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Nonequilibrium dynamics in pumped Mott insulators
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We use time-evolution techniques for (infinite) matrix product states to calculate, directly in the thermody-
namic limit, the time-dependent photoemission spectra and dynamic structure factors of the half-filled Hubbard
chain after pulse irradiation. These quantities exhibit clear signatures of the photoinduced phase transition from
insulator to metal that occurs because of the formation of so-called η pairs. In addition, the spin dynamic structure
factor loses spectral weight in the whole momentum space, reflecting the suppression of antiferromagnetic
correlations due to the buildup of η-pairing states. The numerical method demonstrated in this work can be
readily applied to other one-dimensional models driven out of equilibrium by optical pumping.
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Introduction—The study of systems under optical excita-
tion receives tremendous attention because of both the recent
rapid developments of ultrafast pump lasers and the discov-
ery of striking phenomena not observable in equilibrium,
such as photoinduced superconducting-like states in high-Tc

cuprates [1–3] and the alkali-doped fulleride K3C60 [4,5],
charge-density waves in the rare-earth tritelluride LaTe3 [6],
or the insulator-to-metal transition in the excitonic-insulator
candidate, Ta2NiSe5 [7–9]. Pump-probe experiments allow to
explore various physical processes at different time scales.
In the prepump region the system can be still described
by linear-response theory. On the other hand, the recovery
process of the system in the long-time limit after a pump
provides valuable information about lifetimes and interaction
mechanisms of the system. Here we are interested in the
rich nonequilibrium physics during or shortly after the pump.
Time-dependent spectroscopic measurements, such as a time-
and angle-resolved photoemission spectroscopy (TARPES)
[10,11], in principle enable direct comparison with theory in
this time domain. It is, however, challenging to tackle these
problems by numerical techniques, especially in systems with
emergent photoinduced phase transitions.

Various numerical techniques have been applied to op-
tically excited systems to study nonequilibrium dynamics,
e.g., the exact-diagonalization technique [12–14], extensions
of dynamical mean-field theory (DMFT) [15], and dynam-
ical cluster approaches [16]. While ED simulations can
access long times but are limited to small clusters (so far
with less than 14 sites in fermionic Hubbard systems), the
time-dependent DMFT is constructed directly in the thermo-
dynamic limit but restricted by the local approximation for the
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self-energy, which may be inappropriate in low-dimensional
systems with inherent nonlocal spatial correlations. In one
dimension, methods based on matrix product states (MPSs),
such as the density-matrix renormalization group (DMRG)
[17,18] and its time-dependent version [19,20], enable us to
simulate both static and dynamic properties with high ac-
curacy even for large systems. Results for nonequilibrium
dynamics are still rare, however. The time evolution of the
spectral functions after a quantum quench has been computed
in the extended Hubbard chain at half filling for finite sys-
tems [21–25]. Very recently, photodoped Mott insulators have
been studied by an infinite time-evolving block decimation
(iTEBD) approach [26,27] with the help of a generalized
Gibbs ensemble to obtain an appropriate effective model de-
scription at equilibrium [28].

In this paper, we propose a direct numerical scheme for the
computation of nonequilibrium dynamic response functions,
which can be used for general (quasi-)one-dimensional (1D)
systems. We apply this technique to the optically excited
half-filled Hubbard chain, in which a photoinduced η-pairing
state appears [29]. In the time-resolved photoemission spectra
(PES), an extra band becomes visible above the Fermi energy
after pulse irradiation, indicating the insulator-to-metal phase
transition. Further evidence for this transition can be found in
the charge dynamic structure factor (DSF), where a gapless
band appears.

Nonequilibrium dynamics—To explore the system’s dy-
namics at nonequilibrium, time-dependent spectral functions
of the form [13,14,30]

I (k, ω; t ) =
∑

r

e−ikr
∫ ∞

−∞

∫ ∞

−∞
dτ1dτ2 f (τ1, τ2; ω)

× C(r, τ1, τ2; t ) (1)

are of interest. Here C(r, τ1, τ2; t ) = 〈φ(t )|Ô†
j+r

(τ1; t )Ô j (τ2; t )|φ(t )〉 is the nonequilibrium two-point
correlator at times τ1 and τ2 defined relative to time t for a
local operator Ô j . The prefactor is given by f (τ1, τ2; ω) =
eiω(τ1−τ2 )g(τ1)g(τ2) with g(τ ) = exp[−τ 2/2σ 2

pr]/
√

2πσpr
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describing the shape of a probe pulse, e.g., in a time-
dependent photoemission spectroscopy experiment.

We calculate the correlator C(r, τ1, τ2; t ) numerically
by simulating states Ô j (τ ; t )|φ(t )〉 = Û †(t + τ, t )Ô jÛ (t +
τ, t )|φ(t )〉 ≡ |φ̄(τ ; t )〉 within an (i)MPS representation. Here
Û (t + τ, t ) ≡ T exp[−i

∫ t+τ

t dt ′Ĥ (t ′)] is the unitary time-
evolution operator of the system with the (reverse) time-
ordering operator T for τ > 0 (τ < 0). To this end, we first
prepare the iMPS approximation |ψ0〉 of the ground state of
the unperturbed Hamiltonian Ĥ by infinite DMRG [31]. We
then utilize the iTEBD technique to carry out a time evolution
according to the time-dependent Hamiltonian Ĥ (t ), which
includes an electric-field A(t ), in order to obtain an iMPS
representation of the photoinduced state |ψ (t )〉. Using the
iMPS description reduces the numerical cost, since the size
of the unit cell Nuc is usually much smaller than the system
sizes needed in simulations with open boundary conditions.
Applying the operator Ô j lifts the translation invariance of
the state, however, so we need to switch to an MPS repre-
sentation with infinite boundary conditions (IBCs) for the rest
of the simulation. More specifically, “Method I” described in
Ref. [32] is necessary because the photoexcited state is not an
eigenstate of the Hamiltonian that determines the time evo-
lution. Having calculated states |φ̄(τ ; t )〉 for times τ1 and τ2,
the two-point correlators C(r, τ1, τ2; t ) in Eq. (1) can be eval-
uated by shifting |φ̄(τ1; t )〉 and |φ̄(τ2; t )〉 relative to each other
[33,34]. In this way, the number of MPSs |φ̄(τ ; t )〉 required
for some fixed time τ is drastically reduced. Namely, we only
need a number of MPSs proportional to Nuc instead of L as
in a similar approach with open boundary conditions. Further
technical details are given in the Supplemental Material [35].

Model—Our target system is the 1D half-filled Hubbard
model with nearest-neighbor hopping th and on-site Coulomb
repulsion U > 0,

Ĥ = − th
∑
j,σ

(ĉ†
j,σ ĉ j+1,σ + H.c.)

+ U
∑

j

(n̂ j,↑ − 1/2)(n̂ j,↓ − 1/2), (2)

FIG. 1. Contour plots of P̃(π, t = 15t−1
h ) (a) and P̃r>0(π, t =

15t−1
h ) (b) in the ωp-A0 plane for an infinite Hubbard chain with

U/th = 8 at half filling. The pump pulse has width σp = 2 and is
centered at time t0 · th = 10.

where ĉ†
j,σ (ĉ j,σ ) creates (annihilates) a fermion with

spin projection σ (=↑,↓) at lattice site j, and n̂ j,σ =
ĉ†

j,σ ĉ j,σ . The ground state for U > 0 is a Mott insula-
tor with a finite charge gap 	. As Yang demonstrated in
a seminal paper [36], exact eigenstates of the Hubbard
model can be constructed by means of the so-called η

FIG. 2. Snapshots of the photoemission spectra A−(k, ω; t ) for
the η-pairing non-dominant (left panels with ωp/th = 4) and domi-
nant (right panels with ωp/th = 7) states during the pump at t · th = 5
[(a) and (d)], 10 [(b) and (e)], and 15 [(c) and (f)]. The data are
obtained by the (i)TEBD technique with IBCs at U/th = 8, where
the pump is parametrized by A0 = 4 and σp = 2 at t0 · th = 10.
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operators,

η̂+ =
∑

j

(−1) j	̂
†
j ≡

∑
j

η̂+
j , η̂− = (η̂+)†, (3)

η̂z = 1

2

∑
j

(n̂ j,↑ + n̂ j,↓ − 1) ≡
∑

j

η̂z
j, (4)

which obey the SU(2) commutation relations; 	̂
†
j = ĉ†

j,↓ĉ†
j,↑

is the singlet pair-creation operator.
The Hubbard Hamiltonian (2) commutes with the operator

η̂2 = 1
2 (η̂+η̂− + η̂−η̂+) + (η̂z )2, so that 〈η2〉 is a conserved

quantity in the absence of perturbations. Eigenstates with
a finite value of 〈η̂2〉 have long-ranged pairing correlations
〈η̂+

j η̂−

 〉 [36]. While these η-pairing states cannot be ground

states, it has been recently recognized that pulse irradiation
can induce η-pairing in Mott insulators [29]. Here we study
such photoinduced η-pairing states with the time-evolution
technique outlined above.

We introduce the external time-dependent electric-
field A(t ) via a Peierls phase [37] as thĉ†

j,σ ĉ j+1,σ →
theiA(t )ĉ†

j,σ ĉ j+1,σ , where

A(t ) = A0e−(t−t0 )2/(2σ 2
p ) cos [ωp(t − t0)]. (5)

This describes a pump pulse with amplitude A0, frequency
ωp, and width σp centered at time t0 (>0). As a result, the
Hamiltonian becomes time dependent, Ĥ → Ĥ (t ), and the
system being initially in the ground state is driven out of
equilibrium, |ψ (0)〉 → |ψ (t )〉.

The η-pairing state can be detected by evaluating the time
evolution of the pair-correlation function

P(r, t ) = 1

L

∑
j

〈ψ (t )|	̂†
j+r	̂ j + H.c.)|ψ (t )〉 (6)

and its Fourier transform P̃(q, t ) = ∑
r eiqrP(r, t ). As demon-

strated in Refs. [29,38] for small clusters and in Ref. [39]
in the thermodynamic limit, P̃(π, t ) is enhanced after pulse
irradiation, which implies the formation of an η-pairing state.
The optimal parameter set for inducing η-pairing thus can be
determined examining the A0 and ωp dependences of P̃(π, t )
with the iTEBD technique [39].

Figure 1(a) shows the contour plot of P̃(π, t ) after pulse ir-
radiation (t · th = 15). Obviously, there is a maximum around
A0 ≈ 0.4 and ωp/th ≈ 7.0 marked by “+.” In the following,
we analyze the nonequilibrium spectral functions for this
parameter set. To demonstrate that the nonlocal part of the
pairing correlations is dominant for these optimal parameters,
we also extract the contour plot of the modified structure fac-
tor P̃r>0(q, t ) = ∑

r>0 eiqrP(r, t ), in which the contribution of
the double occupancy nd(t ) = (1/L)

∑
j〈ψ (t )|n̂ j,↑n̂ j,↓|ψ (t )〉

is excluded [Fig. 1(b)]. Clearly the spectral intensity of
P̃r>0(π, t ) is only appreciable in the vicinity of +. We also
explore the nonequilibrium dynamics away from the optimal
parameter set at A0 = 0.4 and ωp = 4.0 (denoted as × in
Fig. 1) to elucidate the difference between η-pair-correlation
dominant and nondominant regions.

PES—Since the 1D half-filled Hubbard model has an in-
sulating ground state for any U > 0, there exists a Mott
gap (	 ∼ U ) between lower and upper Hubbard bands in
the single-particle spectral function A(k, ω) = A+(k, ω) +
A−(k, ω), where A−(k, ω) and A+(k, ω) denote the PES and
inverse PES, respectively. In the superconducting η-pairing
state after pulse irradiation, however, the Mott gap is melted,
which should also be captured in the time-dependent single-
particle spectral function A(k, ω; t ). Because of particle-hole
symmetry, A+(k, ω; t ) and A−(k, ω; t ) contain the same infor-
mation. We focus on A−(k, ω; t ), which is obtained by setting
Ô j = ĉ j,σ in Eq. (1).

Figure 2 displays our (i)TEBD results for A−(k, ω; t ), us-
ing the pump parameter sets ‘×’ and ‘+’ of Fig. 1, which
correspond to angular frequencies ωp/th = 4 and ωp/th = 7,
respectively. For ωp/th = 4, the time-dependent spectral func-
tion is very similar to the equilibrium spectral function at
T = 0 (see, e.g., Ref [34]), i.e., it is only slightly changed
by the pulse irradiation. In contrast, when the parameters
optimized to induce η-pairing are used (ωp/th = 7), an extra
dispersion above the Fermi energy (ω > EF) appears during
the pump and persists afterwards [Figs. 2(e)–2(f)].

Evaluating the integrated density of states

A−(ω; t ) = 1

L

∑
k

A−(k, ω; t ), (7)
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FIG. 3. The transient integrated density of states A−(ω; t ) from Eq. (7) for U/th = 8 with ωp/th = 4 (a) and 7 (b). The pump is parametrized
as in Fig. 2.
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we see more clearly how the spectral weight is shifted from
ω < EF to ω > EF by the photoinduced η-pairing. Figure 3(a)
shows A−(ω; t ) for ωp/th = 4. Although a small shift of the
spectral weight to ω > EF is observed at t ≈ t0, it becomes
negligible after the pulse (t · th � 15). On the other hand,
the spectral weight for ω > EF increases distinctly over time
in the ωp/th = 7 case [Fig. 3(b)], indicating a photoinduced
phase transition from a Mott insulator to a metallic η-pairing
state. This photoinduced insulator-to-metal transition should
be observed in TARPES, when the pure Hubbard model is
realized experimentally, e.g., in optical lattices (although this
would require further developments of ARPES techniques
[40]).

DSF—We now analyze the spin and charge DSFs,
Ss(q, ω; t ) and Sc(q, ω; t ), which are obtained by setting Ô j =
Ŝz

j and Ô j = n̂ j↑ + n̂ j↓ − 1 in Eq. (1), respectively.
Let us first recall the character of the DSF at zero tempera-

ture. For any U > 0, the spin DSF consists of a two-spinon
continuum with an excitation gap that closes at momenta
q = 0 and π , while the charge DSF is gapful, reflecting the
Mott gap for holon excitations (see also the numerical results
with IBCs in Ref. [35]).

Figures 4(a)–4(c) give the nonequilibrium spin DSF
Ss(q, ω; t ) in the half-filled Hubbard model with U/th = 8
using the optimal parameter set (+ from Fig. 1). In Fig. 4(a)
Ss(q, ω; t ) is quite similar to Ss(q, ω) at equilibrium, showing
the gap closing at the momenta q = 0 and π . During and after
pulse irradiation [Figs. 4(b) and 4(c)], the spectral weight is
reduced in the whole momentum space, reflecting the sup-
pression of antiferromagnetic correlations in the photoinduced
η-pairing state [29].

More drastic changes should be expected in the charge
DSF, since Sc(q, ω) can be written with the η operators in
Eqs. (3) and (4) as discussed in Refs. [35,41]. This is in
accordance with the numerical results shown in Figs. 4(d)
and 4(e). Before the pump pulse [Fig. 4(d)], Sc(q, ω; t ) is
nearly indistinguishable from the equilibrium DSF Sc(q, ω) at
T = 0, with the Mott gap (	c ≈ 4.68 for U/th = 8) visible
at q = 0. During the pump (t = t0) an extra band appears
and closes the gap [Fig. 4(e)]. Most significantly, the spectral
weight now concentrates at q ≈ 0.55 and ω ≈ 0, which is con-
firmed more clearly in the energy-integrated charge structure
factor Sc(q; t ) = ∫ ∞

−∞ dωSc(q, ω; t ), as shown in Fig. 5. Note
that Sc(q; t ) can also be obtained from the Fourier transform of
the two-point correlation functions 〈ψ (t )|η̂z

j+r η̂
z
j |ψ (t )〉 using

iTEBD in the iMPS representation:

Sc(q; t ) = 4
∫ ∞

−∞
dτ

e−τ 2/σ 2
pr

σ 2
pr

∑
r

e−iqr〈ψ (t )|η̂z
j+r η̂

z
j |ψ (t )〉

= 4
√

π

σpr

∑
r

e−iqr〈ψ (t )|η̂z
j+r η̂

z
j |ψ (t )〉. (8)

This peak structure might be taken as an indication for su-
perfluidity of the η-pairing state. It would be desirable to
extract an order parameter with the help of field-theoretical
analysis analogous to the Tomonaga-Luttinger liquid param-
eter in the 1D Bose-Hubbard model, which characterizes the
superfluid phase; see, e.g., Ref. [42]. Note that in Ref. [22],

FIG. 4. Snapshots of the dynamic structure factors for spin
[Ss(q, ω; t )] and charge [Sc(q, ω; t )] during the pump at t · th = 5
[(a) and (d)], 10 [(b) and (e)], and 15 [(c) and (f)]. The data are
obtained by the time-evolution technique with IBCs, where the pump
is parametrized by A0 = 0.4 and ωp/th = 7 (‘+’ symbol in Fig. 1).

a related two-particle spectral function [Ô j = 	̂ j] was stud-
ied to show a nonequilibrium transition to a superconducting
phase.

Conclusions—We have demonstrated how the spectral
functions of (quasi-)1D systems at nonequilibrium can be
simulated directly in the thermodynamic limit by using the
time-dependent DMRG technique with IBCs. We have ap-
plied this technique to the optically excited Hubbard chain at
half filling and observed that so-called η-pairing states appear
after pulse irradiation. Tuning the pump pulse to maximize

L012012-4
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FIG. 5. The time-dependent charge structure factor Sc(q; t ) for
ωp/th = 7 obtained from the energy-integrated Sc(q, ω; t ) (symbols)
and the Fourier transform of 〈ψ (t )|η̂z

j+r η̂
z
j |ψ (t )〉 [Eq. (8)] (lines),

where the pump is parametrized as in Fig. 4.

η-pairing, we have found clear evidence for a photoinduced
metal-insulator transition in both the time-dependent PES and
DSFs.

Some care should be taken when using the spectral func-
tion I (k, ω; t ) from Eq. (1) to interpret TARPES experiments,
since its derivation relies on the assumption that the pump and
probe pulses do not overlap. For overlapping pulses, gauge
invariance may be violated [43]. Importantly, however, this
does not affect the results for long times (t · th = 15), which
are the most relevant to our conclusions. Moreover, there is no
problem related to gauge invariance for the integrated density
of states shown in Fig. 3, which is thus also valid.

The proposed numerical scheme opens a new venue for
exploring nonequilibrium dynamics with high resolution and
controllable accuracy. It would be of specific interest to try
to numerically reproduce the experimental results of time-
dependent ARPES of Ta2NiSe5 [7–9], which is a strong
candidate for excitonic insulators and exhibits the characteris-
tic flat-band behavior in ARPES experiments [44,45] within a
narrow region in momentum space [34].
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supported by Deutsche Forschungsgemeinschaft through
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