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• Cold physical plasma (CPP) technology is of high promise for various medical applications.
• The interplay of specific components of physical plasma with living cells, tissues and 

organs on a structural and functional level is of paramount interest with the aim to induce 
therapeutic effects in a controlled and replicable fashion.

• In contrast to other medical disciplines such as dermatology and oromaxillofacial surgery, 
research reports on CPP application in orthopaedics are scarce.

• The present implementation of CPP in orthopaedics involves surface modifications of 
orthopaedic materials and biomaterials to optimize osseointegration. In addition, the 
influence of CPP on musculoskeletal cells and tissues is a focus of research, including 
possible adverse reactions and side effects. Its bactericidal aspects make CPP an attractive 
supplement to current treatment regimens in case of microbial inflammations such as 
periprosthetic joint infections. Attributed anticancerogenic and pro-apoptotic effects 
underline the clinical relevance of CPP as an additive in treating malignant bone lesions.

• The present review outlines ongoing research in orthopaedics involving CPP; it 
distinguishes considerations for safe application and the need for more evidence-based 
research to facilitate robust clinical implementation.

Introduction

Plasma medicine has been investigated as a new branch 
for cold physical plasma (CPP) applications. Physical 
plasma can be defined as an aggregate state of matter 
with an overall quasineutral charge, comprised of different 
components such as motile electrons, ionized atoms 
and molecules, all interacting collectively due to long-
range coulomb forces. The generation of physical plasma 
involves the ionization and excitation of a working gas such 
as argon, helium, oxygen or ambient air by energizing its 
atoms or molecules utilizing thermal, chemical, electrical 
or radiative sources. The characteristics of physical plasma 
vary greatly as a function of parameters such as gas type, 
energy source, surrounding pressure and electrode set-up 
that all influence its physiochemical traits.

Physical plasma medicine is focused on the interplay of 
specific plasma components with cells, tissues and organs 
on a structural and functional level. The consensus today 
is that the main therapeutic effects of CPP are mediated by 
reactive oxygen and nitrogen species (ROS/RNS), electric 

field generation and subsequent secondary reactions 
of these processes, placing the field of plasma medicine 
at the heart of redox biology (1, 2, 3). CPP is generated 
under atmospheric pressure conditions and temperatures 
at or below 40°C (near body temperature) and is of high 
promise for medical applications. Due to the relatively 
low temperatures CPP operates at, it is considered not to 
harm cells and tissues while being beneficial regarding cell 
proliferation, differentiation and migration, depending on 
the dose or concentration applied (4).

In the following, we briefly summarize the present 
medical applications of CPP in general and outline the 
possible approaches in orthopaedics. We discuss CPP 
antimicrobial aspects in the light of clinical challenges in 
orthopaedics, such as periprosthetic joint infections (PJIs). 
In addition, the utilization of CPP in the treatment of bone 
malignancies is discussed. Furthermore, we summarize 
possible surface modifications of orthopaedic materials 
and biomaterials by CPP and describe the influence of CPP 
on musculoskeletal cells and tissues, including associated 
adverse reactions and side effects.
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Cold physical plasma: devices for 
experimental and clinical application

In medical settings, CPP is most commonly generated 
using plasma jet technologies that are of the dielectric 
barrier discharge (DBD) or non-DBD type (5). DBDs are 
characterized by the CPP discharge between an electrode 
insulated by a dielectric material and a ground electrode. 
To generate normal pressure CPP, the discharge gap lies 
within a range of 0.1–10 mm (6). Despite the existence 
of different DBD set-ups, floating electrode DBDs 
are primarily used for experimental and biomedical 
applications in vivo. Here, the second electrode is not 
grounded as it is represented by the organism treated 
(e.g. human) and is therefore called floating electrode 
(7). This enables excellent spatial and temporal precision 
in CPP irradiation of large treatment areas with high 
concentrations of generated plasma components within a 
small space. Both DBD and jet systems can utilize ambient 
air for plasma generation but can also be operated using 
noble gases. DBD treatment requires close proximity and a 
fixed distance to the target area, whereby flat and smooth 
surfaces receive an even plasma discharge distribution 
(6). Hence, in dermal pathologies, for instance, large-area 
chronic wounds benefit from larger DBDs, whereas small 
and cavity-rich injuries benefit from precision plasma jets.

An interesting aspect of plasma technology is its 
tunability by modifying the gas composition supplied 
to the source (8). In plasma jet devices, the working gas 
flows through an electric field for CPP ignition, and the 
resulting plasma effluent carries the reactive CPP particles 
to the treatment area (Fig. 1). Thus, CPP generation takes 
place at a greater distance and is being electrophysically 
independent of the target area, with only negligible 
currents passing through the treated body part (9). 
Nevertheless, this conclusion may not be generalized, 
as the generation of electric fields at the target has been 
demonstrated for various set-ups. The electric field profile 
is influenced by the electrophysical characteristics of the 
target and the treatment regime (10). Depending on the 
electrode configuration within these pen-like devices, 
dielectric free electrode jets, DBD jets, DBD-like jets and 
single-electrode jets can be distinguished (11, 12). The 
noble gases helium and argon in their pristine state or as 
mixtures with other gases such as nitrogen or oxygen are 
usually employed as working gases. Plasma jets can be 
used to treat surface areas as well as deeper tissue layers 
and visceral cavities (13).

Currently, a limited number of plasma devices are 
commercially available that have been CE-certified and 
recognized as medical devices for medical, not cosmetic, 
purposes through the EU Medical Devices Regulation 
(MDR 2017/745): kINPen MED plasma jet (neoplas med, 
Greifswald, Germany), SteriPlas plasma torch (ADTEC, 

Hunslow, UK), PlasmaDerm DBD (CINOGY Technologies, 
Duderstadt, Germany) and the battery-operated 
PlasmaCare DBD (terraplasma medical, Garching, 
Germany) (14). These CPP devices feature a comprehensive 
physical and biochemical characterization accompanied 
by safety analyses for in vivo applications (15). Despite the 
rather low number of commercially available equipment, 
a rising number of applications in clinical research are 
reported for CPP devices (16).

To characterize CPP devices in a more comprehensive 
and stringent fashion, the German DIN SPEC 91315 
was established in 2014. The combination of biological, 
chemical and physical tests aims to standardize CPP device 
characterization while also creating minimal conditions of 
application safety (17). However, CPP device constructions 
and set-ups display great heterogeneity, especially in 
experimental practice, attributed to parameters like different 
gas flow rates, gas mixtures and discharge voltages, which 
ultimately hinders comparison of treatment regimens 
and observed biological effects (18). In addition to direct 
treatment by CPP, the use of plasma-treated liquids allows 
for so-called indirect treatments. Specifically, this means 
that a liquid is exposed to the plasma processes, allowing 
the entry of gas phase-generated ROS into the liquid, 
where the plentiful short-lived ROS/RNS react to a few 
relatively stable species that are in principle suitable for 
clinical application (19). In experimental research using 

Figure 1
CPP is generated by adding energy to a neutral gas to yield a 
partially ionized gas that can be operated at or below body 
temperature (<40°C). In pen-like CPP devices, the transition of a 
neutral feeding gas (e.g. argon) through a strong electric field 
(HF electrode) results in the discharge of ions (Ar*) and electrons 
(e–). The interaction with ambient air species (O2, N2 and H2O) 
leads to the generation of bioreactive short-living oxygen 
species (ROS). Side products of this complex physiochemical 
process are low amounts of ultraviolet (UV) and electromagnetic 
(em) radiation.
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plasma-treated liquids, primarily cell culture media or 
saline solutions were used, especially in the context of 
anticancer research (20). Due to a lack of consensus on 
the generation of these liquids at pharmaceutical quality, 
parameters such as sterility, ROS/RNS stability, storability, 
plasma source and management implementations hamper 
the translation of such experimental approaches to clinical 
settings, like musculoskeletal applications. In addition, 
clinical studies are not available. This is also true for direct 
CPP treatments (potentially, with specific adjustments for 
implementation) in orthopaedics and trauma surgery.

Cold physical plasma: an overview of 
applications in medicine

In medicine, the majority of clinical plasma applications 
are in the field of dermatology, especially to promote 
the healing of chronic wounds and ulcers (21). Here, the 
antimicrobial properties of CPP appear advantageous, 
as chronic wounds are a widespread problem, affecting 
about 2% of the population worldwide, and are caused 
by venous stasis, diabetes and peripheral arterial occlusive 
disease. Such ulcers usually present a medical challenge 
since proper healing is impaired in up to 15% of cases 
(22). In addition, bacterial superinfection can impair 
consolidation. First clinical trials applying CPP to chronic 
ulcers showed promising results by accelerating healing 
while simultaneously reducing the bacterial wound load 
(23). However, a recent randomized controlled clinical trial 
comparing plasma treatment against an antiseptic agent 
still showed superior responses in plasma-treated wound 
patients, suggesting plasma-mediated redox effects to be 
at least in part responsible for the clinical effects observed 
(21, 22). In addition to chronic wound healing, CPP was 
also shown to successfully stimulate healing in second- 
and third-degree burns, dog bites and probands with 
laser-ablated skin wounds (24, 25, 26).

Aside from the treatment of wounds, CPP has also 
proven to be successful for the treatment of split skin 
draft donor and recipient sites, in the context of surgical 
site infections (SSIs), in cardiac surgery, in the palliative 
treatment of head and neck cancer and as an additive 
treatment for metastatic colon cancer (27). The clinical 
relevance of CPP as an additive treatment option in 
cancer therapies was also demonstrated in a clinical study 
investigating CPP effects on squamous cell carcinoma of 
the oropharynx (28).

Due to the numerous properties of CPP, its application 
is also explored for other medical areas. These include but 
are not restricted to dentistry, general surgery, aesthetic 
medicine, the treatment of pigmentation disorders and 
ophthalmology (27). It therefore appears only consistent to 
explore the utilization of CPP in other medical disciplines. 

In orthopaedics, infection of wounds or implant sites is the 
main problem following surgical treatment. Here, CPP has 
great potential to be of use in clinical routine.

Antimicrobial cold physical plasma: 
towards orthopaedic indications

SSIs are serious complications in any surgical field and 
range among the leading causes of healthcare-associated 
infections worldwide. They represent a significant concern 
in terms of patient morbidity and mortality. Furthermore, 
SSIs constitute a financial burden to healthcare systems 
and negatively impact the patients’ quality of life.

In the presence of foreign body implants, such as joint 
replacements, the diagnostics and treatment of such 
infections is particularly difficult, and PJIs are known as a 
major complication after joint replacement. Periprosthetic 
infection rates range between 1.4% and 2.5% after primary 
joint arthroplasties (29) and up to 4% following revision 
arthroplasties (30). Current therapeutic strategies include 
debridement, antibiotic treatment and implant retention 
combined with an exchange of modular components 
for acute infections or removal of the infected prosthesis 
in either single-stage or two-stage revision for chronic 
situations (31). Although early diagnostics and treatment 
have improved over the last decade, PJIs are still considered 
one of the most unpredictable complications in need of an 
interdisciplinary therapeutic approach (32).

The known antimicrobial properties of CPP offer 
a novel approach to the high demand for enhancing 
antimicrobial strategies in orthopaedics and trauma 
surgery (33) (Fig. 2). Albeit the underlying mechanisms 
for the antimicrobial effects of CPP are still not fully 
understood, it is hypothesized that plasma discharges 
on the target area result in the accumulation of ROS/RNS 
along with immediate changes in cell membrane integrity, 
followed by leakage of intracellular microbial products 
(34). At equimolar concentrations, higher ROS levels 
are preferentially toxic to prokaryotes since eukaryotic 
cells generally have more elaborate antioxidant defence 
systems. In addition, ROS serve as signalling molecules 
and are part of physiological responses in cells in  
tissues (35).

The antimicrobial plasma effects are of particular 
interest in the context of biofilm-mediated infections that 
are especially resistant to host defence and antimicrobial 
agents (36). Biofilms are aggregated communities 
of bacteria adherent to a living or non-living surface 
embedded within a matrix of self-produced or acquired 
extracellular polymeric substances (EPS), including 
polysaccharides, DNA, protein and lipids (37). While 
there is an increasing antimicrobial resistance crisis due 
to a lack of an effective antibiotic discovery pipeline (38), 
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novel biofilm-specific strategies are desperately needed 
(30). Regarding the prevention of biofilms, previously 
mentioned methods of CPP-based surface modifications 
of implants have shown to minimize the adhesion as well 
as biofilm formation rate of bacteria without any negative 
impact regarding biocompatibility or osseointegration 
(39, 40).

With regard to its therapeutic potential, CPP was 
already proven in vitro to inactivate biofilms developed 
by different pathogens such as Enterococcus spp. (41), 
Staphylococcus epidermidis (42), Staphylococcus aureus 
(43), Klebsiella pneumoniae (44), Acinetobacter baumannii 
(45), Pseudomonas aeruginosa (46), Escherichia coli (42), 
Listeria monocytogenes (47), Salmonella typhimurium (47) 
and Candida albicans (48). Moreover, CPP was shown to 
facilitate the eradication of biofilms formed by multidrug-
resistant bacteria in chronic wounds (49). The underlying 

mechanisms are yet to be fully understood. First studies 
suggest two distinct but parallel modes of action to mediate 
CPP anti-biofilm activity. First, the diffusion and penetration 
of plasma-derived ROS into the biofilm matrices cause 
damage to the bacterial cells. Second, a chemical break 
down of the EPS due to a physical etching effect leads to 
biofilm detachment from the solid substratum surface 
(43, 50). Unlike antibiotic therapy, CPP treatment of 
biofilms showed no development of resistance in bacterial 
strains so far (51). In general, CPP application shows 
a more efficient biofilm inactivation of gram-negative 
bacteria than gram-positive bacteria, correlating with 
the thicker cell wall of the latter (51). By contrast, a study 
investigating 194 clinical isolates of multidrug-resistant 
bacteria following in vitro plasma treatment found gram-
positive bacteria to be more sensitive than gram-negative 
bacteria for a DBD device, while there was no difference 

Figure 2
Possible CPP applications in musculoskeletal medicine. Due to modifications of treatment parameters, CPP can be utilized in several 
different clinical applications in musculoskeletal medicine. These include skeletal tumour therapy, biomaterial modification and cell 
regenerative approaches at lower treatment intensity. Besides this, CPP´s antiseptic properties are promising for the antibiofilm 
treatment in septic surgery and the conditioning of antiseptic irrigation fluids, e.g. in arthroscopy.
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between both populations when using a prototype of the 
plasma jet kINPen (52). Further research is necessary to 
determine the ideal plasma configurations for the clinical 
practicability of these reported effects.

Currently, the practical utilization of CPP is limited to 
topical applications. The intraoperative usage of CPP is 
technically possible, yet clinicians seem hesitant since 
standardized protocols for the sterile implementation of 
existing devices are currently not available.

As mentioned earlier, most clinical CPP application 
studies focus on healing chronic wounds (16). The 
combination of antimicrobial characteristics and the 
stimulation of tissue regeneration make CPP an attractive 
adjuvant for orthopaedic treatment concepts (11, 21). 
Wounds in orthopaedic and trauma surgery are commonly 
iatrogenic or acute. There are no studies investigating 
the direct application of CPP on postoperative sutured 
wounds. It has already been shown in an in vitro set-up 
that CPP treatment did not alter the mechanical properties 
of suture materials while showing promising results 
regarding the prevention and eradication of S. aureus and 
E. coli contamination (53). Further studies are necessary 
to determine the benefit of CPP applications to patients 
with traumatic wounds or wounds with healing disorders 
after sutures. Adapted DBD devices like the Plasmaderm 
dressing show promising first results in the context of such 
acute wound healing (54).

The antimicrobial properties of CPP imply the capability 
to be a cost-effective tool in future therapeutic regimes of 
orthopaedic and traumatology, especially in the case of 
PJI. Thus, CPP treatments have the potential to improve 
antimicrobial therapies in musculoskeletal surgery. 
Nevertheless, further clinical research is needed to tap the 
full therapeutic potential of CPP in case of musculoskeletal 
infections.

Cold physical plasma in bone 
cancer therapy

Osteosarcoma (OS) represents the most common primary 
malignancy of the skeleton, with an annual incidence of 
4.4 per million in the general population (55). With an 
incidence of about 3 per million for each entity, Ewing’s 
sarcoma (ES) and chondrosarcoma (CS) are two more 
common malignant bone tumours usually diagnosed in 
childhood and adolescence.

Undesirable side effects and the lack of full effectiveness 
of conventional therapies require the development of new 
treatment approaches (56). As mentioned earlier, the 
introduction of CPP to oncology has shown promising 
results for a variety of tumour types in recent years (57). 
Till present, there are several potential mechanisms 
of plasma-mediated anticancer effects, albeit, given 

the heterogeneity of tumour types and genetics, an 
overall generalization seems not plausible (58). On the 
non-molecular level, the analysis of growth kinetics of 
different cancer cell lines revealed that the inhibition of 
cell proliferation is based on the direct reduction of initial 
cell numbers during CPP treatment and the long-term 
growth inhibition of remaining cells (59). In addition, 
CPP treatment is hypothesized to induce cancer cell 
apoptosis mediated by mitochondria, death receptors 
and the endoplasmic reticulum (60) as the result of an 
intracellular increase of ROS for which various cancers 
are known to be receptive (61). Another theory is that 
CPP induced singlet oxygen (1O2) formation that may 
contribute to the intracellular activation of apoptosis-
associated signalling cascades (62), albeit the lifetimes of 
singlet oxygen in liquid or organic matrices are likely too 
short to be responsible for such an effect (63). Moreover, 
cells that are stressed or already harmed, for example, 
by chemotherapy, secrete several factors summarized 
as damage-associated molecular patterns (DAMPs). By 
interaction with defined receptors, DAMPs are known to 
result in sterile inflammation processes that subsequently 
evoke an immunomodulated anticancer response (64), 
which has been recently proven in vivo (65). In addition, 
evidence suggests that CPP can also restore cell sensitivity 
to chemotherapeutic agents, as demonstrated in breast 
cancer (66) and glioma cells (67). CPP also induces the 
suppression of integrin-dependent pathways involved 
in radio- and chemo-resistance in cancerogenic cells of 
different origins (68). Therefore, CPP exposure seems to be 
a promising approach for the additive treatment of OS, ES 
and CS, at least from what can be concluded from in vitro 
studies (69, 70, 71). As described for other cancer types, the 
mode of action elicited by CPP treatment of bone sarcoma 
cells is based on the disruption of cell membrane integrity 
and subsequent intracellular accumulation of ROS (69, 71, 
72). In addition, it is reported that CPP induces changes in 
peroxiredoxin expression and the activation of p53 in OS 
cells (72). The growth-inhibiting effect of CPP in OS, ES 
and CS results from apoptosis, which is usually followed 
by cellular condensation and fragmentation (72). CPP 
exposure of OS cells also affects the gene expression of 
interleukins and inhibits angiogenic vascular endothelial 
growth factor (VEGF) (73). This indicates a possible 
influence of CPP on the tumour microenvironment. Other 
studies also showed that CPP application suppresses 
angiogenesis and thus may negatively influence tumour 
growth and metastasis (74). The CPP OS anticancer effects 
depend on plasma device parameters such as feed gas, 
gas flow rates and supply voltages, as well as on the 
distance from the liquid surface, exposure time and the 
type of cancer being treated (72).

Although it has been demonstrated in animal models 
that direct topical CPP treatment in vivo can reduce 
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tumour growth (75, 76), osseous tumours are mostly 
inaccessible to direct local CPP treatment. Similar to 
applications that aim to treat biofilms, indirect CPP 
treatment through plasma-treated liquids is particularly 
interesting. Plasma-treated liquids induce apoptosis of 
sarcoma cells (70), but the effectiveness observed is lower 
when compared to direct CPP treatment. It was shown 
that plasma-treated liquids induce mitochondrial network 
aberrations, disruption of endoplasmic-mitochondrial 
calcium homeostasis, autophagy and cell death in 
various OS cell lines (77, 78). Furthermore, activation of 
resistance pathways against oxidative stress and inhibition 
of relevant kinases such as 5' adenosine monophosphate-
activated protein kinase or signal transducer and activator 
of transcription 3 in OS cells were demonstrated in vitro 
following CPP exposure (79). Further, in vitro studies also 
suggested selective cytotoxicity of indirect CPP treatment 
in OS cells over mesenchymal stromal cells (MSCs) (79) 
and other less malignant cells (70). As mentioned earlier, 
it is assumed that the selectivity of CPP on cancerous over 
non-cancerous cells is based on the higher sensitivity 
of malignant cells to oxidants (80). However, this 
assumption does not regard the different responses of 
sarcoma cell subpopulations to ROS and RNS. The only 
study investigating the effects of CPP on actual tumours 
of murine organotypic OS ex vivo cultures demonstrated 
reduced tumour cell viability following treatment (81).

In summary, CPP treatment of skeletal sarcomas 
results in significant anti-oncogenic effects by inhibiting 
cell growth which is mediated by the impairment of cell 
membrane functionality and induction of apoptosis. 
Therefore, CPP applications could be a promising addition 
to existing therapies (Fig. 2). Nevertheless, the treatment 
of skeletal sarcomas using CPP needs to be further 
characterized, especially in vivo.

Cold physical plasma-induced surface 
modifications of orthopaedic materials

A promising application of CPP in orthopaedics is the 
functionalization of implant surfaces (39). The main 
alterations induced by CPP or thermal physical plasma 
treatment of implant materials are a modified surface 
roughness (82), i.e. an increased surface area, altered 
chemical speciation by oxidation of the implant material 
surface (83) and additive coatings (40). Major goals 
of physical plasma-induced alterations of orthopaedic 
implant materials are to enhance osseointegration to 
minimize the risk of implant loosening (84) and to inhibit 
bacterial biofilm formation, ultimately reducing the 
incidence of peri-implant infections (33) (Fig. 2).

Generally, thermal plasma spraying is a well-established 
manufacturing process and the main plasma-based 
method for additive surface modifications of orthopaedic 

implant materials. Implant materials modified by CPP-
assisted coating deposition methods are not yet in clinical 
use but have gained popularity in implant material 
research in recent years. A major advantage of CPP-based 
additive manufacturing processes is that they allow for 
the coating of orthopaedic and dental materials with 
thermally instable materials, pharmaceuticals and even 
biomolecules (40, 85). Plasma material surface activation 
can be considered as the yielding process step since 
plasma activation leads to higher binding affinity of the 
respective coating material. The process steps of plasma 
activation and coating are carried out either sequentially 
or simultaneously. Biological effects induced by CPP-
assisted coating are attributed to the applied bioactive 
molecules or to a synergistic effect of coating and plasma 
modification of the surface (86, 87). Biological effects 
mediated by CPP-assisted coating with biomimetic 
molecules have mainly been demonstrated in vitro. 
They include increased functionality and differentiation 
potential of primary MSCs and mesenchymal cell lines on 
various implant materials. Human bone marrow-derived 
MSCs (hBM-MSCs), in particular, are the focus of therapies 
addressing bone regeneration due to easy accessibility 
during standard orthopaedic interventions and their 
high affinity to differentiate into the osteoblastic lineage. 
Therefore, their interaction with implant materials is of 
paramount interest (88).

CPP-assisted coating with Arg–Gly–Asp (RGD) peptide 
sequences on titanium alloys and polylactide acid (PLA) was 
shown to result in increased adhesion and proliferation of 
MSCs (87) and human OS cells (MG-63) (89). CPP-assisted 
coatings of titanium–aluminium–vanadium (TiAlV) alloys 
with human collagen I also showed promising in vitro 
results since CPP-assisted coating was superior to coating 
by absorption, as demonstrated by subsequent analyses of 
MSC adhesion, proliferation and osteogenic differentiation 
(90). In vivo experiments demonstrated that CPP-assisted 
coating with bovine collagen I leads to improved fixation 
of titanium screws in bone, indicated by an increase of 
necessary removal force (91). Enhanced chondrogenic 
differentiation of MSCs was demonstrated after CPP-
assisted coating of nanofibrous poly(ε-caprolactone) 
(PCL) scaffolds with chondroitin sulphate (92). Moreover, 
CPP-assisted coating of PCL nanofibers with gelatin led to 
increased cell adhesion and proliferation of MSCs (93). 
The possibility of coating with thermally instable materials 
also opens up new promising opportunities for coating 
with antimicrobial substances. By applying CPP, titanium 
was successfully coated with catechol/quinone groups to 
immobilize dispersin B that is known to possess antibiofilm 
properties (94). Moreover, guanidine coating of ultrahigh-
molecular-weight polyethylene (UHMWPE) assisted by 
CPP showed antimicrobial activity against E. coli and S. 
aureus (95).
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Another strategy for modifying implant surfaces, 
particularly suggested in experimental dentistry, is direct 
surface treatment with CPP without additive surface 
modification (39, 40). Direct treatment with CPP aims 
to improve biocompatibility, promote early wound 
healing and enhance osseointegration through increased 
osteoblast (OB) function and antimicrobial modification 
in terms of reduced potential for biofilm formation. 
Preclinical studies focusing on in vitro biocompatibility of 
CPP-modified implant materials are mostly performed by 
culturing musculoskeletal cells on the respective material. 
In vitro studies demonstrated improved biocompatibility 
of titanium and zirconium surfaces of implants by CPP 
treatment.

It has been shown that cellular proliferation, adhesion, 
spreading and osteogenic differentiation can be positively 
influenced by CPP treatment of implant surfaces, while 
these effects are predominantly attributed to plasma-
enhanced wettability (82, 87, 96). Helium-based CPP 
treatment of non-metallic biomaterials such as PLA 
scaffolds also increased the adhesion and proliferation 
of MSCs and OBs (97). Argon-based CPP treatment of 
various synthetic bone grafts showed increased protein 
absorption and cell adhesion of murine OBs (98). An 
important step for biocompatibility assessment is the 
evaluation of possible inflammatory effects induced by 
CPP-based surface modification since the innate immune 
system plays an important role in the early phases of 
foreign body response (99). The numerous in vitro studies 
on CPP-modified biocompatibility of mesenchymal cells 
consequently led to in vivo studies showing promising 
results. Improved osseointegration was demonstrated 
by increased bone-to-implant contact and bone area 
fraction occupancy at the radius diaphysis after treatment 
of pristine and calcium phosphate-coated titanium 
with argon-based CPP in a canine model (83, 100). 
Histomorphometric analyses also revealed increased bone-
to-implant contact and an enhanced proportion of newly 
formed bone adjacent to zirconium–titanium implants 
treated with argon-based CPP in canine mandibles 
(101). Comparable results were obtained following the 
implantation of argon-based CPP-treated dental titanium 
implants in the frontal bone of miniature pigs (102). 
Treatment of titanium with an argon/oxygen-based CPP 
showed both osteoinductive effects in vitro and increased 
osseointegration in the rat jaw compared to untreated 
titanium (103). The aforementioned in vivo studies did not 
report any adverse peri-implant side effects. A further goal 
of treating orthopaedic implant materials with CPP is the 
improvement of tribological properties. It was shown that 
UHMWPE reinforced with multi-walled carbon nanotubes 
exhibited optimized tribological properties when treated 
with argon-based CPP (104).

In addition to improved mechanical properties and 
osseointegration following CPP treatment, material 
modification to impart antimicrobial or antibiofilm 
properties to metallic biomaterials represents another 
important approach. Anti-biofilm surface modifications 
by direct CPP treatment have been suggested, particularly 
in experimental and pre-clinical studies. Most studies 
focusing on the antimicrobial effects of CPP have a dental 
background, i.e. aiming to reduce the adherence of oral 
bacteria or to eliminate oral biofilms on titanium and 
zirconia surfaces (82, 105, 106). However, several studies 
have also focussed on the elimination of bacteria relevant 
for orthopaedic surgery and PJIs. It was reported that air-
based CPP could inactivate E. coli and S. aureus generated 
biofilms on materials commonly used in orthopaedic 
surgery, such as stainless steel, UHMWPE and TiAlV alloys 
(107). Treatment of titanium surfaces with a clinical CPP 
device was superior to treatment with a clinical erbium-
doped yttrium–aluminium–granat laser device regarding 
antibiofilm activity (108). Furthermore, the combination 
of CPP treatment and mechanical cleaning is a promising 
approach for the decontamination of colonized implant 
surfaces (109).

Generally, CPP-assisted coating with bioactive 
molecules is a promising approach for biomaterial 
research and should be pursued further. The perspective to 
generate functionalized implants through CPP, especially 
the coating with biomolecules, will not only open up new 
avenues but also become an integral part of orthopaedic 
biomaterial research.

Cold physical plasma – a promising tool 
in skeletal regeneration

Since CPP is considered safe in general and largely 
biocompatible, a rising number of studies investigate 
its potential in skeletal regeneration. Bone healing and 
bone formation during remodelling are characterized 
by a continuous process of destruction, resorption and 
reformation of extracellular matrix mediated by MSCs, 
OBs and osteoclasts.

First studies investigating the influence of CPP on 
bone marrow, periodontal MSCs and adipose-derived 
MSCs (AD-MSCs) show stimulating effects regarding 
proliferation and differentiation, therefore indicating CPP 
as promising in the context of therapies aiming to enhance 
bone regeneration (110, 111, 112). The in vitro treatment 
of AD-MSCs with a helium-driven CPP device resulted in a 
slightly higher proliferation rate with no DNA-damaging 
effects evident when compared to controls (110). Similarly, 
helium CPP treatment of hBM-MSCs nearly doubled their 
proliferation rate, leading to an increased expression 
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of surface markers associated with pluripotency and 
stemness, thereby underlining CPP´s potential regarding 
therapeutic approaches in regenerative medicine (113). 
However, similar to already mentioned applications, 
these effects appear to be dependent on exposure 
time, experimental set-up and treatment conditions, 
as demonstrated, for example, in periodontal ligament 
MSCs. Therefore, successful therapeutic application 
requires careful consideration and fine-tuning of these 
parameters (111, 114).

CPP treatment of MSCs favours the induction of an 
osteogenic phenotype. It increases cellular ALP activity 
levels (111) and leads to an upregulation of ß-catenin, runt-
related transcription factor 2 and bone morphogenetic 
protein 2 expression (112) that are all markers for early 
osteogenic differentiation. Furthermore, CPP treatment 
increases the deposition of mineralized extracellular 
matrix (112). The CPP-induced osteogenic effects appear 
to be independent of the distance between the device and 
cells, as demonstrated by Eggers et  al. utilizing a DBD 
plasma device, although these results are questionable in 
the case of plasma jets (115). This underlines the feasibility 
of CPP devices for clinical applications (116). Analyses of 
key apoptotic markers such as p53, apoptotic protease-
activating factor 1 and caspases 3 and 9 in OB-like cells 
had been shown to be downregulated after CPP treatment 
in vitro. Additionally, CPP treatment leads to changes in 
cell morphology characteristic for increased cell migration. 
It was therefore concluded that CPP exhibits beneficial 
properties to support hard tissue repair (117).

Besides bone formation, osteoclastic bone resorption 
is of particular importance in bone homeostasis (118). 
Osteoclastogenesis is driven by the receptor interaction 
of receptor activator of nuclear factor κB (RANK) and its’ 
ligand (RANKL) (119). Indeed, it is known that ROS are 
involved in osteoclastogenesis and also act as intracellular 
messengers in RANK/RANKL signalling (120). In a rodent 
model of periodontitis, it was described that a 2 min CPP 
treatment of alveolar bone leads to a decrease in RANKL 
and an increase in expression of the osteoclastogenesis 
inhibitor osteoprotegerin (OPG) thereby influencing 
the balance between bone formation and degradation 
(121). Shimatani et  al. analysed CPP-mediated bone 
regeneration of large ulna defects on the foreleg of 
rabbits. Using a helium-driven plasma jet, the direct CPP 
treatment for 10 min significantly increased new bone 
formation within the defects compared to untreated 
control animals. Therefore, the authors suggested that 
CPP treatment may enhance bone healing capacity and 
reduces the rate of non-unions (122).

In summary, the current literature on in vitro data 
underlines CPPs’ potential as a powerful novel tool to 
aid skeletal regeneration. Yet, till now, the number of 
applications in animal models and clinical trials is still 

scarce. Consequently, further studies are essential to 
comprehensively investigate the underlying mechanism 
of CPP-enhanced bone formation to evaluate potential 
clinical application in orthopaedic and trauma surgery.

Adverse effects and side effects related 
to cold physical plasma

ROS are widely recognized for their dual role as they 
can be either harmful or beneficial in living systems 
which strongly depends on dosage and route as well as 
chronicity of exposure (123). Bone remodelling relies on a 
close equilibrium between bone formation and resorption 
that can be influenced by ROS (124). At physiologically 
low concentrations, ROS mediate intracellular signalling 
pathways that stimulate cell proliferation, osteogenic 
differentiation (125) and osteoclastic formation, thus 
influencing bone remodelling (126). High concentrations 
of ROS, however, were demonstrated to elicit detrimental 
effects in many diseases, including bone pathologies (121, 
127). High ROS concentrations negatively affect bone 
formation by promoting osteoclastogenesis (128) while 
inhibiting osteoblastogenesis (129), thereby shifting the 
balance in tissue homeostasis towards bone resorption. It 
was shown that high concentrations of hydrogen peroxide 
could negatively affect osteogenic differentiation and 
viability in the M3C3-T1 osteoblastic cell line (130). The 
cytotoxic side effects of ROS seem contradictory to studies 
underlining CPP biocompatibility and safety in rodent 
models and humans (131, 132). However, it should be 
noted that CPP applications are often single events, lasting 
only for a few seconds or minutes, with most ROS being 
generated quickly reacting with biomolecules thereafter. 
Accordingly, single CPP treatment of oral mucosa in 
mice for up to 1 min showed only transient and mild 
inflammatory reactions accompanied by focal superficial 
ulcerations and necrosis, which had been completely 
regenerated and re-epithelialized after seven days (133). 
Long-term risk assessment of monthly repeated oral 
CPP treatments performed in mice over 1 year (murine 
equivalent to 60 human years) was well tolerated, and no 
carcinogenesis was evident in a total of 450 mice included 
in the study. With regard to invasive lesions generated 
experimentally by repeated exposure to the carcinogen 
DBP, kINPen plasma treatment even reduced the number 
of animals with invasive tumours, suggesting potential 
protection from malignancy formation (134).

Similar results were reported for applications in 
humans. CCP exposure of laser-induced skin lesions 
revealed no cancerous effects in an 5-year follow-up 
while favourably affecting proliferation and wound 
healing (26). This underlines not only the short-term but 
also the long-term safety of direct tissue treatment with 
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plasma jet technologies. Two clinical trials report on CPP 
treatment of patients suffering from advanced squamous 
cell carcinoma of the head and neck region. Only mild 
and temporary reactions of malaise, exhaustion and dry 
mouth-like symptoms were observed for the treatment 
of different dermatological conditions with impaired 
wound healing and superinfection. Therefore, plasma jet 
applications can be considered safe in the case of direct 
tissue contact that is not prone to drying effects induced 
by the feed gas (135).

Yet, CPP also has the potential to damage and kill 
cells as a function of exposure time and working gas, 
which can be employed for disinfection or sterilization 
procedures. As mentioned earlier, anticancer therapies 
focus on CPP-mediated induction of cellular apoptosis 
that can also affect healthy cells (136). CPP effectively 
induces the DNA-damage response as frequently seen 
by γH2A.X phosphorylation across several cell types and 
plasma sources, but this is a consequence of oxidative 
stress signalling and apoptosis rather than direct DNA 
damage (137). A variety of studies using protocols 
qualified by the Organization for Economic Co-operation 
and Development (OECD) have failed to find increased 
genotoxicity, such as micronucleus formation, following 
CPP treatment (138, 139). Nevertheless, defining CPP 
dosing to correlate tissue effects is mandatory in plasma 
medicine (140). For regenerative in vitro approaches, 
biocompatible CPP doses were described to range from 
a few seconds/cm2 to 2 min/cm2 depending on single 
or repetitive application (114, 138, 141). Within this 
range, no mutagenic effects are evident, as shown for 
keratinocytes in vitro (138). Applied to primary human 
BM-MSCs for 30 s/cm2, CPP treatment was shown to be 
biocompatible while conserving BM-MSC functionality 
(114). Clearly, the biocompatibility of CPP treatment 
regimens is often determined by temporal duration. This 
definition does not consider specific exposure regimes 
and gas compositions influencing the complex ROS/RNS-
mediated tissue interactions (142, 143). Consequently, 
Cheng et al. introduced the concept of equivalent total 
oxidation potentials (ETOPs) to reliably define an applied 
CPP dose and its biological effects.

In the case of orthopaedic relevant cell types, the 
treatment of BM-MSCs with plasma-treated liquids 
was shown to be more capable compared to direct CPP 
exposure in vitro (144). Moreover, helium gas mixtures 
were advantageous in treating MSCs in vitro. Such studies 
on modifying CPP´s treatment regimens indicate that gas 
mixture, dosimetry, exposure time and administration 
procedure need pre-considerations to achieve the 
treatment goals that include maintaining overall tissue 
integrity (114, 145).

Taken together, there is no solid and experimentally 
robust evidence, e.g. based on OECD-accredited 

experimental protocols and cell lines, that suggests 
genotoxic effects of gas plasma treatment. Nevertheless, 
the deposition of ROS induces oxidative stress, which can 
trigger inflammation and DNA-damage responses as part 
of routine biological reflexes to supraphysiological ROS 
levels. Indeed, such risk profiling, including long-term 
in vivo studies, yet need to be performed in orthopaedic 
applications to qualify plasma technology also for those 
indications in the long term. Such considerations must 
be supported by in vitro studies that utilize relevant 
musculoskeletal cell sources to facilitate the proper 
translation of CPP-based technologies into routine clinical 
applications in orthopaedic and trauma surgery.

Discussion and future perspective

Considering the array of requirements for treatment 
regimens, it is unlikely that a single solution will suit 
all indications mentioned in the field of orthopaedics. 
Even though the development or modification of a CPP 
device could be beneficiary, it will be decisive to adhere 
to established standards to ensure comparability of future 
research. Regarding orthopaedic and traumatology 
necessities, a plasma device with the capability to treat 
the intramedullary cavity could draw special interest. 
Moreover, an indirect application via plasma-treated liquids 
could be a useful tool in arthroscopic as well as in septic 
revision surgery. Despite promising results in a variety of 
orthopaedic indications ranging from implant material 
modification over tissue regeneration up to bone cancer 
and antimicrobial therapies, CPP applications are not 
commonly implicated as a treatment option in orthopaedics 
and traumatology yet. The German Association of Oral 
and Maxillofacial Surgery published a guideline for the 
therapeutic use of CPP (S2k-Level, AWMF Registry No.  
007–107, February 2022). However, other bodies such as 
the German Society for Orthopaedics and Trauma Surgery 
did not contribute to the development of the guideline. 
Therefore, well-designed translational studies are needed 
to further corroborate and also validate the positive effects 
of CPP treatment reported in vitro. With the overall aim to 
introduce CPP therapies in orthopaedics, linking profound 
understanding of the underlying mechanisms of CPP with 
tissue viability, cytotoxicity and possible adverse effects 
could additionally improve the therapeutic potential. For 
instance, due to promising preclinical data on the CPP-
based surface modification of implant materials that lead 
to enhanced bone ingrowth in a reproducible manner, this 
approach appears qualified to undergo the next step in the 
translational workflow. Nevertheless, pending questions 
regarding side effects like possible changes in implant 
longevity or corrosion resistance and the release of metal 
ions and nanoparticles need to be answered. Also, in 

Downloaded from Bioscientifica.com at 01/29/2024 12:55:24PM
via Open Access. This work is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.
https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/


www.efortopenreviews.org

8:6GENERAL ORTHOPAEDICS 418

relation to skeletal regeneration, additional fundamental 
research is needed to solidify CPP as a sound therapeutic 
option. PJIs are still one of the most serious complications 
of modern arthroplasty. Thus, innovative therapies are 
needed urgently. Considering CPP´s broad antimicrobial 
properties, irrigation with plasma-treated liquids may 
be implemented in treatment protocols of PJIs, if further 
studies validate a standardized and safe utilization of CPP.

Conclusion

Taken together, CPP has proven to be a beneficial and cost-
effective treatment option for various applications and 
shows great potential in musculoskeletal medicine. While 
well established in dermatology and oral and maxillofacial 
surgery, further research is necessary to explore the potential 
feasibility of CPP in orthopaedic and trauma surgery.
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