method. Secondary signals obtained with the SHIP reference sample,
showed overall good agreement with those obtained using UKBB.
The ‘quasi adaptive’ method could find a reasonable number of sec-
ondary signals with the same nearest gene for both reference LD
panels such that, for some index SNPs exactly with the same second-
ary signals. In some cases, we obtained different results depending
on the choice of the LD reference panel. While tendencies were al-
ways similar, it happened that SNPs lay slightly above the signifi-
cance threshold with one LD panel, but slightly below with another
one. For instance, In case of FT4 GWAS analysis (Table 3) second-
ary signals rs1791197 (TTR) and rs145581407 (B4GALT6) on
chromosome 18 were found for index SNP rs113107469
(SLC25A52) by SHIP and UKBB respectively. Furthermore, the sec-
ondary signal for index SNP rs6854291 (AADAT) on chromosome
4 was found only with SHIP, since rs6854291 was missing in UKBB.
In IBD analysis results (Table 4) the secondary signal rs28668598
(JAK2) on chromosome 9 was found only by SHIP and secondary
signals rs117292830 (HLA-C) on chromosome 6 and rs1388585
(LINC02471) on chromosome 12 were found only with UKBB ref-
erence sample. Index SNPs rs6880778 (PTGER4) on chromosome 5
and rs142770866 (PDE4A) on chromosome 19 have different sec-
ondary signals with different closest genes to the secondary signals
for two reference samples. In addition, secondary signals for index
SNPs rs10800314 (FCGR2A) on chromosome 1 and rs10175585
(IL18RAP) on chromosome 2 were found exclusively by SHIP since
two index SNPs were missing in UKBB reference sample. Taken to-
gether, results are to some extent dependent on the reference sample
which determines SNP availability and the LD structure estimated
from it. In this context, Yang et al. (2011) recommended reference
LD panel from the same population as the study data itself comes
from and beyond a sample size of 5,000 for additional accuracy.
Finally, we considered the GWAS on human height and note that,
the authors pursued a modified approach of identifying primary and
secondary signals, the conditioned SNPs on index signals from the
whole genome rather than within LD regions. In our re-evaluation
of the summary statistics, we applied our LD region-based ap-
proach, as used above and in the majority of GWAS publications.
We found 386 primary signals and 134 secondary signals. Of the
secondary signals, 19 were found exclusively with our approach
(Supplementary Table S4).

In all of three data applications, as well as in a power simulation
study, our method demonstrated improved performance when com-
pared to current practice. In addition, our method has further poten-
tial for additional improvement, e.g. by not treating potential
secondary signals as independent of each other in their multiplicity
assessment. In summary, our method has the potential to reveal pre-
viously undetected secondary signals in already available data, and
to uncover plausible underlying gene mechanisms. The method is
easy to use, operates directly with typically already existing

GWAMA results and makes use of existing analysis software (Yang
et al., 2011). The specific method presented here is implemented in
the R and Shell scripts which can be found at [https:/github.com/
sghasemi64/Secondary-Signal].
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A decreased estimated glomerular filtration rate (eGFR) leading to chronic
kidney disease is a significant public health problem. Kidney function is a
heritable trait, and recent application of genome-wide association studies
(GWAS) successfully identified multiple eGFR-associated genetic loci. To
increase statistical power for detecting independent associations in GWAS
loci, we improved our recently developed quasi-adaptive method estimating
SNP-specific alpha levels for the conditional analysis, and applied it to the GWAS
meta-analysis results of eGFR among 783,978 European-ancestry individuals.
Among known eGFR loci, we revealed 19 new independent association signals
that were subsequently replicated in the United Kingdom Biobank (n =
408,608). These associations have remained undetected by conditional
analysis using the established conservative genome-wide significance level
of 5 x 107%. Functional characterization of known index SNPs and novel
independent signals using colocalization of conditional eGFR association
results and gene expression in cis across 51 human tissues identified two
potentially causal genes across kidney tissues: TSPAN33 and TFDP2, and
three candidate genes across other tissues: SLC22A2, LRP2, and CDKNIC.
These colocalizations were not identified in the original GWAS. By applying
our improved quasi-adaptive method, we successfully identified additional
genetic variants associated with eGFR. Considering these signals in
colocalization analyses can increase the precision of revealing potentially
functional genes of GWAS loci.

KEYWORDS

estimated glomerular filtration rate (eGFR), genome-wide association studies (GWAS),
expression quantitative trait loci (eQTL), conditional association analysis, SNP-specific
alpha-level, colocalization
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Introduction

Glomerular filtration rate estimated from serum creatinine
(eGFR) is used to quantify kidney function and define chronic
kidney disease (CKD). CKD defined by low eGFR <60 ml/min/
1.73 m” is strongly associated with an increased risk of major
adverse clinical outcomes such as end-stage kidney disease
(ESKD), cardiovascular (CV) outcomes, and mortality (Go
et al, 2004; Chronic Kidney Disease PrognosisMatsushita
et al., 2010; Hemmelgarn et al., 2010; Astor et al, 2011; Bello
et al., 2011; Gansevoort et al., 2011; Gansevoort et al, 2013;
Weiner et al., 2014; Matsushita et al, 2015). A better
understanding of the biological mechanisms underlying
kidney function is a prerequisite for initiating targeted
treatments and reducing patient mortality, comorbidity, and
associated healthcare costs. eGFR is a heritable trait with
estimated h* = 39%, and recent application of genome-wide
association studies (GWAS) successfully identified multiple
eGFR-associated genetic loci (Okada et al., 2012; Pattaro et al.,
2012; Mahajan et al., 2016; Pattaro et al., 2016; Hishida et al.,
2018; Kanai et al., 2018; Lee et al.,, 2018; Wuttke et al., 2019).
Allelic heterogeneity within a GWAS locus is a common
characteristic of complex traits and conditional analyses
successfully identified multiple independent associations with
eGFR. For instance, Gorski et al. (2017) (Gorski et al., 2017)
detected 57 independent signals among the 49 loci. Morris et al.
(2019) (Morris et al., 2019) delineated 127 distinct signals across
the 93 loci. Hellwege et al. (2019) (Hellwege et al, 2019)
discovered 18 independent signals at 15 loci, and Wuttke
et al. (2019) (Wuttke et al., 2019) identified 253 independent
SNPs at 228 loci explaining 7.3% of the eGFR variation.

To identify an independent signal, the SNPs of a locus are
conditioned by the known significant associations. In case
individual genotypes of a sample are available, the genotypes
ofknown signals are added as covariates to the association model.
Alternatively,  these
approximated by using summary statistics and an appropriate
linkage disequilibrium (LD) panel. Usually, the established
genome-wide significance level of 5 x 10 was applied as a
significance threshold for the conditional analysis, which is also
the significance level for the primary GWAS. Since the

conditional  associations can be

conditional analysis is applied on a specific genomic region
and not on a genome-wide scale, 5 x 107 is too conservative
and implies a loss of power. In Ghasemi et al. (2021) (Ghasemi
etal, 2021), we developed a quasi-adaptive method to determine
SNP-specific significance levels in conditional analysis.
Although GWAS have discovered multiple eGFR-associated
loci, the underlying genes that influence genetic associations have
often remained unknown. Integration of GWAS signals and
expression quantitative trait loci (eQTL) studies (Nica and
Dermitzakis, 2013) to estimate the relation between gene
expression of nearby genes and eGFR, termed colocalization
(Giambartolomei et al,, 2014), allows the identification of
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candidate genes and improves the functional interpretation of
GWAS results. For instance, FGF5, CDKLS5, TPSAN33, and
METTLI0 colocalized with the eGFR-associated loci in
kidney-specific tissues (Graham et al, 2019), and Wuttke
et al. (2019) (Wuttke et al, 2019) detected 17 underlying
genes expressed in kidney tissues including UMOD, KNGI,
and FGF5.

Here, we improved and applied our quasi-adaptive method
to the publically available GWAS meta-analysis results of
783,978 European-ancestry individuals (Wuttke et al., 2019) of
the CKDGen Consortium to uncover additional independent
signals for eGFR. Replication of the identified novel independent
signals was conducted using individual-level participant data of
the United Kingdom Biobank (UKBB) (Bycroft et al,, 2018). The
UKBB was not included in the primary GWAS meta-analysis,
and thus represents an independent dataset for replication. We
run colocalization analyses based on associations with eGFR and
with gene expression (eQTLs) in cis across 49 human tissues
included in the Genotype-Tissue Expression (GTEx) project v8*/,
as well as the microdissected human glomerular and tubulo-
interstitial kidney portions from 187 individuals from the
NEPTUNE study (Gillies et al,, 2018). Since the presence of
multiple independent signals within a GWAS locus reduces
power of colocalization, we provided the colocalization
analyses with conditional eGFR-association analysis and eQTL
to detect potential causal genes and compared these results to the
unconditional approach. Our colocalization analyses used the
latest version of GTEx-v8 compared to the GTEx-v6 in the
previous report of eGFR (Wuttke et al., 2019).

The emerging list of novel eGFR-associated variants and
genes influencing kidney disease etiology facilitate CKD targeted
treatment and prevention.

Methods

Additional independent eGFR-associated
signals identification by quasi-adaptive
method

We obtained the CKDGen Consortium 2019 eGER-
association GWAS meta-analysis results for European-ancestry
(Wuttke et al., 2019) from https://ckdgen.imbi.uni-freiburg.de.
The downloaded file included chromosome, position (b37), SNP
rsid, effect allele, non-effect allele, effect allele frequency, beta,
standard error, p-value, and sample size for each variant. Wuttke
et al. (2019) (Wuttke et al., 2019) identified 253 independent
genome-wide-significant  eGFR-associated SNPs  through
approximate conditional analyses implemented in GCTA
(Yang et al, 2011) (GCTA COJO Slct algorithm) across
228 European-ancestry-specific and replicated loci. To identify
additional independent eGFR-associated secondary signals, we
applied our quasi-adaptive method to the aforementioned
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GWAS meta-analysis with 8,885,712 genetic variants and
783,978 individuals. The method incorporated LD structure
from individual-level genotype data of 15,000 randomly
selected European-ancestry participants of the UKBB (Bycroft
etal,, 2018). The selected UKBB LD reference sample underwent
the same data preparation procedure as described in (Wuttke
etal, 2019) and (Teumer et al., 2019), except for the minor allele
frequency (MAF) cut-off. We excluded SNPs with a MAF <0.
0001. The final dataset for estimating the LD structure included
13,558 unrelated European-ancestry individuals and 36, 228,
692 genetic variants. We used the published 228 replicated
index SNPs (ie., variants with the smallest p-value of a locus)
as the basis for applying our method (Wuttke et al., 2019). A one
megabase window around the index SNPs was considered as
primary lodi. Overlapping loci at which two adjacent index SNPs
were less than one megabase apart or with pairwise correlation
r?>0.1 were merged using the lower-bound and the upper-
bound of the merged regions as new locus borders, and the SNP
with the smallest p-value as the new index SNP. This resulted in a
final list of 190 independent loci (Supplementary Table S1). All
SNPs except the index SNP were considered candidate SNPs
within each locus. We conducted conditional analyses on this
dataset using GCTA (GCTA COJO-cond algorithm) by adjusting
for the corresponding index SNP across the 190 loci. The number
of tested SNPs equals to the number of candidate SNPs included
in the conditional analyses across the 190 loci. As described in
Ghasemi et al. (2021) (Ghasemi et al., 2021), our method
prioritizes the candidate SNPs and assigns a SNP-specific
a-threshold to the candidate SNPs in conditional analysis. The
pairwise correlation (1) and chromosomal distance (d) between
the candidate SNPs and respective index SNP needed as inputs
for our method were retrieved by the INTERSNP tool (Herold
et al., 2009). Let m> be the number of tested SNPs from N loci
(here, N> = 190 with the index reflecting the analysis of
secondary signals). Of note, m, and N, were named as m and
N in the original paper (Ghasemi et al,, 2021). The pre-weight
based on r* (w,:) with optimal r* = 0.3 and a pre-weight based
ond (wy,) which down-weighted SNPs at higher distance step-
wise-strong are assigned to a candidate SNP(i), (1<i<m,) as:

1-|r?-0.3]-03

¥a = 1-03 :
1 if 0<d<1Kb
0.5 if 1Kb<d < 10Kb
wy, =4 025  if 10Kb<d<50Kb
0.125 if 50Kb < d < 100Kb
0.0625 if 100Kb <d <500Kb

The pre-weight w,: and w, are combined (with more
emphasis on d than on r?) by the geometric mean
w; = (“’;, X w,f) 1, withk = 5, to assign an optimal weight W; =
'%Lf:w to SNP(i).

“'The quasi-adaptive method is applied on N; loci, spends type
I error rate () over m;, candidate SNPs by incorporating W; into
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the weighted Siddk correction (Kang et al, 2009), and assigns the
SNP-specific a-thresholds to SNP(i) by G;(«, 1, d ) as follows:

Glawrid)=1-(1-™,i=12....,m (1)

SNP(i) is a secondary signal if the conditional p-value is
smaller than G; (a, %, d).

(Ghasemi et al., 2021) showed that Equation 1 has the overall
best power in detecting secondary signals while controlling the
family-wise error rate (FWER) at the a-level. In our study, a was
set to 0.05.

Improved quasi-adaptive method to
identify multiple independent eGFR-
associated signals

The original quasi-adaptive method was developed to
determine one independent signal (secondary signal) with the
smallest conditional p-value smaller than the correspondingly
assigned G (a, r%, d) at each locus. We extended the idea from
the main paper (Ghasemi et al, 2021) to identify multiple
independent signals (a tertiary signal, a signal of fourth, a
signal of fifth, and beyond). To detect independent tertiary
signals, only loci with confirmed secondary signals (confirmed
according to the quasi-adaptive method) were considered. We
proceeded according to the idea of the paper (Ghasemi et al.,
2021) but performed conditional analyses by adjusting for the
primary index SNP and confirmed secondary signal for each
locus. Let N3 be the number of loci with confirmed secondary
signals and m; be the number of tested SNPs from Nj loci
(i.e., exduding index SNPs and secondary signals). Of note, the
number of tested SNPs is lower for tertiary signals detection than
for secondary signals detection (m; <m,). As described in 2.1,
the LD structure was determined between the index SNP and
corresponding candidate SNPs at each locus. Our method was
applied on Nj loci according to the schema described in 2.1 and
the SNP-specific a-thresholds assigned to SNP(i) by equation (2)

_wxmy

Gi(a, rhd):l—(l—a)%, W; = S s T
i=1i
(2)

The improved method is an iterative process that is
subsequently performed to detect higher-order independent
signals (applied to loci with confirmed independent signals
from the previous steps) until no additional independent
signals are found. Finding higher-order independent signals
keeps the FWER at the a-level because only the number of
tested SNPs and the LD structure have to be taken into account
(as shown in Equations 1, 2, where the LD structure does not
change by analyzing higher-order independent signals.

Due to the complexity of the LD structure of the major
histocompatibility complex (MHC) region, this region was
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excuded from the search for independent signals as also in the
main GWAS (Wuttke et al.,, 2019).

Replication of the results in the UK
biobank dataset

The novel independent eGFR-associated signals were tested
for replication by conditional association analyses using the
individual-level data of the UKBB (Bycroft et al, 2018)
cohort. This cohort was not included in the initial GWAS of
eGFR, and thus represents an independent dataset for
replication. The phenotype definition, quality control, and
analyses were performed using the same methods and scripts
of the main GWAS (Teumer et al., 2019; Wuttke et al., 2019). As
independent signals were identified from samples of European
ancestry, conditional analyses were restricted to 408,608 UKBB
participants of European ancestry with approximately 19 million
autosomal SNPs that met the
MAF 20.001 and imputation quality score > 0.3. For
replication of each category of independent signals (secondary,
tertiary, and beyond) across loci, a conditional analysis was

incusion criteria  of

conducted by including sex- and age-adjusted residual of log
(eGFR), the first 15 genetic principal components, and the allele
dosages of all corresponding conditioned SNPs as covariates in a
mixed-model association method as implemented in BOLT-
LMM, v2.3.2 (Loh et al,, 2005). Within each locus, conditional
analysis was performed for replication of an identified
independent signal by conditioning on a known index SNP
and (if present) on other known or replicated independent
signals identified before the corresponding independent signal.
Of note, non-replicated signals identified before the independent
signal under investigation were excluded from the conditional
analysis. Supplementary Table S2 shows the list of known index
SNPs and known and novel independent signals with the list of
covariates (SNPs) used for replication. Bonferroni correction of
0.05/9, 0.05/8, 0.05/6, 0.05/3, and 0.05, correcting for the number
of tested SNPs per conditional analysis, was applied to assess the
significance of the replication of secondary signals, tertiary
signals, signals of fourth, signals of fifth, and signal of sixth,
respectively.

Colocalization of eGFR signals with gene
expression in cis

In the first instance, colocalization analyses were run for
known index SNPs and novel independent signals using
unconditional eGFR association analyses in the UKBB and
expression quantitative trait (eQTL) studies (Nica and
Dermitzakis, 2013). eQTL were quantified from 49 human
tissues included in the GTEx project v8 release (Aguet et al,
2019), and the microdissected human glomerular and
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tubulointerstitial kidney portions from 187 individuals from
the NEPTUNE study (Gillies et al., 2018). For colocalization,
the effect alleles for GWAS and eQTLs were harmonized, and
tissue gene pairs with eQTL data were identified within +
100 kilobases of the independent signals. We used the eQTL
cis window (l-megabase window from each side of the
transcriptional start site) as the region for each colocalization
test. We applied colocalization by using the approximate Bayes
factor computations with the default prior probability = 1 x 10~
on the signals available in both GWAS and eQTL as implemented
in the coloc. fast function from the R package “gtx” version 2.1.6
(https://github.com/tobyjohnson/gtx). This function provides an
adaptation of Giambartolomei's colocalization ~method
(Giambartolomei et al., 2014).

Secondly, we re-run the colocalization analyses using
conditional eGFR association analyses and the eQTL studies.
Conditional analysis was performed for a known index SNP by
adjusting for all known and novel independent signals and for a
novel independent signal by conditioning on a known index SNP
and (if present) on other known or novel independent signals
within the corresponding locus. Supplementary Table S2 shows
the list of covariates (SNPs) used in the eGFR association. We
defined a variant as a colocalized signal (same causal variant
underlying both the GWAS and eQTL association) if the
posterior probability (PP) of a variant was greater than 80%.

Results

Novel eGFR-associated multiple
conditionally independent signals

To detect additional eGFR-associated independent signals,
our method was applied on 190 loci derived from the GWAS
meta-analysis (Wuttke et al, 2019) (Methods and
Supplementary Table S1). Our method identified in total
87 independent signals, including 53 secondary signals
(Supplementary Table $3), 20 tertiary signals (Supplementary
Table S4), 10 signals of fourth (Supplementary Table S5), three
signals of fifth (Supplementary Table $6), and one signal of
sixth (Supplementary Table S7), of which 27 were novel
(Table 1). Of note, all novel SNPs were secondary or higher-
order signals. We have listed the differences between the
previous analysis (Wuttke et al., 2019) and our analysis in
Supplementary Tables $3-S7 in a column labeled “Known”. Ata
locus, an SNP detected by our method was considered known
(yes) if it was exactly the independent signal or in high LD
(r*>0.8) with a SNP detected by Wuttke et al. (2019) (Wuttke
et al., 2019). We detected 60 known loci, of which 54 loci
comprised the same independent signal identified in the
previous GWAS, and six loci with independent signals in
high LD with the identified independent signals from the
aforementioned GWAS.
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Replication of novel multiple independent
signals in European-ancestry individuals

To assess the validity of our newly identified independent
signals, we conducted conditional eGFR-association analyses
using individual-level genotype data among
408,608 European-ancestry participants of the UKBB as
independent replication (Methods). For 27 novel independent
signals, we conducted 27 conditional analyses (Supplementary
Table S2). In total, replication was achieved for 19 signals (Five
secondary signals, five tertiary signals, six signals of fourth, two
signals of fifth, and one signal of sixth) after applying multiple
testing corrections (Methods, Table 1 and Figure 1A). Of note,
seven of these signals achieved genome-wide significant
conditional p-values, and additional four signals were
nominally significant (p < 0.05) in the replication analysis.
Effect estimates for the replicated signals showed a strong
correlation (r* = 0.937) with the discovery results (Figure 1B).

For better comparison, the regional association plots were
generated for the unconditional associations and the conditional
associations with the highlighted known index and the novel
independent signal separately (Supplementary Figures S1-857).
Of note, the new independent signals rs3904600, rs13227214,
rs81205, 52075251, 1s2695565, and rs6951593 (identified by the
quasi-adaptive method based on the meta-analysis of the
previous GWAS of eGFR (Wuttke et al, 2019)) showed
smaller p-values in their unconditional analysis within the
UKBB compared to their corresponding index SNP
(Supplementary Figures S4, S19, §22, S31, §52, S55).

Colocalization with gene expression

Colocalization analyses were performed with eQTLs in cis
across 51 tissues, incduding kidney cortex, glomerular, and
tubulointerstitial for the 17 known eGFR-associated index
SNPs as well as for the 19 new independent signals using
unconditional and conditional eGFR results (Methods and
Supplementary Table S2).

Using unconditional eGFR associations, we identified
56 genes mapping to 13 out of 17 index SNPs for which cis-
eQTL in at least one tissue colocalized with an eGFR-associated
signal with a high PP (>80%) (Supplementary Table S8 and
Supplementary Figure S58). Results for the 19 new independent
signals using unconditional GWAS associations revealed
significant colocalization in at least one tissue for 42 genes
mapping to 11 of the 19 independent signals (Supplementary
Table S8 and Figure 2A).

To determine more robust evidence of colocalization, we re-
run the colocalization for each known index SNP using the
corresponding conditional eGFR association. We identified
53 genes mapping to 11 index SNPs for which cis-eQTL in at
least one tissue colocalized with an eGFR-associated signal with a

Frontiers in Genetics

07

10.3389/fgene.2022.997302

high PP (Supplementary Table S9 and Supplementary Figure
§59). We identified 10 genes that colocalized with four index
SNPs exclusively using conditional associations, which would
have remained undetected if only colocalization of unconditional
associations had been considered (Table 2). Comparing
colocalization for index SNPs based on unconditional with
conditional associations across all tissues revealed consistent
results for 45 genes mapping to eight index SNPs
(Supplementary Table S10), which means that multiple
independent signals did not affect the colocalization analyses
at these lodi. On the other hand, 11 genes mapping to six index
SNPs were detected only by colocalization using unconditional
association, indicating that multiple independent signals at these
loci affected the colocalization analyses for the corresponding
index SNPs (Supplementary Table S11).

Colocalization for each new independent signal using
conditional association analysis mapped 12 genes to eight of
the 19 independent signals with colocalization PP > 80% in at
least one tissue (Supplementary Table S9 and Figure 2B). We
identified eight genes mapping to 4 novel independent signals
with consistent results between colocalization based on
unconditional and conditional associations, indicating accurate
colocalization results for novel independent signals at these loci
(Supplementary Table S10). In addition, five genes mapping to
5 novel independent signals were identified exclusively by
colocalization using conditional associations, which would
have remained undetected if only colocalization using
unconditional associations had been considered (Table 2 and
Figure 2B). On the other hand, 34 genes mapping to 9 novel
independent signals were detected only by colocalization using
unconditional assodiations, indicating that colocalization using
unconditional association has less power to detect accurate
results at these loci (Supplementary Table S11).

The complete comparison of the colocalization results for
known index SNPs and novel independent signals using
conditional versus unconditional associations are provided in
Supplementary Figures S60-S76.

Discussion

Application of our recently developed quasi-adaptive method
to the publicly available GWAS meta-analysis results of eGFR
among 783,978 European-ancestry individuals (Wuttke et al.,
2019) and  subsequent  replication in  additional
408,608 individuals from UKBB identified 19 novel
independent eGFR association signals. These signals included
five secondary signals, five tertiary signals, six signals of fourth,
two signals of fifth, and one signal of sixth. These results would
have gone undetected by conditional analysis applying the
commonly used but too conservative genome-wide
significance level of 5 x 107, Of note, the individuals included
in the LD reference sample were also part of the replication stage,
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FIGURE 1

(A) Replication of eGFR-associated multiple independent signals identified by the quasi-adaptive method using the United Kingdom Biobank
(UKBB) genotype data among European-ancestry individuals. The x-axis shows the chromosome number, and the y-axis is the -logio (P) of the
conditional GWAS of eGFR. Color coding reflects evidence of replication, which is coded as replicated (blue) and non-replicated (black). Different
shapes showed multiple independent signals. (B), comparing genetic effect estimates between conditional analysis using GCTA on the GWAS
meta-analysis of a previous GWAS of eGFR (x-axis) and by conditional GWAS of eGFR on UKBB (y-axis). Color coding reflects replication evidence,
coded as significant (blue) and non-significant (black). Error bars correspond to 95% confidence intervals. Pearson's correlation coefficient r* = 0.937
(95% Cl = 0.84, 0.98) for the replicated signals. The blue dashed line corresponds to the diagonal line.

but an influence of the results is very unlikely because of the
substantially larger sample size in the replication analysis, and the
different methods applied (summary statistics with LD reference
vs individual level conditional analysis).

Some previous reports on eGFR support our findings. For
instance, our secondary signal rs147877018 was previously
discovered as an eGFR-associated signal through conditional
analysis implemented in GCTA (at locus-wide significance,
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p < 10°)*. In addition, Wuttke et al. (2019) (Wuttke et al.,
2019) reported ADCY6 as a novel eGFR candidate gene in
humans by performing a nested candidate gene analysis in
mice. ADCY6 has not been reported to contain genome-wide
significant eGFR-associated SNPs or to be located near known
loci. However, in our study, the secondary signal
rs3730071 was discovered near ADCY6 (Supplementary
Figure S13).
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FIGURE 2

(A,B) Colocalization of eGFR association of novel independent signals with gene expression (cis eQTLs) across tissues. (A and B) depict
colocalization results based on unconditional and conditional eGFR association analyses, respectively. Gene with at least one posterior probability of
colocalization (PP > 80%) across tissues (x-axis) is shown with the respective underlying variant and chromosome number (y-axis). Colocalizations
areillustrated as dots, where dot size corresponds to the PP and are colored according to the predicted change in gene expression relative to

the lower eGFR. Color coding on the y-axis reflects the locus.

Colocalization of eGFR-associated known index SNPs and kidney by using cis-eQTL dataset from the publicly available
novel independent signals and gene expression implicate specific GTEx project (Aguet et al., 2019). However, the human kidney
potential functional genes for follow-up. We investigated the tissues have been poorly covered by the GTEx study, and only the
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TABLE 2 Summary of colocalization of eGFR association knownindex SNPs and novel independent signals with posterior probability (PP = 80%). (A-B)
contain summary of colocalization of eGFR association known index SNPs and novel independent signals with a high posterior probability of

colocalization (PP) = 80% in at least one tissue.

Rsid Known Chr Gene

Tissue Supplementary Figure

A: New colocalizations in Kidney tissues with consistent results between conditional and unconditional association analyses

151397764 Yes 3 TFDP2 tubulointerstitial Supplementary Figure S62A
1513227214 No 7 TSPAN33 tubulointerstitial Supplementary Figure S76B
rs1153855 Yes 15 CTD-2651B20.4 kidney cortex Supplementary Figure S74A
B: Summary of colocalization results identified exclusively by colocali based on conditional association analyses, across all tissues
1535472707 Yes 2 KLHL41 brain spinal cord cervical c-1 Supplementary Figure S60A
152075251 No 2 LRP2 thyroid Supplementary Figure S60B
1512207180 Yes 6 RP11-288H12.3 small intestine terminal lleum Supplementary Figure S63A
1512207180 Yes 6 SLC22A2 esophagus gastroesophageal junction Supplementary Figure S63A
1512207180 Yes 6 SLC22A2 esophagus muscularis Supplementary Figure S63A
512207180 Yes 6 SLC22A2 prostate Supplementary Figure S63A
512207180 yes 6 SLC22A2 testis Supplementary Figure S63A
1512207180 yes 6 SLC22A3 artery tibial Supplementary Figure S63A
56912283 no 6 CRIP3 heart atrial appendage Supplementary Figure S65B
1510086569 yes 8 RMDN1 adrenal gland Supplementary Figure S68A
rs10086569 yes 8 WWP1 muscle skeletal Supplementary Figure S68A
51056819 no 11 CARS1 artery tibial Supplementary Figure S71B
581205 no 11 CDKNIC nerve tibial Supplementary Figure S72B
rs4775830 no 15 SLC28A2-AS1 brain spinal cord cervical c-1 Supplementary Figure S74B
152261092 yes 20 EEF1A2 whole blood Supplementary Figure S75A
152261092 yes 20 MYT1 brain substantia nigra Supplementary Figure S75A
152261092 yes 20 SLC17A9 brain substantia nigra Supplementary Figure S75A
152261092 yes 20 ZGPAT ovary Supplementary Figure S75A

Rsid: SNP rsid; Known: SNP was reported as an index SNP in the previous report of eGFR from Wuttke et al. (2019) is labeled as “yes”, and novel independent signals identified by quasi-

adaptive method are labeled as “no”; Chr: d ppl y Figure: comy

conditional versus unconditional associations.

kidney cortex with small sample size is included in this dataset.
To overcome this limitation, we also investigated kidney tissue by
using a cis-eQTL dataset from microdissected human glomerular
and tubulointerstitial kidney portions from 187 individuals from
the NEPTUNE study (Gillies et al., 2018).

The presence of multiple independent GWAS signals at a
locus violates the assumption required by the applied
colocalization method (one causal variant for each locus) and
likely reduces the power to detect accurate colocalization results.
In this context, Wu. et al. (2019) (Wu et al., 2019) showed that for
a locus with multiple GWAS signals and/or multiple eQTL
signals for the same gene, integration of conditional GWAS
association and conditional eQTL led to more robust evidence
of colocalization. Our project provides conditional eGFR
association tests conducted in the UKBB individual-level
genotype dataset. These tests were used to improve the
colocalization analyses of the known index SNPs and novel
independent signals to identify plausible effector genes related
to eGFR. Our findings could be improved by adding the
conditional eQTLs data, which may have affected our ability
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of the colocalization results for known index SNPs and novel independent signals using

to colocalize signals. It is worth noting that the conditional
eQTLs data are not available in our study.

The consistent results between colocalization using
unconditional and conditional associations at a locus with
multiple independent signals confirm that the colocalization
based on unconditional association has enough power to
detect hand,
inconsistent results indicate that colocalization based on
unconditional association is affected by the presence of
other independent signals at a locus and has less power to
detect true colocalization. Therefore, we suggest more
accurate results based on colocalization analyses using
conditional association and eQTLs, revealing the plausible
candidate genes after eliminating the potential effect of other
multiple signals.

For instance, in tubulointerstitial and kidney cortex we
revealed the known index SNPs rs1397764 and rs1153855 as
the shared underlying variants for colocalization of lower
eGFR  with expression of TFDP2 and
CTD-2651B20.4, respectively. This was identified by

accurate colocalization. On the other

lower
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colocalization based on both unconditional and conditional
association analyses (Table 2A and Supplementary Figures
§58, S59). Across other tissues, we suggest SLC22A2 as a
plausible candidate gene colocalized with index SNP
rs12207180, which was detected only after eliminating the
effect of other multiple signals at the locus (Table 2B and
Supplementary Figure S59). TFDP2, CTD-2651B20.4, and
SLC22A2 were exclusively identified by our colocalization
and have not been reported in the previous report of eGFR
(Wuttke et al., 2019). TFDP2 encodes E2F dimerization
partner (DP)-2, which forms heterodimers with the E2F
transcription factors resulting in transcriptional activation
of cell cycle-regulated genes. Although the role of TFDP2
in the context of renal disease has not been reported, several
genetic associations in or near TFDP2 have been reported in
previous GWAS of eGFR and CKD (Kottgen et al.,, 2010;
Pattaro et al., 2016; Hellwege et al., 2019; Morris et al., 2019;
Wauttke et al., 2019). In addition, TFDP2 was identified as a
prioritized gene for eGFR by performing a transcriptome-
wide association study (TWAS) and a summary Mendelian
randomization test (Doke et al., 2021). Furthermore, the
expression of TFDP2 was associated with the eGFR index
variant, specifically in kidney-specific eQTL associations
(Graham et al., 2019). CTD-2651B20.4 is a protein-kinase,
interferon-inducible ~ double-stranded ~ RNA-dependent
inhibitor, and repressor of (P58 repressor) (PRKRIR)
pseudogene with Ensembl version identifier
ENSG00000259433.2. There is no explicit function for
CTD-2651B20.4, and it has not been reported to contain or
be located near associated variants with phenotypes, diseases,
and traits in humans or other species. SLC22A2 is specifically
expressed in the kidney and plays a critical role in the renal
secretion of various cationic compounds (Aoki et al., 2008).
SLC22A2 encodes the polyspecific organic cation transporter
(OCT2) and mediates tubular uptake of organic compounds
including creatinine in the basolateral membrane of renal
tubular epithelial cells (Urakami et al., 2004). SLC22A2 has
been reported to contain or to be located near genetic
associations in multiple GWAS of eGFR and CKD (Kottgen
et al,, 2010; Mahajan et al., 2016; Morris et al., 2019; Wuttke
et al., 2019).

Our colocalization of novel independent signals suggests
rs13227214 as the shared underlying variant for colocalization
of lower eGFR with lower expression of TSPAN33in
tubulointerstitial tissue, which was robustly identified based
on both unconditional and conditional association analyses
(Table 2A and Figure 2). Furthermore, in thyroid and nerve
tibial tissue, we suggest LRP2 and CDKNIC as the plausible
candidate genes colocalized with rs2075251 and rs81205,
respectively, which were detected only by colocalization based
on conditional associations (Table 2B and Figure 2B). TSPAN33,
LRP2, and CDKNIC were identified exclusively by our
colocalization of novel independent signals and would have
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remained undetected if only colocalization of the
corresponding index SNPs rs3757387, rs35472707, and
rs233438 were considered at these loci (Supplementary Figure
S67, Supplementary Figure S60, and Supplementary Figure S72).
TSPAN33 is a member of the tetraspanin family and encodes a
transmembrane protein. TSPAN33 is highly expressed in the
kidney and TSPAN33 mRNA is detectable in the kidney by both
microarray and gPCR (Luu et al, 2013). Furthermore, in
colocalization analysis of kidney-specific eQTL association
(kidney cortex (Ko et al, 2017), glomerulus, and tubule-
interstitial compartments (Gillies et al, 2018), TPSAN33
showed significant colocalization with the eGFR association
(Graham et al,, 2019). LRP2 encodes the megalin receptor
(Nielsen and Christensen, 2010) and connected to its seed
gene DAB2, through protein-protein interaction (Hosaka
et al., 2009). Chasman et al. (2012) identified LRP2 related to
the kidney function through connection with the previously
known eGFR gene DAB2 and prior biological knowledge
about megalin system in kidney function (Chasman et al,
2012). CDKNIC expressed in the heart, brain, lung, skeletal
muscle, kidney, pancreas and testis. Up-regulation of miR-
199a-5p through suppressing CDKNIC might promote cell
proliferation in autosomal dominant polycystic kidney disease
tissues (Sun et al., 2015), which is a genetic disorder characterized
by the growth of numerous cysts in the kidney often causes renal
failure with many serious complications.

In summary, we have extended our quasi-adaptive method
toward identifying multiple independent SNPs within a locus,
applied this method to an eGFR meta-analysis result, and
discovered and replicated novel eGFR-associated SNPs. Using
these results, we revealed plausible candidate genes for eGFR by
colocalization, partly undetected using standard approaches.
These findings will help improve the understanding of
biological mechanisms underlying kidney function and may
subsequently help reducing the burden of CKD.
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