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Scope and outline 

In their idealized forms, enzymes can facilitate complex reactions with extreme specificity and 

selectivity.1,2 Additionally, in this imaginative form, they only require mild reaction conditions, 

resulting in low energy consumption, and they are biodegradable, efficient, reusable, and 

sustainable.3 Unfortunately, this idealized form often deviates significantly from reality, where 

enzymes are more likely to be associated with marginal stability4 and low reaction rates, 

leaving them less than desirable for many industrial applications. As such, if we could master 

the process of engineering the configuration of a protein towards a given task, the implications 

could be staggering.2  

This thesis aims to contribute to the process of protein engineering, mainly how computational 

tools can be used to make the protein engineering process more efficient and accessible.  

Article I explores the current state of the art in machine learning-guided directed evolution 

and serves as a foundation for Article II, which is a concrete application of these techniques 

to an engineering campaign. Despite successfully improving overall activity and selectivity, we 

also observe limitations and constraints within the methodology. Article III then delves into 

these drawbacks and attempts to lay the foundation for a more generalizable and, more 

importantly, efficient engineering workflow, balancing the strengths and weaknesses of 

computational techniques with advances in gene synthesis. We then validated this novel 

pipeline in Article IV, where we show the potential of this methodology. Article V describes a 

more standard protein engineering campaign on squalene-hopene cyclases for potentially 

interesting products in the flavor and fragrance industry. Lastly, Article VI outlines a PyMol 

plugin for molecular docking.  

Article I  Improving enzyme fitness with machine learning 

  D. Patsch, R. Buller, CHIMIA 2023, 77(3), 116. DOI: 10.2533/chimia.2023.116 

Machine learning (ML) has permeated most aspects of life, including natural sciences. It holds 

immense promise for various applications and is expected to do the same for protein 

engineers. Various attempts have been made to include machine learning techniques in 

different protein engineering workflows, with varying degrees of success. This article 

discusses some prominent examples of machine learning-guided directed evolution and how 

it helped reconfigure various protein properties. Notably, it serves as a foundation for the 

approach taken in Article II. Additionally, the insights gained from previous successful 

applications of computational methodologies in protein engineering heavily inform the strategy 

developed in Article III and many practical decisions taken in Article IV. 
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Article II  Algorithm-aided engineering of aliphatic halogenase WelO5* for the 

asymmetric late-stage functionalization of soraphens 

 J. Büchler, S. Honda Malca, D. Patsch, M. Voss, N. J. Turner, U. T. 

Bornscheuer, O. Allemann, C. Le Chapelain, A. Lumbroso, O. Loiseleur, R, 

Buller, Nat. Commun., 2022, 13(1), 371. DOI: 10.1038/s41467-022-27999-1 

Evaluating mutations at different sites combinatorically quickly leads to libraries of 

unfathomable dimensions. Even targeting as little as three amino acid positions 

combinatorically will require screening tens of thousands of variants to cover all possibilities 

adequately. It is here where machine learning could have a notable impact by learning the 

underlying sequence-function relationship from a small subset of all possible variants and 

predicting the properties of unexplored protein sequences. This article studies the halogenase 

WelO5* and its ability to functionalize the potent anti-fungal agent soraphen A. Based on a 

partially screened 3-site combinatorial library, we could reliably predict both more active and 

selective variants for the derivatization of soraphen, reducing the screening burden 

immensely. 

Article III LibGENiE – A bioinformatic pipeline for the design of information-

enriched enzyme libraries 

 D. Patsch, M. Eichenberger, M. Voss, U. T. Bornscheuer, R. Buller, submitted 

to Comput. Struct. Biotechnol. J., 2023.  

It appears that predicting which mutations lead to inactive, misfolded, or insoluble proteins is 

a much easier task than predicting mutations that improve function. In addition to being a more 

reliable strategy, this approach is more generalizable, as destabilized enzymes are unlikely to 

improve any desired trait, such as stability, activity, or selectivity. Combined with recent 

advances in gene synthesis, this opens a potential path for a robust, generalizable, and 

efficient protein engineering strategy. Article III also includes a web platform, allowing 

researchers to implement this strategy for their projects quickly. 

Article IV Efficient evolution of a Kemp eliminase 

 D. Patsch, M. Voss, T. Schwander, U. T. Bornscheuer, R. Buller, article in 

preparation, 2023. 

The methodology introduced in Article III is applied to evolve the kemp eliminase HG3. This 

enzyme was previously evolved over 17 rounds of “classical” evolution, which serves as an 

excellent benchmark for comparison with the pipeline outlined in Article III. Notably, HG3.R5, 

an enzyme with 16 new mutations (compared to the wild-type HG3), emerged after only five 
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rounds, exhibiting a similar activity profile to HG3.17. HG3.R5 shares only one mutation with 

HG3.17. This article shows that we can navigate the sequence space quickly and efficiently 

by removing destabilizing mutations and screening the remainder. Interestingly, the 

evolutionary trajectory between both projects is entirely different, illuminating additional 

properties of the underlying sequence space. 

Article V  Asymmetric cation-olefin monocyclization by engineered squalene–

hopene cyclases 

 M. Eichenberger*, S. Hüppi*, D. Patsch*, N. Aeberl, R. Berweger, S. 

Dossenbach, E. Eichhorn, F. Flachsmann, L. Hortencio, F. Voirol, S. 

Vollenweider, U. T. Bornscheuer, R. Buller, Angew. Chem. Int. Ed., 2021, 

60(50), 26080–6. DOI: 10.1002/anie.202108037 

 * equal contribution 

Squalene-hopene cyclases (SHCs) are interesting enzymes for industrial cyclic terpene 

synthesis. Article V describes our efforts to gain enantio-complementary access to valuable 

monocyclic terpenoids with our cooperation partners at Givaudan. Initially, we identified a 

novel SHC, AciSHC, capable of converting (E/Z)-geranylacetone to small amounts of 

monocyclic (R)-γ-dihydroionone. We then improved the conversion to this product through 

process and enzyme optimization to 79 %. The knowledge gained from this reaction allowed 

us access to the complementary (S)-γ-dihydroionone through substrate engineering and 

further synthetic downstream steps. Article V presents an exciting possibility of tuning the 

absolute configuration of monocyclic products generated enzymatically through substrate 

engineering.  

Article VI  AlphaDock – docking plugin 

  D. Patsch, R. Buller, article in preparation, 2023. 

Molecular docking can help to elucidate and rationalize reaction pathways, protein-ligand 

interactions, and the impact of amino acid mutations on catalysis. As such, it is a standard and 

trusted tool in the toolbox of many protein engineers. Recently, AutoDock Vina, one of the 

most popular and widely used molecular docking programs, was updated and introduced 

various new features. Article IV describes AlphaDock, a PyMol plugin that aims to give 

researchers access to these new features and help with reproducibility and installation.  
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1. Introduction 

1.1. Current status of protein engineering strategies 

1.1.1.   Directed evolution 

Directed evolution has become a powerful technique for protein engineering over the years5 

and is commonly used to configure critical protein properties, such as activity, thermo-/solvent 

stability,  selectivity, and specificity.6,7  It mimics the natural selection process by subjecting a 

protein to cycles of generating genetic diversity, followed by selection for improved traits.5 

However, unlike nature which selects for survival or reproduction, directed evolution creates 

diversity much more aggressively and only carries those variants with improved biological 

function (fitness) to the next generation.8 This approach was incredibly influential in protein 

engineering and was awarded the 2018 Nobel Prize for chemistry.9 Genetic diversification is 

most commonly achieved by one of two approaches: random mutagenesis (error-prone PCR) 

and recombination of related sequences (gene shuffling)8, both of which are approachable to 

most researchers. The random nature of this diversification leads to variations that are distant 

from the active site (which, conversely, usually is the focus of most targeted approaches 

because it accommodates the most beneficial mutations)10,11 to be discovered.12 Additionally, 

no structural information about the protein is required. The lack of required information about 

the system makes directed evolution an attractive starting point for many engineering 

campaigns. 

Nevertheless, directed evolution can only barely scratch the surface of all possible enzyme 

variations. There are thousands of ways to alter a protein sequence by one change, millions 

to alter it by two, and so on,13 making it impossible to search this sequence space exhaustively. 

Notably, the random nature of traditional directed evolution, in which this space is explored, 

can also be seen as one of its drawbacks. Most changes introduced into a protein are either 

neutral or unfavorable,14 leading to an inefficient sampling of the sequence space. To make 

matters worse, the impact of individual mutations is often tiny, facilitating the need for multiple 

rounds of evolution to reach acceptable fitness levels.12,15 This sampling (or screening) usually 

represents the main bottleneck in protein engineering campaigns, as only a limited number of 

variants can be evaluated feasibly (typically in the range of 103-104).  
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Figure 1: Principle of directed evolution. Directed evolution mimics the natural selection process by subjecting a 
protein to cycles of generating genetic diversity, followed by screening for improved traits. Gene diversification is 
most often achieved through error-prone PCR or gene shuffling. The resulting variant library is then screened. This 
screening represents the main bottleneck in directed evolution, as the theoretical size of the generated variant 
library is astronomical. Improved variants are then characterized to select a parent for the next round. This iterative 
process runs until no further improvements are achieved or the project goals are met.  Image from Patsch & Buller, 
2023.16 

1.1.2.  Rational design 

Rational design emerged as an alternative to directed evolution.17 It aims to limit the screening 

effort to only a few amino acid substitutions based on an intimate knowledge of the function 

or structure of a protein.18 This can significantly reduce library size and, by extension, 

screening efforts. Rational design is particularly appealing when no high throughput assay is 

available.12 

For example, information from multiple sequence alignments (MSA)19,20 or structure-based 

computational design,21,22 and molecular dynamics (MD)23 simulations may be employed to 

increase enzyme stability and functional expression. These techniques are a cornerstone of 

many protein engineering strategies. For this reason, they will be discussed in more detail in 

separate sections below.  

However, it must be emphasized that these computational techniques are not a silver bullet. 

A high prediction accuracy is required since even a single deleterious mutation can invalidate 

the engineering effort.24 Achieving such an accuracy remains a significant challenge for 

specific tasks such as altering or inverting enantioselectivity.17 

Additionally, researchers may find rational design less approachable and generalizable than 

directed evolution. A thorough computational background is required on top of the mandatory 

expertise in the biological/chemical aspects of protein engineering. It can be challenging to 

rationalize which sites, specific residues, or combinations of mutations should be evaluated. 
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Figure 2: Rational design and directed evolution. In rational design, information from various sources is used to 
design specific variants. Diversity is created significantly more randomly in directed evolution, resulting in much 
larger libraries. Rational design can be much more appealing when no high-throughput assay is available.25 
However, depending on the task, individual mutations might not contribute significantly to fitness. This requires the 
introduction of multiple mutations, which requires exceptional prediction accuracy. Image adapted from Dvorak et 
al., 2007.26  

1.1.2.1. Rational design strategies 

The optimal procedure for selecting potentially beneficial mutations or variants depends on 

the characteristic to be configured. Targets related to catalysis, such as selectivity, specificity, 

or activity, require different approaches than targets related to expression or stability. The 

former is often related to residues that influence substrate binding, stabilize transition states, 

or facilitate product release.27,28 These residues can be identified, for example, with tools to 

predict/analyze molecular docking,29 study receptor-ligand interaction networks,30 or tools to 

study the binding pocket and its access tunnels.31–34 Techniques for improving stability or 

expression (which can sometimes be hard to separate) include consensus design, co-

evolution, rigidifying flexible protein areas, and redesigning surface charges.35–39  

These strategies vary in complexity and difficulty, but they all aim to identify specific residues 

for experimental evaluation. However, there are no definitive guidelines for their applicability, 

often leading researchers to rely on heuristics when balancing the diverse goals of an 

engineering campaign. Streamlining the site selection process could significantly enhance the 

accessibility and efficiency of protein engineering. The upcoming sections will concisely 

introduce commonly used rational design tools, focusing on those relevant to this thesis and 

their potential applications in different scenarios. Article III and Article IV will then focus on 

how this array of tools and options could be more consistently integrated into protein 

engineering workflows with differing objectives. 
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1.1.2.1.1.  Molecular docking 

Molecular docking tools are routinely used to predict the orientation of a ligand when bound to 

an enzyme. Such predictions can be helpful in various applications; For example, millions of 

compounds can be docked against a receptor to select potential lead candidates for 

treatments from enormous chemical libraries. This has led to the identification of STX-0119 

for lymphoma,40 novel human histamine H4 receptor ligands,41 and Pim-1 kinase inhibitors,42 

as well as potential springboards for therapeutic designs toward SARS-CoV-2,43,44 among 

many others.  

In rational design, docking can give insights on residues that might interfere with a ligand of 

interest or hint at which ones should be replaced to improve binding or better stabilize 

transition states (in combination with interaction network analysis). Understanding which 

residues are close to the bound ligand can be valuable by itself. Those positions are the target 

of many rational/semi-rational protein engineering strategies considering the active site often 

harbors most of the beneficial mutations.45 Molecular docking is also very commonly used at 

the end of protein engineering campaigns to rationalize differences in catalytic properties (for 

example, why the improved variant is more selective than the wild-type).  

 

Figure 3: Examples of applications of molecular docking in this thesis. a.) Kemp Eliminase HG3.17 docked with the 
transition state analogue 6-nitrobenzotriazole.15 b.) Docking of the substrate isomers (E/Z)-geranylacetone in the 
homology model of AciSHC.46 c.) Docking of soraphen A into a model of variant WelO5*.47 

As docking is such a vital aspect of drug discovery and protein engineering, over the years, 

more than 60 tools have been developed for this purpose.48 Docking software generally uses 

a scoring function to quantify the protein-ligand complex's chemical potentials, electrostatic 

potentials, and shape.49 In most cases, this consists of sampling different conformations of a 

flexible receptor in a rigid receptor, then optimizing this conformation based on the tool-specific 

scoring function.48  

One of the fastest and most widely used tools for this task is AutoDock-Vina.50 It was initially 

developed and published by Dr. Oleg Trott in 2010 but was recently improved and expanded 

by the Forli lab at The Scripps Research Institute.29 The researchers added various new 

features that make AutoDock-Vina more attractive.  
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These features include: 

 

- Multiple ligand docking: for example, ligand and cofactor. 

- Flexible residue docking: rather than treating the receptor as a completely rigid object, 

this allows for selected residues to be moved. To be more specific, it allows for different 

rotamers of selected residues. The backbone (C-alpha atoms) stays in place. 

- Hydrated docking: to model water involved in protein-ligand interactions, which is often 

neglected. 

- New scoring functions: allow the exploration of the energy landscape with different 

search algorithms.  

 

Notably, the new AutoDock-Vina also exposes many new options and configurations to tailor 

the docking process to the users' needs.  

Article VI will introduce AlphaDock, a PyMol plugin developed within the scope of this thesis 

that aims to make the new AutoDock-Vina features more accessible to researchers. 

1.1.2.1.2.  Consensus approach – evolutionary information 

Consensus-based protein engineering assumes that, on average, the consensus amino acid 

(the most conserved residue in a multiple sequence alignment) contributes more to protein 

fitness than the other possible amino acid substitutions at this site.51 The intuition behind this 

assumption is that deleterious or disadvantageous mutations tend to be purged by evolution.24 

Interestingly, these changes often positively affect specific protein properties, particularly 

stability. As with other protein engineering techniques, there is no clearly defined way to apply 

this approach. The basic principle that the consensus residue (the most common residue in 

the evolutionary context) replaces the wild-type residue stays the same. However, the 

thresholds that define "consensus" do not. A popular web server for the identification of hot 

spots, aptly titled HotSpot Wizard,52,53 suggests the following: Consensus design can be 

implemented as either frequency or majority based. In frequency-based design, the wild-type 

residue is replaced by the consensus if the consensus residue is present in at least 50 % of 

all analyzed sequences. The criterion for majority based is different. Here, the wild-type is 

already replaced if the consensus value is 40 %; however, the consensus residue must also 

be more than five times as frequent as the wild-type. The Protein Repair One-Stop Shop 

(PROSS) web server24 applies a different heuristic. Here, a position-specific substitution matrix 

(PSSM) is computed,54 and only residues with a favorable PSSM score (>0) are considered. 

The PSSM represents the log probability of observing any given amino acid at any position in 

the protein.24 
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The source of the MSAs that serve as the foundation for consensus design also varies. A good 

starting point might be sequence databases such as Pfam55 and Superfamily56 or querying 

more extensive databases such as UniProtKB/Swiss-Prot,57 the Protein Data Bank (PDB), and 

NCBI.58  

The variation of ways to source evolutionary information and the differences in evaluating it 

will inevitably lead to different results. However, as large-scale validation datasets do not exist, 

proving the optimal strategy is impossible. Nevertheless, a strategy derived from previous 

experiences is often enough to provide satisfactory results and improve a desired trait.24,52,53  

1.1.2.1.3.  Computational mutation scan 

Another common strategy in protein engineering is evaluating the effect of mutations 

computationally. Force field calculations can indicate whether any given mutation positively or 

negatively influences a protein characteristic.53 Similarly to consensus-based design, this is 

mainly used to target stability/expression. The intuition here is that flexible residues have few 

interactions with their neighbors, so replacing them with different residues that form contacts 

can lead to more stable proteins.59–61  

The impact of amino acid substitutions, single point or multiple point mutants, are quantified 

by evaluating the difference in predicted free energy between the wild-type and mutant 

(ΔΔG).62 This requires efficient conformational sampling methods to create the mutant and an 

accurate free energy function to score it.63 Some of the most popular modeling tools for these 

tasks in the academic community include FoldX64 and Rosetta.64 However, different tools 

might be required for different applications. Depending on computational resources and 

available licenses, the researcher/practitioner might reach for alternatives, of which there are 

plenty.  

1.1.2.1.4. Molecular dynamics for protein design 

Molecular dynamics (MD) is a critical tool in protein engineering. It is a way to simulate how 

atoms and molecules move and behave over time. This is achieved by solving Newton's 

equations of motion in a system of moving and interplaying particles. A physics-based 

potential energy function or force field calculates their properties and forces.23,65  These force 

fields are either generated empirically (from experiments) or calculated from quantum 

mechanics or a combination.66 

Researchers routinely rely on MD to craft more efficient biocatalysts and therapeutics. 

Studying the behavior of a protein over time develops the understanding of protein chemistry 

and folding,23 which in turn builds a stronger intuition of how a protein might function.  
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MD can easily be combined with other tools as well. For example, most docking tools treat the 

receptor as a rigid object - a simplification - which does not reflect reality. The structural 

flexibility of receptors should ideally be considered during modeling,67 as it plays a vital role in 

protein-ligand complex formation. 

This is similar to moving from the key-lock representation to the induced-fit model.68 

Conceptually this can be achieved by an iterative process of docking a flexible ligand into a 

rigid receptor, then performing a short MD simulation on the resulting complex. This additional 

malleability allows the receptor to "fit" to the introduced ligand. Then the ligand is docked again 

into the adjusted protein.69 Notably, improved accuracy comes at the cost of the docking 

procedure being much more computationally expensive. Additionally, the process does not 

necessarily have to be performed iteratively. Docking results can already be improved 

significantly by running short MD simulations on the output from AutoDock Vina.70 

 

Molecular dynamics can also be of great use when designing proteins for higher stability, 

expression, or resistance to harsh environments. The strategy is called "rigidification of flexible 

sites",37 which can be identified through MD simulations. In combination with ΔΔG calculations 

and evaluating the evolutionary context, the researcher can identify sites of interest and which 

substitutions at these sites they should consider.  

The most significant limitation of MD is its computational cost. To employ MD for studying 

protein folding and flexibility, or even binding/unbinding events, the simulation has to be run 

for periods upward of 20-500 ns.71 Such timeframes can be prohibitively expensive for most 

researchers. On top of the computational cost, the computational complexity of setting up the 

system, with appropriate forcefields and parameters, must not be underestimated. For this 

reason, researchers often turn to B-factors as an alternative metric for protein flexibility. B-

factors are an experimental metric for protein flexibility and occur during crystallization due to 

X-ray scattering from thermal motion.72 If ions and small molecules related to the protein were 

co-crystallized, B-factors give a reliable and easy estimate of flexible regions within the 

macromolecule.   

1.1.2.1.5.  Stability–function trade-offs 

In 2014, Hyun June Park and colleagues published a study on a computational design strategy 

for Candida antarctica lipase B (CalB).73 The researchers took a very rational approach toward 

protein design. Initially, they performed MD simulations at increasing temperatures (300 K, 

330 K, 360 K, and 400 K). Doing so led to identifying seven residues that fluctuated the most 

as the simulation temperature increased. These seven sites were then further investigated 
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with the Rosetta tool to predict specific residues that might improve stability over the wild-type 

(see chapter 1.1.2.1.3.), resulting in three specific mutants: A146D, T158S, and A251E. Then, 

they performed MD simulations and physical stability experiments on these newly created 

variants. Regarding their simulation and stability profile, A146D and T158S behave 

similarly/worse to the wild-type. However, variant A251E does not. It shows less flexibility 

during the MD run and improved stability characteristics compared to the wild-type. Their 

experimental setup measured residual activity after incubation at 50 °C for four hours.  

Interestingly, when they measured specific activity, the more stable variant A251E only 

exhibited 50 % of the performance of the wild-type. In contrast, the slightly less stable 

(compared to the wild-type) variant T158S exhibits significantly higher specific activity than 

the wild-type under native conditions.  

This study highlights an important trade-off: as the thermodynamic stability increased, the 

relative activity decreased, and vice versa. However, this is not always the case. There have 

been reports of negative74–77 and positive correlations78–80 between rigidity (thermodynamic 

stability) and function. The critical consequence of these conflicting results is that the 

relationship between distinct protein traits might be challenging to generalize, as different 

proteins behave differently in different situations.23  

Multiple goals must be balanced during a protein engineering campaign, and different 

techniques might be required depending on the goal. In addition, the application and 

combination of these techniques are often based on heuristics, and no clear guidelines exist. 

This can result in unnecessarily complex and inefficient processes. Articles III and IV focus 

on how computational tools can be more consistently integrated into protein engineering 

workflows with the aim of reducing cost and complexity. 

1.1.3.  Semi-rational design 

The design tools for directed evolution have become increasingly diverse and range from 

purely random81 to highly rational.82 While we separate the techniques in name, they often 

overlap, and a clear distinction becomes challenging to draw in practice.25 The vastness of the 

combinatorial sequence space requires some rational input, and the limitations and 

inaccuracies of computational techniques often require additional variants to be screened. 

This middle ground, called semi-rational design, combines elements of rational design and 

directed evolution to create smaller, more focused libraries of higher quality.83,84 Ideally, such 

a combination compensates for individual techniques' shortcomings and bolsters their 

strengths. Researchers narrow the sequence space to potential hotspots based on information 

from sources such as docking, machine learning, phylogeny, the 3D structure, function, or 
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previous knowledge (such as mutational data).17,83 Rather than only a handful of variants, 

researchers use this information to construct focused libraries (also called smart libraries) 

ranging in size from ~200-2000 samples. The exact number is chosen based on practical 

considerations, such as the capabilities of the required analytical systems and screening 

assays.85  

Combining computational and random techniques in this way addresses some significant 

drawbacks of the individual strategies. On the one hand, focused libraries lead to a more 

efficient sampling of the sequence space, resulting in a lower screening burden than traditional 

directed evolution.86,87 On the other hand, evaluating more samples than in rational design 

allows for more leniency with respect to computational limitations and inaccuracies.  

Although semi-rational design has some attractive advantages, researchers may find it even 

less approachable than rational design. The desire to screen more than a handful of variants 

also raises practical aspects to consider, such as, for example, the physical construction of 

the designed smart libraries.  

 

 

Figure 4: Protein engineering strategies, sorted by screening effort. In traditional evolution, the sequence space is 
explored randomly. In rational design, on the other hand, specific variants for evaluation are carefully planned and 
designed. The factors that define which strategy to use include, among others, the available information and 
screening capabilities. Image from Balke et al., 2017.88 

The most prominent example of semi-rational design is the combinatorial active site saturation 

test (CAST). Here, the protein crystal structure or a protein homology model is used to identify 

residues in the binding pocket (in the simplest case – the technique has been extensively 

adapted to various problems).61 A few selected sites are then randomized, individually or in 

combination, relying, for example, on the popular QuikChange protocol, resulting in economic 

libraries of high quality.89 Evaluating combinations combinatorically might reveal synergistic 

effects that would have been missed otherwise. However, such an approach introduces a 

whole new set of challenges; For one, the library size increases exponentially with the number 
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of sites chosen (three sites: 8 000 possible combinations, four sites: 160 000 combinations); 

for another, the issue of oversampling cannot be neglected. As the number of mutants 

increases, so does the probability of generating and screening a duplicate variant. As a result, 

an increased number of variants need to be screened to obtain a particular library coverage. 

Assuming each sequence occurs with equal probability, the required "oversampling factor" 

(Of) can be calculated as described in Equation (1).90 

O = -ln(1-Pi)            (1) 

Where Pi describes the probability of a particular sequence occurring in the library.  

 

 

Figure 5: Calculating the oversampling factor as a function of percent coverage as described in Eq. (1). 

Consequently, to achieve 95 % coverage, approximately three times the number of variants 

must be screened (Figure 5). This oversampling represents a major bottleneck in protein 

engineering and multiplies the already significant screening effort.  

Machine learning could provide a way to bridge this gap by learning sequence-function 

relationships on a smaller subset of the entire library and making predictions on the remainder, 

sidestepping the issue of oversampling and simultaneously reducing the screening burden. In 

contrast to traditional directed evolution, which discards information about everything but the 

most beneficial mutations, machine learning techniques might be able to use this data to 

speed up the evolution process by learning a function representing the underlying protein 

landscape from a set of sequence-fitness pairs. With this function, additional variants can be 

"screened" in-silico, allowing variants to be evaluated at a scale/pace that cannot be 

accomplished with wet-lab experiments alone.91 The potential benefits of ML make it an 
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attractive research objective, and multiple attempts to apply it to protein engineering have 

been made, including efforts to increase enzyme activity92,93 and stability94,95.  

1.1.4. Machine learning-guided directed evolution 

Machine learning already affects many areas of our daily lives, from translating languages96 

to suggesting movies we might like,97 and is rapidly making its way into traditional life sciences 

as well. The most notable example is AlphaFold 2, which swept away its competition in the 

14th Critical Assessment of Protein Structure Prediction Challenge (CASP14).98 For the first 

time, the winning solution demonstrates competitive accuracy with experimentally determined 

structures, even when no similar structures are known.99 This is undoubtedly an astounding 

achievement; some even consider it a solution to protein-folding, a decades-old research 

problem in biology.100 AlphaFold 2 has given rise to other algorithms that reduce the time 

required to predict a 3D structure with atomic accuracy from a protein sequence even further, 

down to only a few seconds.101 Given what has happened in the past few years, it is 

reasonable to assume that other areas of protein engineering also stand to gain significantly 

from machine learning. 

High-accuracy and easily accessible protein structures from models such as AlphaFold 2 are 

already helpful to protein engineers. However, machine learning could have the most 

beneficial impact by reducing the screening burden. Ideally, the sequence-function data of 

variants screened in a directed evolution campaign could be used to predict which variants to 

evaluate next. The only additional costs this strategy would incur are sequencing and the 

required computing power, which are constantly getting more affordable.  

 

 

Figure 6: Directed evolution with and without machine learning. Image adapted from Yang et al., 2019.102 
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Machine learning has already found application in protein engineering for various problems, 

from improving enantioselectivity17,103 to enzyme activity47 and stability.104  Although the targets 

may vary, the process is usually similar. Initially, a part of the sequence space is screened to 

create a dataset of annotated function pairs. Then, these pairs are first represented as a vector 

before training a model and relying on that to guide further exploration. Article I reviews 

previous applications of machine learning in protein engineering, and Article II applies these 

techniques to tailor a halogenase for macrolide derivatization. 

 

2. Results  

2.1. Machine learning-guided directed evolution 

2.1.1.       Overview: Improving enzyme fitness with machine learning (Article I) 

Using machine learning techniques to reduce the astronomically large sequence space 

constituted by all possible amino acid combinations is an attractive proposition. As such, 

multiple attempts in this regard have been made. While these attempts vary wildly in their 

application and often rely on different techniques, models and encoding strategies, they also 

highlight some important commonalities.  

First, it is essential to realize that not all facets of protein engineering can benefit equally from 

machine learning. Most importantly, machine learning algorithms work best with clean and 

reproducible data (garbage in, garbage out),105 which cannot always be asserted in biological 

systems. Additionally, the costs and especially time requirements of sequencing all variants 

can be crucial in opting for different optimization strategies. Machine learning might also not 

be advisable in an ultra-high-throughput system, where the overhead of sequencing and 

predicting far outweighs the cost of screening. The same could be said about the opposite, 

very low throughput approaches, as only a handful of samples will not produce reliable 

predictions. However, from experience, most engineering campaigns do not operate in these 

extremes and could accommodate ML into their workflows.  

Once the decision to rely on machine learning to guide directed evolution has been made, one 

has to decide how to i) represent sequences and train the sequence-function model and ii) 

which predicted sequences should be evaluated in the laboratory. There exists a significant 

amount of diversity within each of these points. For example, a protein can be encoded 

numerically in various ways. Feng et al.103 represent each amino acid by one-hot encoding 

(each site consists of a 20-dimensional vector of zeros, except for the position of the specific 

residue at that position, which is represented as a one). Rather than a simple vector of ones 

and zeros, proteins can also be encoded by their physicochemical and biochemical 
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properties.106 Ideally, introducing such information can help the models make better decisions 

with fewer training data points. Cadet et al.93 even went a step further and processed the 

obtained numerical sequences by means of Discrete Fourier Transform (DFT). The 

researchers intend to process the protein signals to reveal additional information embedded 

in them.93,107 Recently, advances in unsupervised learning have made it possible to represent 

the protein as a whole, not just by its individual amino acids. These representations contain 

information from physicochemical properties to remote homology and structural components, 

allowing for improved predictions across various tasks.108  

Like the diverse ways a protein can be encoded, multiple techniques have been applied to 

learn sequence-fitness relationships with varying complexity. Interestingly, some of the most 

prominent examples of protein engineering rely on the analysis of protein sequence activity 

relationships (ProSAR) developed by the US-based company Codexis.104,109 This technique is 

based on simple one-hot encoding and statistical analysis through linear regression. ProSAR's 

objective is not always to select the best variant in each round but to rapidly identify favorable 

recombination mutations to attain fitness targets. The researchers at Codexis attribute the 

decision to move forward with a decent variant, instead of being tied down with an exhaustive 

search for the optimal enzyme, as the key to their successful evolution campaigns.104  

The Codexis examples highlight the critical practical circumstances behind algorithm-aided 

directed evolution. Considering the entire process is crucial when designing novel algorithms 

and strategies. What is the optimal way to introduce machine learning into protein engineering 

workflows? What areas can benefit the most? What model or method is the best? How many 

predictions should be evaluated? 

 

At the time of writing, these questions are hard to answer generally. No clearly defined 

benchmarks exist to compare different machine learning-guided directed evolution 

techniques. Different protein encodings, machine learning models, hyperparameters, etc., will 

have to be tested and validated on each task to maximize predictive accuracy. More protein 

engineering examples that rely on machine learning are required to validate algorithms on 

more than a handful of datasets.47,110 

2.1.2. Application: Improving enzyme fitness with machine learning (Article II) 

We sought to explore the feasibility of machine learning to configure enzymatic activity and 

regioselectivity. Towards this end, in Article II, we first studied the halogenase WelO5*111 and 

its ability to halogenate soraphen A selectively.47 While the wild-type enzyme is incapable of 

doing so, more promiscuous WelO5* variants were constructed in previous studies, and an 

engineered halogenase showing activity toward soraphen A, producing two products 1a and 
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1b (Figure 7a), was identified. We selected three sites (V81/A88/I161) for complete 

combinatorial randomization based on these previous experiments and additional docking 

studies. These three sites already lead to a library size of 8.000 (203); however, considering 

the required oversampling factor of three,90 roughly ~27.000 variants (assuming only 20 

codons at each site) need to be screened to achieve 95 % library coverage. As such, we 

determined this to be an ideal application for machine learning-guided directed evolution. 

A total of 504 unique variants were confirmed experimentally, and each sequence was 

associated with activity data. This corresponds to a library coverage of 6.3 %. Different 

encoding strategies and machine learning techniques were explored and validated through a 

10-fold cross-validation scheme to assert generalizability and maximize predictive accuracy. 

In the final process, each WelO5* mutant in the library was represented as a vector, created 

by concatenating each residue's physicochemical and biochemical properties at each of the 

three sites. Predictions towards activity were made with Gaussian processes. The encoding 

and model selection scheme was similar to previously reported approaches.112 The best 

predicted variants towards activity and regioselectivity were then experimentally validated. We 

were pleasantly surprised to discover that all seven variants anticipated to have increased 

activity functioned well, with four halogenases even beating the previous best variant (as 

shown in Figure 7). Furthermore, the variants predicted to have higher selectivity displayed 

the desired enzyme characteristic. Specifically, seven of eight produced halogenases showed 

high selectivity toward the chlorinated soraphen regioisomer 1b, while the variant "AHG" 

showed absolute regio-selectivity and doubled activity compared to the previous best 1b-

producing variant. 
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Figure 7: a.) The experimentally measured activity and regioselectivity data from the three-site WelO5* combinatorial 
library (green). The predicted variants towards activity are highlighted in blue and mutants predicted towards selectivity 
in orange. The y-axis represents chlorination regioselectivity. b.) Soraphen A, docked in a model variant of WelO5* 
V81G/I161P. Image from Patsch & Buller, 2023.16  
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2.1.3. Reducing enzyme sequence space by predicting and excluding destabilizing 

mutations (Article III) 

Machine learning models can predict patterns and guess possible outcomes based on the 

training data. However, the fitness landscape is not always rugged, and mutations can behave 

in foreseeable ways – by combining additively to produce more active variants.113 An essential 

aspect of a machine learning-guided approach would be the ability to pick up on epistatic 

effects that might not be present in the training data. Specifically, this refers to epistatic effects 

that improve fitness and could not have been identified typically, particularly cases such as 

combining two mutations that individually perform poorly to produce a variant with notably 

better fitness. Doing so is far from trivial. It will require researchers to show that it is possible 

to predict epistasis in the first place and that this approach can be generalized to other 

systems. In our research, we only observed such an epistatic interaction once out of 

thousands of data points, and interactions presented in the literature can often also be found 

through simple addition. 

It is essential to ask what we can predict, how these predictions can be validated, how our 

strategies can generalize, and how we can justify the added cost of computational techniques. 

This reasoning led to Article III. Various computational studies revealed that predicting which 

mutations are destabilizing (leading to a decrease in function) is much easier and more reliable 

than predicting those mutations that improve function.24 This is an important distinction and 

allows for different techniques to be used in ways that might not be immediately obvious, such 

as enabling the use of stability predictions for activity optimization. 

For instance, Codexis evolved a carbonic anhydrase towards improved activity at higher 

temperatures by saturating all non-catalytic residues in the first round.104 Through this initial 

screening, they identified 84 unique mutations that performed better than the wild-type under 

their screening conditions. We calculated the predicted ΔΔG values for all single-point mutants 

and noticed that most of these improved variants were within the top 60 % of predicted ΔΔG 

values (cartesian ΔΔG protocol),64 implying that a significant portion of the screening space 

could have been excluded computationally (Figure 8b).  
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Figure 8: a.) Predicted ΔΔG values of single-point mutants of a carbonic anhydrase.104 Lower values indicate higher 
predicted stability. The blue density plot corresponds to all possible single-point mutants, whereas the orange 
density plot/area shows the distribution of all 84 identified beneficial mutations. b.) The same data, but visualized 
as a line chart. Subplot a.) indicates that a part of the sequence space could have been excluded by predicting 
variants that destabilize the protein. Subplot b.) depicts how reducing the sequence space (x-axis) by removing 
destabilizing mutations affects the remaining hits. For example, if the most stabilizing 40 % of sequences are 
removed, most (> 90 %) of the initial 84 mutations remain. Image from draft Article III.  

Notably, predicted ΔΔG values become much less informative below a certain exclusion 

threshold. Fold improvement over wild-type is not correlated to predicted ΔΔG values in the 

ΔΔG range where hits were discovered (-7.5 to 4.7 rosetta energy units - REU). We also 

observed this pattern, that improved variants are not predicted to be strongly stabilizing in 

different systems with different objectives.  

This finding by itself is not necessarily useful yet. Filtering the sequence space by removing 

destabilizing mutations results in libraries that are way too diversified to be economically 

covered through traditional degenerated primers. One possible solution to the problem of 

constructing complex custom libraries could be micro-array-synthesized oligonucleotides, also 

knowns "oligo-pools".114 The potential upsides and applications of oligo-pools make them 

incredibly interesting for protein engineers in other aspects besides constructing pre-filtered 

libraries. For example, oligo-pools could significantly impact the application of common 

strategies such as alanine scans,115,116 or large-scale saturation projects (SSM on every other 

site, n-th sphere,117 full non-catalytic).104  

However, we noticed relatively high error rates in preliminary experiments with these oligo-

pools. Only roughly 52 % of all sequences exhibit desired mutations, with the remaining 48 % 

being split between wild-type and multiple-point mutants. Such rates are also within what is 

expected from the literature.118–120 We slightly improved this in Article III by optimizing the 

PCR protocol, resulting in roughly 60 % of all sequences displaying the correct mutations.  
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Removing destabilizing mutations from enzyme libraries and screening the rest has some 

interesting properties; however, computational resources and complexities might limit its 

accessibility. As such, Article III also introduces LibGENiE, a web platform to create smart 

libraries and design oligo pools. By providing common protein properties, such as stability, 

evolutionary context, and flexibility, users can reduce their sequence space. Additionally, the 

website makes it easy for users to design complex oligo libraries to create the filtered library. 

 

 

Figure 9: a.) Schematic overview of the LibGENiE workflow. An MSA and a 3D structure are created from the user 
input sequence through publicly accessible APIs. Then, different tools are used to predict various protein 
properties. b.) LibGENiE will automatically split the gene into fragments of a desired length and design all possible 
single-point mutations as well as pool amplification primers. Image from draft Article III. 

2.1.4. Draft manuscript: Efficient evolution of a Kemp eliminase (Article IV) 

Article IV focuses on the concrete application of the methodology outlined in Article III. We 

observed that various tools and measures are required in a standard protein engineering 

campaign, depending on the desired protein characteristic to evolve. Even with a thorough 

computational background (just one facet of the entire process) and understanding of the 

system, defining a strategy and which sites or residues to reconfigure can be challenging.  

However, we observe that a fitness decrease also accompanies mutations destabilizing the 

protein. This way, the same strategy – removing undesired variants – can be applied to 

multiple tasks. By relying on external tools, such as the website introduced in Article III, it 

becomes possible to design libraries and the required oligo sequences to construct them in a 

few hours.  

To better understand the benefits and potential downfalls of the filter/oligo-based strategy, we 

sought to re-evolve HG3, an artificial enzyme computationally designed to catalyze the not 

naturally occurring Kemp reaction.121,122 As the initial activity of HG3 was far below natural 

enzymes, it was evolved over the course of a significant engineering campaign, totaling 17 

rounds and introducing 17 new mutations, resulting in the Variant HG3.17 (kcat/Km = 230'000 

± 20'000 s-1 M-1).15 
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We chose HG3 as a target for evolution because the catalyzed reaction can be easily 

screened using a chromophore-based read-out. In addition, data on the original evolutionary 

trajectory toward HG3.17 is available, allowing for a direct evaluation of the performance of 

our filter/oligo pipeline. HG3 libraries were designed based on the strategy outlined in Article 

III, by removing mutations predicted to be destabilizing and including mutations from the 

consensus approach described in 1.2.2.1.2. We designed 1600-1800 variants at each round 

to cover most of the active site and any mutation below a ~0.5 REU ΔΔG cutoff. We split each 

round of evolution into two sections: 1) finding hits and 2) recombining hits. To find hits, we 

aimed to evaluate roughly 2000 variants, in line with coverage/sampling rates reported by 

Codexis.104 We then built simple combinatorial libraries from the best-performing variants, 

including the wild-type. The reason to focus on simple recombination rather than more 

elaborate schemes is because of the limitations described in the section about Article III. 

Finding the most optimal solution in each round is much less critical than quickly identifying 

favorable mutations for recombination to attain fitness targets.104 

Within five rounds of evolution, 16 new mutations were introduced into HG3, resulting in the 

final variant HG3.R5. This variant shows similar activities as HG3.17 under screening 

conditions (~458 FIOP for HG3.R5 and ~396 for HG3.17). Notably, even though both Kemp 

eliminase variants exhibit similar activities, they are quite different from each other. HG3.R5 

differs from HG3 by 16 mutations yet only shares one mutation with HG3.17, which contains 

17 mutations that differ from HG3. This mutation is K50Q, which was identified as a key 

mutation in HG3.17. Previous studies hypothesized K50Q to stabilize the negative charge 

developing during the transition state.15,123 

 

 

Figure 10: Comparison of the mutations of HG3.R5 and HG3.17. Mutations in the final HG3.R5 variant are colored in red. The 
mutations corresponding to HG3.17 are colored in blue. K50Q, the mutation that both variants have in common, is highlighted 
in turquoise. Pink indicates the sites that both variants substitute, though with different residues. Image from draft Article 
IV. 
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These results highlight the filter/oligo approach as an interesting protein engineering 

technique. Clearly, only a certain number of destabilizing mutations can be removed, leaving 

a relatively large sequence space to be screened. However, these mutations can be removed 

confidently. Additionally, oligo pools are a fascinating new technology that could completely 

change how protein engineers think about smart libraries. They are still far from perfect at the 

time of writing, suffering from high error rates, resulting in a large fraction of undesirable 

sequences.  

Nevertheless, the pipeline described in Article III and applied in Article IV highlights the power 

of this technique. Rather than the 17 rounds described in the original publication,15 the total 

amount of evolution rounds was reduced to 5, each requiring 8-10 weeks to complete. The 

final variant HG3.R5, even though distinct in its composition, exhibited the same catalytic 

activity as HG3.17 stimulating considerations about the underlying protein-fitness landscape 

and the structural factors governing catalysis.   

 

2.3. Asymmetric cation-olefin monocyclization by engineered squalene-  

hopene cyclases (Article V) 

Ionones are important components of the enticing scent of many flowers and fruits, such as 

violets, roses, and raspberries, and are commonly used in cosmetics and perfumes.124,125 

However, different isomeric forms can exhibit diverse olfactory profiles with varying odor 

thresholds.126,127 As a result, only one isomer, or a defined mixture of them, is ideally employed 

in a given flavor and fragrance formulation, facilitating the need for selective and "natural" 

synthesis pathways. In Article V, we employed squalene-hopene cyclases (SHCs) to provide 

a novel approach for the highly enantioselective asymmetric synthesis of (R)-γ-dihydroionone 

(3) from the affordable industrial product geranylacetone. SHCs are capable of pre-folding 

linear terpenoids into specified chiral conformations, allowing for precise stereo control over 

polyene cyclizations,128 and, just as importantly, have been shown to be highly evolvable.129–

132 This ease of reconfiguration makes them an ideal starting point to gain access to valuable 

monocyclic terpenoids starting from either (E/Z)-geranylacetone (1) or (E/Z)-pseudoionone.  

Most research on SHCs focuses on a few highly studied variants, which were reported to 

convert our desired substrate into an undesired bicyclic product (2).133,134 As such, we decided 

to expand SHC diversity by creating an exhaustive wild-type enzyme library of 31 SHCs evenly 

spread across all clades of the phylogenetic tree. Screening this library led to the identification 

of AciSHC, which uniquely generated the monocyclic products γ-dihydroionone (3) and α-

dihydroionone (4) with low conversions (0.7 % and 0.05 %) from (E/Z)-geranylacetone.  
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Scheme 1:  Transformations observed for AciSHC with (E/Z)-geranylacetone (1).  

As the product γ-dihydroionone, is a product of interest for the flavor and fragrance industry, 

we decided to engineer AciSHC towards better activity and selectivity to convert 1 into 3. We 

focused our efforts on the active site to improve substrate pre-folding and reduce space in the 

active pocket to limit unproductive binding modes. Thus, we selected 14 sites for full single-

site saturation, leading to several mutants with improved conversion (between ~3 to 5.4 fold 

compared to the wild-type) at sites A169X, P263X, A310X, G606X, and I613X. We then 

selected to combine these beneficial mutations in a 5-site combinatorial library with a 

theoretical size of 288 variants. The combined mutations revealed multiple improved 

enzymes, with the best variant, called AciSHC_R2.1 (A169P, A310M, G606C, I613V), 

improving upon the wild-type by more than 30-fold, achieving a conversion of 1 into 3 of 21.4 

%. We then improved the yields further to 79 % through process optimization. Notably, product 

3 was almost exclusively produced from (Z)-1. The best-performing engineered AciSHC 

variants were able to differentiate between the geometric geranylacetone isomers, forming the 

monocyclic products (R)-3 and (R)-4 from (Z)-(1) and the bicyclic product from (E)-(1). Based 

on the obtained knowledge, our partners at Givaudan set out to access (S)-3, a valuable 

intermediate for alpha-ambrinol.  
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Figure 11: a.) Homology model of AciSHC with the docked substrate (Z)-1. Sites around the active pocket, close 
to the substrate, and residues that might improve the productive binding of the smaller substrate were selected for 
single-site saturation mutagenesis (orange). The best-performing variants at sites A169X, P263X, A310X, G606X, 
and I613X were then further investigated in a combinatorial library. b.) Overview of the observed conversion for the 
different single-site saturation libraries. The blue horizontal line represents the wild-type activity. Image from 
Eichenberger et al. 2021.46 

This was accomplished with a masked (E)-1 substrate to prevent the second cyclization step, 

resulting in the synthesis of (S)-3 with perfect enantioselectivity. The study indicates that SHCs 

could provide a path toward enantioselective and stereodivergent transformations of 

geometric isomers. Additionally, SHCs can provide access to both enantiomers of a desired 

product, including the valuable building block (S)-3, through suitable substrate engineering 

and downstream processing. 

2.4. Application note: AutoDock Vina plugin for PyMol (Article VI) 

A major consideration with computational tools is their accessibility. One such example is 

molecular docking, a common denominator of many protein engineering projects and a 

valuable tool for studying the interactions between molecules (such as a receptor and a 

ligand).135 As such, we developed AlphaDock, a PyMol plugin to access the powerful and 

widely popular tool AutoDock Vina,29 which was recently expanded to include various new 

features. AlphaDock focuses on reducing user friction and application friction by simplifying 

the setup process and offloading computationally expensive work to more powerful 

workstation computers. Additionally, we place a big focus on reproducibility and traceability. 

All docking experiments are carefully logged, and a detailed history of all runs can be browsed 

and viewed. It is important to note that all required programs are containerized. This allows for 

an easy setup and ensures that results are always reproducible, irrespective of the computer 

the program is run.  

The Plugin and more information are available at: https://github.com/ccbiozhaw/dock. 
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Figure 12: AlphaDock Plugin for PyMol. All of the available options of AutoDock Vina 1.2+ can be accessed and 
altered. Each docking experiment is stored and can be accessed at any time through the history menu. 
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3. Summary 

The field of protein engineering has experienced significant growth in recent decades, 

resulting in numerous successful applications of biocatalysts. Nevertheless, reconfiguring a 

protein for a specific task remains a complex and intricate endeavor. It is challenging to 

navigate the vast protein landscape, where peaks high enough to be relevant for an industrial 

application might be few and far between. In fact, the sheer magnitude of this space makes a 

comprehensive search entirely impossible. Ultimately, in protein engineering, the goal has to 

be attaining the highest peak given the available resources. 

Article I explores successful applications of machine learning, a potentially powerful tool when 

aiming to reduce sequence space, in protein engineering. Article II builds on this exploratory 

work to configure the activity and regioselectivity of the halogenase WelO5*. Based on only a 

subset of all possible combinations, machine learning techniques were able to predict 

improved variants accurately.  

Interestingly, some of the most prominent evolution campaigns (also described in Article I) 

considered the entire engineering process rather than just individual aspects. Ideally, we 

would design the perfect enzyme computationally, order a single gene and move to industrial 

production. However, for now, that is an utopic thought. As such, we must consider the 

practical limitations of protein engineering. How significant is the impact of a (computational) 

method? To make an enzyme industrially relevant, we might need to evolve it over multiple 

rounds. Can we justify the additional cost and delays introduced by sequencing and 

predicting? How can we combine these workflows with advances in automation? Do we need 

to find an "optimum" at every step, or should we move forward with a "good enough" variant? 

Such practical considerations lead to Articles III and IV. Predicting the variants that do not 

improve fitness rather than those that do, has a lot of beneficial attributes. Most importantly, it 

seems to be a much easier task. Additionally, it allows for significant generalization. Whether 

the objective is to improve activity, stability, or enantioselectivity, if a mutation causes the 

enzyme not to express or fold adequately, it is unlikely to improve function. Notably, recent 

advances in gene synthesis have made it possible to construct these libraries economically. 

This combination, removing destabilizing mutations and creating the remaining variants, could 

constitute a new, very efficient way of protein engineering. It also directly addresses most of 

the questions posed above. We can remove destabilizing predictions reliably. Furthermore, 

oligo pools are cheap and have short turnaround times, allowing us to conclude a round of 

evolution in ~8 weeks (which can easily be optimized), and their flexibility perfectly integrates 

with automation platforms. We can modulate the strictness of filtering to account for screening 

limitations without introducing additional burden in library construction.  
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We validated this strategy in Article IV, where we re-evolved the Kemp eliminase HG3. After 

five rounds of evolution, we arrived at the variant HG3.R5, which shows slightly improved 

activity (under screening conditions) than HG3.17. While not necessarily the focus of the 

study, HG3.R5 took a completely different evolutionary trajectory than HG3.17, and the two 

variants only have one mutation in common. This work demonstrates the potential of the 

introduced filtering strategy. Additional work will be required to optimize the process further, 

yet the results indicate a bright future for the methodology. 

While developing new tools and strategies is essential, providing publicly accessible tools to 

distribute them should not be neglected. Without that, the reach of an idea will be severely 

limited, and exciting techniques might get lost. We explored this additional extension to 

method development in Articles III and VI with a website and a PyMol plugin. 

 

The enzyme engineering workflows of the future will most likely combine various disciplines 

and techniques to achieve enhanced efficiency, robustness, and generalizability. Rather than 

improving individual aspects in a vacuum, it will be essential to consider the process as a 

whole and how different parts interact. In this spirit, the finding of this thesis indicates the 

potential of combining advances in gene synthesis with computational techniques to build 

novel enzyme engineering pipelines. 
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Abstract: The combinatorial composition of proteins has triggered the application of machine learning in en-
zyme engineering. By predicting how protein sequence encodes function, researchers aim to leverage machine
learning models to select a reduced number of optimized sequences for laboratory measurement with the aim
to lower costs and shorten timelines of enzyme engineering campaigns. In this review, we highlight successful
algorithm-aided protein engineering examples, including work carried out within NCCR Catalysis. In this context,
we will discuss the underlying computational methods developed to improve enzyme properties such as enantio-
selectivity, regioselectivity, activity, and stability. Considering the rapid maturing of computational techniques,
we expect that their continued application in enzyme engineering campaigns will be key to deliver additional
powerful biocatalysts for sustainable chemical synthesis.
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1. Introduction
In optimal settings, enzymes can facilitate complex reactions

with extraordinary specificity and selectivity.[1,2]However, practical
reality usually differs from this ideal as wildtype enzymes are often
just marginally stable in the selected reaction conditions[3] and per-
form at scales well belowwhat is required to drive an industrial pro-
cess. However, as enzymes are combinatorically composed from
a limited set of simple building blocks, improved catalysts can be
constructed in the laboratory by applying enzyme engineering strat-
egies, among them the directed evolution of proteins. Consequently,
engineered enzymes are harnessed inmany industrial fields ranging
from the fine chemical to the pharmaceutical sectors.[4–6]

Over the last decades, the technique of directed evolution has
developed into a powerful tool (Nobel prize for chemistry 2018)[7]
and today, it is routinely applied to tailor critical protein proper-
ties.[4,8] Directed evolution mimics nature’s selection process in
the laboratory through iterative cycles of gene diversification and
selection of the encoded protein variants generating enzyme lin-
eages with new or improved functions.[9] However, unlike nature,
which selects for survival or reproduction, directed evolution can
be used to precisely tailor desired protein traits.[10] In this context,
astounding improvements in target biological functions for sev-
eral different enzyme families have been achieved, including ac-
tivity,[11–13] stereoselectivity,[14,15] thermostability,[16] and solvent
tolerance.[17] Strikingly, these studies screened only a relatively
small fraction of the target protein’s underlying sequence space,
raising the question of whether better sequence solutions would,
in principle, exist for the function of interest. Unfortunately, such
a question cannot easily be answered experimentally: Full ran-
domization of a small protein consisting, for example, of 100
amino acids leads to a search space of sequences that is larger
than the estimated number of atoms in the universe.[18] Even the
targeted randomization of predefined positions within a protein
quickly leads to a screening bottleneck: While replacing a single
amino acid position with all other natural amino acids yields an
experimentally manageable library size of 201 variants, combi-
natorically investigating as little as five sites in a protein already
leads to a library size of 205. Clearly, it is difficult to experimen-
tally screen such large libraries exhaustively, even when using
advanced automation. In addition, most mutations introduced into
a protein are either neutral or unfavorable,[19] leading to an even
more inefficient sampling of the sequence space. To address the
numbers problem in protein engineering, researchers are increas-
ingly interested in implementing computational techniques, such
as molecular dynamics simulations,[20] phylogeny, docking,[21,22]
and, more recently, machine learning (ML) (Fig. 1).[23]

ML, in particular, has emerged as a powerful and versatile
tool for various applications, many of which affect our daily lives,
such as translating languages[24] or recommending what movies
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ing algorithm (ASRA),[29,30] which focuses on finding beneficial
regions in a combinatorial enzyme library with minimal screening
effort. The underlying principle of the approach is to first evaluate
a small subset of all possible variants of a combinatorial enzyme
library experimentally before reordering the amino-acid pairs to
maximize the smoothness of the measured property landscape
(Fig. 2).[28] Unlike the traditional quantitative structure–activity
relationships (QSAR),ASRA does not make explicit assumptions
about linearity, additivity, or specific relationships between struc-
ture and function. It only relies on the hypothesis that the underly-
ing protein landscape is, to some extent, smooth.[31,32] This is an
assumption ASRA shares with most, if not all, computational ap-
proaches and, from our experience, represents a valid bias in pro-
tein engineering in most cases.Within theANEH study,[28]ASRA
was shown to be a powerful tool for obtaining reliable estimates
about areas of interest within the sizable sequence space that aris-
es from evaluating variants combinatorically. Notably, ASRA did
not rely on complex protein/residue descriptors making the algo-
rithm a compelling starting point for protein engineering cam-
paigns.

Following this first example, a second study on ML-aided
directed evolution for stereoselectivity was published in 2018.
Interestingly, it builds upon the same experimental platform as
the previous example, namely the enantioselectivity of epox-
ide hydrolase from ANEH.[33] Starting from only nine experi-
mentally evaluated single-point mutants, the researchers built a
model and predicted the enantioselectivity of all combinations
of these initial changes (29). The algorithm, which was used to
predict the new sequences, dubbed innov’SAR, was developed
by PEACCEL, a France-based biotechnology start-up focusing
on enzyme engineering and drug discovery.[34] Innov’SAR only
requires sequence information and experimental protein fitness
values for training and subsequent inference. Overall, the applied
process can be summarized in four steps: 1) The entire protein
sequence is encoded based on each amino acid’s physicochemi-
cal and biochemical properties; 2) from this numerical protein
representation, a protein spectrum is calculated through digital
signal processing techniques; 3) the protein signals and their re-
spective fitness values are used to construct a regression model;
4) this regression model finally predicts the properties of all pos-
sible variant permutations. Applying these steps to the epoxide
hydrolase from ANEH led to predicted sequences which, when
evaluated experimentally, revealed enzyme variants with im-
proved enantioselectivity.

Fig. 2. Application of the ASRA algorithm: First, a random subset of a
two-site combinatorial library is screened (left). Next, the amino acid
pairs are rearranged to maximize the smoothness of the fitness land-
scape (right). This rearrangement highlights beneficial regions (yellow
box in right plot) to explore in a library of reduced size. In this represen-
tation, black squares denote amino acid combinations which were not
experimentally measured, whereas a colored filling indicates variants
that have been measured for activity.

to watch next.[25] Looking forward, ML is expected to profoundly
impact the field of protein engineering as well. In contrast to tra-
ditional directed evolution, which discards information except if
related to the most beneficial mutations, ML techniques can rely
on all generated data to speed up the evolution process. This accel-
eration might be achieved by learning a function representing the
underlying protein landscape from a set of sequence-fitness pairs.
Based on this function, additional variants can be evaluated com-
putationally, allowing exploration of the sequence space at a scale
that cannot be achieved through laboratory experiments alone.[26]
The potential benefits of ML make it an attractive research objec-
tive, and multiple attempts to apply it to protein engineering have
been made. This report is by no means meant to cover them ex-
haustively but instead focuses on work related to research carried
out in the frame of NCCR Catalysis.

2. ML-aided Optimization of Enzyme Stereoselectivity
From an organic chemist’s perspective, facilitating the tailor-

ing of the stereo- and regioselectivity of enzymes might be one of
the most exciting applications of ML in protein engineering.[27] In
this context, a first ML-driven study to improve enantioselectivity
for the selective ring opening of a racemic mixture of glycidyl
phenyl ether catalyzed by an epoxide hydrolase from Aspergillus
niger (ANEH) was published in 2012.[21,28] More selectiveANEH
variants were predicted through the adaptive substituent reorder-

Fig. 1. Integration of in silico tools into directed evolution of proteins.
As the random generation of genetic diversity is often inefficient when
targeting to improve a desired function, information from various bioin-
formatic sources, such as phylogeny, docking, tunnels, and ML tools,
can be used to build ‘smart’ enzyme libraries. Additionally, ML methods
might be able to learn the underlying enzyme fitness landscape and
suggest improved variants which have not yet been experimentally
screened. Image created with BioRender.com.
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tein engineering,[39–41] we then explored the remaining sequence
space in silico. Toward this goal, we first represented each variant
numerically by concatenating the physicochemical and biochemi-
cal properties of the amino acids at each mutation site. Multiple
amino acid descriptors exist, such as the very comprehensive
AAindex[42] or the T-scale descriptor.[43] In our case, combining
the T-scale descriptor and selected additional amino acid charac-
teristics[44] produced the best results. With this representation in
hand, we trained a Gaussian process. Gaussian processes have
received increased attention in the ML community and have also
been applied successfully to protein engineering.[39,40]They are ac-
curate and flexible methods for regression and classification and
can give a reliable estimate of their own uncertainty. Following
training, our model was then used to make activity and regiose-
lectivity predictions on the library’s unexplored sequence space.
The best-predicted variants were synthesized and experimentally
assayed toward their activity and regioselectivity. Gratifyingly,
all seven variants predicted towards increased activity performed
well, with four halogenases outperforming the previous best vari-
ant (Fig. 3). Similarly, the variants predicted towards selectivity
exhibited the desired enzyme trait: While seven out of eight pro-
duced halogenases showed high selectivity toward the chlorinated
soraphen regioisomer 1b, variant ‘LHG’ exhibited not only abso-
lute regio-selectivity but also a doubled activity compared to the
previous best 1b producing variant.[37]

Overall, the algorithm-aided evolution process generated ha-
logenase variants capable of synthesizing three distinct chlori-
nated species from soraphen A and its derivative soraphen C in
quantities sufficient for biological testing. In the phenotypic tests,
which were carried out on six key pathogens in crop protection,
we found that soraphen A derivative 1b showed an overall better
performance than 1a whereas a chlorinated soraphen C derivative
displayed higher species selectivity than the other investigated
compounds.[35]

A further successful computational technique in protein engi-
neering is the analysis of protein sequence activity relationships
(ProSAR), which has been successfully applied to construct sev-

3. ML-aided Optimization of Enzyme Activity
Complementing the above-described applications of ML to

boost enzyme stereoselectivity, we set out to explore algorithm-
aided engineering of regioselectivity and activity. Interested in
the late-stage functionalization of complex molecules by direct
enzymatic CH activation, we explored the potential of Fe(ii)/α-
ketoglutarate dependent halogenases for the selective halogena-
tion of soraphen A,[35] a potent anti-fungal agent and a target of
pharmaceutical interest.[36] We identified a suitable starting se-
quence capable of catalyzing the desired halogenation reaction in
a previously engineered variant of the halogenase WelO5* from
Hapalopsiphon welwitschii IC-52-2.[37] Notably, we found that
while the wildtype enzyme did not accept the bulky substrate,
variants that had been specifically engineered to have a broader
substrate spectrum exhibited activity.[37] Based on this initial ref-
erence and additional docking studies, we selected three critical
residues (V81/A88/I161) for complete randomization, e.g., re-
placement of each amino acid by all other 19 amino acids. As
delineated above, the theoretical size of such a library calculates
to 203. However, due to the redundancy of the genetic code and
sampling reasons, the actual screening effort required to cover all
combinations exhaustively increases. Specifically, if the screening
aim is to cover at least 95% of all encoded variants in a library,
a three-fold oversampling should be targeted,[38] challenging ex-
perimentalists.

In our halogenase engineering project, we thus opted to ex-
plore ML methods to reduce the experimental screening burden
and accelerate the identification of beneficial mutations. Notably,
our study considered two main engineering objectives: Firstly, we
targeted to increase the overall chlorination activity of the enzyme
variants, and secondly, we aimed to control the regioselectivity
of the halogenation reaction, which would allow the analysis of
several derivatized macrolides in structure-function relationship
assays.[35]

As a first step, we experimentally confirmed 504 unique ha-
logenase sequence–function pairs, corresponding to 6.3% of the
theoretical library. Based on previous applications of ML in pro-

Fig. 3. a) Overview of the experimentally determined activity and regioselectivity results of the three-site combinatorial library of WelO5* (green) and
the predicted variants towards activity (blue) and selectivity (orange). Halogenase variants were capable to produce two chlorinated products of
soraphen A (1a and 1b). The y-axis shows the regioselectivity of chlorination. The selectivity (S) is calculated using the formula S = (SIM1a – SIM1b)/
(SIM1a + SIM1b). Activity data is normalized to a reference variant (GAP), which was included as an internal reference on each measured 96-well plate.
Each variant with a fold-improvement greater than 3.5 is highlighted with a three-letter code representative of the introduced mutations compared
to wildtype. For example, V81V/A88L/I161A is shortened to VLA. b) Docking of soraphen A (black) into a model of variant WelO5* V81G/I161P (light
blue). The enzyme model was generated using SWISS-MODEL[68] and the crystal structure of WelO5 (PDB ID: 5J4R) as a template. The macrolide
soraphen A was docked using AutoDock Vina.[69] The red spheres indicate the targeted positions for the full randomization of the library.
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4. ML-aided Optimization of Enzyme Stability
Of course, there are other protein properties that researchers

attempt to engineer with computational methods, including en-
zyme stability.[56,57]Notably, a study on theML-aided engineering
of hydrolases for PET depolymerization[58] has recently managed
to garner mainstream media attention. Even though more active
PET degrading enzymes have previously been developed,[59] the
approach is worth highlighting. The involved researchers relied on
MutCompute,[60] a 3D self-supervised convolutional neural net-
work, to predict stabilizing mutations. The neural network was
trained on a large set of experimentally determined structures from
the protein data bank to associate amino acids with neighboring
chemical microenvironments with the goal to identify novel gain-
of-function mutations.[60] MutCompute was then used to predict
which amino acids are not in an optimal configuration for their
local environments, effectively performing a single-site satura-
tion scan across all residues in the protein computationally. Sites
which the algorithm identified as ‘abnormal’were then optimized
according to predicted probabilities. This technique was applied
to the PET-hydrolysing enzyme (PHE) from Ideonella sakaiensis
(PETase),[61]andpreviouslyengineeredvariantsThermoPETase[62]
and DuraPETase.[63]Validation of the predicted changes revealed
scaffolds with improved thermostability (up to 10 °C ΔT

m
com-

pared to the respective reference variant), increased protein yield
(up to 3.8 fold increase), as well as enhanced catalytic activity (up
to 29 fold at selected temperatures).[58]

It should be noted that the MutCompute-type approach is quite
different from the examples highlighted above. Rather than learn-
ing from a subset of the theoretically available data and predicting
fitness within a defined sequence space, biological information is
extracted from vast and ever-growing protein databases harnessing
the fact that evolution seems to record information about structure
and function into evolutionary patterns.[64]This information can be
captured, to some extent, by these models and help guide decisions
in downstream tasks,[65] complementing and improving the repre-
sentations used to buildmodels in other machine-learning projects.

5. Conclusion and Outlook
ML is having a notable impact on the biological sciences. Just

a few years ago, determining a single protein structure could be
a month to year-long process; now, structures can be predicted
with similar accuracy within seconds.[64,66] As first engineering
examples suggest (vide supra), the information contained within
the vast sequence and structure datasets already collected might
be able to facilitate meaningful predictions even from a few ex-
perimentally determined data points. However, not all aspects of
protein engineering will benefit equally from ML. The additional
costs incurred by sequencing variants, synthesizing the predicted
genes, and the time and resources needed to ensure that high-
quality data is being provided to train the algorithms must be
weighed carefully with the advantages ML provides compared
to simply combining beneficial mutations with additive effects.
[67] Currently, no clear benchmarks to assess such a benefit exist,
as ML accelerated protein engineering examples are scarce, and
validating algorithms are restricted to only a handful of datasets.
[35,60]Yet, as the field of algorithm-aided enzyme evolution is be-
ing more firmly anchored into the biocatalysis sector and gene
synthesis and sequencing technologiesmature further, we are con-
fident that the in silico techniques will evolve into a key element to
help address the numbers problem in directed evolution.
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eral highly optimized enzyme variants.[45,46]This technique, which
was first published in 2005 by the US-based enzyme engineering
company Codexis, facilitated the development of a halohydrin de-
halogenase (HHDH) for the industrial production of ethyl (R)-4-
cyano-3-hydroxybutyrate (HN), improving the enzyme’s activity
by ~4,000 fold compared to the initial wildtype enzyme (Fig. 4a).
To achieve this goal, more than 18 rounds of evolutionwere carried
out, during which 35 distinct mutations were introduced into the
wildtype scaffold.[47] In later studies, ProSAR was also employed
to increase the stability of a carbonic anhydrase (CA), translat-
ing to a 4,000,000-fold improvement over the wildtype in terms
of compounded thermostability and alkali tolerance (Fig. 4c).[16]
Furthermore, ProSAR enabled the development of a 140,000-fold
improved Baeyer-Villiger monooxygenase for the commer-
cial manufacture of esomeprazole used in the blockbuster drug
Nexium® by engineering the natural biocatalyst over 19 rounds of
evolution.[48]Very recently, ProSAR aided in identifying beneficial
mutations in the evolution campaign of an amine transaminase,
highly optimized for the efficient production of a chiral sacubitril
precursor, a key component of a critical heart failure drug (Fig.
4b).[49]

The multivariate optimization strategy fueling the examples
above is an iterative process consisting of diversity generation
and statistical modeling. During diversity generation, potentially
interesting mutations are generated from various methods, such
as rational design, homology modeling, and random mutagene-
sis. These mutations are then evaluated in combinatorial libraries
of varying sizes and screened for activity. A small fraction of this
library is sequenced, typically in the order of 3*N, where N is the
number of diverse mutations. The generated sequence data then
serves as the training set for the statistical analysis. In ProSAR,
the statistical modeling step is based on the PLS variable regres-
sion technique,[45]which projects the sequence representations to
a space of reduced dimensionality to fit a linear model.[50,51] The
regression coefficients assigned to each variable represent the
impact of a mutation on fitness and are used to decide whether
mutations should be retained, discarded, or evaluated again in a
different context.[47] Notably, it is not necessarily a priority of
ProSAR to find the best variant in each round but rather to rapidly
identify beneficial mutations for recombination to reach fitness
targets.[16]

As delineated above, the ProSAR-driven approach focuses
on parallelized, fast, and efficient iterations in short timeframes.
However, not all biocatalysts can be assayed with high through-
put at a large scale, and consequently it might be necessary to
identify optimal sequences with minimized experimental bur-
den. Such a case was recently described by Greenhalgh et al.
who targeted an acyl-ACP reductase to produce fatty alcohols
in vivo.[52] The researchers relied on only 20 sequence–func-
tion pairs to initialize an iterative process consisting of in silico
prediction and experimental evaluations. Rather than predict-
ing which sequences were expected to show the highest activity
and evaluating only these variants, the next engineering round
was built on an upper-confidence bound criterion. This crite-
rion balances exploration and exploitation,[53,54] by simultane-
ously exploring areas of uncertainty within the sequence space
and assessing possibly improved variants. Such an approach is
particularly effective in minimizing the number of evaluations
of expensive experiments.[55] The researchers iterated over ten
design-test-learn cycles, sampling 10–12 sequences at each it-
eration, and saw gradual improvements in fatty alcohol titers,
cumulating in enzymes that produce above two-fold more fatty
alcohols than the wildtype sequences.[52] In our opinion, this
Bayesian-type optimization nicely contrasts the ProSAR ap-
proach, highlighting how project constraints define the optimi-
zation strategy to be used.
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Fig. 4. Overview of success-
ful ProSAR applications. a)
HHDH catalyzes a single-vessel
enzymatic conversion of ethyl
(S)-4-chloro-3-hydroxybutyrate
(2) to ethyl (R)-4-cyano-3-
hydroxybutyrate (3). Variants
with ~4,000 fold improvements
over wildtype were identified
after screening approximately
60,000 variants.[47] The evolved
protein structure is depicted as
a cartoon and mutated residues
are visualized as red spheres.
b) Engineering of an amine
transaminase for the efficient
production of (2R,4S)-5-biphenyl-
4-amino-2-methylpentanoic acid
(5), a precursor to a critical com-
ponent in the blockbuster heart
failure drug Entresto®. The final
transaminase variant, obtained
after 11 rounds of evolution, en-
ables an economic conversion
of ketone 4 with high yield and
purity.[49]The evolved transami-
nase homodimer is shown as a
cartoon with mutated residues
highlighted as red spheres. c) An
engineered carbonic anhydrase
for efficient carbon capture from
flue gas. The evolved protein,
depicted in green with muta-
tions shown as red spheres, is
employed in an absorber column
(blue pillar) where CO2 chemi-
sorbs into an amine solvent. The
HCO3

– containing amine solvent
and the evolved enzyme are then
transferred to a second column,
where CO2 is stripped at elevated
temperatures (red pillar). The
depicted carbon capture system
represents one of the most chal-
lenging industrial environments
applied to enzymes.[16] Image cre-
ated with BioRender.com.
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Algorithm-aided engineering of aliphatic
halogenase WelO5* for the asymmetric late-stage
functionalization of soraphens
Johannes Büchler 1,2, Sumire Honda Malca1, David Patsch1,3, Moritz Voss1, Nicholas J. Turner 2,

Uwe T. Bornscheuer 3, Oliver Allemann4,5, Camille Le Chapelain 4, Alexandre Lumbroso4,

Olivier Loiseleur4✉ & Rebecca Buller 1✉

Late-stage functionalization of natural products offers an elegant route to create novel

entities in a relevant biological target space. In this context, enzymes capable of halogenating

sp3 carbons with high stereo- and regiocontrol under benign conditions have attracted par-

ticular attention. Enabled by a combination of smart library design and machine learning, we

engineer the iron/α-ketoglutarate dependent halogenase WelO5* for the late-stage func-

tionalization of the complex and chemically difficult to derivatize macrolides soraphen A and

C, potent anti-fungal agents. While the wild type enzyme WelO5* does not accept the

macrolide substrates, our engineering strategy leads to active halogenase variants and

improves upon their apparent kcat and total turnover number by more than 90-fold and 300-

fold, respectively. Notably, our machine-learning guided engineering approach is capable of

predicting more active variants and allows us to switch the regio-selectivity of the halo-

genases facilitating the targeted analysis of the derivatized macrolides’ structure-function

activity in biological assays.
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Subtle molecular changes in small molecules can have a
profound impact on their biological activity and metabo-
lism. For example, monodechlorinated and didechlorinated

vancomycin lose approximately 30 and 50% of the antimicrobial
effect exhibited by parent antibiotic vancomycin1, respectively.
Similarly, the introduction of a single methyl group led to MK-
8133, a dual orexin receptor antagonist, with 480-fold boosted
potency2. In the latter example, the methyl group had to be
installed through a laborious five-step de novo synthesis3. In
contrast, late-stage functionalization (LSF) of C–H bonds offers
direct access to new analogs of a lead structure. In this way, LSF
constitutes a valuable tool to investigate structure-activity rela-
tionships of small molecules, especially natural products4, and
supports the optimization of on-target potency, selectivity, and
absorption-distribution-metabolism-excretion (ADME) proper-
ties while helping to improve physical properties such as solu-
bility and stability. In addition, LSF can be of aid in the protection
and exploration of novel intellectual property space by giving
access to molecular entities left unexplored by conventional
synthetic approaches3. Typical functionalizations of C–H bonds
include oxygenation, amination, methylation, borylation, thian-
trenation, azidation, and halogenation3,5. Notably, the incor-
poration of chlorine and bromine offers new routes to modify the
molecule through cross-coupling chemistry or substitution
reactions6.

The synthesis route to organohalides commonly involves
multiple steps. In order to achieve high chemo-, regio- and
stereoselectivities7, the use of protecting, directing, or activating
groups is often necessary. As some of these groups may need to
be removed in subsequent steps, such approaches lack atom
economy. Overall, the halogenation of unactivated C–H bonds
remains a challenge for chemists8,9. Enzymatic halogenations, on
the other hand, often exhibit excellent regio- and stereoselectivity
even in complex molecular settings, therefore complementing—
and sometimes outperforming— existing strategies10–13.

Biocatalytic halogenations are carried out by enzymes called
halogenases, which are typically classified according to their
catalytic mechanism: Heme, vanadium, and flavin-dependent
halogenases (Fl-Hals) follow an electrophilic aromatic substitu-
tion mechanism via the generation of hypohalous acid, iron/α-
ketoglutarate dependent halogenases (αKGHs) employ a radical
pathway, while S-adenosyl-L-methionine (SAM) fluorinases react
via a nucleophilic substitution14. In contrast to the electrophilic
Fl-Hals, which act on electron-rich sp2-carbons through the
intermittent generation of hypohalous acid, αKGHs can func-
tionalize unactivated C(sp3)-H bonds. The catalytic mechanism is
based on the generation of a high-valent FeIV=O intermediate
capable of abstracting a hydrogen atom from the substrate. The
resulting carbon radical is then coupled to the iron-coordinated
chlorine, thereby affording the corresponding halogenated com-
pound in a regio- and stereoselective manner (Fig. 1a). In recent
years, a handful of αKGHs have been described: The carrier-
protein dependent halogenases BarB1 and BarB215, SyrB216,
CytC317, CmaB18, HctB19, CurA20 and the synthetically more
interesting freestanding halogenases WelO521, WelO5*22, Wi-
WelO1523, AmbO524, the BesD25 family, the recently identified
plant halogenases SaDAH and McDAH26 as well as the halo-
genase AdeV27, which acts on nucleotide substrates.

To date, halogenase engineering has mainly focused on Fl-
Hals10,28–33 or haloperoxidases34,35 with the aim to provide cat-
alysts capable to derivatize non-natural substrates en route to
more valuable aryl-, alkoxy or amino acid compounds36–40 or for
their use as final products41,42. In contrast to the wealth of reports
on Fl-Hals, the number of αKG-dependent halogenases is small
and their reported substrate scope is mainly limited to their
natural substrates and close analogs. In 2019, the first examples of

engineering freestanding αKGHs toward non-natural substrates
were reported by us and others23,43. The studies highlighted the
malleability of αKGHs WelO5* and Wi-WelO15 by tailoring the
enzymes for the regio- and stereoselective chlorination of a non-
alkaloid type substrate and more closely related substrate analogs
of 12-epi-hapalindole C, respectively. In both cases, substantial
increases in apparent kcat (WelO5*: 400-fold compared to wild
type; Wi-WelO15: 276-fold compared to first-generation mutant)
could be achieved by enzyme engineering23,43. Despite the pio-
neering nature of these engineering studies, it should be noted,
that the chosen non-natural substrates were similar in size and
shape to the halogenases’ natural substrate 12-epi-hapalindole C.

Soraphens are the largest known family of myxobacterial
polyketides and display a diverse array of chemical moieties (e.g.,
unsubstituted phenyls and sensitive allylic ethers amongst other
features) which render them an attractive test case for an appli-
cation to a broader range of polyketides. Soraphen A, the main
representative of the soraphens, was identified in the supernatant
of the Sorangium cellulosum strain Soce26 and shows inhibitory
activity against several phytopathogenic fungi through inhibition
of acetyl-coenzyme A carboxylase (ACC)44. The crystal structure
of the yeast biotin carboxylase (BC) domain complexed with
soraphen A (PDB ID: 1W96) revealed that the macrolide acts as
an allosteric inhibitor45 by disrupting dimerization of the BC
domain and stabilizing the catalytically inactive monomer (Sup-
plementary Fig. 1)46. Even though highly potent, the further
development of these natural products as potent antifungal agents
has been hampered due to off-target selectivity concerns and
sensitization in mammals47. Notably, soraphen A has recently
also become a target of pharmaceutical interest44. In cancer
therapy research, several studies established that tumoral cells
have a dependence on de novo fatty acid synthesis and that
inhibition of ACC triggers apoptosis with no or little effects on
healthy cells48. Modified lead structures are therefore sought after,
both in agrochemistry as well as in pharmaceutical chemistry,
which—owing to the complexity and sensitivity of the natural
product—are, however, difficult to obtain in the quantities and
within the timeframes required by modern drug discovery49.
Consequently, the development of adapted synthetic methodol-
ogies, including biocatalytic transformations, are of key interest to
drive the development of complex, natural compounds into useful
products.

In this work, we assess the biocatalytic potential of αKGHs by
employing algorithm-assisted enzyme engineering to tailor the
recently described non-heme iron halogenase WelO5* from
Hapalosiphon welwitschii IC-52-3 for selective halogenation of
soraphen A (1), soraphen C (2) and their semi-synthetic analogs
3 and 4 (Fig. 1b). Phenotypic testing of the derivatized macrolides
against six different fungal key pathogens in crop protection is
carried out to inform about the halogenated macrolides’ biolo-
gical activity.

Results
Synthesis of starting material. Soraphen structures contain ten
stereocenters, including hydroxyl-, methyl, methoxy, and a
hemiacetal group rendering these natural products biologically
highly interesting but chemically very complex molecules. In
addition, such polyketide macrocycles are also known to adopt
several conformations50. While soraphen A can be accessed
through an optimized bioprocess47,51, its penultimate biosyn-
thetic congener soraphen C is a much less explored member of
the soraphen family and very difficult to isolate in sufficient
amounts from fermentation despite its value as a chemical
probe52. To obtain the compound for our study, we, therefore,
developed a concise semisynthesis starting from soraphen A
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(Supplementary Fig. 2). This route, entailing selective oxidative
demethylation of the allylic methoxy group and a subsequent
stereo-directed reduction of the intermediate ketone, offers the
first synthetic access to soraphen C. Even though soraphen C had
been obtained earlier through fermentation53, we are now
reporting the first complete characterization of this natural
product.

Identification of an active starting halogenase for halogenation
of soraphen A. To identify a halogenase which would accept
soraphen A, an enzyme panel consisting of 59 native and engi-
neered electrophilic and freestanding aliphatic halogenases cap-
able of acting on a wide range of sp2 and sp3-carbons was
screened (Supplementary Tables 1, 2). The engineered Fl-Hals
included in the panel were derived from literature31,41,42,54

whereas the engineered αKGHs consist of WelO5* variants which
we had previously identified as possessing a broadened substrate
scope43.

All halogenases, expressed in E. coli BL21(DE3), were used for
crude cell-lysate biotransformations of soraphen A in a deep-well
plate. While neither halogenation nor hydroxylation activity
toward the target substrate was detected for any of the wild type
enzymes, liquid-chromatography coupled to mass spectrometry
(LC-MS) analysis showed that biotransformations with 26 out of
the 28 included WelO5* variants led to the formation of
derivatized soraphen A. In particular, variants V81G/I161P,
V81G/I161G, as well as I161A, showed appreciable activity
leading to the detection of three prominent products with m/z
ratios of 577.2 and 559.2, which are consistent with the calculated
mass of two chlorinated products and a hydroxylated product,
respectively (Supplementary Fig. 3). The structures of the
chlorinated products 1a and 1b, as well as the hydroxylated
product 1c, were solved using nuclear magnetic resonance (NMR)
analysis, which confirmed chlorination and hydroxylation of
aliphatic carbon centers of 1 (Supplementary Fig. 4). Notably, the
enzymatic derivatization occurred at positions in the molecule
which would have been difficult to target via traditional chemical
means and opens options for further functionalization in
previously unexplored segments of the molecule.

In contrast to previous engineering studies on WelO5*, the
reaction selectivity (halogenation vs. hydroxylation) of the best-
performing variant V81G/I161P was slightly in favor of the
halogenation reaction (2:1 halogenation to hydroxylation ratio,

estimated via the SIM areas of the product peaks). This is
remarkable for the transformation of a structurally highly
divergent compound compared to the natural substrate 12-epi-
fischerindole U (Fig. 1b). As has been observed for WelO5* and
other αKGHs, this enzyme family’s reaction selectivity is strongly
governed by the substrate structure and substrate positioning in
the active site. It has been shown that the biotransformation of
12-epi-hapalindole C, another literature-known native substrate
of WelO5* similar in structure to 12-epi-fischerindole U22, led to
the predominant formation (ca. 50%) of hydroxylated product
and 25% of the desired chlorinated product 12-epi-hapalindole
E43. Other examples include studies on the carrier-protein-
dependent halogenase SyrB2, which turned into an effective
hydroxylase in response to the length of added C-atoms in its
native substrate L-threonine55.

Enzyme engineering of WelO5* for improved activity and
selectivity. While wild type WelO5* did not accept soraphen A,
mutation of only two residues near the active site conferred initial
halogenation and hydroxylation activity toward the bulky mac-
rolide substrate. This activity data underlines the striking malle-
ability of WelO5*23,43 allowing a considerable expansion of
substrate scope by exchange of very few amino acids strategically
positioned in the vicinity of the reactive iron species. Docking of
soraphen A into a model of the best-performing WelO5* variant
V81G/I161P, which was created using SWISS-MODEL56, led to
solutions in which the active site was capable to accommodate
soraphen A (Fig. 2). Based on these docking results and in
agreement with the studies from Hayashi et al.43 and Duewel
et al.23, three critical amino acid positions, namely 81, 88, and 161
(Fig. 2), were chosen for full randomization in a library targeted
for the use in an algorithm-aided enzyme engineering strategy.

Traditionally, gene mutagenesis methods for the generation of
variant libraries are PCR-based techniques and include error-
prone polymerase chain reaction (epPCR), saturation mutagen-
esis, or DNA shuffling. Saturation mutagenesis, as required in our
approach, is a highly advantageous technique in rational enzyme
design, however, it is known to suffer from amino acid bias
leading to reduced library quality and thus increased screening
effort57. In order to allow for an unbiased library construction, we
opted for a de novo library synthesis using high-fidelity on-chip
solid-phase gene synthesis58. This library construction strategy
allowed us to limit library diversity to the theoretical 8000
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variants (203) for the full co-randomization of residues at
positions 81, 88, and 161 and minimize screening effort. For
simplicity, we will report WelO5* variants with a three-letter
code hereafter. For instance, wild type WelO5*, which contains
the amino acids V81/A88/I161, is denoted as variant VAI,
whereas variant V81G/A88A/I161P, which was identified as being
active on soraphen A in the initial hit panel screening, is
dubbed GAP.

The synthetic gene library was ordered from Twist Bioscience.
The gene fragments were cloned into the pET28b(+) vector and
transformed into E. coli BL21(DE3) cells in house. About 504
unique variants (6.3% of the theoretical library) were confirmed
by Sanger sequencing and screened for the derivatization of
soraphen A (Fig. 3, red circles). As expected, we observed the
formation of the previously identified products in addition to a
second hydroxylated compound (1d). Overall, four distinct
soraphen A analogs could be produced by the analyzed enzyme
variants: Chlorination products 1a and 1b, as well as hydroxyla-
tion products 1c and 1d, were observed (Supplementary Fig. 4).
In all cases, hydroxylation product 1d was a side product and
formed only in minimal amounts (max. formation of 2%, not
isolated).

In comparison to the previously best-performing variant GAP,
we identified amino acid combinations (VIG, AVP, and TIA) that
boosted total chlorination activity for soraphen A by 8-10-fold,
whereas variant SLP increased the total halogenation activity by
13-fold. In addition to improving total chlorination activity, the
three-site combinatorial library also contained variants, which
modulated the regioselectivity of the halogenation reaction.
Instead of preferentially forming product 1a, variant LHS
exclusively led to chlorination product 1b while remaining
similar in total chlorination activity to variant GAP.

While the theoretical number of unique variants in a de novo
synthesized three-site combinatorial library is 8000, a much
higher number of samples will have to be screened in practice.
This is because the degree of oversampling increases with the

percentage of targeted library coverage. As a result, a library
coverage of 95% will require the analysis of ~24,000 variants59, an
effort which demands considerable resources. Inspired by
previous successful applications of machine learning in protein
engineering60–62, we explored the remaining protein landscape in
silico using Gaussian processes, allowing us to reduce the physical
screening burden and accelerate the accumulation of beneficial
mutations. By representing amino acids as a 17-dimensional
vector, which was obtained by concatenating the five-dimensional
T-scale descriptor63 and additional amino acid characteristics64,
our machine learning approach then defined the feature vector of
a sequence by joining the vector representation of its individual
amino acids at sites V81X, A88X, and I161X. With this strategy,
we were able to identify both more active and more selective
variants with noticeable accuracy and precision (Supplementary
Fig. 5 and Supplementary Table 3). All seven variants predicted
towards activity (Fig. 3, blue circles) were highly active, with four
of them outperforming the previous best variant SLP (up to a 16-
fold increase over GAP). Predictions toward selectivity (Fig. 3,
green circles) show a similarly high fraction of improved variants,
with one of them enhancing activity over the previously most
selective variant for chlorination site B by >2-fold while retaining
a complete selectivity for regioisomer 1b.

While the detailed mechanism behind the improved activity of
the evolved variants remains unclear, we attempted to get a better
understanding of the factors governing the regioselectivity of the
evolved variants by carrying out docking studies with substrate 1.
For these experiments, we used the available crystal structure of
WelO5 (PDB ID: 5J4R), a close homolog of WelO5*, as a basis of
our homology modeling with the tool SWISS-MODEL56.
Comparing the docking results of variant GAP, our most selective
variant for the production of 1a, with the analysis of variant
AHG, our most selective variant for the synthesis of 1b, we
observed a shift in substrate positioning with respect to the iron-
oxo and the Cl-ligand (Fig. 4 and Supplementary Fig. 6). The set
of mutations acquired in AHG presumably changes the binding
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mode of soraphen A in such a way, that H-abstraction is now
favored from a different C–H bond, namely C16, instead of C14
as observed for GAP (Supplementary Fig. 7).

To further assess the substrate promiscuity of the engineered
WelO5* variants and to expand our palette of uniquely derived
soraphen analogs for biological testing, we analysed the
transformation of soraphen C (2) and the soraphen analogs 3
and 4. In analogy to soraphen A, we observed the formation of
two chlorinated and hydroxylated products for soraphen C. Also,
the soraphen analogs 3 and 4 led to the formation of several
singularly derivatized macrolide structures (Supplementary
Table 4). Interestingly, the initial whole-cell screening using

soraphen A as a substrate did not reveal doubly chlorinated or
doubly hydroxylated products nor a mixture thereof. To further
investigate the substrate promiscuity of our engineered variants,
we continued by carrying out in vitro studies applying optimized
reaction conditions using mono-chlorinated 1a, 1b, and 2a as
substrates and purified enzyme preparations of variants GAP,
SLP, VLA, and WVS. Of all combinations tested, variants
WelO5* SLP and VLA exhibited detectable substrate promiscuity
and proved capable to produce minor amounts of doubly
chlorinated products starting from 1a (0.04% conversion with
SLP) and 1b (1.7% with SLP and 1.9% conversion with VLA) as
well as a hydroxylated product derived from 1b (3.7% with SLP
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and 5.8% conversion with VLA) (Supplementary Fig. 8). Overall,
and in alignment with the observations made for the halogena-
tion of a martinelline-derived fragment by Hayashi et al.43, the
main detectable products of the engineered WelO5* variants
under standard reaction conditions were the mono-derivatized
soraphens.

Biochemical characterization of improved WelO5* variants.
Following our enzyme engineering campaign, we explored the
biochemical characteristics of our evolved halogenase variants.
For variant GAP, our best initial hit, as well as for variants SLP
and VLA, the most active variants for the biocatalytic production
of 1a, Michaelis–Menten kinetics were recorded (Table 1). As
initial velocities decreased for all variants with increasing sub-
strate load, a substrate inhibition model was used (Supplementary
Eq. 1) to determine the kinetic parameters. Substrate inhibition is
a common phenomenon in enzymology and is well documented
for enzymes following a radical reaction mechanism. P450
enzymes, for example, have been shown to suffer from decreased
activity at high substrate concentrations in function of the pro-
vided substrate65. Similarly, WelO5* kinetics seems to be gov-
erned by the substrate type: While non-classical
Michaelis–Menten kinetics were observed when the engineered
WelO5* variants were presented with the macrolide soraphen A,
the martinelline-derived fragment 6 used in a previous study43

did not elicit observable substrate inhibition in closely related
WelO5* enzyme variants even at concentrations as high as
2.0 mM.

Analysis of the kinetic parameters revealed that variant VLA
(apparent kcat= 1.96 min−1; TTN= 91.8) exhibited a > 75-fold
improved apparent kcat and a > 300-fold increased total turnover
number (TTN) yielding substantially improved concentrations of
product 1b (Supplementary Fig. 9) when compared to the initial
hit, variant GAP (apparent kcat= 0.03 min−1; TTN= 0.3).
Strikingly, engineered VLA displays a similar apparent kcat and
total turnover number for the bulky macrolide soraphen A as
wild type halogenases acting on their native substrates12: wild
type WelO5, for example, is reported to halogenate its native
substrate 12-epi-fischerindole U with a kcat of 1.8 min−1 whereas
the total turnover number is reported to be 7024.

It was previously shown that WelO5*43 and other αKGHs of
bacterial25,66,67 and plant origin26, can install alternative anions.
We, therefore, tested the ability of our best WelO5* variants
(GAP, SLP, and WVS) to generate additional soraphen A
derivatives using a panel of alternative anions, namely F−, Br−,
I−, N3

−, and NO2
−. Among the anion tested, Br−, N3

−, and
NO2

− were incorporated into the substrate as shown by the
appearance of up to two products with the expected m/z ratios in
selected ion monitoring (Supplementary Fig. 10), in analogy to
the product pattern in the corresponding chlorination reactions.
Incubation with iodide and fluoride under standard reaction
conditions did not yield derivatized product likely due to steric
and electronic reasons. As previously observed for WelO5*
variants43 and the freestanding plant halogenase SaDAH26, the
chloride and azide anion yielded the best transformation results

as deduced from SIM peak areas. The regioselectivity of
alternative anion incorporation was not determined directly.
Interestingly, however, distribution between the two observed
products when incubating halogenases SLP and WVS with
alternative anions reflected the observed product distribution in
chlorination reactions leading us to postulate installation of
bromide, azide, and nitrate at the same sites in the substrate
molecule.

Biological activity of soraphen derivatives against phyto-
pathogenic fungi. Next, we embarked on the biological char-
acterization of the halogenated products. Toward this goal, the
biotransformations of soraphen A and soraphen C were carried
out at preparative scale (100 mg scale) using the optimized
WelO5* variants VLA (soraphen A, halogenation product 1a),
WVS (soraphen A, halogenation product 1b), and VAA (sor-
aphen C, halogenation product 2a). In all cases, enough product
was obtained and submitted to biological activity profiling. The
performed biological tests were phenotypic, i.e., carried out on
living fungi, either with a fungal liquid culture or as a preventative
application on leaf disk, and considered not only on-target
potency but also metabolism, physicochemical properties (leaf
penetration for instance), UV stability, and phytotoxicity. The
activity is reported as BP80 (break point 80%), which corresponds
to the concentration above which 80% of activity, measured as
fungal growth inhibition, is observed (Fig. 5, Methods in SI). Six
different fungi were evaluated (Fig. 5), as they represent key
pathogens in crop protection and cause a large spectrum of crop
diseases: Puccinia recondita (black rust), Septoria tritici (leaf
blotch), Erysiphe graminis (also called Blumeria graminis, pow-
dery mildew), and Monographella nivalis (snow mold) attack
cereals, especially wheat, while Botrytis cinerea (gray mold) acts
on horticultural crops including wine grapes, and Mycosphaerella
arachidis (leaf spots) affects peanut plants. Finding natural
molecules to fight these plant pathogens is of special relevance for
Europe, where the European Green Deal68 has become a driver
for use of natural products in crop protection.

The aliphatic region of soraphen A, which was derivatized in
our experiments, is known to make hydrophobic contact with the
acetyl-coenzyme A carboxylase BC domain (in particular with
W487, using numbering from PDB ID: 1W96). This critical
tryptophan residue is highly conserved within the acetyl-
coenzyme A carboxylase BC domain across the tested fungal
species. Therefore, the conformational changes in the soraphens,
which the chlorine or hydroxyl-group introduction was expected
to induce, may also have resulted in a binding penalty which
could have led to the observed reduced activity, specifically in the
case of hydroxylated compound 1c. Remarkably, though, all
chlorinated analogs conserved a good level of activity on most
fungal pathogens, which is unprecedented to date in the ensemble
of derivatives accessible from the fully functionalized natural
product47.

As the biological tests performed were phenotypic, a target-
based SAR analysis cannot fully explain the activity observed
in vivo, which depends on many other factors such as in planta

Table 1 Biochemical characterization of selected WelO5* variants for the biocatalytic production of 1a.

Variant app. kcat (min−1) app. Km (mM) app. kcat/Km (min−1 mM−1) rel. kcat TTN+

GAP 0.026 ± 0.007 0.45 ± 0.14 0.07 ± 0.21 1 0.3 ± 0.2
SLP 2.413 ± 0.349 0.42 ± 0.09 5.74 ± 0.07 93 30.0 ± 8.3
VLA 1.959 ± 0.509 0.44 ± 0.03 4.45 ± 0.07 75 91.8 ± 22.0

+(TTN experiments were performed in two test series (biological replicates) and each series consisted of four independent experiments (N= 4); kinetic parameters are given as the average of
N= 3 ± SD).
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and in fungi metabolism, cell penetration, distinct physicochem-
ical properties of the compounds as well as on differential
metabolism and even variations in plant-fungi interactions.
Nevertheless, it is worth noting that the site of chlorination
seems to impact observed biological activity, 1b showing an
overall better performance than 1a whereas the chlorinated
soraphen C derivative 2a seems to display higher species
selectivity than the other investigated compounds.

Altogether, the observed modulation of the soraphens’
biological activity highlights the value of the enzymatic late-
stage functionalization approach to generate knowledge in
regions of the natural product structure very difficult to access
by any chemical means. In fact, spanning over more than 30
years, comprehensive derivatization efforts on the soraphens,
which aimed to evaluate whether modified structures might retain
good bioactivity, failed: Even minor structural changes led to
complete loss of potency47. In this context, the activity observed
for the here reported chlorinated soraphen analogs and the
relatively short time, in which they were obtained especially when
compared to total or semisynthesis approaches is even more
remarkable. These results represent a good starting point for
further structure-activity studies of this class of macrolides and
underline the ability of engineered WelO5* halogenases to
display unique distance and geometry-based control of functio-
nalization in complex molecules.

Discussion
Here, we demonstrate that through the application of algorithm-
assisted enzyme evolution, we endowed WelO5* variants with the
capability to halogenate the bulky non-natural substrate soraphen A.

Our most active engineered variant WelO5* VLA catalyzes the
halogenation of the macrolide 1 to yield product 1a with an
apparent kcat value and a total turnover number which mirror the
activity of wild type aliphatic halogenases for their natural substrate
(vide infra)12 thus highlighting the malleability of WelO5*’s active
site and underlining the effectiveness of our engineering strategy.

Following the identification of hot spots through rational
enzyme design, the use of machine learning enabled us to suc-
cessfully navigate the sequence-function space of a 203 combi-
natorial library of aliphatic halogenase WelO5*. By providing a
homogenous and consistent data set of high quality for training
and validation of the algorithms, we were able to reliably predict
functional properties such as activity and regioselectivity of the
enzyme variants from sampling only 6% of the theoretical data
points. To date, there are only a few examples that showcase the
use of machine learning to improve an enzyme’s activity69,70, and
the extent of sampling to obtain predictions varies strongly
(Supplementary Table 5). To mature the field, further experi-
mentally confirmed examples such as this one will be necessary to
develop more standardized guidelines for the use of machine
learning in enzyme engineering and enable comparison between
predictors69. In addition, the implementation of molecular
dynamics simulations into the enzyme engineering workflow
might help to further fine-tune machine learning algorithms and
—as automation hardware and library design strategies are
similarly maturing—allow to interrogate sequence space even
more effectively.

Through our resource-saving evolution process, we generated
halogenase variants capable of functionalizing soraphen A and
soraphen C yielding three distinct halogenated species in
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quantities sufficient for biological testing. Notably, the enzyma-
tically derivatized positions would have been difficult to target
using organic chemistry methods, thus highlighting the potential
of employing aliphatic halogenases for the late-stage functiona-
lization of complex natural products. These structurally unique
and selectively active natural products are desirable targets as they
have already demonstrated their extraordinary power as shuttles
to new biological target spaces71–74.

Future efforts to understand the underlying structural factors
to selectively derivatize non-native substrates will help to gen-
eralize evolution strategies for this enzyme family and algorithm-
driven engineering as well as homology model-based docking
approaches will play an important role in accelerating this pro-
cess. Looking forward, aliphatic halogenases are rapidly becoming
an interesting new tool for the development of biologically active
molecules to be used, for example, in medicinal and
agrochemistry.

Methods
Materials. All chemicals and solvents were purchased from commercial suppliers
(Sigma Aldrich, VWR, and Carl Roth) and were used without further purification.
Phusion High-Fidelity DNA polymerase, T4 DNA ligase, and all restriction
enzymes used in this study were purchased from New England BioLabs (Massa-
chusetts, USA). Gene synthesis was performed by Twist Bioscience (California,
USA). Oligonucleotides and sequencing service was provided by Microsynth AG
(Balgach, Switzerland).

Initial halogenase panel and protein expression. Genes encoding halogenases in
pET28b(+) were purchased from Twist Bioscience. Each plasmid was transformed
into E.coli BL21(DE3) and the cells were plated on an LB agar plate containing
50 μg/mL kanamycin. A single colony of freshly transformed cells was cultured
overnight in 1 mL of LB medium containing 50 μg/mL kanamycin. About 0.1 mL of
the culture was used to inoculate 0.9 mL of TB medium supplemented with 50 μg/
mL kanamycin and 0.2 mM IPTG (for Fl-Hal) or of 0.9 mL Zymo5052 auto-
induction medium75 supplemented with 50 μg/mL kanamycin (for αKGH) in a 96-
well deep-well plate. Expression was carried out for 24 h at 20 °C, 300 rpm (5-cm
shaking diameter) using a Duetz system (Kühner AG, Basel, Switzerland). The cells
were pelleted by centrifugation at 4000 × g, 4 °C, for 15 min, and the supernatant
was discarded. The cell pellet was stored in a −80 °C freezer prior to bio-
transformation reactions.

Combinatorial library WelO5*. WelO5* was subjected to simultaneous saturation
mutagenesis of the three hot spots Val81, Ala88, and Ile161, leading to a theoretical
library size of 203= 8000 mutants. The variants were obtained as a pooled gene
fragment library from Twist Bioscience (California, USA) and subcloned without a
His-tag into a modified pET28b(+) expression vector, in which the nucleotide
sequence between the NcoI and NdeI restriction sites was removed and the NcoI
replaced by the NdeI restriction site. Consequently, inserting the gene with a
terminal stop codon between the NdeI and XhoI restriction sites yields an ORF
without His-tag. The cloning was realized with the In-Fusion HD Cloning Plus kit
(Takara Bio, Shiga, Japan). The library was amplified with forward primer 5′-
AAGGAGATATACATATGTCGAACAACACCATCTCGAC-3′ and reverse pri-
mer 5′-GGTGGTGGTGCTCGAGTTAGCTCCAATAGTAGATTTTGTTG-3′
using the DNA polymerase and a standard PCR protocol provided by the kit
manufacturer. The gel-purified PCR product (NucleoSpin Gel and PCR Clean-up,
Macherey-Nagel, Düren, Germany) was inserted into NdeI/XhoI-linearized
pET28b(+) vector (modified) using the In-Fusion enzyme mix. The resulting
reaction mixture was utilized to transform competent E. coli StellarTM cells from
the kit. After reconstitution in 1 mL SOC medium, 20–50 µL were spread on an LB
kanamycin agar plate for transformant count and the remaining cell solution was
inoculated into 50 mL LB kanamycin overnight growth at 37 °C. Plasmid isolated
from 10 mL culture was used to transform competent E. coli BL21(DE3) cells.
Clones from LB kanamycin agar plates were sampled for colony PCR to verify the
presence of insert prior to sequencing. More than 1000 colonies were picked and
grown separately in 96-deep-well plates for DNA Sanger sequencing (Microsynth
AG, Balgach, Switzerland). For screening, strains containing empty vector, wild
type WelO5*, and other WelO5* variants (positive controls) were included on
each plate.

Biotransformation αKGH. The cell pellets were subjected to chemical lysis using
100 μL of 50 mM sodium phosphate buffer (pH 8.0) supplemented with 1 mg/mL
lysozyme, 0.5 mg/mL polymyxin B, and 0.01 mg/mL DNase. Incubation was car-
ried out for a minimum of 30 min at 20 °C on a shaking incubator at 850 rpm.
Biotransformations were initiated by the addition of 100 μL of sodium phosphate
buffer (pH 8.0) containing 2 mM substrate, 220 mM α-ketoglutaric acid sodium

salt, 212 mM sodium ascorbate, 1000 mM NaCl, and 2.6 mM ammonium iron(II)
sulfate to each well. Assay plates were sealed with breathable membranes and
incubated overnight at 20 °C on a shaking incubator at 850 rpm. The reaction was
quenched by the addition of 800 μL methanol/water 5:3 mixture to each well and
sealed with microplate foil. The plates were shaken at 850 rpm for 30 min prior to
centrifugation at 4000 × g, 10 °C, for 15 min. After centrifugation, the supernatant
was analyzed via LC-MS. The biotransformations were carried out once including
the appropriate controls. Predicted variants (selectivity; activity) and best-
performing variants (SLP; WVS) were analyzed in triplicates as individual
experiments.

Biotransformation Fl-Hal. The cell pellets were subjected to chemical lysis using
100 μL of 25 mM HEPES buffer (pH 7.5) supplemented with 1 mg/mL lysozyme,
0.5 mg/mL polymyxin B, 0.01 mg/mL DNase and incubation for a minimum of
30 min at 20 °C on a shaking incubator at 850 rpm. Biotransformations were
initiated by the addition of 100 μL of HEPES buffer (pH 7.5) containing 2 mM
substrate, 0.2 mM FAD/FMN, 2 mM NADH/NADPH, 600 mM NaCl, 40 mM
Glucose, and 2 µM GDH/Ec-Fre76. Incubation and work-up was performed in
analogy to the αKGH protocol. The biotransformations with the Fl-Hal library
were carried out once including the appropriate controls.

Preparative scale biotransformation. WelO5* SLP variant was used to prepare
compound 1a and 1b and WelO5* WVS was used to prepare compound 1c. For
the preparation of compound 2a the variant WelO5* VAA was used. Twenty
grams of WelO5* variant cells were resuspended in 100 mL of lysis buffer (50 mM
sodium phosphate, pH 8.0) containing 1 mg/mL lysozyme, 0.5 mg/mL polymyxin
B, and 0.01 mg/mL DNase in a 2000 mL baffled flask. The cell suspension was
shaken for a minimum of 30 min at 20 °C. Reaction was initiated by the addition of
100 mL sodium phosphate buffer (pH 8.0) containing 2 mM substrate, 220 mM α-
ketoglutaric acid sodium salt, 212 mM sodium ascorbate, 1000 mM NaCl, and
2.6 mM ammonium iron(II) sulfate. The flask was incubated overnight at 20 °C on
a shaking incubator at 100 rpm. About 200 mL methanol were added to the
reaction mixture, and the flask was shaken vigorously. The reaction mixture was
transferred to a centrifuge bottle and spun down at 4000 × g for 15 min. The
supernatant was transferred in a round bottom flask, and methanol was removed
by a rotary evaporator. The substrate and derivatives were extracted by ethyl
acetate (2 × 400 mL), and the organic layer was washed with saturated NaCl
solution. The organic layer was combined and dried over sodium sulfate. The
solvent was removed by a rotary evaporator to yield a yellowish-brown oil.

LC-MS analysis. Each biotransformation sample was analyzed by LC-MS system
(OpenLAB CDS 2.4). The supernatant was injected into an Agilent 1260 HPLC
system equipped with a single quadrupole MSD over an Agilent Poroshell 120 EC-
C18 column (2.7 μm 2.1 × 50 mm) heated at 40 °C, using water/acetonitrile 95:5
and acetonitrile containing 0.2% formic acid as solvent A and B, respectively. The
following LC method was used: 0–1 min, B= 40%; 1–3 min, B= 40−100%;
3–4 min, B= 100%; 4–5 min, B= 100−40%. Fold increase in total chlorination of
individual variants was normalized to a parent variant (WelO5* GAP) included as
a control.

Construction, expression, and purification of His-tagged WelO5* variants.
His-tagged WelO5* enzyme variants (His-wt, His-GAP, His-SLP, His-VLA, and His-
WVS) were created to carry out in vitro biocatalysis reactions. The mutated gene
fragment encoding each variant was amplified using a primer pair 5′-GTGAGCGG
ATAACAATTCCCCTCTAG-3′ (forward) and 5′-GCTTTGTTAGCAGCCGGAT
CTCAG-3′ (reverse) and digested by NdeI and XhoI, which was then ligated into a
pET28b(+) vector digested with the same restriction enzymes. The DNA sequence
was confirmed by the DNA sequencing service provided by Microsynth AG.

Each plasmid was transformed into E. coli BL21(DE3) and the cells were plated
on an LB agar plate containing 50 μg/mL kanamycin. A single colony of freshly
transformed cells was cultured overnight in 5 mL of LB medium containing 50 μg/
mL kanamycin. The culture was used to inoculate 500 mL of TB medium
supplemented with 50 μg/mL kanamycin in a baffled Erlenmeyer flask. To monitor
the growth of the cells OD600 was measured and at an OD600 of 0.6–1.0 the culture
was induced with IPTG stock solution (final concentration IPTG 100 μM).
Expression was carried out for 24 h at 20 °C using 120 rpm (5-cm shaking
diameter). The cells were pelleted by centrifugation at 4000 × g, 4 °C, for 15 min,
and the supernatant was discarded. The cell pellet was stored in a −20 °C freezer
prior to purification. Cell pellets were resuspended in 30 mL of protein lysis buffer
(50 mM Tris-HCl, pH= 7.4, 500 mM NaCl, 20 mM imidazole, 10 mM β-
mercaptoethanol (β-ME), and 0.1% Tween-20) and sonicated over two rounds for
2 min with 1 s intervals on ice and then centrifuged for 30 min at 8000 × g at 4 °C.
The column (HisTrap™crude; 5 mL, GE Healthcare, Massachusetts, USA) was
equilibrated using at least five column volumes of protein lysis buffer. The
supernatant was filtered through a 0.45-μm filter and loaded onto the column.
After reaching a stable UV baseline the concentration of elution buffer (50 mM
Tris, pH= 7.4, 500 mM NaCl, 100 and 250 mM imidazole, and 10 mM β-ME) was
raised to 100% to elute the His-tagged protein. The fractions were combined
according to the UV spectra (280 nm) and the buffer was exchanged to a buffer
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containing 50 mM sodium phosphate, pH 8.0. Purified protein was analyzed by
SDS-PAGE to ensure its purity. The protein was concentrated using ultra
centrifugal filters (Amicon® Ultra 4, cut off 10–30 kDa, Merck Millipore, MA), then
flash-frozen using liquid nitrogen and stored at −80 °C. The protein concentration
was determined by measuring the protein absorption via a NanoDrop spectrometer
(Thermo Fisher Scientific) at 280 nm applying the estimated extinction coefficient
of the protein variants (28,880M−1cm−1 for His-GAP, His-SLP, His-VLA and
34,380M−1cm−1 for His-WVS).

In vitro activity assay. In vitro activity assays were carried out in 200 µL of 50 mM
sodium phosphate pH 8.0, containing 50 µM purified enzyme, 1 mM substrate,
110 mM α-ketoglutaric acid sodium salt, 106 mM sodium ascorbate, 500 mM
sodium salts (NaF, NaCl, NaBr, NaI, NaN3, and NaNO2), and 1.0 mM ammonium
iron(II) sulfate. Ninety-six well plates were sealed with breathable membranes and
incubated overnight at 20 °C on a shaking incubator at 850 rpm. The reaction
mixtures were quenched with an 800 μL methanol/water mixture (62% methanol).
The plate was sealed with microplate foil and shaken at 850 rpm for 30 min prior to
centrifugation at 4000 × g, 10 °C, for 15 min. Each biotransformation sample was
analyzed by LC-MS system using selected ion monitoring (SIM).

Formation of 1a was quantified through a calibration curve (Supplementary
Fig. 11) prepared from known concentrations of the product isolated by the
preparative scale biotransformation. As internal standard (ISTD) 0.4 mg/L
soraphen C was used.

To determine kcat (chlorination of soraphen A), assays were carried out in an
identical manner as the assay described above except that reactions were performed
at different substrate concentrations (Supplementary Table 6) and with the
addition of 3.8% dimethylformamide (µL/µL). At indicated time points (1, 2, 3, 4,
and 5 min), 20 μL of reaction mixture was transferred into 980 μL of methanol/
water mixture (methanol:water= 1:1+ 0.4 mg/L soraphen C as ISTD) to quench
the reaction. The product formation was monitored by LC-MS and was plotted
over time, which was then fitted by linear regression using Microsoft Excel. The
observed initial rates were fitted to a substrate inhibition model (Supplementary
Eq. 1 and Supplementary Fig. 12) using GraphPad Prism 8.4.0 (nonlinear
regression) with the following restraints: Km > 0, Ki > Km. TTN was determined at a
substrate concentration of 60 µM and the reaction was quenched at stable product
concentration using the same procedure as above. The following enzyme variant
concentrations were used: GAP= 5 µM, SLP= 0.5 µM, and VLA= 0.1 and 0.5 µM.

Ligand docking and homology modeling of WelO5* variants. Models of the wild
type WelO5* and the WelO5* variants were created using the SWISS-MODEL56

online server with default parameters. The crystal structure of wild type WelO5
(PDB ID: 5J4R) served as a template for the homology modeling. The docking
process was performed using default parameters of Chimera AutoDock Vina77 and
the region of interest was set to default, as this docking is flexible. Each docking
result was visually inspected using PyMOL 2.4.1 software.

Machine learning. The label vector was defined as activity or selectivity. The activity
label (A) was calculated using the formula A= tot. Cl conversion WelO5* mutant / tot.
Cl conversion WelO5* GAP whereas tot. Cl conversion= (SIM1a+ SIM1b) / (SIM1a+
SIM1b+ SIM1c+ SIM1). The selectivity label (S) was calculated using the formula
S= (SIM1a – SIM1b) / (SIM1a+ SIM1b). Amino acids were represented as a 17-
dimensional vector, which was obtained by concatenating the five-dimensional T-scale
descriptor63 and additional information about amino acid characteristics64. We then
defined the feature vector of a sequence by joining the vector representation of its
individual amino acids at sites V81X, A88X, I161X, and aggregated them into the
504 × 51-dimensional training matrix. This was used to train a machine learning model,
based on the Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by
Rasmussen and Williams78, implemented in the scikit-learn python module. We took a
similar approach for predictions of selectivity; however, we excluded variants below a
peak area threshold and relied on the random forest implementation in scikit -learn for
predictions, using the same input features as for activity. To avoid overfitting and to
better gauge the generalizability of our model, we cross-validated over ten splits, and
model performance was evaluated on the coefficient of determination (R2), a standard
metric for regression problems, achieving an out of fold score of 0.745/0.31 for activity/
selectivity respectively (compare predicted vs. measured Supplementary Fig. 13).
Inference occurred on the remaining sequence space, which was preprocessed exactly
like the training data, at every fold during cross-validation. The code, data, and sup-
plementary information, such as amino acid encodings, can be accessed at: [https://
github.com/ccbiozhaw/MLevo].

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. WelO5 crystal structure used as template for
SWISS-MODEL homology modeling can be accessed via PDB ID: 5J4R. The authors
declare that all the data supporting the findings of this work are available within the

article and its Supplementary Information and the provided Source Data. Source data are
provided with this paper.

Code availability
Training data and scripts used to predict enzyme function are available at https://
github.com/ccbiozhaw/MLevo, https://doi.org/10.5281/zenodo.5665270
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I. Supplementary Tables 
 

Supplementary Table 1. Fl-Hal panel. 

Natural enzymes 
Name Source organism 
Bmp51 P. luteoviolacea 2ta16 
PyrH2 Streptomyces ru- gosporus LL-42D005 
KtzR3 Kutzneria sp. 744 
Th-Hal4 Streptomyces violaceusniger SPC6 
SttH5 Streptomyces toxytricini NRRL 15443 
PrnA6 Pseudomonas fluorescens 
KtzQ3 Kutzneria sp. 744 
RebH7 Lechevalieria aerocolonigenes (strain 39243) 
ThaL8 Streptomyces albogriseolus 
PrnC6 Pseudomonas fluorescens 
RadH9 Chaetomium chiversii 
MalA’10 Malbranchea graminicola (086937A) 
Rdc211 Pochonia chlamydosporia 
ChlA12 Dictyostelium discoideum 

Engineered enzymes 
Name Name 
PrnA_F103A13 RebH_3SS14 
PrnA_E450K_F454K13 RebH_4V14 
SttH_Triple RebH_5LS15 
RebH_0S15 RebH_6TL15 
RebH_1PVM14 RebH_8F15 
RebH_2T14 RebH_10S15 
RebH_3S14 RebH_Thermo16 

 
 
 

Supplementary Table 2. αKGHs panel. 

Natural enzymes 
Name Source organism 
WelO517 Hapalosiphon welwitschii UTEX B1830 
WelO5*18 Hapalosiphon welwitschii IC-52-3 
AmbO519 Fischerella ambigua UTEX1903 

Engineered enzymes 
Name Name 
WelO5*_N74L WelO5*_V81L 
WelO5*_V81T WelO5*_I84F 
WelO5*_A88G WelO5*_A88S 
WelO5*_A88T WelO5*_V90P 
WelO5*_P153F WelO5*_P153K 
WelO5*_161A WelO5*_I161D 
WelO5*_I161G WelO5*_I161R 
WelO5*_I161S WelO5*_I161T 
WelO5*_I161E WelO5*_I225M 
WelO5*_E76V_V81L WelO5*_ V81G_I161G 
WelO5*_ V81G_I161P WelO5*_ V81L_A88T 
WelO5*_ V81L_I161D WelO5*_ V81L_I161M 
WelO5*_ V81L_I161V WelO5*_ V81R_I161D 
WelO5*_ V81R_I161G WelO5*_ V81R_I161S 
SadA_D157G20  
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Supplementary Table 3. Ranking of the predicted variants using machine learning. Variants were predicted 

towards increase in activity and towards increase in selectivity. The produced “activity” variants were chosen on 

the highest activity predictions. The “selectivity for 1b” variants were chosen on high predicted selectivity 

towards product 1b with the additional threshold that the activity predictions had to be higher than 0.6. The 

activity label (A) was calculated using the formula A = tot. Cl conversion WelO5* variant / tot. Cl conversion 

WelO5* GAP (tot. Cl conversion = (SIM1a + SIM1b) / (SIM1a + SIM1b + SIM1c + SIM1)). The selectivity label (S) was 

calculated using the formula S = (SIM1a – SIM1b) / (SIM1a + SIM1b). 

Activity Selectivity 1b 

Mutant Ranking activity Activity p/m# Selectivity p/m# Mutant Selectivity p/m# Activity p/m# 

SIP 1 10.2/10.4 0.32/0.08 AHS -0.77/-0.75 0.7/2.7 

VIA 2 9.3/11.4 0.32/0.23 MHS -0.68/-0.77 1.2/0.9 

AIP 3 9.2/11.2 0.07/0.08 AMS -0.67/* 0.8/* 

ALP 4 8.2/11.3 0.56/0.70 VHS -0.60/-0.75 1.5/1.9 

CIA 5 8.0/* 0.25/* LHT -0.55/-1.0 0.7/0.5 

CIP 6 7.84/* 0.30/* LHA -0.53/-0.67 1.8/1.9 

SVP 7 7.6/8.5 0.63/0.52 AHG -0.52/-1.0 1.2/4.2 

SIA 8 7.4/5.9 0.24/0.28 AHA -0.52/* 1.2/* 

CLP 9 7.2/* 0.74/* LMS -0.51/0.52 0.6/0.6 

VLA 10 7.2/11.0 0.77/0.72 LHG -0.51/-1.0 1.7/3.8 

* these variants were not measured, #predicted/measured 
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Supplementary Table 4. Activity of WelO5* variants for the functionalization of soraphen derivatives. The 

halogenase variants were capable to produce multiple products (as reported). Each of the reported products 

were derivatized once only as observed by selected ion monitoring. 

Compound Observed products WelO5* variant 

 
Soraphen C, 2 

 

- 2 chlorinated products 
- 2 hydroxylated products 

- VAA+ 
- ILV° 

 
3 
 

- 4 chlorinated products 
- 3 hydroxylated products 

- SLP+ 
- SLP° 

 
4 

- 5 chlorinated products 
- 2 hydroxylated products 

- SLP+ 
- SHP° 

+ Variant showing the highest amount of total chlorination; ° Variant showing the highest amount of total 
hydroxylation 
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Supplementary Table 5. Selected examples of the application of machine learning used for the engineering of 

enzymes. 

Year Enzyme Target Number of variants Perc. Covered /% Reference 
2007 halohydrin 

dehalogenase 
activity 30-150 at each 

round for 18 rounds 
~(3*N/2N) * 100 

N= mutation sites 
Fox et al.21 

2012 epoxide 
hydrolase  

enantioselectivity 95 23.8 Feng et al.22 

2018 green flourescent 
protein 

color change 218 0.14 Saito et al.23 

2018 epoxide 
hydrolase 

enantioselectivity 37 7.4 Cadet et al.24 

2019 nitric oxide 
dioxygenase 

stereodivergence 445 over 2 rounds 0.6 - 8.9 Wu et al.25 

2021 artificial 
metalloenzymes 

activity 400 80.0 Vornholt et al.26 
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Supplementary Table 6. Enzyme and substrate concentrations used for the kinetic experiments. 

Variants Enzyme conc. / µM Substrate conc. / µM 
GAP 20 40, 70, 100, 150, 200, 250,500, 750 
VLA 2 40, 70, 100, 150, 200, 250,500, 750 
SLP 2 40, 70, 100, 150, 200, 250,500, 750 

 
 
 
 
 
 
 
 

Supplementary Equation 1. Substrate inhibition model. 

𝑣! =
𝑣"#$ ∗ [𝑆]!

𝐾" + [𝑆]! +
[𝑆]!%
𝐾&
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Supplementary Table 7. Comparison of 13C-NMR chemical shifts between soraphen C (reported2 and 

synthesized) and synthesized epi-soraphen C. 

13C-NMR shifts of 
fermented soraphen C 

(δ in ppm)2 

13C-NMR shifts of 
synthesized soraphen C 

(δ in ppm) 
Δ1 (ppm) 

13C-NMR shifts of 
synthesized epi-soraphen C 

(δ in ppm) 
Δ2 (ppm) 

170.6 170.78 -0.2 172.82 -2.2 
141.0 141.12 -0.1 139.69 1.3 
137.3 137.45 -0.1 137.96 -0.7 
128.6 128.72 -0.1 128.76 -0.2 
128.2 128.29 -0.1 128.70 -0.5 
126.2 126.35 -0.1 128.46 -2.3 
125.0 125.18 -0.2 127.09 -2.1 
99.4 99.60 -0.2 99.91 -0.5 
83.7 83.89 -0.2 82.86 0.8 
76.1 76.28 -0.2 77.57 -1.5 
74.9 75.04 -0.1 76.33 -1.4 
74.6 74.81 -0.2 73.58 1.0 
72.5 72.66 -0.2 71.74 0.8 
68.8 68.98 -0.2 68.93 -0.1 
57.6 57.78 -0.2 57.49 0.1 
57.3 57.47 -0.2 57.45 -0.2 
46.2 46.35 -0.1 45.42 0.8 
35.8 36.01 -0.2 36.84 -1.0 
35.6 35.79 -0.2 35.46 0.1 
35.2 35.32 -0.1 35.02 0.2 
29.4 29.57 -0.2 27.58 1.8 
26.0 26.14 -0.1 25.12 0.9 
23.0 23.17 -0.2 22.57 0.4 
12.5 12.64 -0.1 16.57 -4.1 
11.7 11.83 -0.1 12.55 -0.9 
10.3 10.49 -0.2 10.55 -0.3 
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II. Supplementary Figures 
 

 
Supplementary Figure 1. Crystal structure of soraphen A bound to the BC domain of yeast acetyl-coenzyme A 

carboxylases. The crystal structure (green) reveals the active conformation of the macrocycle (PDB ID: 1W96). 

Right: Visualization of the interactions between the soraphen A (wheat sticks) and the residues of the BC domain 

(green sticks). 
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Supplementary Figure 2. Synthesis scheme to obtain soraphen C and soraphen analogues. Individual reaction 

steps are described in the Supplementary Methods. 
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Supplementary Figure 3. LC-MS analysis of the biotransformation of soraphen A. a Selected ion chromatograms 

(SIM) of the m/z values of interest. Biotransformation using negative control (blue), WT WelO5* (orange) and 

WelO5*_V81G_I161P (green) are compared. The top chromatogram shows the trace of soraphen A (543.2 m/z 

= 1+Na+H+), the middle chromatogram shows two species corresponding to chlorinated soraphen A (577.2 m/z 

= 1+Na+H++Cl35) and the bottom chromatogram shows one hydroxylated soraphen A species (577.2 m/z = 

1+Na+H++OH). b MS chart of the chlorinated species showing the characteristic M: M + 2 = 3 : 1 isotopic pattern 

of a chlorinated compound. 
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Supplementary Figure 4. Biotransformation products of soraphen A. Observed products of the 

biotransformation reactions of soraphen A with WelO5* variants. 
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Supplementary Figure 5. Illustration of the algorithm aided approach to predict improved variants. Activity (or 

selectivity) data obtained by LC-MS analysis was used as a label for the machine learning algorithm. Amino acids 

properties were represented as a 17-dimensional vector. The feature vector of a sequence was defined by joining 

the vector representation of its individual amino acids at sites V81X, A88X, I161X and aggregated into the 504 x 

51-dimensional training matrix. This was used to train a machine learning model. To avoid overfitting and to 

better gauge the generalizability of our model, we cross-validated over ten splits, and model performance was 

evaluated on the coefficient of determination (R^2).  

  

Amino acid descriptors. Each row
represents a different amino acid
with a collection of properties, such
as charge or hydrophobicity.

Amino acid representations are concatenated
in order to form the protein descriptor which
serves as an input for the machine learning
models.
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Activity data
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Supplementary Figure 6. Docking studies of soraphen A into WelO5* homology models. Enzyme models were 

prepared with SWISS-MODEL27 (enzyme model and soraphen A in wheat, engineered residues in red) or 

AlphaFold28 (enzyme model and soraphen A in palegreen, engineered residues in orange) and soraphen A was 

docked using AutoDock Vina29. In the active site the histidines coordinating to the iron (orange) are shown in 

grey, the chlorine in green and the α-ketoglutarate in pale cyan. a-c View into the active site of the WelO5* 

variants GAP, VLA and AHG, respectively. The active site of WelO5* including the engineered residues at position 

81, 88 and 161 are nearly identical in both homology models (SWISS-MODEL (wheat) and AlphaFold (palegreen)). 

d-f Soraphen A docked into the WelO5* variants GAP, VLA and AHG. Distances were measured from the iron and 

chloride to C14 of soraphen A (grey dotted lines) and to C16 of soraphen A (yellow dotted lines). The two models 

of d WelO5* GAP and f WelO5* AHG show a similar positioning of the engineered amino acid residues as well as 

of the docked soraphen A. In the AlphaFold model of e WelO5* VLA shorter distances between the iron and 

chloride to C14 of soraphen A (grey dotted lines) than to C16 of the macrolide (yellow dotted lines) suggest the 

structural reason for the predominant formation of regioisomer 1a. g Overall structural homology of the enzyme 

models prepared with SWISS-MODEL (wheat) or AlphaFold (palegreen): Main structural differences lay in the 

two α-helices marked in the black circle. 
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Supplementary Figure 7. Structure of soraphen A. Numbering of the carbon atoms of the cyclic polyketide 

backbone of soraphen A. 
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Supplementary Figure 8. In vitro activity assays using mono-chlorinated products (1a, 1b and 2a) as substrates 

for the engineered WelO5* variants GAP, SLP, VLA and WVS. Depicted is the estimated conversion to 

chlorinated or hydroxylated product (SIM area of product / SIM area of all products and starting material * 100). 

Reactions were performed according to the method described in the main paper using an enzyme concentration 

of 5 µM for variants GAP, SLP, VLA and WVS and a substrate concentration of 60 µM (1a, 1b and 2a). The 

conversion values to the chlorinated or hydroxylated products by the engineered halogenase variants were 

determined in triplicates (N = 3 independent experiments). The depicted boxes correspond to the interquartile 

range and end at the quartiles Q1 and Q3, respectively. The statistical median is depicted as a horizontal line in 

the box. The whiskers comprise the farthest points that are not outliers (i.e., that are within 1.5x of the 

interquartile range of Q1 and Q3, respectively). 
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Supplementary Figure 9. In vitro activity assays showing the conversion of soraphen A to the chlorinated 

product 1a by the engineered WelO5* variants GAP, SLP and VLA. The conversion was determined at a substrate 

concentration of 60 µM and the reaction was quenched at stable product concentration using the procedure 

described in the method section of the main paper. To account for the different enzyme concentrations used 

(GAP = 5 µM, SLP = 0.5 µM and VLA = 0.5 µM), the observed product concentration in the GAP reactions was 

divided by ten. The conversion values of soraphen A to the chlorinated product 1a by the engineered halogenase 

variants were determined in quadruplicates in each case (N = 4 independent experiments). The depicted boxes 

correspond to the interquartile range and end at the quartiles Q1 and Q3. The statistical median is depicted as a 

horizontal line in the box. The whiskers comprise the farthest points that are not outliers (i.e., that are within 

1.5x the interquartile range of Q1 and Q3, respectively). 
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Supplementary Figure 10. LC-MS analysis of the anion promiscuity of selected WelO5* variants. The variants 

GAP (blue), SLP (orange), WVS (green) and negative control (no enzyme, red) were analysed in the presence of 

500 mM of NaF, NaCl, NaBr, NaI, NaN3 and NaNO2, respectively, by selected ion monitoring. Masses 

corresponding to the introduction of the anions into soraphen A could be observed for chloride, bromide, azide 

and nitrite salts. 
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Supplementary Figure 11. Calibration curve of 1a used for product quantification. 
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Supplementary Figure 12. Michaelis Menten kinetics for WelO5* variants GAP, VLA and SLP. The formation of 

product 1a for the WelO5* variants GAP, VLA and SLP was measured in triplicate at each substrate concentration 

(N=3 independent experiments). All data points belonging to individual Michaelis Menten measurement series 

are marked by triangles, squares or circles.  Substrate inhibition can be observed in all cases.  
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Supplementary Figure 13. Out of fold predicted vs measured values. a The measured activity values of the 

training set were predicted using Gaussian processes (y-axis) and compared to the measured activity (x-axis) b 

The measured selectivity of the training set were predicted using a random forest algorithm (y-axis) and 

compared to the measured selectivity (x-axis). A linear regression is shown for these values. 
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Supplementary Figure 14. Overview of the AlphaFold models (green) of WelO5* and the variants GAP, SLP and 

VLA showing a view of the entrance to the active site. The engineered amino acid residues are shown in orange, 

while the co-factor α-ketoglutarate is shown in light cyan. To comparatively evaluate substrate access to the 

active sites of all enzyme variants, the bottleneck radii were calculated using CAVER Web 1.0 with default 

parameters30. This investigation highlighted that the employed enzyme engineering approach has led to a 

widening of the access tunnel from 2.1 Å (wildtype enzyme) to 3.2 Å (variant GAP), 2.6 Å (variant SLP) and 2.4 Å 

(variant VLA). The resulting improved access to the active site might explain why the wildtype enzyme cannot 

convert the macrolide soraphen A, while variants GAP, SLP and VLA accept the bulky substrate.  
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Supplementary Figure 15. Docking experiments of soraphen A, 12-epi-fischerindole U and chlorinated 

soraphen A into wildtype WelO5* and its engineered variants. Overview of the docking scores of soraphen A 

(blue, 1), the natural substrate 12-epi-fischerindole U (red) and chlorinated soraphen A (green, 1a) into AlphaFold 

models of WelO5* wild type (WT) and the variants GAP, SLP and VLA, respectively. The docking was performed 

as described in the method section of the main paper. All ligands, irrespective of them being native or non-native 

substrates, showed similar docking scores for the enzyme variants. Scores were obtained through the AutoDock 

Vina scoring function[32] which consists of the weighted sum of steric interactions (gauss1, gauss2 and repulsion, 

identical for all atom pairs), hydrophobic interaction between hydrophobic atoms and hydrogen bonding (where 

applicable). A lower score indicates higher affinity of the ligand towards the receptor. In each case, nine docking 

solutions were obtained from one docking experiment (n = 1 individual experiment). Results were visually 

inspected using PyMOL software and only solutions in which the ligand docked close to the active site were 

considered in the depicted analysis. The depicted boxes correspond to the interquartile range and end at the 

quartiles Q1 and Q3. The median is depicted as a horizontal line in the box. The whiskers comprise the farthest 

points that are not outliers (i.e., that are within 1.5x the interquartile range of Q1 and Q3, respectively). 
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III. Supplementary Methods 
 
Chemical synthesis methods 

 
Synthesis: Soraphen A was obtained by fermentation at Syngenta (former Novartis) using the published 
procedure31. The reagents for synthesis were obtained from commercial sources and used without further 
purification unless otherwise stated. The solvents for synthesis were obtained from commercial sources and 
stored over molecular sieves. 
 
Purification: purification over silica gel were performed on a CombiFlash Rf 200i instrument using standard 
commercial pre-packed silica gel cartridges. 
 
NMR: NMRs were recorded either on a Bruker 400 MHz spectrometer or a Bruker 600 MHz spectrometer. 1H-
NMR chemical shifts are reported relative to TMS and are referenced based on the residual proton resonances 
of the corresponding deuterated solvent (CDCl3: 7.26 ppm) whereas 13C NMR spectra are reported relative to 
TMS using the carbon signals of the deuterated solvent (CDCl3: 77.16 ppm). Assignments were made on the basis 
of chemical shifts, coupling constants, COSY, HSQC, HMBC, ROESY data. Resonances are described using the 
following abbreviations; s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), sext. (sextet), sept. (septet), 
m (multiplet), br. (broad), app. (apparent), dd (double doublet) and so on. Coupling constants (J) are given in Hz 
and are rounded to the nearest 0.1 Hz. 
 
HPLC-MS: HPLC traces were obtained on an Acquity UPLC from Waters: Binary pump, heated column 
compartment, diode-array detector and ELSD detector. Column: Waters UPLC HSS T3, 1.8 µm, 30 x 2.1 mm, 
Temp: 60 °C, DAD Wavelength range: 210 to 500 nm, Solvent Gradient: A = water + 5% MeOH + 0.05 % HCOOH, 
B= Acetonitrile + 0.05 % HCOOH, gradient: 10-100% B in 2.7 min; Flow: 0.85 mL/min. Low resolution mass spectra 
were recorded on a mass spectrometer from Waters (SQD, SQDII Single quadrupole mass spectrometer) 
equipped with an electrospray source (Polarity: positive and negative ions); Capillary: 3.00 kV, Cone range: 30V, 
Extractor: 2.00 V, Source Temperature: 150 °C, Desolvation Temperature: 350 °C, Cone Gas Flow: 50 L/h, 
Desolvation Gas Flow: 650 L/h, Mass range: 100 to 900 Da. 
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Synthesis and characterization of soraphen C and soraphen analogues 
 
For a scheme of the synthesis route refer to Supplementary Figure 2. 
 
(1R,2S,5S,10S,11R,12E,14S,15S,16R,17S,18R)-17-[tert-butyl(dimethyl)silyl]oxy-1-hydroxy-10,11,18-trimethoxy-
2,14,16-trimethyl-5-phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (S1) 

 
Soraphen A (100 mg, 0.19 mmol), DMAP (25 mg, 0.20 mmol), imidazole (52 mg, 0.77 mmol) and TBSCl (58 mg, 
0.38 mmol) were dissolved in DMF (2.0 mL). The slightly yellow solution was stirred at room temperature for 48 
h. Then the reaction mixture was diluted with EtOAc and washed with aq HCl (1M), water and brine, dried over 
Na2SO4, filtered and concentrated under reduced pressure. 
The crude was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 95:5 to 55:45, 30 mL/min, 
15 min) to afford the title compound (60 mg, 49%) as well as some recovered starting material (50 mg). 
 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.42–7.23 (m, 5H), 6.40 (dd, J = 16.2, 3.8 Hz, 1H), 6.12 (dd, J = 12.0, 2.5 Hz, 
1H), 5.41 (ddd, J=16.0, 9.5, 1.8 Hz, 1H), 5.17 (d, J=1.8 Hz, 1H), 4.17 (t, J=2.5 Hz, 1H), 3.78 (dd, J=9.5, 2.2 Hz, 1H), 
3.69 (dd, J=10.5, 2.5 Hz, 1H), 3.47 (s, 3H), 3.42 (dt, J=11.1, 2.5 Hz, 1H), 3.38 (s, 3H), 3.31 (s, 3H), 3.05 (qd, J=7.0, 
1.1 Hz, 1H), 3.00 (dd, J=2.7, 0.9 Hz, 1H), 2.56–2.49 (m, 1H), 2.13–2.04 (m, 1H), 1.81–1.72 (m, 2H), 1.65–1.54 (m, 
3H), 1.34–1.25 (m, 2H), 1.16 (d, J=7.3 Hz, 3H), 1.09 (d, J=7.3 Hz, 3H), 1.05–1.01 (m, 1H), 1.00 (d, J=6.5 Hz, 3H), 
0.94 (s, 9H), 0.17 (d, J=4.0 Hz, 6H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 171.25, 142.77, 140.74, 128.43 (2C), 127.52, 126.29 (2C), 121.80, 99.45, 
84.99, 83.65, 77.39, 72.08, 71.90, 70.86, 58.32, 57.41, 56.31, 46.32, 37.30, 35.62, 35.22, 31.02, 25.95 (3C), 25.23, 
24.18, 18.26, 12.42, 11.49, 10.32, –4.82, –4.85. 
 
(1R,2S,5S,10S,12E,14S,15S,16R,17S,18R)-17-[tert-butyl(dimethyl)silyl]oxy-1-hydroxy-10,18-dimethoxy-2,14,16-
trimethyl-5-phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-ene-3,11-dione (S2) 

 
To a solution of S1 (750 mg, 1.18 mmol) in 1,2-dichloroethane (14.8 mL) at room temperature was added DDQ 
(621 mg, 2.60 mmol). The yellow suspension was stirred for 4 days. Then the reaction mixture was diluted with 
EtOAc, washed twice with aq. Na2S2O3 (10%), then brine, dried over Na2SO4, filtered and concentrated under 
reduced pressure.  
The crude was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 90:10 to 80:20, 40 mL/min, 
16 min) to afford the title compound (522.8 mg, 72%). 
 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.45 (dd, J=16.9, 4.8 Hz, 1H), 7.39–7.28 (m, 4H), 6.24 (dd, J=16.9, 1.5 Hz, 
1H), 5.91 (dd, J=8.6, 5.3 Hz, 1H), 5.05 (d, J=1.5 Hz, 1H), 4.29 (dd, J=7.7, 5.5 Hz, 1H), 4.16 (t, J=2.6 Hz, 1H), 3.86 (dd, 
J=10.3, 2.6 Hz, 1H), 3.37 (s, 6H), 3.05 (qd, J=7.0, 1.47 Hz, 1H), 3.00 (dd, J=2.8, 0.9 Hz, 1H), 2.70–2.64 (m, 1H), 2.03–
1.94 (m, 1H), 1.82–1.71 (m, 2H), 1.70–1.58 (m, 4H), 1.49–1.39 (m, 3H), 1.13 (d, J=7.0 Hz, 3H), 1.10 (d, J=7.3 Hz, 
3H), 1.00 (d, J=6.6 Hz, 3H), 0.94 (s, 9H), 0.16 (d, J=5.1 Hz, 6H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 202.74, 171.44, 152.37, 141.78, 128.45 (2C), 127.67, 127.22, 126.64 (2C), 
99.90, 83.63, 74.30, 70.76, 70.61, 57.92, 57.50, 46.31, 36.52, 36.01, 35.73, 32.33, 25.92 (3C), 23.98, 23.49, 18.23, 
13.20, 11.55, 10.24, –4.82, –4.86; 
HPLC-MS: rt = 2.69 min, m/z = 504 [M-C6H14Si]–; 618 [M-H] – 
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2S,5S,10S,12E,14S,15S,16S,17S,18R)-1,17-dihydroxy-10,18-dimethoxy-2,14,16-trimethyl-5-phenyl-4,19-
dioxabicyclo[13.3.1]nonadec-12-ene-3,11-dione (3) 

 
 

To a solution of S2 (30.0 mg, 0.485 mmol) in THF (0.2 mL) were added at 0°C AcOH (8.8 µL, 0.15 mmol) and TBAF 
(0.10 mL, 1 M in THF, 0.10 mmol). The reaction mixture was stirred at 0 °C for 1.5 h. The reaction mixture was 
poured into sat. aq. NH4Cl, then extracted with DCM/MeOH (9:1) The combined organic layers were dried over 
Na2SO4, filtered and concentrated under reduced pressure.  
The crude product was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 85:15 to 50:50, 18 
mL/min, 12 min) to afford the title compound (21 mg, 86%). 
 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.35–7.30 (m, 6H), 6.51 (dd, J=16.1, 1.5 Hz, 1H), 5.61 (t, J=7.3 Hz, 1H), 4.51 
(s, 1H), 4.04–4.01 (m, 2H), 3.80 (dd, J=9.2, 4.4 Hz, 1H), 3.38 (s, 3H), 3.35 (s, 3H), 3.17–3.12 (m, 2H), 2.69–2.60 (m, 
1H), 1.99–1.93 (m, 1H), 1.90–1.84 (m, 2H), 1.80–1.60 (m, 3H), 1.51–1.41 (m, 2H), 1.36–1.29 (m, 1H), 1.25–1.17 
(m, 1H), 1.07 (d, J=7.3 Hz, 3H), 1.06 (d, J=7.3 Hz, 3H), 1.04 (d, J=7.0 Hz, 3H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 202.60, 170.99, 152.95, 140.15, 128.67 (2C), 128.31, 126.68 (2C), 124.57, 
99.85, 86.02, 76.62, 76.16, 72.63, 68.99, 57.76, 57.62, 45.76, 36.53, 35.65, 34.44, 30.18, 23.74, 22.77, 13.94, 
11.79, 10.49; 
HPLC-MS: rt = 1.83 min, m/z = 504 [M-H]–; 528 [M+H+Na]2+ 
 
(1R,2S,5S,10S,11R,12E,14S,15S,16R,17S,18R)-17-[tert-butyl(dimethyl)silyl]oxy-1,11-dihydroxy-10,18-dimethoxy-
2,14,16-trimethyl-5-phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (S3) 
(1R,2S,5S,10S,11S,12E,14S,15S,16R,17S,18R)-17-[tert-butyl(dimethyl)silyl]oxy-1,11-dihydroxy-10,18-dimethoxy-
2,14,16-trimethyl-5-phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (S4) 
(1R,2S,5S,10S,14S,15S,16R,17S,18R)-17-[tert-butyl(dimethyl)silyl]oxy-1,11-dihydroxy-10,18-dimethoxy-2,14,16-
trimethyl-5-phenyl-4,19-dioxabicyclo[13.3.1]nonadecan-3-one (S5) 
 

 
 
To a solution of S2 (380 mg, 0.610 mmol) in 1,2-dimethoxyethane (3 mL) was added at 0°C a solution of ZnCl2 (1 
M in Et2O, 9.0 mL, 0.92 mmol) followed by addition of NaBH4 (64.5 mg, 1.53 mmol). The reaction mixture was 
stirred at 0 °C for 1h40. It was then quenched with sat. aq. NH4Cl and extracted with EtOAc. The combined organic 
phases were dried over Na2SO4, filtered and concentrated under reduced pressure.  
The crude product was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 95:05 to 70:30, 40 
mL/min, 22 min) to afford three products: S3 (186.1 mg, 49%), S4 (78.4 mg, 21%), and S5 (23.9 mg, 6%) as a 
mixture of epimers. 
 
Data for S3: 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.37–7.22 (m, 5H), 6.33 (dd, J=16.1, 4.0 Hz, 1H), 6.07 (dd, J=12.1, 2.6 Hz, 
1H), 5.39 (ddd, J=16.1, 9.4, 1.7 Hz, 1H), 5.17 (d, J=1.8 Hz, 1H), 4.24 (dd, J=9.2, 2.6 Hz, 1H), 4.14 (t, J=2.8 Hz, 1H), 
3.64 (dd, J=10.6, 2.6 Hz, 1H), 3.44 (s, 3H), 3.36 (s, 3H), 3.34–3.33 (m, 1H), 3.03 (qd, J=7.0, 1.5 Hz, 1H), 2.98 (dd, 
J=2.9, 1.1 Hz, 1H), 2.52–2.43 (m, 1H), 2.29 (br m, 1H), 2.13–2.07 (m, 1H), 1.79–1.56 (m, 5H), 1.32–1.24 (m, 2H), 
1.21–1.17 (m, 1H), 1.13 (d, J=7.3 Hz, 3H), 1.06 (d, J=7.7 Hz, 3H), 0.95 (d, J=6.6 Hz, 3H), 0.93 (s, 9H), 0.15 (s, 3H), 
0.14 (s, 3H); 
HPLC-MS: rt = 2.58 min, m/z = 644 [M+H+Na]2+; 506 [M-C6H14Si]– 

S3 S4 S5
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The relative stereochemistry of S3 was determined retrospectively from soraphen C after deprotection. The 
relative stereochemistry of S4 was determined by comparison with S3. 
 
Data for S4: 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.38–7.24 (m, 5H), 6.12 (ddd, J=16.3, 6.1, 1.1 Hz, 1H), 5.90 (dd, J=8.6, 5.7 
Hz, 1H), 5.55 (ddd, J=16.2, 5.8, 1.1 Hz, 1H), 5.08 (d, J=1.1 Hz, 1H), 4.29 (t, J=5.7 Hz, 1H), 4.11 (t, J=2.6 Hz, 1H), 3.84 
(dd, J=9.9, 2.6 Hz, 1H), 3.43 (s, 3H), 3.35 (s, 3H), 3.35–3.30 (m, 1H), 3.03 (qd, J=7.1, 1.1 Hz, 1H), 2.97 (dd, J=2.9, 
0.7 Hz, 1H), 2.70–2.58 (br s, 1H), 2.53–2.46 (m, 1H), 2.09–2.00 (m, 1H), 1.75–1.62 (m, 5H), 1.56–1.47 (m, 2H), 
1.38–1.29 (m, 2H), 1.11 (d, J=7.0 Hz, 3H), 1.07 (d, J=7.3 Hz, 3H), 0.97 (d, J=7.0 Hz, 3H), 0.93 (m, 9H), 0.15 (s, 3H), 
0.14 (s, 3H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 171.91, 141.78, 136.68, 128.43 (2C), 127.65, 126.96, 126.71 (2C), 99.54, 
83.58, 77.68, 74.18, 73.18, 71.62, 70.95, 57.69, 57.52, 46.66, 36.69, 36.22, 35.79, 28.91, 25.92 (3C), 24.47, 23.97, 
18.23, 15.63, 11.72, 10.74, –4.83, –4.85;  
HPLC-MS: rt = 2.66 min, m/z = 644 [M+H+Na]2+ 
 
Data for S5: 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.39–7.28 (m, 4H), 7.25–7.21 (m, 1H), 5.98 (dd, J=10.8, 3.1 Hz, 1H), 5.15 (d, 
J=1.8 Hz, 1H), 4.15 (t, J=2.6 Hz, 1H), 3.88 (dd, J=10.6, 2.6 Hz, 1H), 3.74 (dt, J=9.1, 3.0 Hz, 1H), 3.42 (s, 3H), 3.39–
3.36 (m, 1H), 3.34 (s, 3H), 3.01–2.94 (m, 2H), 2.12–1.98 (m, 3H), 1.93–1.75 (m, 2H), 1.68– 1.56 (m, 6H), 1.53–1.38 
(m, 4H), 1.12 (d, J=7.0 Hz, 3H), 1.03 (d, J=7.3 Hz, 3H), 0.94 (s, 9H), 0.81 (d, J=7.0 Hz, 3H), 0.16 (s, 3H), 0.15 (s, 3H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 171.14, 142.53, 128.43 (2C), 127.58, 126.49 (2C), 99.61, 83.92, 72.81, 72.24, 
70.93, 67.36, 57.76, 57.28, 46.52, 36.52, 35.11, 32.06, 28.98, 27.79, 25.94 (3C), 25.15, 23.09, 22.92, 18.25, 14.67, 
11.56, 10.45, –4.82 (2C); 
HPLC-MS: rt = 2.63 min, m/z = 646 [M+H+Na]2+; 508 [M-C6H14Si]– 
 
(1R,2S,5S,10S,11R,12E,14S,15S,16S,17S,18R)-1,11,17-trihydroxy-10,18-dimethoxy-2,14,16-trimethyl-5-phenyl-
4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (soraphen C, 2) 
 

 
To a solution of S3 (271 mg, 0.535 mmol) in THF (4 mL) were added at 0°C AcOH (75.8 µL, 1.31 mmol) and TBAF 
(0.87 mL, 1 M in THF, 0.87 mmol). The reaction mixture was stirred at 0°C for 2 h then at room temperature for 
18 h. The reaction mixture was poured into sat. aq. NH4Cl, then extracted with EtOAc. The combined organic 
layers were dried over Na2SO4, filtered and concentrated under reduced pressure.  
The crude product was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 90:10 to 40:60, 35 
mL/min, 18 min) to afford the title compound (219 mg, 99%). 
Comparison of the spectral data with the ones of the isolated natural product32,33 confirmed the identity of the 
product. A table of compared 13C-NMR shifts is presented in Supplementary Table 7. 
 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.37–7.28 (m, 5H), 6.15 (dd, J=16.0, 3.9 Hz, 1H), 5.82 (dd, J=11.2, 3.5 Hz, 
1H), 5.48 (ddd, J=16.0, 9.4, 1.8 Hz, 1H), 4.36 (s, 1H), 4.17 (td, J=9.0, 2.6 Hz, 1H), 4.01 (br d, J=8.0 Hz, 1H), 3.81 (dd, 
J=10.4, 2.8 Hz, 1H), 3.62 (d, J=9.9 Hz, 1H), 3.43 (s, 3H), 3.38 (s, 3H), 3.37–3.34 (m, 1H), 3.18 (dd, J=2.6, 1.1 Hz, 1H), 
3.14 (q, J=7.3 Hz, 1H), 2.50–2.42 (m, 2H), 2.15–2.07 (m, 1H), 1.93 (q, J=7.0 Hz, 1H), 1.82–1.75 (m, 1H), 1.72–1.64 
(m, 1H), 1.51–1.45 (m, 2H), 1.38–1.34 (m, 1H), 1.22–1.13 (m, 2H), 1.09 (d, J=7.0 Hz, 3H), 1.05 (d, J=7.7 Hz, 3H), 
1.00 (d, J=6.6 Hz, 3H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 170.78, 141.12, 137.45, 128.72 (2C), 128.29, 126.35 (2C), 125.18, 99.60, 
83.89, 76.28, 75.04, 74.81, 72.66, 68.98, 57.78, 57.47, 46.35, 36.01, 35.79, 35.32, 29.57, 26.14, 23.17, 12.64, 
11.83, 10.49; 
HPLC-MS: rt = 1.65 min, m/z = 505 [M-H]– 
HR-MS: m/z calculated for C28H43O8 [(M+H)+]: 507.2952, found 507.2962. 
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(1R,2S,5S,10S,11S,12E,14S,15S,16S,17S,18R)-1,11,17-trihydroxy-10,18-dimethoxy-2,14,16-trimethyl-5-phenyl-
4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (epi-soraphen C, S7) 
 

 
To a solution of S4 (10 mg, 0.016 mmol) in THF (0.4 mL) were added at 0°C AcOH (2.8 µL, 0.048 mmol) and TBAF 
(0.03 mL, 1 M in THF, 0.32 mmol). The reaction mixture was stirred at 0°C for 2 h then at room temperature for 
18 h. The reaction mixture was poured into sat. aq. NH4Cl, then extracted with a mixture of DCM/MeOH (9:1). 
The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure.  
The crude product was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 70:30 to 50:50, 18 
mL/min, 9 min) to afford the title compound (5 mg, 61%) containing some impurities. 
 
1H-NMR (600 MHz, CDCl3): δ (ppm) = 7.37–7.29 (m, 5H), 5.89 (dd, J=15.9, 6.3 Hz, 1H), 5.67 (t, J=7.3 Hz, 1H), 5.53 
(ddd, J=15.8, 7.1, 1.1 Hz, 1H), 4.69 (s, 1H), 4.20 (t, J=6.6 Hz, 1H), 3.99 (dd, J=10.4, 2.5 Hz, 1H), 3.98 (br. s, 1H), 3.69 
(br. s, 1H), 3.42 (s, 3H), 3.37 (s, 3H), 3.30–3.26 (m, 1H), 3.14 (dd, J=2.5, 0.9 Hz, 1H), 3.11 (q, J=7.2 Hz, 1H), 2.53 (br 
s, 1H), 2.47–2.43 (m, 1H), 2.24–2.18 (m, 1H), 1.94–1.90 (m, 1H), 1.85–1.78 (m, 2H), 1.66–1.61 (m, 1H), 1.56–1.51 
(m, 1H), 1.46–1.38 (m, 3H), 1.04 (d, J=7.5 Hz, 3H), 1.03 (d, J=7.1 Hz, 3H), 0.99 (d, J=6.6 Hz, 3H); 
13C-NMR (151 MHz, CDCl3): δ (ppm) = 172.82, 139.69, 137.96, 128.76 (2C), 128.70, 128.46 (2C), 127.09, 99.91, 
82.86, 77.57, 76.33, 73.58, 71.74, 68.93, 57.49, 57.45, 45.42, 36.84, 35.46, 35.02, 27.58, 25.12, 22.57, 16.57, 
12.55, 10.55; 
HPLC-MS: rt = 1.77 min, m/z = 505 [M-H]– 
 
 
(1S,2R,3R,5S,6S,7S,12S,15S,16R,17R,18S,19R)-18-[tert-butyl(dimethyl)silyl]oxy-16-hydroxy-6,7,17-trimethoxy-
2,15,19-trimethyl-12-phenyl-4,13,20-trioxatricyclo[14.3.1.03,5]icosan-14-one (S6) 
 

 
To a solution of S3 (400 mg, 0.630 mmol) in DCM (6.3 mL) at rt was added mCPBA (706 mg, 3.150 mmol). The 
reaction mixture was stirred for 17 h. The reaction mixture was poured into sat. aq. NaHCO3. The phases were 
separated, the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, 
dried over Na2SO4, filtered and concentrated under reduced pressure.  
The crude product was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 100:0 to 80:20, 40 
mL/min, 18min) to afford the title compound (330 mg, 80%). 
 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.37–7.32 (m, 4H), 7.26–7.23 (m, 1H), 6.06 (dd, J=12.3, 2.8 Hz, 1H), 5.43 (d, 
J=1.8 Hz, 1H), 4.18 (t, J=1.8 Hz, 1H), 4.00 (dd, J=11.0, 2.6 Hz, 1H), 3.55 (s, 3H), 3.49 (t, J=2.0 Hz, 1H), 3.41 (s, 3H), 
3.38 (s, 3H), 3.37–3.35 (m, 1H), 3.16 (dd, J=8.1, 2.2 Hz, 1H), 3.06–3.01 (m, 2H), 2.95 (dd, J=8.3, 1.7 Hz, 1H), 2.37–
2.29 (m, 1H), 2.06–1.97 (m, 2H), 1.72–1.66 (m, 1H), 1.64–1.55 (m, 2H), 1.47–1.44 (m, 1H), 1.40–1.28 (m, 2H), 1.18 
(d, J=7.3 Hz, 3H), 1.08 (d, J=7.3 Hz, 3H), 1.04–0.97 (m, 1H), 0.94 (s, 9H), 0.60 (d, J=7.0 Hz, 3H), 0.17 (s, 3H), 0.15 
(s, 3H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 170.83, 142.61, 128.48 (2C), 127.55, 126.20 (2C), 99.68, 83.66, 83.23, 71.87, 
70.52, 68.14, 58.58, 58.07, 57.39, 55.13, 53.63, 46.39, 36.89, 35.49, 34.05, 30.39, 27.06, 25.80 (3C), 24.83, 24.18, 
18.05, 11.26, 10.09, 8.92, –4.86, –4.99; 
HPLC-MS: rt = 2.70 min, m/z = 674 [M+Na]+ 
HR-MS: m/z calculated for C35H58NaO9Si [(M+Na)+]: 673.3742, found 673.3727. 
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(1R,2R,3R,5S,6S,7S,12S,15S,16R,17R,18S,19S)-16,18-dihydroxy-6,7,17-trimethoxy-2,15,19-trimethyl-12-phenyl-
4,13,20-trioxatricyclo[14.3.1.03,5]icosan-14-one (4) 
 

 
 
To a solution of S6 (660 mg, 1.01 mmol) in THF (10 mL) were added at 0°C AcOH (176 µL, 3.04 mmol) and TBAF 
(2.00 mL, 1 M in THF, 2.03 mmol). The reaction mixture was stirred at 0°C for 2.5 h. The reaction mixture was 
poured into sat. aq. NH4Cl, then extracted with EtOAc. The combined organic layers were dried over Na2SO4, 
filtered and concentrated under reduced pressure.  
The crude product was purified by flash chromatography on silica gel (gradient: cHex/EtOAc 85:15 to 60:40, 18 
mL/min, 11 min) to afford the title compound (500 mg, 92%). 
 
1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.35–7.24 (m, 5H), 5.86 (dd, J=12.3, 1.8 Hz, 1H), 4.47 (s, 1H), 4.11–4.08 (m, 
2H), 3.59 (d, J=8.0 Hz, 1H), 3.54 (s, 3H), 3.43 (s, 3H), 3.40–3.38 (m, 1H), 3.37 (s, 3H), 3.30 (t, J=2.0 Hz, 1H), 3.17 
(d, J=1.8 Hz, 1H), 3.13–3.07 (m, 2H), 2.97 (dd, J=8.4, 3.6 Hz, 1H), 2.32–2.25 (m, 1H), 2.10–2.04 (m, 1H), 1.87–1.81 
(m, 1H), 1.73–1.62 (m, 3H), 1.55–1.44 (m, 3H), 1.25–1.20 (m, 1H), 1.14 (d, J=6.9 Hz, 3H), 1.05 (d, J=7.6 Hz, 3H), 
0.64 (d, J=6.9 Hz, 3H); 
13C-NMR (101 MHz, CDCl3): δ (ppm) = 170.72, 141.64, 128.59 (2C), 127.99, 126.14 (2C), 99.78, 82.98, 76.34, 74.08, 
68.96, 68.87, 58.75, 58.40, 57.35, 55.78, 54.43, 53.53, 46.67, 36.47, 35.40, 34.02, 29.47, 25.78, 23.73, 11.58, 
10.25, 9.01; 
HPLC-MS: rt = 1.86 min, m/z = 535 [M-H]– 
HR-MS: m/z calculated for C29H44NaO9 [(M+Na)+]: 559.2878, found 559.2882. 
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Purification of bio-extracts 
 

Supplementary Table 8. Structures of isolated modified soraphen compounds. 

Starting material Structure of isolated compounds  

Soraphen A 
   

1a 1c 1b 

Soraphen C 

 
               2a 

 
All bioextracts were purified by preparative reverse-phase HPLC. In each case, the bioextract was dissolved in 1 
mL of DMSO and injected on a Fraction Lynx Prep HPLC equipped with a Column Hichrom C18 ODS-2 5 250 mm 
x 2.1mm i.d. The mobile phase consisted of a mixture of H2O+0.1% HCOOH and ACN+0.1% HCOOH. The flow was 
set at 20 mL min–1. The gradients used for the purification of the different extracts are presented below. 
 

Supplementary Table 9. Prep. HPLC gradient for 1a and 1c. 

Time (min) % H2O + 0.1% HCOOH % ACN + 0.1% HCOOH 
0 60 40 
2 60 40 

37 0 100 
40 1 100 
41 50 50 
45 50 50 

(1a) rt = 23.6 min; (1c) rt = 11.7 min; 
 

Supplementary Table 10. Prep. HPLC gradient for 1b. 

First column:                                                                     Second column: 
Time 
(min) 

% H2O 
+ 0.1% HCOOH 

% ACN 
+ 0.1% HCOOH 

 Time 
(min) 

% H2O 
+ 0.1% HCOOH 

% ACN 
+ 0.1% HCOOH 

0 60 40  0 50 50 
2 60 40  2 50 50 

35 0 100  35 0 100 
40 0 100  40 0 100 
41 60 40  41 50 50 
45 60 40  45 50 50 

(1b) rt (second column)= 20.6 min. 
 

Supplementary Table 11. Prep. HPLC gradient for 2a. 

Time (min) % H2O + 0.1% HCOOH % ACN + 0.1% HCOOH 
0 60 40 
2 60 40 

37 0 100 
40 0 100 
41 60 40 
45 60 40 
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Analytical data of the halogenated and hydroxylated products 
 
(1R,2S,5S,10S,11R,12E,14S,15S,16S,17S,18R)-8-chloro-1,17-dihydroxy-10,11,18-trimethoxy-2,14,16-trimethyl-5-
phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (1a) 
 

 
 
Isolated yield: 10% (11.0 mg) 
1H-NMR (600 MHz, CDCl3) δ (ppm) = 7.36–7.34 (m, 4H), 7.30 (dq, J=8.5, 4.3 Hz, 1H), 6.21 (dd, J=16.3, 3.7 Hz, 1H), 
5.92 (dd, J=11.8, 2.5 Hz, 1H), 5.49 (ddd, J=16.2, 9.5, 1.7 Hz, 1H), 4.57 (s, 1H), 4.12–4.06 (m, 1H), 4.00 (tt, J=11.7, 
2.5 Hz, 1H), 3.88 (dt, J=10.7, 2.7 Hz, 1H), 3.77 (dd, J=10.5, 2.5 Hz, 1H), 3.68 (dd, J=9.5, 1.9 Hz, 1H), 3.48 (s, 3H), 
3.38 (s, 3H), 3.32 (s, 3H), 3.19-3.15 (m, 2H), 3.12 (q, J=7.0 Hz, 1H), 2.53–2.49 (m, 1H), 2.21–2.15 (m, 1H), 2.06–
2.02 (m, 1H), 2.01–1.96 (m, 1H), 1.92–1.89 (m, 1H), 1.88–1.85 (m, 1H), 1.77–1.73 (m, 1H), 1.69 (ddd, J=13.9, 11.5, 
2.1 Hz, 1H), 1.56 (br s, 1H), 1.13 (d, J=7.1 Hz, 3H), 1.07 (d, J=7.6 Hz, 3H), 1.02 (d, J=6.7 Hz, 3H); 
13C-NMR (151 MHz, CDCl3) δ = 170.97, 141.00, 140.12, 128.75 (2C), 128.30, 126.15 (2C), 122.97, 99.54, 84.03, 
79.98, 76.33, 73.15, 72.40, 69.22, 58.48, 57.47, 56.89, 56.51, 46.49, 39.67, 35.85, 35.42, 34.33, 32.90, 12.58, 
11.71, 10.43 ppm;  
HPLC-MS: rt = 2.07 min, m/z = 578/580 [M+H+Na]2+, 553/555 [M–H]– chloro isotopic pattern 
 
 
(1R,2S,5S,10S,11R,12E,14S,15S,16S,17S,18R)-1,8,17-trihydroxy-10,11,18-trimethoxy-2,14,16-trimethyl-5-
phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (1c) 
 

 
 

Isolated yield: 3% (3.7 mg) 
1H-NMR (600 MHz, CDCl3) δ = 7.36–7.33 (m, 4H), 7.30 (dq, J=8.7, 4.2 Hz, 1H), 6.16 (dd, J=16.3, 3.7 Hz, 1H), 5.87 
(dd, J=10.2, 4.7 Hz, 1H), 5.49 (ddd, J=16.2, 9.3, 1.8 Hz, 1H), 4.48 (s, 1H), 4.05 (br d, J=8.7 Hz, 1H), 3.86 (br s, 1H), 
3.81 (br dd, J=10.5, 2.5 Hz, 1H), 3.76–3.73 (m, 1 H), 3.72 (dd, J=9.3, 1.8 Hz, 1H), 3.47 (s, 3H), 3.42 (br d, J=9.3 Hz, 
1H), 3.38 (s, 3H), 3.30 (s, 3H), 3.18 (d, J=1.6 Hz, 1H), 3.13 (q, J=7.0 Hz, 1H), 2.51 (m, 1H), 2.17 (s, 1H), 2.05–1.96 
(m, 2H), 1.97–1.91 (m, 1H), 1.69 (ddd, J=14.0, 10.4, 1H), 1.55–1.48 (m, 5H), 1.11 (d, J=7.1 Hz, 3H), 1.06 (d, J=7.5 
Hz, 3H), 1.03 (d, J=6.7 Hz, 3H) ppm 
13C-NMR (151 MHz, CDCl3) δ = 170.93, 140.83, 140.18, 128.75 (2C), 128.37, 126.41 (2C), 122.99, 99.60, 84.83, 
80.05, 76.30, 74.32, 72.39, 69.11, 65.78, 58.36, 57.49, 56.44, 46.38, 38.78, 35.80, 35.46, 33.53, 31.78, 31.08, 
12.69, 11.71, 10.51 ppm  
MS: m/z = 559 [M+Na]+ 
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(2S,5R,10S,11R,12E,14S,15S,16S,17S,18R)-6-chloro-1,17-dihydroxy-10,11,18-trimethoxy-2,14,16-trimethyl-5-
phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (1b) 
 

 
 

Isolated yield: 4% (4.1 mg) 
1H-NMR (600 MHz, CDCl3) δ = 7.41–7.35 (m, 4H), 7.35–7.32 (m, 1H), 6.22 (dd, J=16.2, 3.9 Hz, 1H), 5.88 (d, J=9.1Hz, 
1H), 5.48 (ddd, J=16.2, 9.5, 1.8 Hz, 1H), 4.39 (s, 1H), 4.38–4.35 (m, 1H), 4.12–4.06 (m, 1H), 3.79 (dd, J=10.5, 2.7 
Hz, 1H), 3.63 (dd, J=9.5, 2.1 Hz, 1H), 3.47–3.43 (m, 4H), 3.37 (s, 3H), 3.30 (s, 3H), 3.16–3.14 (m, 1H), 3.14–3.09 
(m, 2H), 2.56–2.46 (m, 1H), 2.17 (s, 1H) 2.03 (qd, J=9.9, 4.5 Hz, 1H) 1.90 (q, J=7.5 Hz, 1H) 1.87–1.80 (m, 1H), 1.66–
1.61 (m, 2H), 1.45–1.36 (m, 1H), 1.35–1.25 (m, 2H), 1.07 (d, J=6.3 Hz, 3H), 1.06 (d, J=6.0 Hz, 3H), 1.02 (d, J=6.8 
Hz, 3H) ppm; 
13C-NMR (151 MHz, CDCl3) δ = 170.01, 140.07, 137.28, 128.99, 128.40 (2C), 128.05 (2C), 122.64, 99.66, 84.90, 
83.23, 76.26, 75.65, 72.68, 69.27, 62.15, 58.25, 57.52, 56.39, 46.37, 35.82, 35.30, 33.83, 29.53, 18.98, 12.61, 
11.55, 10.39 ppm.  
HPLC-MS: rt = 1.80 min, m/z = 564/566 [M+H+Na]2+, 539/541 [M–H]– chloro isotopic pattern 
 
 
(1R,2S,5S,10S,11R,12E,14S,15S,16S,17S,18R)-8-chloro-1,11,17-trihydroxy-10,18-dimethoxy-2,14,16-trimethyl-5-
phenyl-4,19-dioxabicyclo[13.3.1]nonadec-12-en-3-one (2a) 
 

 
 
Isolated yield: 10% (16.1 mg) 
1H-NMR (600 MHz, CDCl3) δ = 7.38–7.33 (m, 4H), 7.33–7.28 (m, 1H), 6.16 (dd, J=16.1, 3.8 Hz, 1H), 5.89 (dd, J=11.7, 
2.7 Hz, 1H), 5.50 (ddd, J=16.1, 9.4, 1.8 Hz, 1H), 4.58 (s, 1H), 4.19 (dd, J=9.3, 2.1 Hz, 1H), 4.08 (br s, 1H), 4.00 (tt, 
J=11.5, 2.7 Hz, 1H), 3.81 (dt, J=11.0, 2.9 Hz, 1H), 3.76 (dd, J=10.6, 2.6 Hz, 1H), 3.46 (s, 3H), 3.38 (s, 3H), 3.30 (br d, 
J=7.3 Hz, 1H), 3.17 (d, J=1.8 Hz, 1H), 3.12 (q, J=7.2 Hz, 1H), 2.51–2.43 (m, 1H), 2.39–2.29 (m, 1H), 2.17 (ddt, J=15.0, 
11.6, 3.5, 3.5 Hz, 1H), 2.08–2.01 (m, 2H), 1.93–1.88 (m, 1H), 1.84 (ddt, J=14.8, 11.8, 3.4, 3.4 Hz, 1H), 1.75 (ddt, 
J=14.9, 11.2, 4.0, 4.0 Hz, 1H), 1.69–1.64 (m, 2H), 1.11 (d, J=7.0 Hz, 3H), 1.06 (d, J=7.5 Hz, 3H), 1.00 (d, J=6.8 Hz, 
3H) ppm 
13C-NMR (151 MHz, CDCl3) δ = 170.83, 140.85, 137.99, 128.77 (2C), 128.34, 126.17 (2C), 125.19, 99.54, 81.27, 
76.29, 74.54, 73.31, 72.42, 69.18, 58.09, 57.47, 56.58, 46.39, 39.15, 35.86, 35.35, 34.29, 32.84, 12.60, 11.71, 
10.47 ppm 
MS: m/z = 563/565 [M+Na]+ chloro isotopic pattern 
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Supplementary Table 12. Assignment Table 1H-NMR. 

Chemical shifts (in ppm) for multiplets were taken at the center of the multiplet for clarity. 
The assignment of the peaks was done based on analysis of 2D spectra: COSY, HSQC, HMBC, ROESY. 
 

 
 

Carbon 
number Soraphen A 

(1a) 
R=Me;  

X1=Cl, X2=H 

(1b) 
R=Me;  

X1=H, X2=Cl 

(1c) 
R=Me; 

X1=OH, X2=H 

Soraphen C 
R=H;  

X1=H, X2=H 

(2a) 
R=H;  

X1=Cl, X2=H 
2 3.14 3.15 3.12 3.16 3.15 3.12 
4 3.18 3.19 3.15 3.20 3.18 3.17 
5 4.02 4.12 4.09 4.07 4.02 4.00 
6 1.94 1.95 1.90 1.95 1.93 1.90 
7 3.83 3.79 3.79 3.84 3.82 3.76 
8 2.49 2.54 2.51 2.54 2.45 2.47 
9 6.17 6.23 6.22 6.19 6.15 6.16 

10 5.48 5.51 5.48 5.51 5.49 5.50 
11 3.68 3.71 3.63 3.75 4.17 4.19 
12 3.41 3.91 3.45 3.77 3.36 3.81 

13 1.24 
1.69 

1.72 
2.01 

1.34 
1.64 

1.52 
1.71 

1.17 
1.77 

1.66 
2.05 

14 1.16 
1.46 4.02 1.43 

1.64 3.86 1.17 
1.51 4.00 

15 1.34 
1.46 

1.77 
1.89 

1.86 
2.03 

1.58 
1.58 

1.35 
1.48 

1.75 
1.85 

16 1.67 
2.10 

2.07 
2.20 4.37 2.02 

2.05 
1.67 
2.10 

2.05 
2.18 

17 5.84 5.95 5.88 5.90 5.82 5.89 
18 1.11  1.15 1.07 1.14 1.09 1.11 
19 3.38 3.41  3.37 3.41 3.38 3.38 
20 1.05 1.10 1.06 1.19 1.05 1.06 
21 1.03 1.05 1.02 1.05 1.00 1.00 
22 3.29 3.35  3.30 3.33 / / 
23 3.44 3.50  3.45 3.49 3.43 3.46 
2’ 7.32 7.38 7.38 7.37 7.35 7.35 
3’ 7.32 7.38 7.38 7.38 7.35 7.35 
4’ 7.32 7.32 7.34 7.33 7.27 7.30 
5’ 7.32 7.38 7.38 7.38 7.35 7.35 
6’ 7.32 7.38 7.38 7.37 7.35 7.35 
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4
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NMR spectra 
Supplementary Figure 16. NMR of compound 1. 

 

 
 
  

1H-NMR, CDCl3, 400 MHz 
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Supplementary Figure 17. NMR of compound S1. 

 

 

 
  

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 
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Supplementary Figure 18. NMR of compound S2. 

 

 

 
  

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 
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Supplementary Figure 19. NMR of compound 3. 

 

 
 

 
  

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 
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Supplementary Figure 20. NMR of compound S3. 

 

 
  

1H-NMR, CDCl3, 400 MHz 
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Supplementary Figure 21. NMR of compound S4. 

 

 
 

 
  

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 
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Supplementary Figure 22. NMR of compound S5. 

 

 
 

 
  

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 
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Supplementary Figure 23. NMR of compound soraphen C, 2. 

 

 
 

 
  

 

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 
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COSY, CDCl3 

HSQC, CDCl3 



42 
 

 
  

HMBC, CDCl3 
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Supplementary Figure 24. NMR of compound epi-soraphen C, S7. 

 

 
 

 
 
  

1H-NMR, CDCl3, 600 MHz 

13C-NMR, CDCl3, 151 MHz 
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Supplementary Figure 25. NMR of compound S6. 

 

 
 

 
  

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 
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Supplementary Figure 26. NMR of compound 4. 

 

 
 

 
 
  

1H-NMR, CDCl3, 400 MHz 

13C-NMR, CDCl3, 101 MHz 

DCM * 
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Supplementary Figure 27. NMR of compound 1a. 

 

 

 
  

1H-NMR, CDCl3, 600 MHz 

13C-NMR, CDCl3, 151 MHz 
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HSQC-DEPT, CDCl3 

COSY, CDCl3 
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Supplementary Figure 28. NMR of compound 1c. 

 

 
 

 
 
  

 

1H-NMR, CDCl3, 600 MHz 

13C-NMR, CDCl3, 151 MHz 
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COSY, CDCl3 

HSQC, CDCl3 
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Supplementary Figure 29. NMR of compound 1b. 

 

 
 

 
 
  

1H-NMR, CDCl3, 600 MHz 

13C-NMR, CDCl3, 151 MHz 
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COSY, CDCl3 
 

HSQC, CDCl3 
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Supplementary Figure 30. NMR of compound 2a. 

 

 
 

 
 
  

 

1H-NMR, CDCl3, 600 MHz 

13C-NMR, CDCl3, 151 MHz 
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COSY, CDCl3 

HSQC, CDCl3 
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Methods for biological testing and BP80 determination 
 
The assays were performed at Syngenta’s high-throughput screening facilities, using standardized assays and the 
necessary standards. 
 
Leaf disk assays: 
 
Erysiphe graminis f.sp. tritici (Wheat powdery mildew): preventive application 
Barley leaf segments were placed on agar in multiwell plates (24-well format) and sprayed with test solutions. 
After drying, the leaf disks were inoculated with spores of the fungus. After appropriate incubation the activity 
of a compound was assessed 7 dpi (days post inoculation) as preventive fungicidal activity.   
 
Puccinia recondita (Brown rust): curative application 
Wheat leaf segments are placed on agar in multiwell plates (24-well format). The leaf disks are then inoculated 
with a spore suspension of the fungus. One day after inoculation the test solution is applied. After appropriate 
incubation the activity of a compound is assessed 8 dpi (days post inoculation) as curative fungicidal activity. 
 
Liquid culture assays: 
 
Botrytis cinerea (Gray mould): 
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (Vogel’s minimal media). A 
DMSO solution of the test compounds was placed into a microtiter plate (96-well format) and the nutrient broth 
containing the fungal spores was added to it. The test plates were incubated at 24 °C and the inhibition of growth 
was determined photometrically after 72 hours at 620 nm.    
 
Mycosphaerella arachidis (Brown leaf spot of peanut): 
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose 
broth). A DMSO solution of the test compounds was placed into a microtiter plate (96-well format) and the 
nutrient broth containing the fungal spores was added to it. The test plates were incubated at 24 °C and the 
inhibition of growth was determined photometrically after approximately 5-6 days at 620 nm. 
 
Septoria tritici (leaf blotch): 
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose 
broth). A DMSO solution of the test compounds was placed into a microtiter plate (96-well format) and the 
nutrient broth containing the fungal spores was added to it. The test plates were incubated at 24 °C and the 
inhibition of growth was determined photometrically after 72 hours at 620 nm.     
 
Monographella nivalis (snow mould, foot rot of cereals): 
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose 
broth). A DMSO solution of the test compounds was placed into a microtiter plate (96-well format) and the 
nutrient broth containing the fungal spores was added to it. The test plates were incubated at 24 °C and the 
inhibition of growth was determined photometrically after 72 hours at 620 nm. 
 
BP80 determination:  
A dilution series was performed for each fungus/compound combination and the efficiency of the compounds 
evaluated. BP80 represents the breakpoint below which less than 80% efficiency is observed. 
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The experiments on living organisms were performed as single or triplicate experiments, against positive and 
negative standards (both commercial and company internal). The triplicate experiments were technical 
triplicates, with three samples tested in parallel during the same test session. The pest control percentage is 
assessed visually by a trained personal and is assigned to be 100%, 90%, 70%, 50%, 20% or 0%. The BP80 was 
determined as an average over all the results. 
 
 
 

Supplementary Table 13. BP80 determination for compound 1. 

Compound 1 

Pathogen tested 
Rate of 

application 
in ppm 

Rate of 
application 

in uM 

% Pest control 
pBP80 BP80 (uM) Test 1 Test 2 

  replicate 1 replicate 2 replicate 3 

Erysiphe graminis 

22.2 42.6 100 100 100 100 

5.8 0.16 
7.39 14.2 100 100 100 100 

2.46 4.7 100 100 100 100 

0.819 1.6 100 100 100 100 

Puccinia recondita  

22.2 42.6 100 100 100 100 

5.8 0.16 
7.39 14.2 100 100 100 100 

2.46 4.7 100 100 100 100 

0.819 1.6 100 100 100 100 

Botrytis cinerea  

6.67 12.8 100 100 100 100 

6.8 0.016 
2.22 4.3 100 100 100 100 

0.739 1.4 100 100 100 100 

0.246 0.5 100 100 100 100 

Mycosphaerella  
arachidis  

6.67 12.8 100 100 100 100 

6.3 0.050 2.22 4.3 100 100 100 100 

0.739 1.4 100 100 100 100 

Septoria tritici  

6.67 12.8 100 100 100 100 

6.3 0.050 
2.22 4.3 100 100 100 100 

0.739 1.4 100 100 100 100 

0.246 0.5 100 70 70 70 

Monographella  
nivalis  

6.67 12.8 100 100 100 100 

6.8 0.016 
2.22 4.3 100 100 100 100 

0.739 1.4 100 100 100 100 

0.246 0.5 100 100 100 100 
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Supplementary Table 14. BP80 determination for compound 1a. 

Compound 1a 

Pathogen tested 
Rate of 

application 
in ppm 

Rate of 
application 

in uM 

% Pest control 
pBP80 BP80 (uM) Test 1 Test 2 

  replicate 1 replicate 2 replicate 3 

Erysiphe graminis 

22.2 42.6 100 90 100 100 

4.4 3.98 
7.39 14.2 50 20 50 70 

2.46 4.7 20 0 0 20 

0.819 1.6 0 0 0 0 

Puccinia recondita  

22.2 42.6 90 20 70 100 

4.4 0.40 
7.39 14.2 20 20 0 0 

2.46 4.7 20 0 0 0 

0.819 1.6 0 0 0 0 

Botrytis cinerea  

6.67 12.8 100 90 100 100 

4.9 1.26 
2.22 4.3 50 70 70 70 

0.739 1.4 20 20 20 20 

0.246 0.5 20 0 0 0 

Mycosphaerella  
arachidis  

6.67 12.8 90 100 70 90 

4.9 1.26 2.22 4.3 0 20 20 20 

0.739 1.4 0 0 0 0 

Septoria tritici  

6.67 12.8 20 20 70 50 

0 1000 
2.22 4.3 0 0 0 0 

0.739 1.4 0 0 0 0 

0.246 0.5 0 0 0 0 

Monographella  
nivalis  

6.67 12.8 100 100 90 90 

4.9 1.26 
2.22 4.3 50 50 50 50 

0.739 1.4 20 0 0 0 

0.246 0.5 20 0 0 0 
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Supplementary Table 15. BP80 determination for compound 1b. 

Compound 1b 

Pathogen tested 
Rate of 

application 
in ppm 

Rate of 
application 

in uM 

% Pest control 
pBP80 BP80 (uM) Test 1 Test 2 

  replicate 1 replicate 2 replicate 3 

Erysiphe graminis 

22.2 42.6 100 100 100 100 

5.8 0.16 
7.39 14.2 100 100 100 100 

2.46 4.7 100 90 100 90 

0.819 1.6 100 70 50 70 

Puccinia recondita  

22.2 42.6 100 100 100 100 

4.9 1.26 
7.39 14.2 50 100 90 100 

2.46 4.7 0 50 90 20 

0.819 1.6 0 0 0 20 

Botrytis cinerea  

6.67 12.8 100 100 100 100 

5.4 0.40 
2.22 4.3 90 90 90 100 

0.739 1.4 50 90 70 70 

0.246 0.5 0 50 0 0 

Mycosphaerella  
arachidis  

6.67 12.8 100 100 100 100 

4.9 1.26 2.22 4.3 50 90 50 20 

0.739 1.4 0 0 0 20 

Septoria tritici  

6.67 12.8 100 100 100 100 

4.9 1.26 
2.22 4.3 70 20 50 90 

0.739 1.4 50 0 0 20 

0.246 0.5 0 0 0 0 

Monographella  
nivalis  

6.67 12.8 100 100 100 100 

5.4 0.40 
2.22 4.3 100 100 90 100 

0.739 1.4 70 90 50 20 

0.246 0.5 20 0 0 20 
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Supplementary Table 16. BP80 determination for compound 1c. 

Compound 1c 

Pathogen tested 
Rate of 

application 
in ppm 

Rate of 
application 

in uM 

% Pest control 
pBP80 BP80 (uM) Test 1 Test 2 

  replicate 1 replicate 2 replicate 3 

Erysiphe graminis 

22.2 42.6 90 70 70 70 

4.4 3.98 
7.39 14.2 0 0 50 20 

2.46 4.7 0 0 0 20 

0.819 1.6 0 0 0 0 

Puccinia recondita  

22.2 42.6 0 0 0 0 

0.05 1000 
7.39 14.2 0 0 0 0 

2.46 4.7 0 0 0 0 

0.819 1.6 0 0 0 0 

Botrytis cinerea  

6.67 12.8 0 0 0 0 

0 1000 
2.22 4.3 0 0 0 0 

0.739 1.4 0 0 0 0 

0.246 0.5 0 0 0 0 

Mycosphaerella  
arachidis  

6.67 12.8 0 0 0 0 

0 1000 2.22 4.3 0 0 0 0 

0.739 1.4 0 0 0 0 

Septoria tritici  

6.67 12.8 20 0 0 0 

0 1000 
2.22 4.3 0 0 0 0 

0.739 1.4 0 0 0 0 

0.246 0.5 0 0 0 0 

Monographella  
nivalis  

6.67 12.8 20 0 0 0 

0 1000 
2.22 4.3 20 0 0 0 

0.739 1.4 0 0 0 0 

0.246 0.5 0 0 0 0 
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Supplementary Table 17. BP80 determination for compound 2. 

Compound 2 

Pathogen tested 
Rate of 

application 
in ppm 

Rate of 
application 

in uM 

% Pest control 
pBP80 BP80 (uM) Test 1 Test 2 

  replicate 1 replicate 2 replicate 3 

Erysiphe graminis 

22.2 42.6 100 100 100 100 

5.8 0.16 
7.39 14.2 100 100 100 100 

2.46 4.7 100 100 100 100 

0.819 1.6 90 100 100 100 

Puccinia recondita  

22.2 42.6 100 100 100 100 

5.8 0.16 
7.39 14.2 100 100 100 100 

2.46 4.7 100 100 100 100 

0.819 1.6 100 90 100 90 

Botrytis cinerea  

6.67 12.8 100 100 100 100 

5.8 0.16 
2.22 4.3 100 100 100 100 

0.739 1.4 50 90 90 90 

0.246 0.5 20 20 20 20 

Mycosphaerella  
arachidis  

6.67 12.8 100 100 100 100 

5.4 0.4. 2.22 4.3 90 90 90 90 

0.739 1.4 50 0 20 50 

Septoria tritici  

6.67 12.8 90 100 100 100 

5.4 0.40 
2.22 4.3 70 70 70 70 

0.739 1.4 20 0 0 0 

0.246 0.5 0 0 0 0 

Monographella  
nivalis  

6.67 12.8 100 100 100 100 

5.4 0.40 
2.22 4.3 100 90 90 90 

0.739 1.4 70 50 50 50 

0.246 0.5 50 0 20 0 
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Supplementary Table 18. BP80 determination for compound 2a. 

Compound 2a 

Pathogen tested 
Rate of 

application 
in ppm 

Rate of 
application 

in uM 

% Pest control 
pBP80 BP80 (uM) Test 1 Test 2 

  replicate 1 replicate 2 replicate 3 

Erysiphe graminis 

22.2 42.6 100 100 100 100 

5.8 1.26 
7.39 14.2 100 50 100 50 

2.46 4.7 0 0 70 0 

0.819 1.6 0 0 0 0 

Puccinia recondita  

22.2 42.6 100 100 100 100 

4.9 1.26 
7.39 14.2 50 90 90 100 

2.46 4.7 0 0 90 0 

0.819 1.6 0 0 50 0 

Botrytis cinerea  

6.67 12.8 50 90 90 90 

4.9 1.26 
2.22 4.3 20 50 50 50 

0.739 1.4 0 0 0 0 

0.246 0.5 0 0 0 0 

Mycosphaerella  
arachidis  

6.67 12.8 50 20 20 20 

0.05 1000 2.22 4.3 0 0 0 0 

0.739 1.4 0 0 0 0 

Septoria tritici  

6.67 12.8 20 0 0 20 

0 1000 
2.22 4.3 0 0 0 0 

0.739 1.4 0 0 0 0 

0.246 0.5 0 0 0 0 

Monographella  
nivalis  

6.67 12.8 50 50 70 70 

0.05 1000 
2.22 4.3 20 20 20 20 

0.739 1.4 0 0 0 0 

0.246 0.5 0 0 0 0 
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Combinatorial library WelO5* 
 

Codon list incorporated in the WelO5* site-saturation library. The most abundant codons of E. coli were 
chosen in library design. By replacing the wild-type codons on positions V81, A88, and I161 with the codons 
in the table, the DNA sequences of the constructed variants can be obtained. 
 

Supplementary Table 19. Codon list incorporated in the WelO5* site-saturation library. 

Amino acid Codon Amino acid Codon 

A GCA M ATG 

C TGT N AAT 

D GAT P CCG 

E GAA Q CAG 

F TTT R CGT 

G GGT S AGC 

H CAT T ACC 

I ATC V GTT 

K AAA W TGG 

L CTG Y TAT 
 
 
DNA sequence of the ordered gene fragments: 
 
>Twist_gene_fragment_of_the_WelO5*_site_saturation_library 
CCCGTCACCTTTGGCTTATCAGTGAGATATACATATGTCGAACAACACCATCTCGACCAAACCAGCCTTGCATTT
TCTCGACATCAACGCCACCGAAGTCAAGAAATATCCCACTGCAATTCAGGACATCATTATCAATCGCTCATTCGA
TGGCATGATTATTCGGGGAGTCTTTCCTCGCGATACGATGGAGCAGGTTGCTCGTTGCCTGGAAGAAGGGAATGA
TGGCGGCATGAAATCCATCCTGAACAAGAATGAAGAGTTTGGTACGAAAGTTGCCCAGATTTATGGCCATGCGAT
TGTTGGCCAATCTCCGGATCTCAAAGACTATTTTGCTAGTTCTGCCATTTTCCGTCAGGCGTGTCGTACCATGTT
TCAGGGTAGCCCGGACTTTGAGGAACAAGTGGAGAGCATTTTCCACTCGTTATCCGGACTGCCCGTAGAGATTCC
GACGGGTCCTGAAGGGCAAACTTACACCCCGGCAACCATTCGTCTGCTGTTAGAAGGCCGCGAAATTGCCGTACA
TGTGGGCAACGACTTTCTTCTGATGCCGGCTGCAAACCATCTGAAAACGTTGCTGGATCTGTCTGATCAACTGTC
GTACTTTATCCCGTTAACAGTGCCGGAAGCAGGTGGTGAATTGGTGGTGTACAACCTGGAATGGAATCCGCAGGA
AGTGGACAAATCAGCGGATCTTCACAAGTACATCGATGAGGTCGAAAGCAAATTCAAAAGCAATCAGAGTCAGAG
TGTTGCGTATGCGCCTGGTCCAGGTGATATGCTCCTGTTCAATGGCGGTCGCTATTATCACCGCGTCAGCGAAGT
AATCGGGAATTCCCCACGTCGCACAATTGGCGGATTTCTGGCGTTCTCAAAAGAGCGCAACAAAATCTACTATTG
GAGCTAACTCGAGCACCAGTGACATCTGGACGCTAAGACCG 
 
green = flanking sequence (Twist) 
yellow = flanking sequence including restriction sites 
bold = mutation site 
underlined = WelO5* gene sequence (ORF) 
 
 
>WelO5* amino acid sequence 
MSNNTISTKPALHFLDINATEVKKYPTAIQDIIINRSFDGMIIRGVFPRDTMEQVARCLEEGNDGGMKSILNKNE
EFGTKVAQIYGHAIVGQSPDLKDYFASSAIFRQACRTMFQGSPDFEEQVESIFHSLSGLPVEIPTGPEGQTYTPA
TIRLLLEGREIAVHVGNDFLLMPAANHLKTLLDLSDQLSYFIPLTVPEAGGELVVYNLEWNPQEVDKSADLHKYI
DEVESKFKSNQSQSVAYAPGPGDMLLFNGGRYYHRVSEVIGNSPRRTIGGFLAFSKERNKIYYWS- 
bold = mutation site 
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Abstract 

Enzymes are potent catalysts with high specificity and selectivity. To leverage Nature’s synthetic 

potential for industrial applications, various protein engineering techniques have emerged which 

allow to tailor the catalytic, biophysical, and molecular recognition properties of enzymes. However, 

the many possible ways a protein can be altered forces researchers to carefully balance between 

the exhaustiveness of an enzyme screening campaign and the required resources. Consequently, 

the optimal engineering strategy is often defined on a case-by-case basis. Strikingly, while predicting 

mutations that lead to an improved target function is challenging, here we show that the prediction 

and exclusion of deleterious mutations is a much more straightforward task as analyzed for an 

engineered carbonic acid anhydrase, a transaminase, a squalene-hopene cyclase and a Kemp 

eliminase. Combining such a pre-selection of allowed residues with advanced gene synthesis 

methods opens a path toward an efficient and generalizable library construction approach for 

protein engineering. To give researchers easy access to this methodology, we provide the website 

LibGENiE containing the bioinformatic tools for the library design workflow.  

Keywords: Bioinformatic Tools; Enzyme Engineering; Library Design; Sequence Space 

 

1. Introduction 

Enzymes are remarkable catalysts capable of facilitating complex reactions with high substrate 

specificity and exquisite chemo-, regio- and enantioselectivity [1]. However, when used in conditions 

necessary to drive a process at an industrial scale, the performance of wild-type enzymes often 

remains insufficient from an economic standpoint. Thus, to better harness the capabilities of Nature's 

catalysts in industrial settings, much focus has been placed on advancing protein engineering 

strategies to proficiently tailor enzymes' catalytic, biophysical, and molecular recognition properties 

[2,3]. In this way, enzyme engineering has allowed to broaden the substrate scope of natural enzymes 

[4], change their chemistry [5], improve catalytic activity [6–8], or alter enantioselectivity [9,10]. Yet, 

despite their successful outcome, these protein engineering examples did not explore all possible 

amino acid configurations of the target enzymes, and consequently, the solutions found in evolution 

campaigns might be far from optimal. However, since the number of possible enzyme variants scales 

exponentially with protein sequence length, the screening burden imposed on researchers quickly 

becomes intractable when attempting to explore enzyme composition comprehensively. For 

illustration, a protein composed of only 100 amino acids can be altered in 20100 ways, an astronomical 

number far exceeding even the estimated number of atoms in the universe [11]. Faced with this 

challenge, also called "the numbers problem in directed evolution" [12], protein engineers aim to 



 

 

navigate sequence space as efficiently as possible and constantly seek to develop novel methods to 

optimize the process. Existing approaches can broadly be classified into the categories of 1) directed 

evolution, 2) semi-rational, and 3) rational protein design (Figure 1) and are often employed in 

accordance with the available screening capabilities and prior information about the enzymatic system 

[13].  

 

Figure 1: Overview of protein engineering techniques. The different categories are sorted by their required screening effort 
from left (highest) to right (lowest). In traditional directed evolution, the sequence space (red box) is commonly explored 
randomly, with little additional information required. Rational design can be viewed as a complementary approach. 
Information about the system, which can include experimental data, knowledge of the mechanism, as well as computational 
techniques, is used to reduce the sequence space as much as possible, and areas within it are sampled selectively. Semi-
rational design also relies on additional information to reduce the screening space; however, experiments and physical 
evaluation are still required. Notably, the boundaries between these techniques are often fluid, and the optimal engineering 
method depends on many factors, such as the complexity of the functional assay, available screening capabilities, or previous 
knowledge of the enzyme. Image inspired by Bornscheuer et al. [13]. 

Traditional directed evolution, which relies on gene recombination or whole-gene error-prone PCR to 

create diversity, is often associated with a heavy screening burden [14] as many of the introduced 

mutations in the libraries are either neutral or unfavorable [15]. Positively, however, directed 

evolution does not require any prior knowledge about enzyme function or structure to be effective. 

In contrast, rational enzyme design [16] aims to limit enzymatic screening efforts to only a few distinct 

amino acid substitutions [17]. The approach relies on an intimate knowledge of a protein's function 

and/or structure and, as such, requires high predictive accuracy, which can be obtained – at least in 

part – through the interpretation of experimental data. Although bioinformatic tools such as 

AlphaFold 2 [18] have facilitated the access to high quality protein models, rational modulation of 

crucial residues often requires far more fine-grained information on receptor-ligand interaction 

networks and dynamics. Additionally, significant in-silico efforts might be required to resolve 

uncertainty around specific mechanisms and illuminate required factors between interaction partners 

to drive a desired reaction [19]. Even with the advanced bioinformatic methods available today, it can 

be challenging to rationalize which sites, specific residues, or combinations should be selected when 

optimizing a protein for a certain task. 

Lastly, semi-rational protein engineering fuses elements of rational design and directed evolution to 

create more focused enzyme libraries of higher quality [20,21]. This combination leads to a more 

efficient sampling of the sequence space, resulting in a lower screening burden than completely 

random approaches [22,23] while allowing more leniency for computational limitations and 

inaccuracies. For example, researchers can investigate the 3D structure of an enzyme to identify the 

catalytic pocket and focus their engineering efforts only on this region which is likely to react more 

directly to amino acid exchanges. In this way, sequence space can be reduced while beneficial 



 

 

mutations can be largely sampled, as many of them are typically situated in the active site [24]. In 

practice, researchers often aggregate information from sources such as the target enzyme's 3D 

structure, function, previous knowledge (for example, mutational data), phylogeny, docking, or 

machine learning to preselect potential hotspots [16,20]. Based on this information, focused libraries 

ranging in size from ~200-2000 enzyme variants are constructed. Such screening efforts are within the 

scope of what GC or HPLC systems can handle within a reasonable timeframe [25]. It should be noted, 

though, that semi-rational enzyme design also suffers from the "numbers problem in directed 

evolution", and in many cases, only a small fraction of the targeted variants can be analyzed 

experimentally. In addition, experimental throughput is hampered by limitations in the physical 

construction of complex gene libraries. 

Using standard molecular biology strategies, the creation of large, randomized libraries through 

methods such as error-prone PCR or the construction of a few specific variants through site-directed 

mutagenesis is easily possible. However, building large libraries made up of predefined enzyme 

variants often remains expensive and challenging. One exciting prospect to address the existing library 

construction bottlenecks is the use of micro-array-based "oligo-pools". These pools are mixes of up to 

several hundred thousand individually designed polynucleotides with <300 bp length, synthesized 

through phosphoramidite chemistry [26]. Notably, array-based oligo synthesis is orders of magnitude 

cheaper than traditional column-based synthesis routes, with costs ranging from US$ 0.00001–0.001 

per nucleotide, depending on length, scale, platform, or vendor [27]. Considering a typical library size 

for semi-rational enzyme design (< 2000 variants) and a protein of approximately 300 amino acid 

length, oligo pools for focused libraries can consequently be ordered for roughly 2000 US$ [28], 

leading to material costs of approximately 1 US$ per variant. Consequently, despite issues like 

truncated DNA molecules and high error rates [29], the oligo-pool option could be more cost-effective 

than degenerate or reduced codon coverage primers traditionally employed for library construction 

strategies while allowing for much more flexibility in library design. 

Relevant enzymatic properties to be optimized for industrial applications include activity, thermo- and 

solvent stability, selectivity, and specificity [30]. As delineated above, reliably selecting appropriate 

amino acid residues for randomization to improve any of these traits is a challenging aspect of semi-

rational enzyme design. Guiding principles might be to select residues near the binding pocket to 

engineer enantioselectivity [31] or substitute specific residues to redesign unstable protein regions to 

improve thermostability [32]. Especially the latter, namely the modulation of protein stability through 

the introduction of mutations, is a widely pursued goal, and different computational procedures have 

been established to this end, including the use of sophisticated physical force fields, deep learning, 

and hybrid approaches [33–38]. Nevertheless, today, these tools' performance to accurately predict 

stabilizing mutations is often unsatisfactory [39].  

Intriguingly, computational techniques can be helpful in ways that might not be immediately obvious. 

For example, we followed the logic that it seems much easier to predict destabilizing mutations than 

amino acid changes that stabilize a protein scaffold [40]. We consequently reasoned that methods 

developed to predict enzyme sequences with improved stability might be used in a much broader 

sense if they were uniquely used to identify destabilizing mutations. Through the exclusion of such 

destabilizing mutations, the design of solution-enriched enzyme libraries for the optimization of 

enzyme activity or any other desirable traits would be made possible. The resulting complex libraries 

could then, in turn, effectively be built using specifically designed oligo-pools. 

  



 

 

2. Results 

2.1.  Predicting (and excluding) destabilizing mutations 

To set the basis for our approach, we analyzed available literature data of successful evolution 

campaigns, including data generated during the optimization of a carbonic anhydrase [7], a 

transaminase [41], a squalene-hopene cyclase [42] and a Kemp eliminase [6]. In a first step, we 

calculated the ΔΔG values, a measure of free energy changes upon mutation [43], for all possible 

amino acid substitutions at all sites in the selected wild-type enzymes using a cartesian ΔΔG protocol 

implemented in the Rosetta Protein Modelling Suite [44]. For example, in the case of an enzyme 

consisting of 300 amino acids, all possible 20 * 300 ΔΔG values were calculated. These ΔΔG values can 

help approximate how mutations affect protein stability by comparing the free energy of the native 

and altered conformation of a protein. Negative values typically refer to a stabilizing mutation, while 

strongly positive values denote destabilizing mutations.  

Following this protein-wide stability profiling, we analyzed in which range the ΔΔG values of the 

experimentally determined beneficial mutations of the selected enzymes were located: For example, 

we studied data generated by Codexis, a US-based company specialized in protein engineering, which 

evolved a carbonic anhydrase towards improved activity at higher temperatures. To do so, the 

researchers saturated all non-catalytic residues in a first evolution round [7], identifying 84 unique 

carbonic anhydrase variants that performed better than the wild-type under their screening 

conditions. Our ΔΔG analysis indicated that most of the mutations observed in improved variants were 

within the lowest (stabilizing) 60 % of predicted ΔΔG values hinting that a large part of the screening 

space could have been excluded a priori (Figure 2b). Interestingly, we noted that while we could 

identify destabilizing mutations, the predicted ΔΔG values became much less informative beyond a 

certain exclusion threshold. In the ΔΔG range where most improved enzyme variants were found (-7.5 

to 4.7 Rosetta energy units (REU), Figure 2a), the measured fold improvement over wild-type did not 

show a correlation to the calculated ΔΔG values (Pearson correlation coefficient 0.006, Figure 2a).   

 

Figure 2: a.) Density plot of predicted ΔΔG values (lower values correspond to higher predicted stability) of a carbonic 
anhydrase [7]. The blue density curve depicts the ΔΔG values of all possible single-point mutants, and the orange plot 
represents the ΔΔG distribution of the 84 reported hits. The ΔΔG range in which hits were identified is highlighted in orange.  
Additionally, the Pearson correlation coefficient between the activity of identified hits and predicted ΔΔG is shown.  b.) Line 
chart of the same dataset as in a.). The x-axis refers to the sequence space when reducing it only through predicted ΔΔG 
values. For example, if we remove the variants with the highest 10 % of predicted ΔΔG values (most destabilizing), 90 % of 
the sequence space remains. The y-axis represents how many of the 84 reported hits can be found in a given remaining 
sequence space. For example, none of the 84 reported hits are within the sequence space characterized by the highest 10 % 



 

 

predicted ΔΔG values. This analysis is shown for the 20, 30, 40, 50, and 84 best-measured hits (out of 84). As a comparison, 
the brown line highlights the impact of reducing the sequence space randomly. 

To test the general applicability of this finding with examples from distinct enzyme families beyond 

enzyme class 4 (carbonic anhydrase), we turned to analyze the evolutionary trajectories of enzymes 

stemming from enzyme class 2 (transaminase), enzyme class 5 (squalene hopene cyclase) as well as a 

computationally designed enzyme (Kemp eliminase) based on a scaffold from enzyme class 3 

(xylanase). The transaminase ATA-217, engineered towards synthesizing a chiral precursor of 

sacubitril, an active ingredient in the blockbuster drug Entresto, harbored 26 mutations in the final 

variant [41] whereas four mutations allowed the squalene hopene cyclase AciSHC to gain enantio-

complementary access to valuable monocyclic terpenoids [42]. Kemp eliminase HG3, a 

computationally designed enzyme capable of catalyzing a proton abstraction reaction from 5-

nitrobenzisoxazole, was optimized in 17 rounds of directed evolution to yield a variant with 17 

mutations whose catalytic activity rivals that of natural enzymes (kcat = 700 ± 60 s-1, kcat/Km = 230,000 

± 20’000 s-1 M-1) [6].  

In all investigated evolution projects, we observed the general trend that destabilizing mutations were 

not incorporated in evolved enzyme variants. Notably, when comparing amino acid mutations 

predicted to be destabilizing as single point mutations in the wild-type enzymes to any reported 

beneficial single point mutation within the evolution campaigns (Figure S1/S2), we deduced that 

almost all the destabilizing mutations could be excluded confidently at the outset of the enzyme 

optimization projects (Table 1, Table S1, Figure S1, Figure S2). Interestingly, in the case of evolved 

AciSHC, we observed a single outlier: Mutation A169P was flagged as destabilizing (21.5 REU) yet still 

appeared in the optimized squalene-hopene cyclase variant. Potentially, the destabilizing mutation 

was incorporated because AciSHC is a thermophilic enzyme whose scaffold would generally allow for 

more leeway toward introducing destabilizing mutations. 

Conclusively, the relationship between activity and stability is often complex, with reports of both 

negative [45–48] and positive correlations [49,50] between stability and function attesting to the fact 

that different enzymatic systems behave differently to mutations. Strikingly, as highlighted in this 

work, employing the opposite approach for the construction of information-enriched libraries seems 

much more reliable: Strongly destabilizing mutations are often accompanied by a loss in function 

(Table 1, Figure 2), consequently enabling their early exclusion from the sequence pool. 

  Sequence space (%) 

D
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  # Mut 100 90 80 70 60 50 40 30 20 10 

ATA217 26 100 100 96.2 92.3 88.5 73.1 73.1 61.5 53.8 42.3 

HG3.17 17 100 100 100 100 100 82.4 52.9 52.9 47.1 41.2 

DvCA 36 100 100 100 97.2 91.7 77.8 61.1 44.4 38.9 13.9 

AciSHC 4 100 75 75 75 75 75 75 50 50 50 

                       

average  100 93.8 92.8 91.1 88.8 77.1 65.5 52.2 47.4 36.8 

Table 1: Overview of how ΔΔG values of single mutations found in the final improved variants of the selected evolution 
campaigns are distributed within the context of all possible calculated ΔΔG values for the wild-type enzymes. In this analysis, 
the most destabilizing mutations in the context of the wild-type enzyme are gradually removed (in 10 % steps), reducing the 
theoretical sequence space from left to right. The remaining sequence space is analyzed with respect to its harboring the 
amino acid substitutions found in evolved enzyme variants and the value is given in percent (%). For example, in the case of 
HG3 evolution, a focused library in which the 40 % most destabilizing mutations are removed from sequence space would 
still contain all the 17 beneficial mutations identified in the final variant.   

 



 

 

2.2. Oligo pools for library creation 

 

Promisingly, as seen above, reducing the amino acid alphabet in gene library preparation can be 

facilitated through computational techniques. Yet, it is equally important to have in mind that such a 

process might lead to libraries that are too diversified to be easily and economically constructed. In 

this respect, it is important to consider the redundant nature of the genetic code in which the 20 

natural amino acids are encoded by 61 sense codons. In consequence, researchers have tried to avoid 

using the heavily redundant NNN codon in library construction which additionally suffers from the 

occurrence of stop codons (N standing for any of the four DNA bases). Instead, they have turned to 

using primers harboring degenerate codons such as NNK (32 codons, 20 amino acids), NDT (12 codons, 

12 amino acids) or using the 22c (22 codons, 20 amino acids), and 20c (20 codons, 20 amino acids) 

tricks [12,51,52].  

Unfortunately, the current strategies using degenerate codons are not suitable to build the 

information-enriched libraries stemming from our computational workflow, in which each targeted 

mutation site would demand the inclusion of only certain amino acids (Figure S3). Thus, we set out to 

evaluate the feasibility of using micro-array-synthesized oligonucleotides, commercially available 

under the term "oligo-pools", for constructing the complex libraries derived from our stability filtering 

strategy (Figure 3a, Figure S3).  

In particular, we opted to focus our attention on single-point residue exchanges. As there are 

limitations to the synthesis length of oligo-pools [29], desired mutations must be split across multiple 

fragments or "sub-pools" (Figure 3a), which can be separated from the main pool with sub-pool 

specific primers. These sub-pools consist of individual oligonucleotides, each carrying a single 

mutation, which can be introduced into the gene of interest through traditional molecular biology 

techniques, such as gene splicing by overlap extension PCR (SOEing) [53]. 

To evaluate the suitability of the oligo-pools for the construction of tailored enzyme variant libraries, 

we ordered a pool of 200 oligo sequences encoding the initial 157 bases of the Kemp eliminase HG3 

[6]. To create diversity for sequence analysis, three consecutive adenine nucleotides were introduced 

within four spatially distinct regions of the 157 bp gene fragment (sequence A: bp 30 – 32; sequence; 

bp 62 – 64; sequence C: bp 93 – 94; sequence D; bp 124- 126) and each such sequence was ordered 

in the pool fifty times. Following fragment amplification and cloning, we noted relatively high rates 

(~50 %) of undesirable sequences, split between either wild-type sequences or multiple-point mutants 

(Figure 3b). This high fraction of incorrect sequences was not wholly unexpected and correlates to the 

range reported in previous projects that leverage oligo pools for single-point mutation library creation 

[54–56].  

Oligo pools suffer from the low concentration of individual oligonucleotides [29] making an initial 

amplification step indispensable [57]. In fact, depending on the number of projects combined within 

one oligo pool, it might be required to perform this amplification twice: once to isolate the sub-pools 

[58] and then again to separate the individual fragments. We suspected that these PCR amplification 

steps introduce additional errors into the oligo-pool libraries through uncoupling events that lead to 

truncated PCR products. These truncated gene products can serve as primers during the next PCR 

cycle [59,60], either picking-up additional mutations (leading to multiple-point variants) or overwriting 

desired mutations altogether (resulting in wild-type). As the prevalence of PCR abortions is affected 

by multiple factors, such as the concentration of nucleotides, the number of PCR cycles, and the 

polymerase used for amplification [61], we opted to optimize the amplification procedure.  



 

 

To do so, we investigated ways how to improve the overall sampling efficiency of oligo-libraries by 

testing different polymerases (Q5, Phusion, and KAPA polymerase), dNTP concentrations, and varying 

amounts of PCR cycles (15, 30, and 45) for their impact on the formation of undesired gene fragments. 

Using the same oligo-pool analysis set-up as described previously, it became clear that neither the 

dNTP concentration nor the number of PCR cycles significantly impacted the number of corrupted 

sequences (Figure S4). However, the choice of polymerase showed an influence on gene fragment 

integrity (Figure 3b): While Q5 and Phusion polymerase led to 47.5 – 60 % correct fractions, KAPA 

polymerase was found to be most suited for oligo-pool amplification (> 60 % correct fragments). The 

remaining undesirable sequences were split between wild-type (28.3 %) and primarily double-point 

mutants (8.1 %) (Figure 3c). In summary, we advise that these rates should be considered when 

designing the sampling strategy of directed evolution studies. 

 

 

 

 

 

 

3. LibGENiE: A webserver for smart library creation 

To facilitate the design of solution-enriched gene libraries and their subsequent construction with the 

oligo-pool technique, we set up a web server named LibGENiE (available at www.libgenie.ch). 

[the site is password protected during the manuscript evaluation, please log in using the log in 

credentials: 

User:   tester@draft.ch  

Password:  review 

this authentication process will be removed upon publication].  

 

LibGENiE provides data sets compiling common protein properties relied upon in rational design, 

including phylogenetic conservation (extracted from a multi-sequence alignment generated from 

three rounds of PSI-BLAST with default settings [62]), stability (predicted from protein free energy 

changes upon point mutations, ACDC-NN [63]), and flexibility (generated from MEDUSA [64]). These 

tools were chosen based on open access (e.g., license situation) and computational demands. In 

addition, LibGENiE allows to generate custom oligonucleotides for library construction (Figure 4), 

which can be designed based on the preceding in-silico filtering. In addition, based on a selected 

Figure 3: a.) As oligonucleotides ordered within oligo-pools are limited to <300 bp in length, the target gene must be split 
into smaller fragments below this size. These mutations can then be introduced into the desired gene through standard 
molecular biology techniques such as SOEing [53]. b.) Fraction of correct sequences in the amplified oligo-pool. The 
experiments were conducted with varying amounts of PCR cycles (15, 30 and 45), as well as different polymerases (Q5, 
Phusion, KAPA). The error bars denote the average and error of experiments that vary in their dNTP concentration. c.) 
Overview of library quality resulting from fragment amplification with KAPA polymerase using 30 amplification cycles. 
Sequencing highlighted that 63.6 % of variants were produced correctly (one desired mutation – green), while 28.3 % 
wildtype sequences (blue) and 8.1 % sequences that contain two or more mutations were observed (red). 



 

 

maximum gene length, LibGENiE splits the input sequence into even sections and designs the required 

amplification primers. 

Initializing LibGENiE only requires the user to provide a protein sequence. From this, a sequence 

alignment for the input sequence is generated through three rounds of iterative PSI-BLAST [62]. As 

detailed below, the multiple sequence alignment then serves as the foundation for all further 

processing. 

 

Figure 4: Schematic overview of the LibGENiE landing page and workflow. Based on the user input sequence, three rounds 
of PSI-BLAST are performed through the EMBL-EBI API [62]. The acquired multiple sequence alignment (MSA) information is 
then further processed to predict stability (ACDC-NN [63]), flexibility (MEDUSA ([64]), and conservation (MSA from PSI-
BLAST). LibGENiE provides raw access to this data, which can be used to restrict the sequence space. In addition, LibGENiE 
offers a tool for the design of oligo sequences.  

3.1.1. Thermodynamic stability 

Quantifying the change in free energy between the wild-type protein and a single point variant is 

mainly associated with expression or stability optimization; however, as delineated above, knowing 

which residues completely destabilize an enzyme provides a valuable input to reduce sequence space 

of enzyme libraries dedicated to the optimization of functions beyond these enzyme characteristics. 

To allow filtering of sequence space, LibGENiE will initially attempt to predict the stability of each 

possible single site variant from the corresponding protein sequence employing the structure-based 

version of ACDC-NN, an antisymmetric neural network [63]. The structure required to run the 

algorithm is modeled through the ESM-esmfold_v1 API [65]. If no 3D structure of the protein of 

interest can be modeled, LibGENiE falls back to sequence-only predictions through ACDC-NN Seq, a 

model that has been described to favorably compare with other state-of-the-art sequence-based 

prediction tools as well as some structure-based ones [66].  

3.1.2. Evolutionary information 

Using the MSA, the observed conservation percentages of all 20 amino acids at each position is 

calculated. This information might be used to "restrict" the allowed sequence space or implement 

consensus/frequency ratio-based engineering techniques. The intuition behind restricting the allowed 

sequence space – which is to exclude residues that are never observed in closely related wild-type 

enzymes – is that deleterious mutations tend to be purged by natural selection [40]. Consensus or 

frequency ratio techniques introduce changes where the wild-type residue diverges the most from 

the most common amino acid (consensus) in the multiple sequence alignment. Such changes have 

been observed to increase stability [67–72] and are explained in detail by Damborsky et al. in their 

publication accompanying the release of HotSpot Wizard 2.0 [73].  

 



 

 

3.1.3. Structural flexibility 

Introducing mutations to rigidify flexible positions can yield proteins with improved stability [74]. This 

technique builds on the notion that selective substitutions of mobile residues can introduce additional 

interactions/contacts between neighbors [75,76], causing enhanced rigidity, which in turn leads to 

higher thermostability [77]. A typical experimental metric for protein flexibility is the B-factor, which 

reflects the X-ray scattering caused by thermal motion [78]. However, as B-factors are an experimental 

metric, and crystal structures are not available for all proteins, computational tools have been 

developed to predict them. In LibGENiE, we provide predictions of flexibility from one such tool, 

MEDUSA [64], a deep-learning-based protein flexibility model trained on experimentally determined 

B-factor values.  

3.1.4. Oligo Design 

As outlined above, oligo pools are limited in length. To enable the introduction of single point 

mutations at any desired position within a target sequence, the gene must consequently be split into 

smaller sections. Based on the provided input DNA sequence, LibGENiE’s oligo design tool divides the 

gene into fragments of desired length including all targeted single-point mutations. In addition, the 

sequences of the required amplification primers are designed. 

4. Conclusion 

Semi-rational protein engineering is an elegant compromise between directed evolution and rational 

design. It directly addresses the screening bottleneck of classical directed evolution while 

circumventing the need to have an absolute understanding of the sequence-function relationship in 

enzymes (and, consequently, the required computational resources). To conduct semi-rational protein 

engineering, several strategies to reduce sequence space have been developed and allowed the 

construction of powerful enzymes for synthesis [16,22,52,79]. In this spirit, we present how the 

prediction and removal of destabilizing mutations in gene libraries is an effective way to reduce 

sequence space resulting in information-enriched gene libraries for functional screening. 

However, when reducing sequence space, practical “wet-lab" experimental considerations also must 

be taken into account. Arbitrarily complex libraries cannot be constructed economically in most cases. 

Thus, improved DNA synthesis techniques will be essential to fuel the demands of an age defined by 

ever-increasing automation and powerful and accessible DNA sequencing instrumentation. In this 

vein, on-chip solid-phase gene synthesis presents itself as a compelling asset to semi-rational design 

as it allows to rapidly construct diverse and complex gene libraries [80]. Using this technology, 

researchers can build libraries tailored to their screening capabilities that can be scaled dynamically, 

often with no additional molecular biology overhead.  

To facilitate the adoption of mutational pre-filtering, for example through the exclusion of 

destabilizing mutations, we introduce the webserver LibGENiE for the construction of information-

enriched gene libraries. By providing data sets comprising selected common metrics used for protein 

engineering, LibGENiE affords researchers with a starting point for identifying hot spots and a way to 

restrict the sequence space to match the bounds of their screening capabilities. LibGENiE was 

designed to be easily extendable with additional information, whether from already available web 

servers for protein design such as PROSS [40], HotspotWizard [81] and 3DM [82] or other 

computational tools. In fact, unlike other platforms, LibGENiE provides information for all possible 

single-point mutants in a user's input sequence rather than suggesting preselected variants or hot 

spots. By providing unprocessed data, users of LibGENiE have more flexibility to introduce additional 



 

 

custom information and to define the number of variants to be evaluated, which can range from 

hundreds to thousands, depending on screening capabilities. 

 

5. Materials and Methods: 

 

5.1. Data  

The enzyme engineering datasets used for analysis were obtained from published manuscripts 

[6,7,41,42]. The dataset of single mutations in ATA217 [41] was generated by extracting the 26 

mutations introduced in the final variant compared to the wild-type sequence. The same 

procedure was applied to obtain the HG3.17 dataset [6]. The 84 beneficial mutations and their 

activity for the DvCA dataset were published in the supplement information of [7]. The beneficial 

mutations for AciSHC stem from publication [42]. Beneficial single-site mutations refer to the 

highlighted beneficial variants obtained from a 14 single-site saturation screen (Table S1).   

5.2. Cartesian ΔΔG protocol 

ΔΔG predictions were based on a protocol published by the official Rosetta forums: 

https://www.rosettacommons.org/node/11126. Each mutant was predicted three times, and the 

lowest energy obtained was compared to the wild-type energies to calculate differences in free 

energy.  

5.3. Oligo design  

A pool of 200 oligo sequences with a length of <200 bp was ordered from Twist Bioscience. The 

sequence used were the first 157 bases of the Kemp eliminase HG3 [6]:  

TGGCAGAAGCAGCACAGAGCGTTGACCAGCTGATTAAAGCACGTGGTAAAGTTTATTTTGGTGTTGCCA

CCGATCAGAATCGTCTGACCACCGGTAAAAATGCAGCAATTATTCAGGCAGATTTTGGTATGGTTTGGCC

TGAAAATAGCATGAAAT 

Four distinct spatial regions along the 157 bp fragments were changed to three consecutive 

adenines to create diversity for analysis. Each sequence was ordered 50 times in the pool. 

SeqA index: 30, 31, 32; SeqB index: 62, 63, 64; SeqC index: 93, 94, 95; SeqD index: 124, 125, 126. 

The full sequences are listed in the supplementary information.  

5.4. Oligo pool amplification  

The oligo pools were amplified according to the protocol provided by Twist Bioscience [57]. For 

optimization purposes, the final dNTP concentrations (0.3 mM each dNTP or 0.6 mM each dNTP), 

DNA polymerase (KAPA HiFi HotStart DNA Polymerase (Roche KK2601), Q5 High-Fidelity DNA 

Polymerase (NEB #M0493), and Phusion High-Fidelity DNA Polymerase (NEB #M0530S) and the 

number of amplification cycles (15, 30, 40) were changed.  

5.5. Amplified pool sequencing 

After PCR amplification, the PCR pools were prepared, sequenced, and analyzed using Nanopore 

sequencing according to the protocol outlined in [83]. Correct sequences in which the expected 

nucleotide changes were detected were annotated as “1 mutation” (Figure 3c). Sequences 



 

 

harboring no or multiple mutations were classified as wild-type or multiple-point variants, 

respectively.  
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Figure S1: Visual representation of how reductions in sequence space (filtered by ddG) would affect the number of hits 
identified in the evolutionary trajectories of a transaminase (ATA217) [1], a carbonic anhydrase (DvCA) [2], a computationally 
designed Kemp Eliminase (HG3.17) [3] and a squalene-hopene cyclase (AciSHC) [4]. The underlying data can be found in Table 
1. Vertical red lines are drawn in 10 % increments. 

 

 

 

 

 

 

 

 

 



 

Figure S2: Density plot of predicted ddG values (lower values correspond to higher predicted stability) of transaminase 

(ATA217) [1], a carbonic anhydrase [2],  a computationally designed Kemp Eliminase (HG3.17) [3] and a squalene-hopene 

cyclase (AciSHC) [4]. The blue density curve depicts the ddG values of all possible single-point mutants, and the orange plot 

represents the ddG distribution of the reported hits. The ddG range in which hits were identified is highlighted in orange.   

 

 

 

 

 

 

 

 

 

 

 



 

Figure S3: Amino acid distribution of the DvCA gene after removing the 40 % mutants with the highest predicted ddG. 
Removed residues are colored in black. 

  



 

Figure S4: Impact of dNTP concentration on the number of correct sequences for experiments conducted with KAPA 
polymerase at 30 and 45 cycles. The suggested amount refers to 0.3 mM of each dNTP in the amplification reaction according 
to the PCR AMPLIFICATION PROTOCOL provided by Twist.  

  



 

Sequence space (%) 

  # mut 100.0 90 80 70 60 50 40 30 20 10 

ATA217 26 100.0 100.0 96.2 92.3 88.5 73.1 73.1 61.5 53.8 42.3 

HG3.17 17 100.0 100.0 100.0 100.0 100.0 82.4 52.9 52.9 47.1 41.2 

DvCA_Final 36 100.0 100.0 100.0 97.2 91.7 77.8 61.1 44.4 38.9 13.9 

DvCA_Single 84 100.0 100.0 100.0 97.6 92.9 77.4 57.1 39.3 33.3 13.1 

AciSHC_Final 4 100.0 75.0 75.0 75.0 75.0 75.0 75.0 50.0 50.0 50.0 

AciSHC_Single 9 100.0 100.0 88.9 88.9 77.8 77.8 55.6 44.4 44.4 11.1 

                        

Average   100.0 95.8 93.3 91.8 87.6 77.2 62.5 48.8 44.6 28.6 
Table S1: Extended overview of different evolution campaigns and how improved variants are distributed concerning ddG. 
This table includes the additional entries DvCA_Single and AciSHC_Single. DvCA_Single refers to the 84 single-point mutations 
obtained during the NNK screening (as described in the main text). The AciSHC_Single row refers to the nine single-point 
mutations initially identified as beneficial of which only four were included in the final SHC variant. 

  

 

 

 

 

 

  



Sequences: 

> sequence A 

TAATACGACTCACTATAGGGATGGCAGAAGCAGCACAGAGCGTTGACCAGCAAATTAAAGCACGTGGTAAAGTT

TATTTTGGTGTTGCCACCGATCAGAATCGTCTGACCACCGGTAAAAATGCAGCAATTATTCAGGCAGATTTTGGTA

TGGTTTGGCCTGAAAATAGCATGAACTGAGCAATAACTAGCATAA 

> sequence B 

TAATACGACTCACTATAGGGATGGCAGAAGCAGCACAGAGCGTTGACCAGCTGATTAAAGCACG

TGGTAAAGTTTATTTTGGAAATGCCACCGATCAGAATCGTCTGACCACCGGTAAAAATGCAGCAA

TTATTCAGGCAGATTTTGGTATGGTTTGGCCTGAAAATAGCATGAACTGAGCAATAACTAGCATAA 

> sequence C 

TAATACGACTCACTATAGGGATGGCAGAAGCAGCACAGAGCGTTGACCAGCTGATTAAAGCACG

TGGTAAAGTTTATTTTGGTGTTGCCACCGATCAGAATCGTCTGACCACCAAAAAAAATGCAGCAA

TTATTCAGGCAGATTTTGGTATGGTTTGGCCTGAAAATAGCATGAACTGAGCAATAACTAGCATAA 

> sequence D 

TAATACGACTCACTATAGGGATGGCAGAAGCAGCACAGAGCGTTGACCAGCTGATTAAAGCACGTGGTAAAGTT

TATTTTGGTGTTGCCACCGATCAGAATCGTCTGACCACCGGTAAAAATGCAGCAATTATTCAGGCAGATTAAAGT

ATGGTTTGGCCTGAAAATAGCATGAACTGAGCAATAACTAGCATAA 
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An early draft manuscript summarizing the evolutionary trajectory and experimental design. This 

manuscript is limited to the work carried out by David Patsch and Moritz Voss and builds heavily on 

the strategy/methodology outlined in Article III. We intend the final manuscript to be published after 

the publication of Article III. 

Introduction 

The application of enzymes has seen a sharp increase over the past few decades, as their ability to 

catalyze reactions with exquisite selectivity and a high substrate specificity make them attractive 

candidates for industrial applications [1], [2]. For example, nitrile hydratases that can selectively 

hydrolyse a nitrile to the amide are employed in the 650 000 t / year production of acrylamide from 

acrylonitrile [3], [4]. Enzymes also play a role in the large-scale (107 tons per year) production of high-

fructose corn syrup from glucose [4], [5]. Additionally, the use of biocatalysts as catalysts for 

synthesizing complex molecules, particularly pharmaceuticals, has recently gained widespread 

popularity [6]. However, the catalysts produced by nature are often unsatisfactory to perform such 

tasks at an industrial scale and require additional reconfiguration and optimization. For this reason, 

researchers rely on protein engineering techniques such as directed evolution or rational design [7]. 

Today, these methods are routinely applied and have resulted in astounding improvements in various 

protein characteristics, such as activity [8]–[10], stereoselectivity [11], [12], thermostability [13], and 

solvent tolerance [14]. 

A landmark example of the potential of protein engineering is the HG series of kemp eliminases. In 

this particular case, the kemp elimination (KE) reaction (Scheme 1) is not even catalyzed by naturally 

occurring enzymes [15], [16]. As such, the initial starting point had to be designed computationally. 

Based on quantum mechanical transition state calculations, an idealized active pocket was designed 

to stabilize the targeted transition state [16], [17]. Initially, the design HG1 did not result in any 

measurable KE activity. However, the information acquired throughout this process was enough to 

adjust the design in subsequent rounds, resulting in the designed Kemp Eliminase, dubbed HG3 [17]. 

As the performance of this artificial enzyme was still far below that of natural enzymes, it was 

subjected to multiple rounds of directed evolution based on an optimization strategy focused on 

global and local mutagenesis. First, error-prone PCR and gene shuffling were employed to identify 

regions of interest, which were then further investigated through focused libraries [8]. Finally, after 

17 rounds of evolution, this resulted in a novel variant, HG3.17 containing 17 mutations, which 

possessed a significantly increased activity, thermostability, and protein yield [8].  

The KE reaction and the HG3 series have been studied extensively and served as a model system for 

many projects [8], [16]–[20]. Here, we are particularly interested in the protein engineering approach 

used to evolve HG3 to HG3.17. Directed evolution, pioneered in the 1990s by Arnold and coworkers 

[21], is a fascinating concept that mimics natural evolution in the laboratory by undergoing iterative 

cycles of gene diversification and selection of protein variants. However, unlike nature, which 



primarily selects for reproduction or survival, directed evolution can be used to precisely alter 

properties of interest [22], creating enzyme lineages that exhibit improved or novel functionalities 

[22]. Diversity in traditional directed evolution is usually generated through either random PCR or 

gene shuffling [23]. This mostly leads to the random incorporation of mutations, which can be 

beneficial, as it might reveal interesting hot spots anywhere on the protein [24]. However, this also 

leads to much redundancy during screening, as most mutations are either neutral or unfavorable [25].  

We analyzed the advantages and disadvantages of protein engineering strategies in a recent study 

[24] and explored how advances in computational design and gene synthesis could allow for more 

efficient ways of protein engineering. Here, we applied these findings to re-evolve the Kemp eliminase 

HG3. We reason that removing specific undesirable mutations (filtering the sequence space) and 

relying on the commercially available "oligo pools" for library construction can constitute a robust new 

methodology in the toolbox of a protein engineer. Interestingly, our findings reinforce our initial 

hypothesis and reveal a completely distinct evolutionary trajectory of HG3, helping us understand 

more of the vast protein landscape. 

 

Scheme 1: The kemp elimination reaction in HG3.17 proceeds by deprotonating 5-nitrobenzisoxazole (1), yielding 
salicylonitrile (3). The base (Asp127) deprotonates 1, and the H-bond donor (Gln50) stabilizes the partial negative charge on 
the phenolic oxygen at the transition state (‡). Image from [16]. 

Results 

Library Design 

The HG3.17 variant differs from the starting point HG3 by 17 mutations. Nine of these mutations are 

situated in the immediate vicinity (<8 Å) of the co-crystallized transition state analogue 6-

nitrobenzotriazole (6NT) or the tunnel leading to the active pocket [8]. The remaining eight mutations 

are spread across the protein; some are up to 22 Å away from the active pocket. The most critical 

residue identified over the evolutionary trajectory of HG3 is K50Q. The site was initially mutated to 

histidine in variant HG3.3 (K50H) and then again to glutamine in HG3.7 (K50Q) - it is hypothesized that 

this mutation can stabilize the negative charge developing on the phenolic oxygen at the transition 

state [8], [19]. Notably, not all mutations have the same impact on activity. A recent follow-up study, 

based on X-ray crystallography and computational analysis, shows that eight out of the 17 mutations 

in HG3.17 are enough to reach ~75 % of its activity [19]. In our previous work, we reason that such 

rationalizations are hard to perform a priori [24]. Selecting specific sites and residues to mutate to 

improve a desired trait is a challenging aspect of rational design. Predicting mutations that hinder 

expression or folding, however, is something that we can do much more reliably. None of the 17 

mutations introduced into HG3.17 are predicted to destabilize the protein, indicating that a large part 

of the sequence space could have been excluded while still reaching the same result. Specifically, more 

than 40 % of all mutations could have been removed (based on stability calculations) without 

sacrificing a single hit [24]. 



The observation that beneficial mutations tend not to be enormously destabilizing could serve as the 

foundation for a powerful protein engineering technique that can generalize to various objectives 

rather than developing various strategies for each target. Identifying destabilizing mutations can be 

achieved through multiple means. The most common methods are computational mutation scans and 

aggregating evolutionary information [24]. We relied on these techniques to filter the sequence space 

of HG3 to roughly 1800 variants. To avoid bias and the possibility of being influenced by previous 

knowledge, the residues in an 8 Å radius of 6NT and the tunnel leading there are not pre-filtered but 

rather saturated fully (~35 sites). We selected residues from the evolutionary space and a 

computational single-site saturation scan for the remainder. The decision to reduce the sequence 

space to 1800 variants was based on multiple factors—primarily the size of the purchasable oligo pools 

and practical considerations regarding screening and throughput. We aimed for approximately 65 % 

library coverage, in line with reports from Codexis [26], [27]. Effectively, this strategy resulted in a 

screening burden of roughly 20 plates per round. However, as oligo pools suffer from relatively high 

error rates [28]–[30], we estimate the effective amount of unique variants measured per round to be 

closer to 600 rather than the targeted 1100. This initial screening resulted in 5-10 hits (variants with 

an improved activity compared to the parent), which we subsequently combined in combinatorial 

libraries[26], [27]. However, rather than performing statistical analysis on combinatorial variants, we 

selected the best-performing variant in this library and moved to the next round. This was partly 

because the relatively small amount of hits allowed for exhaustive screening of the combinatorial 

library but also because this project focused on exploring the practical implications of the filter/oligo 

approach.  

Evolutionary trajectory 

The process of filtering the sequence space to residues in the active site, tunnels, and variants 

identified from our computational analysis, then screening these mutations and combining hits in 

small combinatorial libraries, was performed five times. 2500 and 3000 variants were screened for 

each round, split between the initial hit identification and subsequent hit combination. Notably, after 

five rounds of evolution, our final variant HG3.R5 showed similar activity to HG3.17 under assay 

conditions. A total of 16 new mutations were introduced into HG3.R5 compared to the wild type, 

contrasted with the 17 in HG3.17. Astoundingly, HG3.R5, and HG3.17 only share one mutation: K50Q, 

which was identified as critical for catalysis [8], [19]. 

 

Figure 1: Comparison of the mutations of HG3.R5 and HG3.17. Mutations in the final HG3.R5 variant are colored in red. The 
mutations corresponding to HG3.17 are colored in blue. K50Q, the mutation that both variants have in common, is highlighted 
in turquoise. Pink indicates the sites that both variants substitute, though with different residues.  

 



Discussion 

While the diverging evolutionary trajectories between HG3.R5 and HG3.17 are fascinating, this 

manuscript focuses on the practical application of the filter/oligo methodology. Directed evolution is 

still a complex process, and researchers have to rely on various techniques to approach different 

problems. This creates significant overhead and inevitably leads to inefficiencies. For example, if the 

goal is to improve the thermostability of a protein, a good starting point could be the Protein Repair 

One-Stop Shop (PROSS) [31], a web server that allows researchers to design enzyme variants that are 

predicted to be more stable. The results PROSS provides are ~10 gene sequences containing an 

increasing number of mutations. However, the algorithm that predicts these variants is not publicly 

accessible, making PROSS hard to extend. The tool raises additional questions. For example, what if 

resources to order much more than ten genes are available? What if we have a system with a 

straightforward screening system (such as is the case with HG3)? There could be advances in stability 

predictions, which might not be updated in the online tool; how do we adjust to that? In addition,  

even assuming perfect predictive accuracy, the rigidification/stabilization of our enzyme of interest 

could decrease activity [32]–[37], a relationship that is hard to generalize. With this, we want to 

highlight that even for a single enzyme property, in this case, thermostability, many different aspects 

have to be considered, and outlining an optimal engineering strategy can be far from trivial. A typical 

evolution project already has many moving parts, with different goals and objectives that must be 

balanced. As such, the focus of the oligo/filter methodology is not necessarily to find the best solution 

–but rather one that is good enough for many applications. We reason that mutations that lead to 

misfolded, poorly expressed, or unfolded proteins are unlikely to improve a desired enzyme function. 

Consequently, irrespective of the objective, a researcher can reach to the same methodology, allowing 

for much faster iterations and shorter rounds of evolution. This generalization level also means it is 

possible to automate specific processes.[24] outlines a web server that helps users find destabilizing 

mutations and design oligo pools to construct their libraries, which users can freely extend because it 

provides raw results rather than processed predictions. Depending on the project and licenses, 

different tools to predict undesired sequences might be required; however, these can be used 

interchangeably without affecting the underlying process, making adopting new and improved tools 

easy. 

As the theoretical sequence space is essentially infinite, pre-filtering is a necessity, not a novel 

concept. In this process, practical considerations can not be neglected. We can not reasonably 

construct any given library – a fact that impacts site selection. Here, oligo pools could be an attractive 

solution. Their flexibility and low cost could allow for the construction of tailored libraries that were 

not feasible previously. It should be said, however, that oligo pools are not without flaws. The limited 

length makes it hard to investigate distant combinations. Additionally, degenerated codons are 

currently not offered, which means that each specific variant has to be ordered individually, rendering 

oligo pools uninteresting for combinatorial libraries, even if the mutation sites are close. For example, 

a five-site combinatorial library would require the purchase of 3.200.000 individual oligonucleotides. 

The currently very high error rates also limit the applicability of oligos. In our Kemp Eliminase 

evolution, we estimate error rates of ~ 40 %. At first glance, this seems like a massive drawback of 

oligo pools. Nevertheless, the incredibly complex libraries constructed at each evolution round should 

excite any protein engineer. Complete saturation of the entire active pocket, tunnels, as well as 

distinct mutations spread in the whole gene, can be accomplished with a very manageable physical 

effort at a reasonable cost. Additionally, oligo pools are a relatively recent product. It is not 

unreasonable to assume that their quality will improve significantly over the next few years, which 

would result in a dramatic decrease in the screening burden.   



The oligo/filter approach could be valuable to a protein engineer's toolbox. The methodology will not 

be applicable for every problem, in particular in the very low (<50 samples/round) and high (>10000 

samples/round) throughput regime and when dealing with combinatorial effects (where degenerated 

codons are required or when the mutations are spread further than the maximum oligo length apart). 

However, the results of this manuscript demonstrate its potential, even in such an early stage of 

development. With additional automation, reduction in oligo error rates, and increased experience 

with the overall process, further reducing the required time for a similar HG3 evolution is not 

unreasonable.  
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Material and Methods 
Plasmid constructs 

The HG3 and HG3.17 genes were ordered as cloned plasmids in pET28b vector between the restriction 

sites NcoI/XhoI from Twist Bioscience (USA), including a C-terminal his-tag and stop codon. The 

corresponding pelB-HG3 and pelB-HG3.17 variants used for screening were obtained by cloning the 

genes in the pET22b plasmid with the NcoI/XhoI restriction enzymes. The resulting variants contain an 

N-terminal pelB signal peptide and a C-terminal his-tag. The nucleotide sequences of the genes are 

given in the supporting information. 

General cloning protocol of the oligo libraries 

The oligo pool was received from Twist Bioscience in dry form and resuspended in MilliQ-water to yield 

a DNA concentration of 5 ng uL-1.  

In the first step, the oligo pool was amplified by PCR using KAPA HiFi HotStart DNA Polymerase (Roche 

Molecular Systems, Inc.). The PCR mixture (25 µL) comprised of 5 µL 5X KAPA HiFi Buffer, 0.75 µL 

deoxynucleoside triphosphates (10 mM each), 0.75 µL forward primer (10 µM; Microsynth), 0.75 µL 

reverse primer (10 µM; Microsynth), 2 µL oligo pool (2 ng; Twist Bioscience), 0.5 µL KAPA HiFi HotStart 

DNA Polymerase (0.5 U; Roche Molecular Systems, Inc.), and 15.25 µL MilliQ-water. The reaction was 

performed as follows: (a) 95 °C for 3 min, (b) 20 cycles at 98 °C for 20 s, 55 °C for 15 s, and 72 °C for 

25 s, and (c) 72 °C for 1 min. The PCR product was purified using NucleoSpin Gel and PCR Clean‑up kit 

(Macherey-Nagel) according to the manufacturer’s protocol but with elution in 15 µL MilliQ-water. 

Secondly, the individual oligo libraries were separately amplified from the oligo pools with their specific 

primers (designed using the online tool described in Article III). The PCR mixture (25 µL) comprised of 

5 µL 5X KAPA HiFi Buffer, 0.75 µL deoxynucleoside triphosphates (10 mM each), 0.75 µL forward 

primer (10 µM; Microsynth), 0.75 µL reverse primer (10 µM; Microsynth), 1 µL purified oligo pool 

amplification product (around 50 ng), 0.5 µL KAPA HiFi HotStart DNA Polymerase (0.5 U; Roche 

Molecular Systems, Inc.), and 16.25 µL MilliQ-water. The reaction was performed as follows: (a) 95 °C 

for 3 min, (b) 20 cycles at 98 °C for 20 s, 55 °C for 15 s, and 72 °C for 25 s, and (c) 72 °C for 1 min. The 

PCR product was purified by agarose-gel electrophorese (2% agarose gel) and extracted using 

NucleoSpin Gel and PCR Clean‑up kit (Macherey-Nagel) according to the manufacturer’s protocol but 

with elution in 15 µL MilliQ-water. In addition to the separate amplification of the oligo libraries from 

the oligo pool, the flanking region of the genes was amplified analog but with the parent variant as 

PCR template and designed using the online tool described in Article III. 

Synthesis of 5-nitrobenzisoxazole 

The synthesis of 5-nitrobenzisoxazole was performed analog to the reported protocol by Hollfelder et 

al. [1]. 1,2-Benzisoxazole (5 mL, 5.87 g) was added at 0 °C to concentrated H2SO4 (20 mL) until the 

solution turned yellow. A mixture of concentrated HNO3 (3.4 mL) and concentrated H2SO4 (1.3 mL) was 

added at 0 °C slowly, and the solution was stirred for 30 min. The reaction product was poured onto 

an ice/water mixture (1:1, 100 mL), and the formed crystals were collected by filtration, washed with 

ice-cooled water, and dried. The crude product was purified by normal phase flash chromatography 

(RediSep column) with cyclohexane and ethyl acetate as mobile phases. The solvent was removed in 

vacuo to yield 5-nitrobenzisoxazole (3.05 g) as colorless needles. 1H NMR (500 MHz, CDCl3) δ 8.90 (d, 1 

H), 8.73 (d, 1 H), 8.51 (dd, 1 H), 7.76 (d, 1 H); 13C NMR (500 MHz, CDCl3) δ 164.4, 147.1, 144.8, 125.6, 

121.9, 119.2, 110.5. 

 

 



Screening of the oligo libraries  

Preculture in LB medium (100 µL or 1 mL in MTP or DWB, respectively). Inoculation of 1 mL 

autoinduction medium and growth o/n at 30 °C, followed by 18 °C o/n.  

Assay was performed in 200 µL volume in MTP format, and the culture was diluted in reaction buffer 

according to their activity. 

Expression and purification of the HG3 variants 

For the expression of the HG3 variants, the constructs in the pET28b plasmid (without pelB-leader 

sequence) were transformed in E. coli BL21(DE3) cells and incubated as preculture overnight at 37 °C, 

140 rpm (5 cm throw) in a 5 mL LB-medium (Lysogeny Broth) supplemented with 50 µg mL-1 

kanamycin. Five milliliters of the preculture were used for the inoculation of 500 mL LB-medium, 

supplemented with 50 µg mL-1 kanamycin, and incubated at 37 °C, 120 rpm (5 cm throw). The 

expression of the HG3 protein was induced at an optical density of 0.6 at 600 nm by decreasing the 

temperature to 18 °C and adding 250 µM IPTG 20 min later. The induced culture was incubated 

overnight at 18°C, 120 rpm. The cells were harvested by centrifugation for 60 min at 3,700 g, 4 °C, and 

the resulting cell pellet was stored at –20 °C.  

For purification of the HG3 protein, the cell pellet was resuspended in 15 mL sonication buffer 

(500 mM NaCl in 50 mM Tris-HCl, pH 7.4), lysed by ultrasonic treatment (Am: 50%, pulse: 1 sec / 1 sec, 

time: 1 min; Bandelin, Sonoplus), clarified by centrifugation (1 h at 21,000 g, 4 °C), and filtrated using 

a sterile syringe filter (0.45 µm pore size). The lysate was purified using immobilized metal affinity 

chromatography at an ÄKTA Pure FPLC system (GE Healthcare) using a 5 mL HisTrap FF crude column 

(Cytiva Sweden AG) with 500 mM NaCl, 20 mM imidazole in 50 mM Tris-HCl, pH 7.4 and eluted with 

500 mM NaCl, 300 mM imidazole in 50 mM Tris-HCl, pH 7.4. Subsequently, the samples were 

concentrated to >5 mL with 10,000 MWCO centrifugal filters (Amicon Ultra – 15; Merck Millipore Ltd.) 

desalted with three 5 mL HiTrap Desalting columns (Cytiva Sweden AG) in 20 mM NaCl in sodium 

phosphate buffer pH 6.0. The samples were aliquoted, frozen in liquid nitrogen, and stored at -80 °C. 

Melting temperature determination 

The melting temperature of the purified variants was determined with the thermal shift assay by 

performing an HRM analysis (high-resolution melt) with 2.5 µM purified protein in 100 mM NaCl, 

50 mM sodium phosphate buffer pH 7.0 supplemented with 20x SYPRO Orange (protein gel stain, 

Sigma Aldrich). The melting analysis was performed from 25 - 95 °C and recorded at Ex/Em 

470/610 nm (Rotor-Gene-Q, Qiagen). The derived melting profile was analyzed for the inflection point 

(minimum of the first derivative) to determine the melting temperature (Tm).     

Michaelis-Menten characterization 

The Michaelis-Menten kinetics of the purified HG3 variants were determined photometrically in 200 uL 

MTP format on a plate reader (Tecan Sparks). The assay was performed in a concentration range of 50 

µM – 2 mM of 5-nitrobenzisoxazole with 10% methanol, 100 mM NaCl, and 50 mM sodium phosphate 

buffer pH 7, and the enzymes were diluted according to their activity. The product formation was 

followed at 380 nm (ε380nm 8,835 M-1 MTPpathlength-1), and the linear initial reaction rates for each 

substrate concentration were fitted towards the Michealis-Menten equation in GraphPad Prism 

(Version 9.3.1).   

 

 



Library design based on evolutionary information 

The initial MSA was created with the online tool of HHblits ( 

https://toolkit.tuebingen.mpg.de/tools/hhblits), using the UniRef30_2022_02 database and default 

parameters. The MSA was further processed with HHfilter 

(https://toolkit.tuebingen.mpg.de/tools/hhfilter) with the settings: max ident: 90, min seq ident: 30, 

rest default. Variants were selected based on the consensus and frequency strategy outlined in the 

HotSpot Wizard overview [2], [3]. This led to 76 additional variants that were included in each library.  

Library design based on computational mutation scan 

ΔΔG predictions were based on a protocol published by the official Rosetta forums: 

https://www.rosettacommons.org/node/11126. Each mutant was predicted three times, and the 

lowest energy obtained was compared to the wild-type energies to calculate differences in free energy. 

def mutate_repack_func4(pose, target_position, mutant, repack_radius, sfxn, ddg_bbnbrs=1, 

verbose=False, cartesian=True, max_iter=None): 

    import time 

    from pyrosetta.rosetta.core.pack.task import operation 

 

    #logger.warning("Interface mode not implemented (should be added!)") 

     

    if cartesian: 

        

sfxn.set_weight(pyrosetta.rosetta.core.scoring.ScoreTypeManager.score_type_from_name('cart_bon

ded'), 0.5) 

        #sfxn.set_weight(atom_pair_constraint, 1)#0.5 

        

sfxn.set_weight(pyrosetta.rosetta.core.scoring.ScoreTypeManager.score_type_from_name('pro_clos

e'), 0) 

        

#logger.warning(pyrosetta.rosetta.basic.options.get_boolean_option('ex1'))#set_boolean_option( 

'-ex1', True ) 

        #pyrosetta.rosetta.basic.options.set_boolean_option( 'ex2', True ) 

     

    #Cloning of the pose including all settings 

    working_pose = pose.clone() 

 

    #Select mutant residue 

    mutant_selector = 

pyrosetta.rosetta.core.select.residue_selector.ResidueIndexSelector(target_position) 

     

    #Select all except mutant 

    all_nand_mutant_selector = 

pyrosetta.rosetta.core.select.residue_selector.NotResidueSelector() 

    all_nand_mutant_selector.set_residue_selector(mutant_selector) 

 

    #Select neighbors with mutant 

    nbr_or_mutant_selector = 

pyrosetta.rosetta.core.select.residue_selector.NeighborhoodResidueSelector() 

    nbr_or_mutant_selector.set_focus(str(target_position)) 

    nbr_or_mutant_selector.set_distance(repack_radius) 

    nbr_or_mutant_selector.set_include_focus_in_subset(True) 

 

    #Select mutant and it's sequence neighbors 



    seq_nbr_or_mutant_selector = 

pyrosetta.rosetta.core.select.residue_selector.PrimarySequenceNeighborhoodSelector(ddg_bbnbrs, 

ddg_bbnbrs, mutant_selector, False)             

 

    #Select mutant, it's seq neighbors and it's surrounding neighbors 

    seq_nbr_or_nbr_or_mutant_selector = 

pyrosetta.rosetta.core.select.residue_selector.OrResidueSelector() 

    seq_nbr_or_nbr_or_mutant_selector.add_residue_selector(seq_nbr_or_mutant_selector) 

    seq_nbr_or_nbr_or_mutant_selector.add_residue_selector(nbr_or_mutant_selector)     

 

    if verbose: 

        print(f'mutant_selector: 

{pyrosetta.rosetta.core.select.residue_selector.selection_positions(mutant_selector.apply(work

ing_pose))}') 

        print(f'all_nand_mutant_selector: 

{pyrosetta.rosetta.core.select.residue_selector.selection_positions(all_nand_mutant_selector.a

pply(working_pose))}') 

        print(f'nbr_or_mutant_selector: 

{pyrosetta.rosetta.core.select.residue_selector.selection_positions(nbr_or_mutant_selector.app

ly(working_pose))}') 

        print(f'seq_nbr_or_mutant_selector: 

{pyrosetta.rosetta.core.select.residue_selector.selection_positions(seq_nbr_or_mutant_selector

.apply(working_pose))}') 

        print(f'seq_nbr_or_nbr_or_mutant_selector: 

{pyrosetta.rosetta.core.select.residue_selector.selection_positions(seq_nbr_or_nbr_or_mutant_s

elector.apply(working_pose))}') 

      

     

    #Mutate residue and pack rotamers before relax 

    #if list(pose.sequence())[target_position-1] != mutant: 

        #generate packer task 

    tf = TaskFactory() 

    tf.push_back(operation.InitializeFromCommandline()) 

    tf.push_back(operation.IncludeCurrent()) 

 

    #Set all residues except mutant to false for design and repacking 

    prevent_repacking_rlt = operation.PreventRepackingRLT() 

    prevent_subset_repacking = operation.OperateOnResidueSubset(prevent_repacking_rlt, 

all_nand_mutant_selector, False ) 

    tf.push_back(prevent_subset_repacking) 

 

    #Assign mutant residue to be designed and repacked 

    resfile_comm = 

pyrosetta.rosetta.protocols.task_operations.ResfileCommandOperation(mutant_selector, f"PIKAA 

{mutant}") 

    resfile_comm.set_command(f"PIKAA {mutant}") 

    tf.push_back(resfile_comm) 

 

    #Apply packing of rotamers of mutant 

    packer = pyrosetta.rosetta.protocols.minimization_packing.PackRotamersMover() 

    packer.score_function(sfxn) 

    packer.task_factory(tf) 

    if verbose: 

        logger.warning(tf.create_task_and_apply_taskoperations(working_pose)) 

    packer.apply(working_pose) 

         

    #allow the movement for bb for the mutant + seq. neighbors, and sc for neigbor in range, 

seq. neighbor and mutant 



    movemap = pyrosetta.rosetta.core.select.movemap.MoveMapFactory() 

    movemap.all_jumps(False) 

    movemap.add_bb_action(pyrosetta.rosetta.core.select.movemap.mm_enable, 

seq_nbr_or_mutant_selector) 

    movemap.add_chi_action(pyrosetta.rosetta.core.select.movemap.mm_enable, 

seq_nbr_or_nbr_or_mutant_selector) 

     

    #for checking if all has been selected correctly 

    #if verbose: 

    mm  = movemap.create_movemap_from_pose(working_pose) 

     

    logger.info(mm) 

 

    #Generate a TaskFactory 

    tf = TaskFactory() 

    tf.push_back(operation.InitializeFromCommandline()) 

    tf.push_back(operation.IncludeCurrent()) 

    #tf.push_back(operation.NoRepackDisulfides()) 

 

    #prevent all residues except selected from design and repacking 

    prevent_repacking_rlt = operation.PreventRepackingRLT() 

    prevent_subset_repacking = operation.OperateOnResidueSubset(prevent_repacking_rlt, 

seq_nbr_or_nbr_or_mutant_selector, True ) 

    tf.push_back(prevent_subset_repacking) 

 

    # allow selected residues only repacking (=switch off design) 

    restrict_repacking_rlt = operation.RestrictToRepackingRLT() 

    restrict_subset_repacking = operation.OperateOnResidueSubset(restrict_repacking_rlt , 

seq_nbr_or_nbr_or_mutant_selector, False) 

    tf.push_back(restrict_subset_repacking) 

 

 

    #Perform a FastRelax 

    fastrelax = pyrosetta.rosetta.protocols.relax.FastRelax() 

    fastrelax.set_scorefxn(sfxn) 

     

    if cartesian: 

        fastrelax.cartesian(True) 

    if max_iter: 

        fastrelax.max_iter(max_iter) 

         

    fastrelax.set_task_factory(tf) 

    fastrelax.set_movemap_factory(movemap) 

    fastrelax.set_movemap_disables_packing_of_fixed_chi_positions(True) 

     

    if verbose: 

        logger.info(tf.create_task_and_apply_taskoperations(working_pose)) 

    fastrelax.apply(working_pose) 

    return working_pose 

 

def cart_ddg(site,res): 

     

    newpose = pose.clone() 

    scores = [] 

     

    for i in range(3): #ONLY RUNS ONCE!!!! 

        scorefxn = create_score_function("ref2015_cart") 



        newpose = mutate_repack_func4(newpose,site, res, 6, scorefxn,verbose = False, 

cartesian = True) 

        news = scorefxn(newpose) 

        scores.append(news) 

    return scores 

 

all_as = sorted(list(set(pose.sequence()))) 

sites = np.arange(1,len(pose.sequence()) + 1) 

 

assert len(all_as) == 20 

 

inputs_ = [[site,res] for site in sites for res in all_as] 

print(len(inputs_)) 

cores = 60 # os.cpu_count() 

print(cores) 

 

with multiprocessing.Pool(processes=cores) as pool: 

    results = pool.starmap(cart_ddg,inputs_) 

 

import pickle 

with open('hg34_base.pkl', 'wb') as f: 

    pickle.dump(results, f) 

 

Library design based on tunnel and ligand analysis 

Tunnel analysis was performed with CAVER [4]. 

Basic parameters: 

probe_radius 0.9 

shell_radius 4.0 

shell_depth 5.0 

frame_weighting_coefficient 1.0 

frame_clustering_threshold 1.0 

The ligand was transferred from the crystal structure of HG3 PDB: 5RGA. Additional variants were 

selected based on distances to the ligand and tunnels. 
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Asymmetric Cation-Olefin Monocyclization by Engineered Squalene–
Hopene Cyclases
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Sandro Dossenbach, Eric Eichhorn, Felix Flachsmann, Lucas Hortencio, Francis Voirol,
Sabine Vollenweider, Uwe T. Bornscheuer, and Rebecca Buller*

Abstract: Squalene–hopene cyclases (SHCs) have great po-
tential for the industrial synthesis of enantiopure cyclic
terpenoids. A limitation of SHC catalysis has been the
enzymesQ strict (S)-enantioselectivity at the stereocenter formed
after the first cyclization step. To gain enantio-complementary
access to valuable monocyclic terpenoids, an SHC-wild-type
library including 18 novel homologs was set up. A previously
not described SHC (AciSHC) was found to synthesize small
amounts of monocyclic (R)-g-dihydroionone from (E/Z)-
geranylacetone. Using enzyme and process optimization, the
conversion to the desired product was increased to 79 %.
Notably, analyzed AciSHC variants could finely differentiate
between the geometric geranylacetone isomers: While the (Z)-
isomer yielded the desired monocyclic (R)-g-dihydroionone
(> 99% ee), the (E)-isomer was converted to the (S,S)-bicyclic
ether (> 95% ee). Applying the knowledge gained from the
observed stereodivergent and enantioselective transformations
to an additional SHC-substrate pair, access to the comple-
mentary (S)-g-dihydroionone (> 99.9% ee) could be obtained.

Introduction

Ionones are significant contributors to the appealing
scents of many flowers and fruits, including violets, roses, or
raspberries.[1] They belong to a family of natural products
known as apocarotenoids, which are derived from carotenoids
by oxidative cleavage catalyzed by carotenoid oxygenases.[2]

An efficient synthetic access to racemic ionones by cation-
olefin cyclization of pseudoionone (1) was discovered already
in the late 19th century by Tiemann and Krgger (Scheme 1).[3]

Accordingly, ionones were among the first commercially

utilized synthetic fragrance ingredients, featured for example
in the iconic fragrance Vera Violetta (Roger & Gallet, 1893).

The organoleptically strongest ionones are the achiral b-
ionone and the (S)-(++)-isomer of g-ionone, which has an over
150x lower perception threshold than its optical antipode.[4]

Interestingly, this trend is inverted for the corresponding g-
dihydro-analogue, for which the non-natural (R)-(@)-isomer
has a 6-fold lower perception threshold compared to the (S)-
(++)-isomer (Scheme 2).[5] The natural (S)-(++)-g-dihydroio-
none ((S)-5) occurs for example in Ambergris and is of
interest as an intermediate for the synthesis of (@)-a-
ambrinol (6), which exhibits a highly appreciated animalic
scent typical for aged Ambergris tincture (Scheme 2).

The interest in optically active ionones, including both
enantiomers of g-dihydroionone (5), has stimulated the
development of numerous methods for their synthesis.[5]

Scheme 1. Cation-olefin cyclizations of pseudoionone (1) and geranyl-
acetone (2) to racemic ionones (3) and bicyclic enolether (4),
respectively. a) Brønstedt acid b) Brønstedt acid or terpene cyclase.
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However, the most obvious synthesis route toward these
compounds is currently missing, namely the asymmetric
cation-olefin cyclization of pseudoionone (1) or a suitable
derivative thereof. It appears that carbocation formation at
the unpolar isoprene end of the linear chain in combination
with enantiospecific folding of the linear C13 precursor to
form a monocycle is difficult to achieve with classical
asymmetric catalysis.

In contrast, squalene–hopene cyclases (SHCs), which
belong to the class II terpene cyclases, are capable of locking
linear terpenoid substrates in defined chiral conformations,
which allows to achieve polyene cyclizations with perfect
stereocontrol. Consequently, SHCs have great potential as
industrial biocatalysts for the production of enantiopure
cyclic terpenoids. A widely spread model reaction is the
cyclization of the linear C30 triterpene squalene (7) into the
pentacyclic products hopene (8) and hopanol (9), through the
generation of five new C@C bonds and nine new stereocenters
(Scheme 3).[6] The reaction is initiated by the protonation of
the unactivated terminal isoprene unit with the unusually
acidic middle aspartate of the DXDD active site motif. The
excellent chemo-, regio-, and stereocontrol over the polycyc-
lization cascade is achieved through pre-folding of the
substrate in a product-like conformation, stabilization and
shielding of the highly reactive carbocation intermediates
from side reactions, and a selective termination through base
assisted proton elimination or addition of water.[7,8] Terpene
cyclases from the SHC family are promiscuous enzymes and
accept molecules ranging from C10 monoterpenoids[9] to C35

squalene analogues,[10] and the cyclization reaction can be
initiated through protonation of unactivated olefins, carbon-
yls, and epoxides.[11] This is in contrast to other main families
of class II terpene cyclases: oxidosqualene cyclases are
limited to substrates containing an epoxide functional group
for initial protonation,[12] while class II diterpene cyclases such
as ent-copalyl diphosphate synthases are generally only active
towards the diphosphate containing substrate geranylgera-
nylpyrophosphate.[13]

Importantly, SHCs have proven to be highly evolvable:
Engineered SHC variants with not more than three mutations
enabled a viable industrial-scale process to obtain Ambro-
fixTM,[14, 15] as well as dramatically increased activity and
altered chemo- and stereoselectivity of cyclization reactions
with mono- and sesquiterpenoids, such as geraniol,[11] farne-
sol,[16] or citronellal.[17] A limitation of SHCs, however, is their
strict (S)-enantioselectivity at the stereocenter formed after
the first cyclization of all polyisoprenoids tested so far (an
overview of products is given in reviews[18,19]).

Here, we report our efforts to gain enantio-complemen-
tary access to valuable monocyclic terpenoids such as (R)- and

(S)-g-dihydroionone (5) via SHC catalysis. Even though the
natural diversity of SHC sequences is vast,[20, 21] most of the
work on non-native substrates has thus far focused on two
enzyme variants from Alicyclobacillus acidocaldarius
(AacSHC) and Zymomonas mobilis (ZmoSHC1)[19] and only
one study reported a screening panel consisting of 12 wild-
type enzymes.[22] Thus, to identify enzymes capable of
synthesizing (R)- and (S)-g-dihydroionone (5), we opted for
a screening approach based on an SHC wild-type library,
which included 18 novel SHC homologs. Building on the
ability of a newly identified SHC from Acidothermus cellu-
lolyticus to generate the monocyclic (R)-g-dihydroionone
((R)-5), we optimized the enzyme by directed evolution and
could improve the conversion of nerylacetone ((Z)-2) to (R)-
g-dihydroionone ((R)-5) by two orders of magnitude to 79%
in 48 h. It should be noted, that during the preparation of this
manuscript, a study by the Hauer group was published, which
similarly reports the biocatalytic production of (R)-g-dihy-
droionone ((R)-5) by an engineered SHC from Alicycloba-
cillus acidocaldarius. After five rounds of directed evolution,
the authors identified an AacSHC variant with four muta-
tions, which exhibited excellent selectivity (99.5% ee) and
conversion (89 %) in seven days.[23]

In our report, we thus confirm the exciting observation
that it is possible to obtain (R)-selective monocyclizations via
SHC biocatalysis (> 99% ee) yet using the distinct AciSHC

Scheme 2. GC odour thresholds (GC-OTH) of g-dihydroionone enan-
tiomers (5) and conversion of (S)-5 to (@)-a-ambrinol (6).

Scheme 3. Transformations observed in the screening of the SHC
library with substrates 1, 2 and 7.
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enzyme (51.6 % sequence identity to AacSHC). In addition,
we observed that all of our AciSHC variants exhibited
exquisite selectivity in the transformation of the geometric
geranylacetone (2) isomers: While the (Z)-isomer yielded the
desired monocyclic (R)-5 product, the (E)-isomer led to the
formation of the bicyclic enolether (S,S)-4. Biochemical and
docking studies helped us to understand the mechanistic basis
of the observed sterodivergent and enantioselective cycliza-
tion reactions. Harnessing this knowledge, we ultimately
succeeded to additionally obtain the enantio-complementary
(S)-5 (> 99.9% ee) through the application of an appropri-
ately chosen SHC-substrate pair.

Results and Discussion

In our quest to create an efficient biocatalyst for the
enantioselective production of (dihydro-)ionones, we aimed
to identify an SHC enzyme with the capability to generate
monocyclic products from either (E/Z)-geranylacetone (2) or
(E/Z)-pseudoionone (1). AacSHC,[24] ZmoSHC1,[24] and en-
gineered variants of these enzymes[25] were previously re-
ported to be inactive towards 1 and were found to convert 2
exclusively into the bicyclic product 4. Consequently, we
chose to explore the SHC diversity beyond these heavily
studied variants by setting up a comprehensive screening
panel of 31 wild-type enzymes, selected to span all major
clades of the phylogenetic tree (Figure S1). The screening
library consisted of 13 previously characterized class II
terpene cyclases from the SHC-family and 18 novel SHC
homologs, which were identified through the presence of two
defining PFAM domains for type II triterpene cyclases
(PF13249, PF13243) and the SHC-family specific DXDD
active site motif (Table S2). As thermostable enzyme scaf-
folds can be superior starting points for protein engineering
and directed evolution approaches,[26] ten of the novel
sequences were explicitly chosen to originate from thermo-
philic bacteria.

To characterize our SHC library and evaluate the
biocatalystsQ potential for (dihydro)ionone production, we
overexpressed the enzymes in E. coli BL21(DE3) and carried
out whole-cell biotransformations with 10 mM squalene (7),
10 mM (E/Z)-geranylacetone (2), and 10 mM (E/Z)-pseu-
doionone (1). Product formation was analyzed using gas
chromatography coupled to mass spectrometry equipped with
a flame ionization detector (GC-MS-FID) (Figure 1). Nine-
teen of the investigated SHCs showed activity towards at least
one substrate. Notably, ten of the active enzymes correspond
to novel SHC homologs, with sequence identities to expe-
rimentally characterized variants between 52.6% and 82.9 %.
These results validate our bioinformatic search strategy, and
the new enzymes further expand the toolbox of available
SHCs for biocatalysis.

While (E/Z)-geranylacetone (2) was converted by 15
members of our SHC panel (Figure 1), our screen did not
identify any SHC homologs with activity towards pseudoio-
none (1), possibly due to steric and/or electronic effects of the
conjugated g,d-double bond of 1, which is the distinguishing
feature from 2 (Figure S2). Analyzing the (E/Z)-geranylace-

tone (2) conversion data in more detail, we identified
AciSHC, a novel SHC homolog from the thermophilic
bacterium Acidothermus cellulolyticus, as a possible candi-
date for further development. While conversion of the C13

substrate 2 into the bicyclic enol ether (4) was widespread
among the SHC panel, AciSHC was the only enzyme included
in the panel that generated two additional minor products

Figure 1. Characterization of the wild-type SHC library with respect to
the enzymes’ activity towards squalene (7) and (E/Z)-geranylacetone
(2). Whole-cell biotransformations were carried out by supplementing
cell lysate with 10 mM substrate in 50 mM citrate buffer at pH 6
containing 0.8% (7) or 0.2% (2) of Triton-X-100. The SHCs are
ordered based on phylogenetic relationship. Highlighted in yellow is
AciSHC, the only wild-type SHC converting 2 into monocyclic products
5 and 10. Products 11 and 12 could not be structurally assigned.
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with conversions of 0.7 % and 0.05%, respectively. These
were identified as g-dihydroionone (5) and a-dihydroionone
(10) by GC-MS through comparison with authentic reference
materials.

Intrigued by these results, we created a sequence align-
ment of the active pocket[20] of the 14 SHCs, which mainly
convert (E/Z)-geranylacetone (2) into the bicyclic product 4
and, in three cases, the structurally unassigned product 12 and
compared it to the amino acid distribution of AciSHC
(Figure S3). Surprisingly, the sequence alignment revealed
that the active site of AciSHC appears to be similar in
construction as those of the remaining enzyme panel: Of the
36 residues lining the substrate-binding pocket, only I41,
located more than 18 c away from the catalytic acid D380,
was found to be unique in AciSHC (Figure S3). Thus, we
proceeded to investigate the unusual product selectivity of
AciSHC by constructing its homology model based on the
crystal structure of AacSHC (PDB ID: 1SQC; identity:
51.62%; similarity: 0.45) using SWISS-MODEL[27] followed
by docking studies of (E)-2 and (Z)-2 using the software tool
AutoDock Vina.[28] Both substrate stereoisomers afforded
a docking state with a productive pre-chair conformation for
monocyclization, however, no “all” pre-chair state as required
for the formation of the bicyclic product was found (Fig-
ure S4).

Thus, even though the identified substrate poses did not
fully explain the experimentally observed product distribu-
tion, our docking results led us to speculate that already slight
changes in the active pocket geometry might result in
alternative pre-folding states of 2. In this way, the enzyme
could channel the substrate either into a cationic cascade
necessary for the formation of the bicyclic enol ether (4) or
allow termination of the reaction after a single ring-forming
event to yield 5. In the latter case, deprotonation of the
exocyclic methylene group could occur through D378, which
in our model of AciSHC is situated at a distance of 2.6 c from
the hydrogen of the relevant carbon C-11. The presence of
D378, acting as a catalytic base, could explain the unexpected
selectivity for the formation of the energetically unfavorable
exocyclic deprotonation product 5 over 10 (Figure S5).

As g-dihydroionone (5) is a compound of particular
interest for the flavour and fragrance industry, we aimed to
improve the activity and selectivity of the AciSHC catalyzed
conversion of 2 into 5 using structure-guided directed
evolution. Based on the above-mentioned docking studies
of (E)-2 and (Z)-2 into a homology model of AciSHC, we
chose 14 sites for NNK single-site saturation libraries. In the
first evolution round, we focussed on residues around 2 with
the aim to improve pre-folding. In addition, we targeted the
large unoccupied space in the active pocket to limit poten-
tially unproductive binding modes known to occur for small
substrates in other SHCs (Figure 2a).[11] Overall, we screened
90 clones for each of the fourteen libraries in deep-well plates
amounting to the analysis of > 1200 enzyme variants. The
screening revealed variants with 2.9 to 5.4-fold increased
conversion of 2 into 5 in the libraries A169X, P263X, A310X,
G606X, and I613X (Figure 2 b). With the exception of variant
G606T, hydrophobic residues were favoured substitutions,

and while increased bulk seemed beneficial at sites A169,
P263 and A310, smaller amino acids were preferred at I613.

Because all beneficial sites were located in the same area
of the active pocket of AciSHC, it seemed plausible that
epistatic interactions between the amino acid residues might
occur. Going forward, we therefore opted to combine all
beneficial mutations and the respective wild-type amino acid
in a five-site combinatorial library, resulting in a library size of
288 variants. Following library construction by overlap
extension PCR, we screened 720 clones for an estimated
coverage of 92%[29] (Figure S6). The best variant for the
conversion of (E/Z)-2 identified in the second evolution
round was dubbed AciSHC_R2.1 (A169P, A310M, G606C,
I613V) and achieved a conversion of 2 into 5 of 21.4 %, a 30-
fold increase over the wild-type enzyme. In our quest to
understand the basis of the increased activity in the engi-
neered AciSHC variants, we sequenced the top ten variants of
the second evolution round, all exhibiting a conversion of 2 to
5 of more than 14.4 %. In this analysis, we found nine unique
protein sequences with an average of 3.8 mutations. Aston-
ishingly, no single mutation was present in all variants, with
the best single site variant, A310F, only occurring in one of the
optimized enzymes (Table S3). These findings could indicate
that AciSHC can harbor multiple active site geometries,
which can induce a productive pre-folding of 2 for efficient
cyclization into 5.

In the analysis of the screening data, we noticed that
variants producing high yields of 5 preferentially converted
(Z)-2. To probe this finding further, we carried out whole-cell
bioconversions with pure (E)-2 (> 99 %) and (Z)-2 (97 %),
prepared by fractionated distillation of the mixture of geo-
metric isomers. Using selected enzyme variants spanning the
entire evolutionary trajectory, we found that the biotransfor-
mations showed intriguing chemoselectivities in the function

Figure 2. a) Homology model of AciSHC with (Z)-2 docked in the
active pocket. Sites colored in orange/red were targeted for single-site
saturation mutagenesis, the top-performing sites (red) were then
selected for combinatorial mutagenesis in a second evolution round.
b) Conversion of (E/Z)-geranylacetone (2) to g-dihydroionone (5)
(%FID) by the SHC variants generated in the first round of evolution.
The blue line represents the wild-type activity. Top-performing variants
are annotated.
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of the supplied geranylacetone (2) geometric isomer: The best
three second-round AciSHC variants formed almost exclu-
sively monocyclic products 5 and 10 from (Z)-2 (> 96%)
while the bicyclic product 4 was obtained from (E)-2 (> 99%)
(Figure 3).

Both products were obtained in excellent optical purity:
Using variant AciSHC_R2.3, g-dihydroionone (5) (> 99% ee)
was formed in the non-natural laevorotatory form, which
could be assigned to the absolute (R)-configuration based on
the work of Brenna et al.,[5] whereas the laevorotatory
bicyclic enol ether (4) (> 95% ee) corresponded to the
(S,S)-configuration as evidenced by comparison to Serra
et al.[30] Thus, the SHC enzymes produced the two products 4
and 5 in opposite enantiomeric forms, a process which can be
described as a stereodivergent and enantioselective conver-
sion of the (E)- and (Z)-isomers of 2. Even when a mixture of
(E/Z)-2 was used as substrate, 5 was produced as the (R)-
enantiomer and 4 as the (S,S)-enantiomer with near to perfect
enantioselectivity with all tested variants (Scheme 4, Ta-
ble S4).

Going forward, we optimized the reaction conditions for
AciSHC_R2.3 (A169P, P263W, A310L, I613V), the best
second-round variant for the conversion of the geometric
isomer (Z)-2 to produce (R)-5 (Figure 3). By optimizing

enzyme load (OD 120), temperature (40 88C) and reaction
time (48 h), we obtained conversion yields of 79% for the
biocatalytic synthesis of (R)-5, underlining the potential of
our engineered SHC variant for manufacturing purposes
(Figure S7).

Going forward, we targeted to evaluate the broader
synthetic implications of the observed stereodivergent trans-
formation of geometric isomers by the AciSHC variants. Thus,
we set out to transfer our insights to an additional enzyme
with the goal to synthesize the (S)-enantiomer of g-dihy-
droionone ((S)-5), a key intermediate in the synthesis of (@)-
a-ambrinol (6).[31] Building on our previous results, we
hypothesized that for the synthesis of the natural (S)-
enantiomer of g-dihydroionone ((S)-5), we would require
a suitable geranylacetone ((E)-2) substrate with a masked
carbonyl group to prevent the formation of the bicyclic
enolether 4. To that end, the industrially-proven AacSHC
variant AacSHC_215G2 was employed for substrate screen-
ing in whole-cell biotransformations. Whereas no conversion
was observed with dioxolane (E)-13, we detected the
formation of a monocyclic product with intact acetate group
from (E)-14 (Scheme 5). To our surprise, the product was not
the expected exo-methylene derivative 16, but its hydrated
derivative 15, formed with perfect enantio- and diastereo-
control. Intrigued by this observation, we repeated the
biotransformation with AacSHC_215G2 and (Z)-14, yielding,
as expected, the g-dihydroionone derivative 16, again with
opposite absolute configuration compared to 15. These
observations prove that the sense of asymmetric induction is

Figure 3. Comparison of the product profile of the wild-type AciSHC
with the best variants from each round of enzyme engineering when
supplied with 10 mM (E/Z)-geranylacetone (2), nerylacetone ((Z)-2) or
geranylacetone ((E)-2). The average total recovery was 86:6%.

Scheme 4. AciSHC_R2.3 catalyzed stereodivergent and enantiospecific
cyclization of (E)- and (Z)-2 to (S,S)-4 and (R)-5, respectively.

Scheme 5. SHC transformations of (E)- and (Z)-14 and 2 with
AacSHC_215G2. a) SHC biocatalyst 250 g/l cells, substrate
1.5 g/l (500 mg scale) b) SHC biocatalyst 250 g/l cells, substrate
7 g/l (2 g scale) c) isolated yields after column chromatography d) GC-
yield (isolated yields lower due to partial decomposition of products
on SiO2).
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determined solely by the geometry of the double bond in the
substrate and is not influenced by the presence of the racemic
acetate-bearing chiral center. It is also worth mentioning that
no deacetylated product was observed despite the use of
a whole cell biocatalyst, where hydrolase-mediated ester
hydrolysis could have been expected.

To further explore the scope of different SHC/substrate
combinations, we performed whole-cell biotransformations of
pure (E)- and (Z)-2 with AacSHC_215G2. To our surprise
and complementary to the earlier described SHC variants,
AacSHC_215G2 converted (Z)-2 to (R,S)-4 with perfect
enantioselectivity, demonstrating that SHCs can fold a (Z)-
substrate in such a manner as to form a cis-fused bicycle, in
line with the Stork-Eschenmoser hypothesis.[32] Finally, (E)-2
was converted to (S,S)-4 with perfect enantioselectivity and
high yield on gram scale by AacSHC_215G2. The chemical
transformation of 15 to (S)-5 (Scheme 6) proved the absolute
configuration of 15 and provided the first access to the natural
(++)-enantiomer of g-dihydroionone (S)-5 via asymmetric
cation-olefin cyclization. The same optical purity of (S)-5 was
obtained when tangerinol (14 ; E/Z 3:2) of commercial quality
was used. Similarly, 16 was transformed in two steps to (R)-
5.[33]

To better understand the mechanistic basis of these
stereodivergent and enantioselective reactions, we generated
homology models of the engineered AciSHC_R2.3 and
AacSHC_215G2 variants using SWISS-MODEL[27] followed
by molecular docking of (Z)-2 and (E)-2 as well as (Z)-14 and
(E)-14, respectively, using Autodock Vina.[28] In the homology
model of AciSHC_R2.3, (E)-2 showed a reactive all pre-chair
conformer for generation of a bicyclic product, while for (Z)-2
the second chair was unfolded and the carbonyl-group too
distant for an intramolecular nucleophilic attack (Figure 4a).
Accordingly, the polycyclization cascade is expected to be
interrupted by deprotonation, leading to monocyclic products
5 or 10 (Figure 4b). The pre-folding of the initial chair for (Z)-
2 and (E)-2 was nearly identical. Accordingly, the absolute
configuration of the newly generated stereocenter resulting
from the first cyclization is expected to be defined by the
configuration of the double bond (Figure 4). Reflecting our
findings for AciSHC, the docking study on AacSHC_215G2
revealed a nearly identical prefolding of the initial pre-chairs

for (Z)-14 and (E)-14, suggesting that the enantioselectivity of
the cyclization reaction is again determined by the config-
uration of the double bond of the substrate (Figure S8).

Conclusion

By screening a comprehensive SHC enzyme library, which
expands the current SHC toolbox by ten active enzymes, we
identified the novel AciSHC capable to cyclize nerylacetone
((Z)-2) into the monocyclic (R)-g-dihydroionone ((R)-5). To
the best of our knowledge, the recent study by the Hauer
group[23] and this work are the first examples of SHCs
accepting oxygenated isoprenoids with a (Z)-configurated
internal double bond, as well as affording a (4aR)-stereocen-
ter after the first cyclization. Interestingly, both studies
identified similar hotspots in the enzyme active site influenc-
ing the monocyclization reaction, albeit in two different
enzyme scaffolds with only 51.6% identity (Figure S10 and
S11). Notably, through our combinatorial enzyme engineering
approach, we identified several highly active AciSHC variants
comprising divergent active site geometries, which can afford
the necessary pre-folding of 2 to obtain monocyclization
products. Our findings therefore indicate that, depending on
the enzyme starting scaffold, cyclization cascades cannot only
be controlled through the introduction of anchoring hydrogen
bonds as shown by Hauer et al.[23] but also through the
appropriate choice of the geometric substrate isomer. Trans-
ferring this knowledge to the industrially applied
AacSHC_215G2 variant, we could highlight that stereodiver-

Scheme 6. Synthesis of (S)- and (R)-5 from cyclotangerinols 15 and
16. Isolated yields after purification are given. a) acetyl chloride, N,N-
diethylaniline, chloroform, 82 %; b) MeOH, Mg(MeO)2, >95 %;
c) PCC, 54%; d) NaHCO3, DMSO, 140 88C, 33% (g :a :b = 80:9:11);
e) K2CO3, MeOH, 97% f) PCC, 61 %.

Figure 4. a) Docking of geranylacetone ((E)-2) (orange) and nerylace-
tone ((Z)-2) (green) via AutoDock Vina into a homology model of
variant AciSHC_R2.3 prepared by SWISS-MODEL. The corresponding
distances for the cyclization reaction are shown. The catalytic aspartate
D380 is shown in blue. b) Reaction mechanism for the cyclization of
(E)-2 to the bicyclic product (S,S)-4 and (Z)-2 to the monocyclic
product (R)-5.

Angewandte
ChemieResearch Articles

26085Angew. Chem. Int. Ed. 2021, 60, 26080 – 26086 T 2021 The Authors. Published by Wiley-VCH GmbH www.angewandte.org

 15213773, 2021, 50, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202108037 by Z

haw
 Z

ürcher H
ochschule Für, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



gent and enantioselective transformations of geometric
isomers could indeed prove to be a general principle in
SHC catalysis. Through appropriate substrate engineering
and downstream processing, we can obtain access to both
enantiomers of a target product via SHC biocatalysis, includ-
ing the industrially highly relevant chiral building block (S)-g-
dihydroionone ((S)-5). Overall, this work provides an exciting
opportunity of tuning the absolute configuration of the
cyclized products using substrates with defined double bond
stereochemistry and highlights the possibility to control the
polycyclization cascade through substrate engineering.
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A. Supplementary Methods 

1. Materials 

Sigma, VWR or Carl Roth were the suppliers for all used chemicals. Molecular genetics were carried out with Phusion polymerase, 
T4-DNA ligase and restriction enzymes from New England Biolabs. Genes and plasmids were ordered from Twist Bioscience and all 
oligonucleotides from Microsynth AG. 

2. Physical measurements 

Analytical GC was performed using an Agilent 8890 GC system with an FID and a single quadrupole MSD (5977B MSD) system 
(Agilent Technologies, California, USA). 

3. Selection of SHC variants 

We found that all previously characterized squalene-hopene cyclases (SHCs) contain two defining PFAM domains (PF13249, 
PF13243). In order to access additional natural diversity of SHCs, we extracted all 5633 protein sequences containing these two 
domains from Uniprot (accessed on 05.03.2018). We aligned the sequences using ClustalOmega [1] and constructed an approximate 
maximum likelihood tree using FastTree 2.1.10 [2] with default settings. The tree was divided into two major groups, as previously 
reported [3] – the oxidosqualene cyclases (OSC) of mainly eukaryotic origin and the SHCs of mainly prokaryotic origin.  
We then selected a total of 31 enzymes for our SHC library, chosen to span all major parts of the SHC group of the phylogenetic tree 
(Table S2). Beyond the heavily studied AacSHC and ZmoSHC1, we included a range of biochemically characterized enzymes, six 
bacterial SHCs with classical SHC activity on squalene [4–8], as well as three fern [9,10] and two Bacillus [11,12] terpene cyclases from the 
SHC family, catalyzing unusual cyclizations of squalene. We also included a total of 18 not previously characterized homologs. Ten 
putative SHCs originated from thermophilic bacteria, as well as six SHC homologs from the phylogenetic clade containing ZmoSHC1, 
in order to explore the sequence space around this enzyme with unusually high activity and promiscuity for small C10-C20 substrates 
[5]. Two final variants were from Bacillus thuringiensis B 4219, a strain available in our laboratories and Aspergillus fumigatus A1163, 
which derives from a branch of the phylogenetic tree containing fungal SHCs, which had never been experimentally characterized 
before. 

4. Plasmid construction and enzyme expression in 96-well plates 

Genes encoding SHCs in pET28b(+) were purchased from Twist Bioscience. Each plasmid was transformed into E. coli BL21(DE3). 
To obtain single colonies, the cells were plated on LB agar plates containing 50 µg/ml kanamycin. Single colonies were picked into 96 
well plates to inoculate 1 ml of LB medium containing 50 µg/ml kanamycin for overnight cultures. From these cultures, a glycerol 
stock containing 100 µl of culture and 100 µl of 50% Glycerol in water was created. For the expression, 500 µl of Zym-5052 auto-
induction medium was inoculated with 50 µl from the overnight culture. Expression was carried out at 20 °C for 24 hours with 300 rpm 
(5 cm shaking diameter) in a Duetz system for plates. Subsequent, the cells were pelleted by centrifugation (4000g) at 4 °C for 15 
minutes. The pellet was washed twice with potassium phosphate buffer (100 mM, pH 7). The cell pellet was immediately used for 
biotransformation reactions or frozen at – 80°C for later usage. 

5. Ligand docking and homology modelling 

Homology models of SHCs were created with the webserver SWISS-MODEL[13] and default parameters. The crystal structure of 
AacSHC (PDB ID: 2SQC) or homology models were used for substrate docking simulations. The ligands were prepared in 
Chemdraw and energy minimized in Chem3D before saving as mol2 files. The docking was carried out with the AutoDock Vina[14] 
plugin for UCSF Chimera while using the default parameters. The docking results were visually inspected in Pymol.  

6. AciSHC single site saturation libraries, biotransformation, and GC-MS analysis 

NNK libraries were created by overlap extension PCR using pSHC8 as a template, with primers listed in Table S1. For each library, 
two fragements were generated in a first round of PCRs. Specifically, the first fragment was created using the universal forward 
primer T7_fw and the reverse primer designed for the respective library (e.g. L35X_rv). The second fragment was generated using 
the library forward primer (e.g. L35X_fw) and the universal reverse primer T7_rv. In all cases, the library forward primer contained the 
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reverse complement of the library reverse primer (overlap), the desired mutation and a silent mutation directly after the desired 
mutation. All PCRs were carried out with 30 seconds of initial denaturation at 98 °C followed by 29 cycles of 98 °C for 10 seconds, 
55°C for 20 seconds and 72 °C for 60 seconds. The final extension was done at 72°C for 10 minutes, and the reactions mixtures 
were stored at 10 °C until purification. The obtained PCR products were purified by gel extraction, and the DNA concentration was 
measured via a nanodrop device. Following this step, the two fragments from the first PCRs were used in equimolar amounts as 
template for a second PCR reaction using primers T7_fw and T7_rv, where they were assembled through the overlap of 15-26bp. 
The product of the second PCR was purified by gel extraction and afterwards digested with XhoI and XbaI at 37 °C for 1.5 hours. The 
digested secondary PCR reactions were ligated into a pET28b(+) vector, which was digested with the same restriction enzymes, 
using T4 DNA ligase according to the manufacturer’s protocols.The DNA sequence of library variants was confirmed by the DNA 
sequencing service provided by Microsynth AG.  
The plasmids were expressed in BL21(DE3) in 96-well plates, as described in 4. The obtained cell pellets were resuspended in half 
the culture volume of (250 µl) sodium citrate buffer (50 mM, pH 6) with 0.2% Triton-X100 and substrate (10 mM). The screening of 
native SHCs as well as variants of AciSHC towards (E/Z)-geranylacetone and (E/Z)-pseudoionone was carried out in 96-well plates, 
which were sealed with a heat sealer (Thermo Scientific Alps30) with an alumina seal (Axygen, pierceable sealing film). The seals 
were chosen to minimize loss of substrates through evaporation. The further characterization of AciSHC variants as well as the 
screening of native SHCs towards squalene was preformed in glass vials with crimped lids to avoid evaporation. The 
biotransformations were incubated at 30°C with 300 RPM in the Duetz system for 24 hours. The reactions were stopped with the 
addition of 800 µl ethyl acetate and a mixing time of 20 minutes at 300 RPM in the Duetz system. Afterwards, they were centrifuged 
at 4000g, 4 °C for 10 minutes. 
Each biotransformation sample was analyzed by GC-MS. The upper layer of ethyl acetate was injected into an Agilent 8890 GC-MS 
system equipped with a single quadrupole MSD and FID over a J&W DB-5ms GC column (30 m x 0.25 mm x 0.25 µm). Helium was 
used as the carrier gas. For biotransformations of (E/Z)-geranylacetone, the GC oven was kept isothermal at 130 °C for 10.5 minutes. 
The flow was set to be constant at 1.5 ml/min. The MSD was scanning from 30-300 m/z at a speed of 6250. For biotransformations 
with squalene, the oven was adjusted to 130 °C to 220 °C with 40 °C/min followed by an increase to 310 °C with ten °C/min and the 
MSD was scanning from 30-500 m/z at a speed of 6250 The MSD was used for the identification of substrate and products. The area 
detected by the FID was used for the calculation of the conversions (area of product peak divided by the summed area over all 
product and substrate peaks). The total recovery was calculated using an external calibration curve with authentic geranylacetone 
reference material. 

7. Combination of beneficial mutations 

We created a library of AciSHC by recombining the best variants at positions: 
 
A169(A,G,P) 
P263(P,W) 
A310(A,F,M,L) 
G606(G,T,C) 
I613(I,V,A,L) 
 
The primers were designed to minimize redundancy (each amino acid is only represented by one codon). Primer sequences can be 
found in Table S1. The variants were created by overlap extension PCR. In a first round of PCRs, the gene was amplified in five 
fragments using following primer pairs:  
 
fragment 1: T7_fw, A169_rv,  
fragment 2: 1:1:1 mix of A169W_fw:A169G_fw:169P_fw and P263_rv,  
fragment 3: 1:1 mix of P263WT_fw:P263W_fw and A310_rv,  
fragment 4: 1:1:1:1 mix of A310WT_fw:A310F_fw:A310L_fw:A310M_fw and G606_I613_rv,  
fragment 5: 3:1:6:2 mix of G606ACC_I613VTT_fw: G606ACC_I613GCA_fw: G606KGC_I613VTT_fw: G606KGC_I613GCA_fw and 
T7_rv.  
 
These five fragments were mixed in equimolar amounts for assembly in a second PCR using T7_fw and T7_rv primers and cloned 
into pET28b(+) as described in 6. The total theoretical library size was 288. Overall, we screened 720 variants for 92% library 
coverage at 10 mM (E/Z)-geranylacetone substrate load as described in 6. 

8. Preparative scale biotransformation with AciSHC variants 

For biotransformation on a preparative scale, cells were cultured overnight at 37 °C at 300 rpm in LB-medium containing 50 µg/ml 
kanamycin. This pre-culture was then used to inoculate Zymo5052 auto-induction medium in a 1:9 ratio. Protein expression was 
carried out in baffled shake flasks at 20 °C for 24 hours with 180 rpm. Afterwards, cells were centrifuged (4000g) for 15 minutes and 
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washed over two steps with potassium phosphate buffer (100 mM, pH 7). The cell pellet was resuspended to OD 20 in sodium citrate 
buffer (50 mM, pH 6) with 0.2% Triton X100 before 40 mM of the substrate was added. The reaction mixture was then incubated at 
20 °C for 24 hours at 180 rpm. To increase product concentration, the reaction was quenched and extracted with a much lower ratio 
of ethyl acetate: reaction volume (1:8) compared to plate screening. 
 

9. Bioconversion reactions with AacSHC variant 215G2 

9.1. 215G2 SHC biocatalyst production 

The biocatalyst of the AacSHC variant 215G2 was produced in fermentations as described elsewhere.[15] 

9.2. Small scale cyclization of tangerinol isomers 

Cyclization reactions (1 ml total volume) with 1 g/l E- and Z- tangerinol (E- and Z-14) were run with cells that had produced AacSHC 
215G2 at OD650nm of 40 and 0.28% SDS in 0.1 M succinic acid/NaOH buffer pH 5.4. The reactions were incubated at 35°C, and 
under constant agitation (900 rpm, Heidolph Synthesis 1 Liquid 24). After 24h reaction time, the biotransformations were extracted 
with 1 ml tert-butylmethylether (MTBE) for GC-MS analysis. 

9.3. Preparative scale biotransformations with tangerinol and geranylacetone 

Bioconversions were run in 350 ml total volume (750 ml InforsHT reactors) with 250 g/l (wet weight) of cells that had produced 
AacSHC 215G2 in 0.1 M succinic acid/NaOH buffer at pH 5.4, and 35 °C under constant agitation (700 rpm). They contained 1.30% 
SDS (w/v), 1.5 g/l nerylacetone (Z-2), 7 g/l geranylacetone (E-2), 1.5 g/l racemic E-tangerinol (E-14), or 1.5 g/l racemic Z-tangerinol 
(Z-14). Cell suspensions were prepared by suspending frozen cell pellets in reaction buffer. The cell concentration was determined 
by centrifuging an aliquot of cell suspension (17210 g, 10 min, 4°C), and the required amount of cell suspension calculated for 250 g/l 
wet weight of cells in the reaction. SDS was added from a 31% SDS stock solution in deionized water. The required volume of 
succinic acid buffer for a total reaction volume of 350 ml was deduced. To the reactor was added in the following order: substrate, 
SDS, buffer, cell suspension. The pH of the reactions was carefully set to 5.4 dropwise with 85% H3PO4. pH in the reaction was 
monitored in situ and controlled with a calibrated external electrode. pH adjustment was done with 10% H3PO4 if required. 
Conversion was determined by GC-analysis calculating the ratio of product and peak surface areas (details see below). The 
bioconversion reactions were finally extracted three times with tert-butylmethylether (MTBE): 150, 100, and 100 ml. The fractions 
were analyzed for their product and substrate content by GC-analysis after dilution if required and finally pooled for further 
processing. 

9.4. Sample preparation and gas chromatography analysis 

Bioconversion reactions were sampled over time (200 μl samples), and the samples extracted with 200 μl MTBE. After centrifugation 
(Eppendorf centrifuge 5415C, 14000 rpm), the solvent phase was analyzed by GC-FID. 1 µl solvent phase was injected (split ratio 10, 
split flow 40 ml/min) onto a 30 m x 0.32 mm x 0.25 µm DB-5 column (Trace 1310 gas chromatograph, Thermo). The column was 
developed at 4 ml/min H2 constant flow: 100 °C, 15 °C/min to 200 °C, 120 °C/min to 240 °C, 3 min at 240 °C; inlet and detector 
temperature: 250 °C. 
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10. Synthesis of substrates and synthetic transformation of SHC products to g-dihydroionone 

 
All reagents and reaction solvents were analytical grade, purchased from commercial suppliers and used without further purification. 
Reactions were monitored by GC-FID (Zebron ZB-5 GC capillary column, 12 m x , 0.32 mm x 0.25 µm, or Zebron ZB-wax, 15 m x , 
0.32 mm x 0.25 µm). Flash column chromatography was performed on Biotage silica gel prepacked columns (particle size 20 µm) 
with the eluent indicated eluents, flow 50 ml/min. All reported yields, unless otherwise specified, refer to spectroscopically and 
chromatographically pure isolated compounds; isomeric ratios are indicated if appropriate. Routine NMR spectra were recorded on 
Bruker Avance III HD, 2D NMR spectra were recorded on Bruker Avance-III 600 MHz with 1.7 mm TCI-microcryoprobe). Proton 
chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS), with the solvent resonance employed as the internal 
standard (CDCl3 δ 7.27 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, 
p = pentet, sext = sextet, h = heptet, m = multiplet, br = broad), coupling constants (Hz) and integration. 13C chemical shifts are 
reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl3 δ 77.0 ppm;). Mass spectra 
were recorded with GC-MS (Agilent Technologies 7890A / 5975C) equipped with an SGE BPX5 capillary column (12 m, 0.22 mm i.d. 
0.25 µm film) operated at a constant He flow of 1 ml/min. The temperature program started at 50 °C (for 2 min), then with 20 °C/min 
to 240 °C followed by 35 °C/min to 270 °C (for 3 min). The MS transfer line and ion source temperatures were 250 °C and 230 °C, 
respectively. The quadrupole MS was equipped with an EI ion source at 70 eV. For high-resolution mass spectra, samples were 
diluted in methanol and directly introduced in the MS (Thermo Scientific, Q Exactive Orbitrap) by a syringe pump (Chemyx Inc., 
Fusion 100 T) at a flowrate of 5-10 µl/min. Data was recorded with 70.000 mass resolution using Xcalibur (4.1.50) and analyzed with 
Xcalibur (4.2.28.14). Optical rotations were determined with Anton Paar MCP 200 Polarimeter at 589 nm and 25 °C. Data are 
reported as follows: [α]λ temp, concentration (c; g/100 ml), and solvents. Enantiomeric excesses (% e.e.) were determined by GC 
employing a chiral stationary phase column specified in the individual experiment. The required racemic standards were synthesized 
in separate experiments (vide infra), and the chiral GC methods were optimized to ensure baseline separation of the two 
enantiomers.  

10.1. Nerylacetone (Z-2) 

 
 
Commercial geranylacetone (E/Z 3:2, 767 g) was fractionally distilled over a 1 m Sulzer column (0.08 mbar, bath temperature 125-
138 °C). Fractions collected at 82-85 °C contained >92% (Z)-isomer (302.5 g). This product (150 g) was further distilled over a 30 cm 
Sulzer column (0.08 mbar, bath temperature 148 °C), yielding (Z)-2 (100.5 g) as a clear, colourless liquid with an isomeric purity of 
97%. 
1H-NMR (CDCl3, 400 MHz): 5.07 - 5.14 (m, 2 H), 2.43 - 2.47 (m, 2 H), 2.23 - 2.30 (m, 2 H), 2.14 (s, 3 H), 2.03 - 2.07 (m, 4 H), 1.68 - 
1.70 (m, 6 H), 1.62 (s, 3 H). 13C-NMR (CDCl3, 101 MHz): 208.7 (s), 136.5 (s), 131.6 (s), 124.2 (d), 123.3 (d), 44.0 (t), 31.9 (t), 29.9 
(q), 26.5 (t), 25.7 (q), 23.3 (q), 22.3 (t), 17.6 (q). MS (EI, 70eV): 194 (M+, <1), 151 (39), 136 (15), 125 (7), 107 (12), 93 (11), 69 (56), 
43 (100). 

10.2. Geranylacetone (E-2) 

 
The residue of the above distillation (51 g) contained mainly E-isomer and was distilled over a 10 cm Vigreux column (0.12 mbar, 
bath temperature 121-122 °C, head temperature 65-73 °C) to yield (E)-2 (35.5 g) as a clear, colourless liquid with an isomeric purity 
of >99.9%.  
1H-NMR (CDCl3, 400 MHz): 5.03 - 5.12 (m, 2 H), 2.43 - 2.49 (m, 2 H), 2.22 - 2.31 (m, 2 H), 2.13 (br. s, 3 H), 1.94 - 2.10 (m, 4 H), 1.67 
(br. s, 3 H), 1.62 (br. s, 3 H), 1.60 (br. s, 3 H). 13C-NMR (CDCl3, 101 MHz): 208.9 (s), 136.4 (s), 131.4 (s), 124.2 (d), 122.5 (d), 43.7 
(t), 39.6 (t), 29.9 (q), 26.6 (t), 25.7 (q), 22.5 (t), 17.7 (q), 16.0 (q). MS (EI, 70 eV): 194 (M+, <1), 151 (11), 136 (10), 125 (6), 107 (11), 
93 (6), 69 (35), 43 (100).  
 
 
 
 
 
 



SUPPORTING INFORMATION          

5 
 

10.3. rac. E-Tangerinol (E-14) 

 
 
Sodium borohydride (0.77 g, 20.4 mmol, 0.8 equiv.) was added to the solution of geranylacetone (E-2) (4.96 g, 25.5 mmol, 1 equiv.) 
in methanol (80 ml) at 0°C. The mixture was stirred for 3 h at room temperature, then poured on 2N aq. HCl-solution (200 ml). The 
aqueous layer was extracted with MTBE (2x 100 ml), the combined organic layers were washed with water and brine (pH 6), then 
dried over MgSO4 and concentrated. Crude rac. (E)-6,10-dimethylundeca-5,9-dien-2-ol was obtained as a yellow oil (4.90 g, 98%), 
which was further acetylated (4.0 g, 20.4 mmol, 1 equiv.) in cyclohexane (50 ml) with acetic anhydride (4.2 g, 40.7 mmol, 2 equiv.) 
and 1 drop of conc. phosphoric acid at room temperature for 18 h. The mixture was poured on 2N aq. NaOH-solution (50 ml), then 
worked up as described above to yield 4.93 g of a yellow oil which was purified by flash column chromatography with heptane / 
MTBE 30:1 to yield (E)-14 (E-Tangerinol, 4.45 g, 92%) as a clear, colourless oil.  
1H-NMR (CDCl3, 100 MHz): 5.05 - 5.14 (m, 2 H), 4.83 - 4.94 (m, 1 H), 2.03 - 2.10 (m, 2 H), 2.03 (br. s, 3 H), 1.95 - 2.02 (m, 3 H), 1.61 
- 1.70 (m, 4 H), 1.60 (br. s, 3 H), 1.59 (br. s, 3 H), 1.45 - 1.55 (m, 1 H), 1.25 - 1.31 (m, 1 H), 1.21 (d, J=6.1 Hz, 3 H). 13C-NMR (CDCl3, 
101 MHz): 170.7 (s), 135.7 (s), 131.3 (s), 124.2 (d), 123.3 (d), 70.7 (d), 39.7 (t), 35.9 (t), 26.7 (t), 25.7 (q), 23.9 (t), 21.4 (q), 20.0 (q), 
17.7 (q), 15.9 (q). MS (EI, 70 eV): 178 ([M-AcOH]+, 8), 163 (6), 135 (21), 123 (10), 109 (100), 93 (17), 81 (21), 69 (78), 43 (72). 

10.4. rac. Z-Tangerinol (Z-14) 

 
 
The procedure described above for the preparation of (E)-14 was repeated with nerylacetone (Z-2) to furnish (Z)-Tangerinol (Z-14, 
82% over 2 steps) as a clear, colourless oil.  
1H-NMR (CDCl3, 100 MHz): 5.06 - 5.15 (m, 2 H), 4.84 - 4.94 (m, 1 H), 1.96 - 2.09 (m, 6 H), 2.02 (s, 3 H), 1.57 - 1.71 (m, 9 H), 1.46 - 
1.54 (m, 1 H), 1.24-1.33 (m, 1 H), 1.21 (d, J=6.1 Hz, 3 H).   13C-NMR (CDCl3, 101 MHz): 170.7 (s), 135.8 (s), 131.6 (s), 124.2 (d), 
124.2 (d), 70.7 (d), 36.2 (t), 31.9 (t), 26.5 (t), 25.7 (q), 23.8 (t), 23.4 (q), 21.3 (q), 20.0 (q), 17.6 (q). MS (EI, 70 eV): 178 ([M-AcOH]+, 
10), 163 (9), 135 (18), 109 (72), 93 (22), 81 (20), 69 (100), 43 (89). 

10.5. 4-((1S,2S)-2-hydroxy-2,6,6-trimethylcyclohexyl)butan-2-yl acetate (15) with AacSHC 215G2 

 
 
The MTBE-extract of the biocatalytic conversion of racemic E-Tangerinol (E-14, 525 mg, 2.2 mmol) with AacSHC 215G2 (250 g/l, 
350 ml, cf. chapter 9.3.) was concentrated in a rotary evaporator and the residue was purified via column chromatography 
(heptane/MTBE 3:2) to yield 15 as a colourless oil (330 mg, 58%, purity by GC/MS > 99.9%, mixture of 2 diastereomers 2:1 
according to NMR, not resolved by GC). [a]D = +2.6 (c = 0.98, CHCl3). 
1H-NMR (CDCl3, 100 MHz, mixture of 2 diastereomers): 4.84 - 4.95 (m, 1 H), 2.04 (s, 2 H, main isomer), 2.03 (s, 1 H, minor isomer), 
1.21-1.89 (m, 10 H), 1.22 (d, J = 6.2 Hz, 1H, minor isomer), 1.22 (d, J = 6.2 Hz, 2H, major isomer), 1.17 (br. s, 1H, minor isomer), 
1.16 (br. s, 2H, major isomer),   - 1.07-1.13 (m, 1 H), 0.94 (s, 2 H, major isomer), 0.92 (s, 1 H, minor isomer.), 0.81 (s, 3 H). 13C-NMR 
(CDCl3, 101 MHz): (main isomer) 171.0 (s), 74.1 (s), 71.6 (d), 57.0 (d), 43.7 (t), 41.5 (t), 39.0 (t), 35.5 (s), 32.8 (q), 23.2 (q), 21.9 (t), 
21.4 (q), 21.2 (q), 20.5 (t), 20.0 (q). (minor isomer) 170.9 (s), 74.2 (s), 71.5 (d), 56.7 (d), 43.6 (t), 41.5 (t), 38.7 (t), 35.5 (s), 32.7 (q), 
23.3 (q), 21.8 (t), 21.4 (q), 21.2 (q), 20.4 (t), 19.9 (q). MS (EI, 70 eV, mixture of diastereomers): 256 (M+, <1), 196 (4), 181 (7), 163 
(8), 153 (13), 138 (15), 127 (15), 109 (56), 96 (35), 81 (20), 69 (38), 55 (25), 43 (100). HR-MS (ESI, positive mode): C15H28O3 calcd. 
for [M+Na]+ 279.1931, found 279.1931. 
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10.6. (1S,2S)-(+)-1,3,3-trimethyl-2-(3-oxobutyl)cyclohexyl acetate (17) 

 
 
The solution of 15 (250 mg, 0.98 mmol), acetyl chloride (1.1 g, 15 equiv.) and N,N-diethylaniline (1.41 g, 9.8 mmol, 10 equiv.) in 
chloroform (20 ml) was refluxed for 3 days unders stirring. The mixture was added to aq. HCl solution (2 M, 30 ml) and extracted 
MTBE (2x 30 ml). The organic layers were washed with 30 ml of each, 2 M aq. NaOH solution, water and brine. The combined 
organic layers were dried over MgSO4, filtered and evaporated to yield 4-((1S,2S)-2-acetoxy-2,6,6-trimethylcyclohexyl)butan-2-yl 
acetate (240 mg, 82%) as a yellow liquid. Selective hydrolysis of the secondary acetate group was effected by stirring the solution of 
this product in MeOH (20 ml) in the presence of magnesium methanolate (6.8 ml of a  10% solution in MeOH, 8 equiv.) at room 
temperature for 30 h. Water (20 ml) was added and the mixture was extracted and worked up as described above to yield a yellow 
liquid (470 mg >100%). The product was dissolved in CH2Cl2 ( 15 ml) and oxidation of the secondary alcohol was effected by stirring 
with pyridinium chlorochromate (PCC, 553 mg, 2.6 mmol, 1.4 equiv) for 1.5 h. The mixture was filtered over silica gel and the product 
was purified by flash column chromatography with heptane / MTBE 3:1 to yield (1S,2S)-1,3,3-trimethyl-2-(3-oxobutyl)cyclohexyl 
acetate (17) as a clear, yellow liquid (110 mg, 44% over 3 steps, purity >99.9% according to GC-MS). [a]D = +24.6 (c = 1.46, CHCl3) 
1H-NMR (CDCl3, 400 MHz): 2.42 - 2.67 (m, 3 H), 2.12 (s, 3 H), 1.92 (s, 3 H), 1.51 - 1.68 (m, 5 H), 1.47 (s, 3 H), 1.31 - 1.43 (m, 2 H), 
1.16 - 1.25 (m, 1 H), 0.93 (s, 3 H), 0.83 (s, 3 H). 13C-NMR (CDCl3, 101 MHz): 209.0 (s), 169.9 (s), 87.5 (s), 52.8 (d), 46.0 (t), 40.4 (t), 
37.3 (t), 35.5 (s), 32.4 (q), 29.8 (q), 22.9 (q), 22.0 (br., q), 20.4 (t), 20.3 (br., q), 19.6 (t). MS (EI, 70 eV): 254 (M+, <1), 212 ([M-
ketene]+, <1), 194 ([M-AcOH]+, 2), 176 (9), 161 (14), 136 (32), 121 (35), 109 (19), 95 (22), 81 (15), 69 (16), 55 (12), 43 (100). HR-MS 
(ESI, positive mode): C15H26O3 calcd. for [M+Na]+ 277.1774, found 277.1773. 

10.7. (S)-(+)-g-dihydroionone ((S)-5) from 17 

 
 
To the solution of 17 (60 mg, 0.24 mmol) in DMSO (5 ml) was added NaHCO3 (40 mg, 0.47 mmol, 2 equiv.) and the mixture was 
heated to 140 °C for 30 h. The mixture was poured into water (30 ml) and extracted with heptane. After standard workup and flash 
column chromatography (heptane / MTBE 10:1), (S)-5 was isolated as a colourless oil (15 mg, 33%). The product contains 9% (S)-a-
dihydroionone and 11% b-dihydroionone. NMR and MS spectra were in accordance with published data [C. Fuganti, S. Serra, A. 
Zenoni, Helv. Chim. Acta 2000, 83, 2761.]. Chiral GC-analysis (Astec Chiraldex G-DP): 36.34 min, >99.9% e.e. 

10.8. 4-((R)-2,2-dimethyl-6-methylenecyclohexyl)butan-2-yl acetate (16) with AacSHC 215G2 

 
 
The MTBE-extract of a biocatalytic conversion of racemic (Z)-14 (525 mg, 2.2 mmol) with AacSHC 215G2 (250 g/l, 350 ml) as 
described in chapter 9.3. was concentrated in a rotary evaporator, and the residue was purified via column chromatography 
(heptane/MTBE 95:5) to yield 16 as a colourless oil (370 mg, 71%). For spectral analysis, a sample was further purified by 
semipreparative HPLC (normal phase silica, Lichrospher 5 µm, 4 ml/min hexane/ 2.5% MTBE). 
 
1H-NMR (C6D6, 600 MHz): 4.99 - 5.06 (m, 1 H), 4.80 - 4.83 (m, 1 H), 4.59 - 4.62 (m, 1 H), 1.91 - 1.95 (m, 2 H), 1.72 (s, 3 H), 1.58 - 
1.62 (m, 1 H), 1.37 - 1.51 (m, 5 H), 1.21 - 1.36 (m, 2 H), 1.12 (d, J=6.0 Hz, 3 H), 1.06 - 1.11 (m, 1 H), 0.91 (s, 3 H), 0.80 (s, 3 H).  13C-
NMR (C6D6, 600 MHz, from HSQC): 169. 8 (s), 149.2 (s), 109.6 (t), 71.1 (d), 54.2 (d), 36.0 (t), 35.1 (t), 34.8 (s), 32.3 (t), 28.4 (q), 26.6 
(q), 23.9 (t), 22.5 (t), 20.9 (q), 20.0 (q).  
MS (EI, 70 eV): 178 ([M-AcOH]+, 5), 136 (55), 122 (29), 109 (58), 93 (61), 81 (31), 69 (49), 55 (25), 43 (100). HR-MS (ESI, positive 
mode): C15H26O2, calcd. for [M+Na]+ 261.1825, found 261.1825. 
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10.9. Conversion of 16 to (R)-5 

 
 
The above product (300 mg, 1.26 mmol) was saponified with K2CO3 (348 mg, 2.52 mmol, 2 equiv.) in MeOH (50 ml) for 3 h under 
reflux and stirring. The mixture was cooled to RT, poured on water (40 ml) and extracted with MTBE. The organic layers were 
washed with water and brine and dried over MgSO4. After filtration and removal of the solvent, a colourless oil was obtained (240 
mg), which was dissolved in CH2Cl2 (15 ml), pyridinium chlorochromate was added (369 mg, 1.71 mmol, 1.4 equiv.), and the mixture 
was stirred for 2 h at RT. The mixture was filtered over silica gel, the filter cake was rinsed with MTBE, and the filtrate was dried. The 
residue was purified by FC (heptane/MTBE 93:7) to yield (R)-5 as a colourless oil (145 mg, 61%). The product contained 11% (R)-
(+)-a-dihydroionone. NMR and MS spectra were in accordance with published data.[16] Chiral GC-analysis (Astec Chiraldex G-DP): 
36.62 min, 93% e.e. 

10.10. Synthesis of rac.-a-dihydroionone (rac.-10) 

 
 
Commercial a-ionone (3.0 g, 15.6 mmol) was hydrogenated in THF (40 ml) in the presence of Raney nickel (400 mg) and H2 (1 atm) 
for 5 h. The mixture was filtered by suction, and the filtrate was concentrated i. RV to yield rac. a-dihydroionone (2.94 g, 97%). The 
product was used for subsequent steps without further purification. A sample was purified by flash chromatography on silica gel as 
racemic reference for chiral GC-analysis (purity according to GC-MS 91%, NMR data were in accordance with published data,[16] MS 
data matched with MS-library hit. Chiral GC-analysis (Hydrodex-beta-3P): (S)-(-)-10 (43.55 min), (R)-(+)-10 (44.64 min).  

10.11. Synthesis of (R)-(+)-a-dihydroionone ((R)-10) 

 
 
The procedure described in chapter 10.10. was repeated with a commercial sample of (R)-(+)-ionone (200 mg, 1.04 mmol) to yield 
(R)-10 as a colourless oil (202 mg, >99%, purity according to GC-MS 98%). [a]D = +136.9 (c = 1.26, EtOH); (Lit. +138.4 (c = 0.65, 
EtOH),[17]). Chiral GC-analysis (Hydrodex-beta-3P): 44.61 min, >99.9% e.e. 

10.12. Synthesis of rac.g-dihydroionone (rac.-5) 

 
 
To the solution of racemic a-dihydroionone (2.94 g, 15.1 mmol, prepared in chapter 10.10.) in MeOH (40 ml) was added NaBH4 
(0.46 g, 12.1 mmol, 0.8 equiv.) at 0°C. The solution was stirred for 15 min; then the cooling bath was removed and stirring continued 
for 90 min. The solution was poured in 2M aq. HCl-solution (100 ml) and extracted with MTBE. The organic layers were washed with 
water and diluted NaCl solution, then dried over MgSO4, filtered and concentrated to yield a-dihydroionol (2.78 g, 94%), which was 
dissolved in CH2Cl2 (20 ml). To the solution was added Ca(OCl)2 (2.7 g, 18.8 mmol, 1.3 equiv.) and the mixture was cooled to 5°C, 
then KH2PO4 (6.24 g) in water (30 ml) was added dropwise. The mixture was stirred for 30 h at RT, then poured in water (100 ml), 
and workup was effected as described above to yield a clear, colourless liquid (2.95 g) which was purified by FC (heptane/MTBE 
30:1) to yield 4-(5-chloro-2,2-dimethyl-6-methylenecyclohexyl)butan-2-ol (0.90 g, 28%). This product (0.60 g) was dissolved in THF 
(20 ml) and AcOH (2.3 g) followed by zinc powder (2.60 g) were added. The mixture was stirred at RT for 21 h, then poured in 2M aq. 
NaOH-solution (100 ml) and further worked up as described above to yield 4-(2,2-dimethyl-6-methylenecyclohexyl)butan-2-ol (0.6 g) 
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as a colourless oil. This product was dissolved in CH2Cl2 (50 ml) and pyridinium chlorochromate (PCC, 0.92 g, 4.3 mmol, 1.2 equiv.) 
was added. The mixture was stirred stirred for 3 h at RT. The mixture was filtered over silica gel, the filter cake was rinsed with 
MTBE, and the filtrate was dried. The residue was purified by FC (heptane/MTBE 95:5) to yield rac.-5 as a colourless oil (300 mg, 
46%, purity according to GC-MS 91%, the remainder being 7% of a-dihydroionone and 2% of b-dihydroionone). NMR and MS 
spectra were in accordance with published data.[18] Chiral GC-analysis (Astec Chiraldex G-DP): (S)-5 36.34 min, (R)-5 36.62 min.  

10.13. Preparation of (R)-5 and (S)-5 by preparative chiral HPLC  

 
 
In order to provide an independent reference of both enantiomers of 5, racemic 5 as prepared in chapter 10.12. was subjected to 
preparative chiral HPLC (Daicel, Chiralpak IG amylose-based, 5 µm 10*250mm, flow: 5.6 ml/min, column Temp: 15 °C, isocratic n-
Hexane/MTBE 95:5, 20 min, injection of 10 µl of 100 mg/ml sample in n-hexane, (R)-(-)-5 11.87 min, (S)-(+)-5 13.71 min). From the 
cumulated fractions of 30 runs, the following samples were isolated after removal of the solvents. 
 
(R)-(-)-5 (16 mg, purity 85% by GC-MS) [a]D = -17.7 (c = 0.68, CHCl3). Chiral GC-analysis (Astec Chiraldex G-DP): 36.68 min, 98% 
e.e. 
(S)-(+)-5, (12 mg, purity 98% by GC-MS) [a]D = +16.4 (c = 0.59, CHCl3). Chiral GC-analysis (Astec Chiraldex G-DP): 36.39 min, 95% 
e.e. 

10.14. (4aS,8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene (S,S)-4 with AacSHC 215G2 

 
 

The MTBE-extract of the biocatalytic conversion of geranylacetone (E-2, 2.1 g, 10.8 mmol) with AacSHC 215G2 (250 g/l, 300 ml, cf. 
chapter 9.3.) contained 79% of product according to GC-FID with external calibration using a racemic product standard. The extract 
was concentrated in a rotary evaporator, and the residue was purified via column chromatography (pentane/MTBE 60:1; the product 
is unstable on silica gel and partially decomposes). The combined fractions were concentrated, yielding the product (S,S)-4 as a 
colourless oil (250 mg, 12%, purity by GC/MS 99.4%). [a]D = -19.0 (c = 1.35, CHCl3). Chiral GC analysis (Hydrodex-beta-3P): 37.70 
min, >99.9% e.e. 
 

1H-NMR (CDCl3, 400 MHz): 4.46 (br. dd, J=5.3, 0.9 Hz, 1 H), 1.88 - 1.97 (m, 1 H), 1.80 - 1.86 (m, 1 H), 1.72 - 1.80 (m, 1 H), 1.68 - 
1.71 (m, 3 H), 1.51 - 1.64 (m, 2 H), 1.39 - 1.51 (m, 3 H), 1.25 - 1.33 (m, 1 H), 1.18 (s, 3 H), 0.92 (s, 3 H), 0.82 (s, 3 H). 13C-NMR 
(CDCl3, 101 MHz): 148.0 (s), 95.0 (d), 76.4 (s), 48.4 (d), 41.6 (t), 40.0 (t), 33.2 (s), 32.2 (q), 20.8 (q), 20.5 (q), 19.8 (t), 19.2 (t), 19.1 
(q). GC-MS (EI, 70 eV): 194 (17), 179 (6), 161 (14), 151 (6), 136 (12), 123 (27), 109 (100), 95 (21), 81 (25), 71 (19), 55 (21), 43 (61). 
HR-MS (ESI, positive mode): C13H22O calcd. for [M+H]+ 195.1743, found 195.1744. 

10.15. (4aS,8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene (S,S)-4 with AciSHC_R2.1  

 
 

The EtOAc-extract of the biocatalytic conversion of geranylacetone (E-2, 2.4 g, 12.3 mmol) with AciSHC_R2.1 (400 ml reaction, 40 
mM substrate, 72 hours at 30 °C) contained 58% of product according to GC-FID. The product was purified as described above in 
chapter 10.14. to yield (S,S)-4 (100 mg, 13%, purity by GC-MS 98%). NMR and MS data were identical to the product isolated in 
chapter 10.14 Chiral GC analysis (Hydrodex-beta-3P): 37.70 min, >99.9% e.e. 
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10.16. Rac.-(4aS,8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene (rac. (S,S)-4)  

 
 
The solution of (E)-2 (2.00 g, 10.3 mmol) in CH2Cl2 (40 ml) was cooled to -78 °C, then fluorosulfonic acid (0.65 ml, 11.3 mmol, 1.1 
equiv) was added dropwise under stirring. Stirring was continued at -78 °C for 45 min, then at -50 °C for 30 min. Additional 
fluorosulfonic acid ((0.65 ml, 11.3 mmol, total 2.2 equiv) were added and stirring was continued at -50 °C for 30 min. The solution was 
poured in 2M aq. NaOH-solution (100 ml) and extracted with MTBE (100 ml). The organic layer was washed with water and brine and 
dried over MgSO4. The product was purified as described in chapter 10.13 to yield rac.-(S,S)-4 as a colourless oil (290 mg, 15%, 
purity according to GC-MS 96%). NMR and MS data were identical to the product in chapter 10.13. Chiral GC-analysis (Hydrodex-
beta-3P): (S,S)-(-)-4 (37.72 min), (R,R)-(+)-4 (38.27 min).  

10.17. (4aR,8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene (R,S)-4 with AacSHC 215G2 

 
 
The MTBE-extract of the biocatalytic conversion of nerylacetone (Z-2, 525 mg, 2.2 mmol) with AacSHC 215G2 (250 g/l, 350 ml, cf. 
chapter 9.3.) contained 60% of product according to GC-FID with external calibration using a racemic product standard. The extract 
was concentrated in a rotary evaporator and the residue was purified via column chromatography (pentane/MTBE 60:1; the product 
is unstable on silica gel and partially decomposes. After careful removal of the solvent the product (4aR,8aS)-4 was obtained as a 
colourless oil (80 mg, 15%, purity by GC/MS 99.5%).  
[a]D = -37.8 (c = 1.02, CHCl3). Chiral GC (Hydrodex-beta-3P): 30.76 min, >99.9% e.e. The absolute configuration was assigned 
tentatively based on the observed trend of AacSHC 215G2 to yield 4aS-configurated products from Z-substrates.  
 
1H-NMR (CDCl3, 400 MHz): 4.38 (ddt, J=5.1, 2.1, 1.0, 1.0 Hz, 1 H), 2.15 - 2.24 (m, 1 H), 1.72-1.99 (m, 3 H), 1.67 (dt, J=2.2, 1.3 Hz, 
3 H), 1.15 - 1.44 (m, 5 H), 1.17 (s, 3 H), 0.89 (s, 3 H), 0.86 (s, 3 H).  13C-NMR (CDCl3, 101 MHz): 148.7 (s), 94.5 (d), 74.7 (s), 44.0 
(d), 42.0 (t), 39.6 (t), 33.7 (s), 32.5 (q), 26.5 (q), 21.2 (q), 20.5 (q), 19.8 (t), 18.1 (t).  GC-MS (EI, 70 eV): 194 (7), 179 (6), 151 (6), 136 
(6), 124 (14), 109 (100), 95 (8), 81 (11), 71 (14), 55 (12), 43 (27).  HR-MS (ESI, positive mode): C13H22O calcd. for [M+H]+ 
195.1743, found 195.1743. 

10.18. Rac.-(4aR,8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene (rac. (4aR,8aS)-4)  

 
 
The procedure described in chapter 10.16. was repeated with (Z)-2 (4.0 g) to yield rac.-(4aR,8aS)-4 as a colourless oil (750 mg, 19%, 
purity according to GC-MS 97%). NMR and MS data were identical to the product in chapter 10.17. Chiral GC-analysis (Hydrodex-
beta-3P): (4aR,8aS)-(-)-4 (29.56 min), (4aS,8aR)-(+)-4 (30.77 min) (attribution of absolute configuration cf. chapter 10.17.).  
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B. Supplementary Figures 

 
 
 

Figure S1: a) An approximate maximum likelihood tree of all 5628 sequences in Uniprot (database accessed on 05.03.2018) containing the two PFAM domains 
PFAM13249 PFAM13243 found in all SHCs. The tree is split into oxidosqualene cyclases (OSCs) of mainly eukaryotic origin and squalene-hopene cyclases (SHCs) 
of mainly prokaryotic origin. Also shown are the two standard substrates for enzymes of the respective families b) Close-up of the part of the phylogenetic tree 
containing SHCs and the location of the 31 SHCs investigated in this study. These span most major branches of the phylogenetic tree. The SHCs are colour coded. 
Blue: Bacterial SHCs converting squalene into hopene and hopanol. Green: Plant and Bacillus SHCs catalyzing unusual cyclization of squalene. Red: Novel SHC 
homologs from thermophilic bacteria. Orange: Novel SHC homologs from the clade, which includes the promiscuous ZmoSHC1 variant. Purple: Novel 
uncharacterized SHC homologs. 
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Figure S2: Docking of geranylacetone ((E)-2) a): best pose, b): 9 best poses and (E)-pseudoionone ((E)-1) d) best pose, e): 9 best poses into the active pocket of 
AacSHC (1UMP). The docked molecules are shown in orange, the cocrystallized 2-azasqualene in yellow and the catalytic acid D376 in dark blue. For 
geranylacetone ((E)-2), the best docking mode has a very similar pre folding to 2-azasqualene, and the terminal double bond is at an optimal distance of 2.7 Å from 
D376 for protonation. For (E)-pseudoionone ((E)-1) all nine docking modes are at a distance of more than 8 Å from D376. Therefore, the higher rigidity of 3 due to 
the additional conjugated γ,δ-double bond might render a productive pre-folding impossible. c) Structure of geranylacetone and f) (E)-pseudoionone. 
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Figure S3: A sequence logo of the active pocket residues [19] of the 14 SHCs converting (E/Z)-geranylacetone (2) into products 4 and 12. Aligned below are the 
sequences of AciSHC, which additionally catalyzes the formation of monocyclic products 5 and 10 and AacSHC, as a reference for the usual amino acid numbering 
of SHCs. Highlighted in yellow is the site for which AciSHC displayse an unique amino acid residue compared to all other SHCs with activity towards 2. 
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Figure S4: Docking of geranylacetone ((E)-2) (orange) and nerylacetone ((Z)-2) (green) via AutoDock Vina into a homology model of AciSHC which was prepared 
by Swiss model. The corresponding distances for the cyclization reaction are shown. The catalytic aspartate D380 is shown in blue. 
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Figure S5: Docking of geranylacetone ((E)-2) (orange) into a homology model of AciSHC. The distance from the hydrogen of the exocyclic methyl-group of (E)-2 
to D378 is shown. The distance of 2.6 Å is within the van der Waals distance between hydrogen and carbon (<2.9 Å) and therefore allows for proton transfer.[20] 
Therefore, D378 (purple) might be responsible for deprotonation of the monocyclic carbocation intermediate, resulting in the exomethylene containing g-
dihydroionone (5). The catalytic aspartate D380 is shown in blue. 
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Figure S6: Conversion of (E/Z)-geranylacetone (2) to g-dihydroionone (5) (%FID) by the SHC variants generated in the first and second round of evolution.  
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Figure S7: Time course of AciSHC_R2.3. The experiments were conducted at 40 °C with an OD of 120 for 1,4,24,48,72,96 hours in triplicates. We employed 10 
mM (Z)-2 as substrate and measured the conversion in % FID to g-dihydroionone ((R)-5). The average total recovery was 102±5%. 
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Figure S8: Docking of (E)-tangerinol ((E)-14) (orange) and (Z)-tangerinol ((Z)-14) (green) via AutoDock Vina into a homology model of AacSHC 215G2 prepared 
by Swiss model. The corresponding distances for the cyclization reaction are shown. The catalytic aspartate D376 is shown in blue. 
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Figure S9: Preparative scale cyclization of geranylacetone (2) and tangerinol (14) with AacSHC 215G2 (250 g/l cells wet weight). Geranylacetone (2): plain lines, 
racemic tangerinol (14): dotted lines. Almost full conversion (95.6%) was obtained after 168 h with racemic E-tangerinol (E-14). Conversion with racemic Z-tangerinol 
(Z-14) was only 71.0% in the same time. Geranylacetone (E-2) was fully converted in 24 h. Conversion of nerylacetone (Z-2) was 76% after 168h. 
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Figure S10: Alignment of AciSHC, AciSHC_R2.3, the best variant for conversion of nerylacetone ((Z)-2) into g-dihydroionone ((R)-5) described in this work, AacSHC 
and AacSHC_V, the best variant for the same reaction from the recent work by the group of Bernhard Hauer.[21] Active pocket residues[19] are annotated: X: residues 
that were targeted in both protein engineering efforts, B: residues that were only targeted in this work, *: residues that were not targeted by either work. black 
background: positions mutated in AciSHC_2.3 and/or AacSHC_V. 
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Figure S11: Alignment of homology models of AciSHC_R2.3 (grey), the best variant for conversion of nerylacetone ((Z)-2) into g-dihydroionone ((R)-5) described 
in this work with AacSHC_V (cyan), the best variant for the same reaction from the recent work by the group of Bernhard Hauer[21]. a) Full homology model. b) 
Active site. Position with different amino acid residues between the two engineered enzymes are shown as sticks. Residues are labelled for AacSHC_V. The docking 
results of (Z)-2 into the homology model of AciSHC_R2.3 using AutoDock Vina is shown in green. As expected, we found that the two homology models are very 
similar (all atom RMSD: 1.57 Å) because they are both based on the crystal structure of AacSHC (PDB: 1SQC).  
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C. Supplementary Tables 

Table S1: List of all primers used in this study. 

Primer Name Sequence 

T7_fw TAATACGACTCACTATAGGG 
T7_rv GCTAGTTATTGCTCAGCGG 
L35X_rv TTCACCTTTCCAAAAACCTTTTTC 
L35X_fw GAAAAAGGTTTTTGGAAAGGTGAANNKGAGACCAACGTTACCATTGAAG 
A169X_rv CCAACAACCCCAATCATAAATG 
A169X_fw TTTATGATTGGGGTTGTTGGNNKCGCCAGACCGTTGTGC 
T172X_rv CTGACGTGCCCAACAAC 
T172X_fw GTTGTTGGGCACGTCAGNNKGTCGTGCCGCTGACCATTG 
I261X_rv ACCACCCCAGCTACCATC 
I261X_fw GATGGTAGCTGGGGTGGTNNKCAACCTCCGTGGGTTTATAG 
P263X_rv CTGAATACCACCCCAGCTAC 
P263X_fw GTAGCTGGGGTGGTATTCAGNNKCCATGGGTTTATAGCCTGATTG 
A310X_rv TTCCAGGCGACGAACTG 
A310X_fw CAGTTCGTCGCCTGGAANNKTGCCAGAGTCCGGTTTGGG 
C311X_rv TGCTTCCAGGCGACG 
C311X_fw CGTCGCCTGGAAGCANNKCAAAGTCCGGTTTGGGATAC 
F369X_rv TGCCCAACCACCAGG 
F369X_fw CCTGGTGGTTGGGCANNKGAGTTTGCCAATGATAATTACCCG 
A425X_rv ACCCCAACCGCCATC 
A425X_fw GATGGCGGTTGGGGTNNKTTCGATGCAGATAATACCCG 
F426X_rv TGCACCCCAACCGCC 
F426X_fw GGCGGTTGGGGTGCANNKGACGCAGATAATACCCGTGAAC 
Y500X_rv AATATGATTTGCTCCCCAACG 
Y500X_fw CGTTGGGGAGCAAATCATATTNNKGGCACGGGTGCAGTTGTTC 
G606X_rv TGTACCGGTGTAATGCG 
G606X_fw CGCATTACACCGGTACANNKTTCCCGGGTGATTTCTATATTAACTATC 
I613X_rv ATAGAAATCACCCGGAAAACC 
I613X_fw GGTTTTCCGGGTGATTTCTATNNKAATTATCATCTGTATCGCCTGG 
Y615X_rv GTTAATATAGAAATCACCCGGAAAAC 
Y615X_fw GTTTTCCGGGTGATTTCTATATTAACNNKCACCTGTATCGCCTGGTGTTTC 
A169_rv CCAACAACCCCAATCATAAATG 
A169WT_fw CATTTATGATTGGGGTTGTTGGGCGCGCCAGACCGTTGTGCCGCTG 
A169G_fw CATTTATGATTGGGGTTGTTGGGGCCGCCAGACCGTTGTGCCGCTG 
A169P_fw CATTTATGATTGGGGTTGTTGGCCGCGCCAGACCGTTGTGCCGCTG 
P263_rv CTGAATACCACCCCAGCTACC 
P263WT_fw GGTAGCTGGGGTGGTATTCAGCCTCCATGGGTTTATAGCCTGATTG 
P263W_fw GGTAGCTGGGGTGGTATTCAGTGGCCATGGGTTTATAGCCTGATTG 
A310_rv TTCCAGGCGACGAACTGC 
A310WT_fw CAGTTCGTCGCCTGGAAGCATGCCAGAGTCCGGTTTGGGATAC 
A310F_fw CAGTTCGTCGCCTGGAATTTTGCCAGAGTCCGGTTTGGGATAC 
A310L_fw CAGTTCGTCGCCTGGAACTGTGCCAGAGTCCGGTTTGGGATAC 
A310M_fw CAGTTCGTCGCCTGGAAATGTGCCAGAGTCCGGTTTGGGATAC 
G606_I613_rv TGTACCGGTGTAATGCGG 
G606ACC_I613VTT_fw CCGCATTACACCGGTACAACCTTCCCGGGTGATTTCTATVTTAATTATCATCTGTATCGCCTGG 
G606ACC_I613GCA_fw CCGCATTACACCGGTACAACCTTCCCGGGTGATTTCTATGCAAATTATCATCTGTATCGCCTGG 
G606KGC_I613VTT_fw CCGCATTACACCGGTACAKGCTTCCCGGGTGATTTCTATVTTAATTATCATCTGTATCGCCTGG 
G606KGC_I613GCA_fw CCGCATTACACCGGTACAKGCTTCCCGGGTGATTTCTATGCAAATTATCATCTGTATCGCCTGG 
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Table S2: List of all SHCs used in this study and the plasmids, from which they are expressed. The enzymes are ordered based on their phylogenetic relationship. 
References on initial characterization of the enzymes are given and previously not characterized SHCs are marked with an asterisk. 

SHC Plasmid Backbone Source organism NCBI Acc. Nr. Reference 
- pET28b(+) pET28b(+) - - - 
KnaSHC pSHC30 pET28b(+) Komagataeibacter nataicola AQU88860.1 * 
KxySHC2 pSHC32 pET28b(+) Komagataeibacter xylinus E25 AHI26287.1 * 
AfaSHC pSHC27 pET28b(+) Acetobacter fabarum PAK78064.1 * 
AorSHC pSHC28 pET28b(+) Acetobacter orleanensis JCM 7639 GAN69910.1 * 
KxySHC1 pSHC31 pET28b(+) Gluconacetobacter xylinus CUW48332.1 * 
ApaSHC pSHC13 pET28b(+) Acetobacter pasteurianus WP_012812952.1 [6] 
GfrSHC pSHC29 pET28b(+) Gluconobacter frateurii NBRC 103465 GAD08844.1 * 
ZmoSHC1 pSHC5 pET28b(+) Zymomonas mobilis WP_011241313.1 [5] 
SfuSHC pSHC16 pET28b(+) Syntrophobacter fumaroxidans  WP_011698842.1 [6] 
TtuSHC pSHC17 pET28b(+) Teredinibacter turnerae WP_015819476.1 [6] 
AacSHC pSHC3 pET28b(+) Alicyclobacillus acidocaldarius WP_012811690.1 [4] 
AciSHC pSHC8 pET28b(+) Acidothermus cellulolyticus WP_011720532.1 * 
SthSHC pSHC25 pET28b(+) Sphaerobacter thermophilus WP_012872483.1 * 
AfuSHC pSHC12 pET28b(+) Aspergillus fumigatus A1163 EDP50814.1 * 
CthSHC pSHC22 pET28b(+) Chloracidobacterium thermophilum WP_014100779.1 * 
TelSHC pSHC11 pET28b(+) Thermosynechococcus elongatus WP_011058142.1 * 
AcaACH pSHC18 pET28b(+) Adiantum capillus-veneris BAF93209.1 [9] 
GniPNT pSHC7 pET28b(+) Goniophlebium niponicum BAI48070.1 [10] 
GniPNG pSHC20 pET28b(+) Goniophlebium niponicum BAI48071.1 [10] 
MfuSHC pSHC10 pET28b(+) Methylacidiphilum fumariolicum WP_009061034.1 * 
BjaSHC1 pSHC4 pET28b(+) Bradyrhizobium japonicus CAA60250.1 [7] 
BamSHC2 pSHC14 pET28b(+) Burkholderia ambifaria ABI91648.1 [6] 
McaSHC pSHC15 pET28b(+) Methylococcus capsulatus WP_010960137.1 [8] 
BmeTC pSHC6 pET28b(+) Bacillus megaterium WP_013083001.1 [12] 
BsuTC pSHC19 pET28b(+) Bacillus subtilis WP_004399534.1 [11] 
BthSHC pSHC1 pET28b(+) Bacillus thuringiensis B 4219 AJI35613.1 * 
TsgSHC pSHC26 pET28b(+) Thermoactinomyces sp. Gus2-1 KFZ40906.1 * 
BteSHC pSHC21 pET28b(+) Brevibacillus thermoruber WP_029099368.1 * 
CttSHC pSHC23 pET28b(+) Cohnella thermotolerans WP_027091823.1 * 
GvuSHC pSHC9 pET28b(+) Geobacillus vulcani WP_031409036 * 
GthSHC pSHC24 pET28b(+) Geobacillus thermodenitrificans WP_029761705.1 * 
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Table S3: Sequence of the ten best variants of the second round of directed evolution of AciSHC for the conversion of (E/Z)-geranylacetone (2) towards g-
dihydroionone (5). Wild type residues are shown in italics, while novel residues are shown in bold. Biocatalytic reactions in screening conditions in deep-well plates 
were performed with 10mM (Z)-2 towards 5 in triplicates. 

Variant A169 P263 A310 G606 I613 Conversion (%) 
AciSHC_wt A P A G I 0.71 ± 0.02 

AciSHC_R1.1 A P F G I 4.7 ± 0.1 

AciSHC_R2.1 P P M C V 21.4 ± 1.0 

AciSHC_R2.2 P W M G L 19.9 ± 0.3 

AciSHC_R2.3 P W L G V 18.7 ± 0.3 

AciSHC_R2.4 P W M G I 18.53 ± 0.14 

AciSHC_R2.5 P W A C V 18.0 ± 0.3 

AciSHC_R2.6 P P L C V 17.55 ± 0.02 

AciSHC_R2.7 P W A C V 17.5 ± 0.3 

AciSHC_R2.8 G P L C V 17.13 ± 0.08 

AciSHC_R2.9 P W A G V 16.9 ± 1.9 

AciSHC_R2.10 G P F C V 14.4 ± 1.7 
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Table S4: Conversion and optical purity of biocatalytic products from (E/Z)-geranylacetone (2) with different variants of AciSHC. Biocatalytic reactions in glass vials 
were performed with 10mM (E/Z)-2 in triplicates. 

Variant\Product 
(R)-g-dihydroionone ((R)-5) (S,S)-bicyclic enol ether ((S,S)-4) (R)-a-dihydroionone ((R)-10) 
Conversion (%) ee (%) Conversion (%) ee (%) Conversion (%) ee (%) 

AciSHC_wt 0.70 ± 0.04 >90% 2.34 ± 0.08 >90% 0.08 ± 0.01 n.d. 
AciSHC_R1.1 5.4 ± 1.1 >99% 13.0 ± 1.8 >95% 0.4 ± 0.1 >90% 
AciSHC_R2.1 14.5 ± 0.3 >99% 2.93 ± 0.03 >95% 1.32 ± 0.01 >90% 
AciSHC_R2.2 13.6 ± 1.0 99.7% 17.0 ± 1.4 >95% 0.87 ± 0.08 >90% 
AciSHC_R2.3 12.15 ± 0.15 > 99% 9.43 ± 0.23 >95% 1.06 ± 0.02 >90% 
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D. NMR Data 

1. Nerylacetone (Z-2) 
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2. Geranylacetone (E-2) 
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3. E-Tangerinol (E-14) 
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4. Z-Tangerinol (Z-14)  
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5. 4-((1S,2S)-2-hydroxy-2,6,6-trimethylcyclohexyl)butan-2-yl acetate (15)  
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5.1. HSQC of 4-((1S,2S)-2-hydroxy-2,6,6-trimethylcyclohexyl)butan-2-yl acetate (15) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.2. NOESY of 4-((1S,2S)-2-hydroxy-2,6,6-trimethylcyclohexyl)butan-2-yl acetate (15) 
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6. (1S,2S)-(+)-1,3,3-trimethyl-2-(3-oxobutyl)cyclohexyl acetate (17)  
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7. (S)-(+)-g-dihydroionone ((S)-5) ex E-Tangerinol (g:a:b  80:9:11) 
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8. HSQC of 4-((R)-2,2-dimethyl-6-methylenecyclohexyl)butan-2-yl acetate (16)  
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9. (4aS,8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene (S,S)-4 
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10. (4aR,8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene (R,S)-4 
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E. Chiral GC-analysis of SHC-cyclization products 

1.  (R)- and (S)- g-dihydroionone (5) 

 
 
a) racemic g-dihydroionone  b) (S)-5 ex E-tangerinol with AacSHC 215G2, >99.9% e.e.   c) (R)-5 ex (E/Z)-geranylacetone (2) with AciSHC_R2.3, >99 % e.e. 

2. trans bicyclic enolether (S,S)-4 

 
 
a) (S,S)-4 ex E-2 by AacSHC 215G2, >99.9% e.e. b) racemic (S,S)-4   c) (S,S)-4 ex (E/Z)-geranylacetone (2) by AciSHC_R2.3, > 95% e.e.  
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3. cis bicyclic enolether (4aR,8aS-4) 

 
 
a) racemic (4aS,8aR)-4  b) (4aR,8aS)-(-)-4 ex Z-2 by AacSHC 215G2, >99.9% e.e. (absolute configuration assigned tentatively) 
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F. Sequences 

1. pET28b(+) 

ctcgagcaccaccaccaccaccactgagatccggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctgagcaataactagcataac
cccttggggcctctaaacgggtcttgaggggttttttgctgaaaggaggaactatatccggattggcgaatgggacgcgccctgtagcggcgcattaagcgcgg
cgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgt
caagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgcc
ctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttat
aagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcaggtggcactttt
cggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaattcttagaaaaactcatcgagcatcaaatgaaac
tgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccataggatggcaagatcctg
gtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaa
tccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcatt
cgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcat
caacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaa
tgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactct
ggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaat
cgcggcctagagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatgaccaaaatcccttaacgt
gagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagc
cgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttacc
gggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccg
aactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacagga
gagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggg
gcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataa
ccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcgg
tattttctccttacgcatctgtgcggtatttcacaccgcatatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgct
acgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgac
cgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacag
atgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtttggtcactg
atgcctccgtgtaagggggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaacatgcccggttac
tggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgccagcgcttcgttaatacagatgtaggtgt
tccacagggtagccagcagcatcctgcgatgcagatccggaacataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaa
gaccattcatgttgttgctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtgattcattctgctaaccagtaaggcaaccccgcc
agcctagccgggtcctcaacgacaggagcacgatcatgcgcacccgtggggccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtggcgg
gaccagtgacgaaggcttgagcgagggcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtcctcgccga
aaatgacccagagcgctgccggcacctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgatagtcatgccccgcgcccaccggaa
ggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgcctaatgagtgagctaacttacattaattgcgttgcgctcactgcccgctttccag
tcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagac
gggcaacagctgattgcccttcaccgcctggccctgagagagttgcagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggtta
acggcgggatataacatgagctgtcttcggtatcgtcgtatcccactaccgagatatccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatcgcagtgggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttc
ccgttccgctatcggctgaatttgattgcgagtgagatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcg
atttgctggtgacccaatgcgaccagatgctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaaga
aataacgccggaacattagtgcaggcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaaga
ttgtgcaccgccgctttacaggcttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaattt
gcgacggcgcgtgcagggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctc
cgccatcgccgcttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgac
atcgtataacgttactggtttcacattcaccaccctgaattgactctcttccgggcgctatcatgccataccgcgaaaggttttgcgccattcgatggtgtccgggatc
tcgacgctctcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatg
gcgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtg
atgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggatcgagatctcgatcccgcgaaatta
atacgactcactataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatata 
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2. BthSHC 

atgggcttattatacgaaaaagcgcatgaagaaatagcgagaagaacaactgcacttcaaacaatgcaacggcaagatggtacgtggcagttttgttttgaaggagcgccgctaacagatt
gtcatatgatttttttattaaaattattaggtagagataaagagatagaaccgtttgtaaaaagattagcatcacttcaaacaaatgaaggaacatggaaattgtatgaagatgaaatgggtggta
atttatctgctacaattcaatcttatgctgccttacttgcatcagaaaaatatacaaaagaagatgcgaatatgaagcgagcggaaatgtttataaatgagcgcggtggggtagcgcgtgctcat
tttatgacgaagtttttattagcgattcatggagaatatgaatatccttctctctttcatttgccaacaccaattatgtttctgcagaatgattcccctctcagtatatttgaattgagtagctcagcacgtat
ccatttaattccgatgatgttgtgtttaaataaaagatttcgagtagggaaaaagttattgccaaatttaaatcatattgcaggcgggggcggagaatggtttcgggaggatcggtctccagtttttc
aaacgttagtaagtgacgtgaagaaaattataacgtatccactttctttgcatcataaaggatatgaggaagtagaacgttttatgaaagagcgtattgatgaaaatggaacattatatagttac
gcaactgcctcgttttatatgatttatgctttacttgcattaggacattctattcactcaccaattattcagaaggctataatgggaatcacatcttatatatggaagatggagagagggagccatttg
caaaactctccgtcaactatatgggatacagctttactcagttatgctttgcaagaagctcaagttccgaaagcaagtaaagtgattcaaaatgcatcagcgtatttactaagaaaacagcaaa
caaagaaagtagattggagtgtacatgcaccggatctcttcccaggtggttggggcttttcggatgtgaatacgacgattccagatattgatgatacaactgctgcgttaagagcattggcgcg
aagtagagggaacgaaaatgtagacaatgcttggaagcgagcggttaattgggttaaaggattgcaaaataatgatggtggttggggggcttttgaaaaaggggtaacgagccgtatatta
gcaaatttaccaatcgaaaatgcaagtgatatgattacagatccttctacaccagatattacaggaagagtgttagaatttttcgggacgtatacgcaaaatgaattgcccgagaaacaaaaa
caaagtgcgataaattggttaacgaatgcacaagaggaaaatggatcatggtatgggaaatgggggatttgttatatatatggtacgtgggcggttatgactggtttacggtcactaggaactc
catctagcaacccatcattaaaacgagccgctttatggcttgaacatatacagcatgaagatggtggctggggagaatcttgccacagtagtgtggagaaaaggttcgttactttaccatttagt
acaccatcccaaacagcatgggcgttagatgccctcatttcttactatgataaagaaacgccagtcattcgcaaaggtatttcatatttgctctccaacccttatgtaaatgaaaaatatcctactg
gaacaggcttgccaggtgggttttatattcgttatcatagttatgctcatatatatccgttgcttactttggcacattatttaaaaaaatatagaaaataa 

3. AacSHC 

atggcagaacagctggttgaagcccctgcctatgcacgtaccctggatcgtgcagttgaatatctgctgagctgtcagaaagatgaaggttattggtggggtccgctgctgagcaatgttacaa
tggaagcagaatatgtgctgctgtgtcatattctggatcgcgttgatcgtgatcgcatggaaaaaattcgtcgttatctgctgcatgaacagcgtgaagatggcacctgggcactgtatcctggtg
gtccgcctgatctggataccaccattgaagcctatgttgcactgaaatatatcggtatgagccgtgatgaagaaccgatgcagaaagcactgcgttttattcagagccaaggtggtattgaaag
cagccgtgtttttacccgtatgtggctggcactggttggtgaatatccgtgggaaaaagttccgatggttccgcctgaaattatgtttctgggtaaacgtatgccgctgaacatttatgaatttggtag
ctgggcacgtgcaaccgttgttgccctgagcattgtgatgagccgtcagccggtttttccgctgccggaacgtgcccgtgtgccggaactgtatgaaaccgatgttcctccgcgtcgtcgtggtg
caaaaggtggtggtggttggatttttgatgcactggaccgtgcactgcatggttatcagaaactgagcgttcatccgtttcgtcgtgcagcagaaattcgtgcactggattggctgctggaacgtc
aagccggtgatggtagttggggtggtattcagcctccgtggttttatgcactgattgccctgaaaattctggatatgacccagcatccggcatttatcaaaggttgggaaggtctggaactgtacg
gtgttgaactggattatggtggctggatgtttcaggcaagcattagtccggtttgggataccggtctggcagttctggcactgcgtgcagccggtctgcctgcagatcatgaccgtctggttaaag
caggcgaatggctgttagatcgtcagattaccgttcctggtgattgggcagttaaacgtccgaatctgaaacctggtggttttgcatttcagttcgacaatgtttattatccggatgtggatgataccg
cagttgttgtttgggcactgaataccctgcgtctgcctgatgaacgtcgtcgccgtgatgcaatgaccaaaggttttcgttggattgttggtatgcagagcagcaatggcggttggggtgcctatga
tgttgataataccagcgatctgccgaaccatattccgttttgtgattttggtgaagttaccgatccgcctagcgaagatgttaccgcacatgttctggaatgttttggcagctttggttatgatgatgcct
ggaaagttattcgtcgcgctgtggaatatctgaaacgtgaacagaaaccggatggttcatggtttggtcgctggggtgttaattatctgtatggtacaggtgcagttgttagcgcactgaaagcag
ttggtattgatacccgtgaaccgtatattcagaaagccctggattgggttgaacagcatcagaatccggacggtggctggggtgaagattgtcgtagctatgaagatcctgcgtatgcaggtaa
aggtgcaagcaccccgagccagaccgcatgggctctgatggccctgattgccggtggtcgtgccgaaagcgaagcagcacgtcgcggtgttcagtatctggttgaaacccagcgtccgga
tggcggatgggatgaaccttattacaccggcaccggttttccgggtgatttttatctgggttataccatgtatcgtcatgtgtttccgacactggccctgggtcgttataaacaggcaattgaacgtc
gctaa 

4. BjaSHC1 

atggatagcgttaatgcaaccgcacgtgaagcaaaagaaagcaaaattagcgaaagcgaaattctggaaagcagcattgcaagcgcaacccagggtgttctgggttttcagcagagtga
tggtcattgggtttttgaactggaagcagattgtaccattccggcagaatatgttctgctgcgtcattatctggcagaaccggttgataccgttctggaagcaaaaattggtaattatctgcgtcgtgt
tcagggtgcacatggtggttggcctctggttcatgatggtgaatttgatatgagcgcaagcgtgaaagcatattttgccctgaaaatgattggcgatagcattgatgctccgcacatggttcgtgcc
cgtgaagccattcatgcacgtggtggtgcaattcatagcaatgtttttacccgttttatgctggccatgtttggtattgttacctggcgtgcagttccggtgctgccgattgaaattatgctgctgccgttt
tggagcccgtttcatattaacaaaatcagctattgggcacgtaccacaatggttccgctgatggttattgcagcactgaaaccgcgtgcaaaaaatccgaaaggtgttggtattgatgaactgttt
ctgcaagatccgcgtagcattggtatgaccgcaaaagcaccgcatcagagcatggcatggtttctgctgtttcgtagcctggatgcaattctgcgtgttattgaaccgctgtttccgaaaagcctg
cgtaaacgtgcaattgataccgcactggcatttagcgaagaacgtctgaatggtgaagatggtatgggtgcaatttatccgcctatggcaaatctggtgatgatgtatgatgcactgggcaaag
atgaaaattatccgccacgtgcagttacccgtcgcggtatcgataaactgctggttattggagatgatgaagcatattgtcagccgtgtgttagtccggtttgggataccacactgaccgcacat
gcactgctggaagccggtggtgataaagcaggtccggcagcaaaacatggtctggattggctgattccgaaacaagagctggaagttaaaggtgattgggcagttaaacgtccggatgttc
gtccaggtggttgggcatttcagtataataacgcatattatccggatctggatgatacagcagttgttgttatgagcatggatcgtatgcgtcgtgaacatggtgttaccggttatgatagcgcaatt
gatcgtggtcgtgaatggattgaaggtatgcagtcagatgatggtggctgggcagcatttgatgttaataatctggaatattacctgaacaacatcccgtttagcgatcatggtgccctgctggac
cctccgaccgaagatgttaccgcacgttgtgttagcatgctggcacagctgggtgaaaccgcaaaaaccagcaaacatgttgcagatggtgttgcatatctgcgtaaaacccagcatccgg
aaggtagctggtatggtcgttggggtatgaattttatctatggcacctggtcagttctgtgtgcactgaatatggcaggcgttcgtcatgatgatccgatgattcgtaaagcagcagattggctggc
aagcattcagaataaagatggcggttggggtgaagataccgttagctatcgtctggattataaaggttgggaagcagcaccgagcaccgcaagccagaccgcatgggctctgctggcact
gatggcagcgggtgaagttgatcatccggcagttgcccgtggtgtggaatatctgattgcaacccagaatgaaaaaggtctgtgggatgaacagcgttataccgcaaccggttttccgcgtgtt
ttttacctgcgttatcatggctatagcaaatttttcccgctgtggggtttagcacgttatcgtaatctgcgcaataccaatagccgtgttgttggtgtgggtatgtaa 
 
 



SUPPORTING INFORMATION          

40 
 

5. ZmoSHC1 

atgggtattgatcgtatgaatagcctgagccgtctgctgatgaaaaaaatctttggtgcagagaaaaccagctataaaccggcaagcgataccattattggtacagataccctgaaacgtccg
aatcgtcgtccggaaccgaccgcaaaagttgataaaaccatctttaaaacgatgggcaacagcctgaataacaccctggttagcgcatgtgattggctgattggtcagcagaaaccggatg
gtcattgggttggtgcagttgaaagcaatgcaagcatggaagcagaatggtgtctggcactgtggtttctgggtttagaagatcatccgctgcgtccgcgtctgggtaatgcactgctggaaatg
cagcgtgaagatggtagctggggtgtttattttggtgccggtaatggtgatattaatgcaaccgttgaagcctatgcagcactgcgtagcctgggttatagcgcagataatccggttctgaaaaa
agcagcagcatggattgcagaaaaaggtggtctgaaaaacattcgtgtgtttacccgttattggctggcactgattggtgaatggccgtgggaaaaaaccccgaatctgcctccggaaattat
ctggtttccggataattttgtgttcagcatctataactttgcacagtgggcacgtgcaacaatggttccgattgcaattctgagcgcacgtcgtccgagccgtccgttacgtccgcaggatcgtctg
gatgaactgtttccggaaggtcgtgcacgttttgattatgaactgccgaaaaaagaaggcatcgatctttggagccagttttttcgtaccaccgatcgtggtctgcattgggttcagagcaatctgc
tgaaacgtaatagcctgcgtgaagcagcaattcgtcatgttctggaatggattattcgtcatcaggatgcagatggtggttggggtggtattcagcctccgtgggtttatggtctgatggccctgca
tggtgaaggttatcagctgtatcatccggttatggcaaaagcactgagtgcactggatgatcctggttggcgtcatgatcgtggtgaaagcagctggattcaggcaaccaatagtccggtttgg
gataccatgctggccctgatggcactgaaagatgcaaaagcagaagatcgttttacaccggaaatggataaagcagccgactggctgctggcacgtcaggttaaagttaaaggtgattgg
agcattaaactgccggatgttgaacctggtggctgggcatttgaatatgccaatgatcgttatcctgataccgatgataccgcagttgcgctgattgcactgagcagctatcgtgataaagaaga
gtggcagaaaaaaggcgttgaagatgcaattacccgtggtgttaattggttaattgcaatgcagagcgaatgtggcggttggggagcatttgataaagataataatcgtagcatcctgagcaa
aatcccgttttgtgattttggcgaaagcattgatccgcctagcgttgatgttaccgctcatgtgctggaagcatttggcaccctgggtctgagccgtgatatgccggttattcagaaagcaattgatt
atgtgcgtagcgaacaagaggcagaaggtgcctggtttggccgttggggtgtgaattatatctatggtacaggtgcagttctgcctgcactggcagcaattggtgaagatatgacccagccgt
atattaccaaagcctgcgattggctggttgcacatcagcaagaggatggcggatggggtgaaagctgtagcagctatatggaaattgatagcattggtaaaggtccgaccacaccgagcca
gaccgcatgggcactgatgggtctgattgcagcaaaccgtccggaagattatgaagcaattgcaaaaggttgccactatctgattgatcgtcaagaacaggatggttcctggaaagaagaa
gaattcaccggcaccggttttccaggttatggtgttggtcagacaattaaactggacgatccggcactgagtaaacgtctgctgcagggtgcagaactgagtcgtgcatttatgctgcgttatgat
ttttatcgtcagtttttcccgattatggcactgtcacgtgcagaacgtctgatcgatctgaacaattaa 

6. BmeTC 

atgatcatcctgctgaaagaagtgcagctggaaattcagcgtcgtattgcatatctgcgtccgacacagaaaaatgatggtagctttcgttattgctttgagacaggtgttatgccggatgcatttct
gattatgctgctgcgtacctttgatctggataaagaagttctgattaaacagctgaccgaacgtattgttagcctgcagaatgaagatggtctgtggaccctgtttgatgatgaagaacataatctg
agcgcaaccattcaggcatataccgcactgctgtatagcggttattatcagaaaaacgatcgcattctgcgtaaagccgaacgctatattatcgatagcggtggtattagccgtgcacattttctg
acccgttggatgctgagcgttaatggtctgtatgaatggccgaaactgttttatctgccgctgagcctgctgctggttccgacctatgttccgctgaacttttatgaactgagcacctatgcacgcatt
cattttgttccgatgatggttgcaggcaacaaaaaattcagcctgaccagccgtcataccccgagcctgagccatctggatgttcgtgaacagaaacaagaaagcgaagaaacaacccaa
gaaagccgtgcaagtatttttctggttgatcatctgaaacagctggcaagcctgccgagctatattcataaactgggttatcaggcagcggaacgttatatgctggaacgcattgaaaaagatg
gcaccctgtatagctatgcaaccagcaccttttttatgatttatggtctgctggcactgggctacaaaaaagatagctttgtgattcagaaagccattgatggtatttgtagcctgctgagtacctgta
gcggtcatgttcatgttgaaaatagcaccagcaccgtttgggatacagccctgctgagctatgcactgcaagaagcaggcgttccgcagcaggacccgatgattaaaggtacaacccgttat
ctgaaaaaacgccagcataccaaattaggcgattggcagtttcataatccgaataccgcacctggtggttggggttttagcgatattaacaccaataatccggatctggatgataccagcgca
gcaattcgtgcactgagccgtcgtgcacagaccgataccgattatctggaaagctggcagcgtggtattaattggctgctgtcaatgcagaacaaagatggtggttttgcagcctttgaaaaaa
acaccgatagcatcctgtttacctatctgcctctggaaaatgcaaaagatgcagcaaccgatccggcaaccgcagatctgaccggtcgtgttctggaatgtctgggtaattttgcaggtatgaat
aaaagccatccgagcattaaagcagcagtgaaatggctgtttgatcatcagctggataatggtagctggtatggtcgttggggtgtttgttatatctatggcacctgggcagcaattaccggtctg
cgtgcagttggtgttagcgcaagcgatccgcgtattatcaaagccattaactggctgaaaagcatccagcaagaggatggtggctttggtgaaagctgttatagcgccagcctgaaaaaata
cgtgccgctgtcatttagcaccccgagtcagaccgcatgggcattagatgcactgatgaccatttgtccgctgaaagatcgtagcgttgaaaaaggtatcaagtttctgctgaatccgaatctga
cagaacagcagacccattatccgaccggtattggtctgcctggtcagttttatatccagtatcacagctataacgatatctttccgctgctggccctggcacattatgcaaaaaaacatagcagct
aa 

7. GniPNT 

atgctgccgtataatcagaacagctataaagaagcactgcacggcggtcatgcagcacataatccgcctacactggaagaagcaattaaacgtagccaagaatttctgctggcacatcag
catccggaaggtttttggtggggtgatctggaatgtaatgttaccagcgcaagtcataccctgatcctgtataaaatcctgggtattgcagatcgttatccgctgcacaaatttgagaaatatctgc
gtcgtatgcagtgtagtcatggtggttgggaaatgagctttggtgatggtggttatctgagcgcaaccattgaagcatatatttgtctgcgtctgctgaatgttccgcagagcgatccggcactgca
gcgtgcactgaaaaacattctggcacgtggtggtgttaccaaagcacgtgtttttaccaaagtttgtctggcactgttaggtggttttgattgggcagcactgccgagcctgcctccgtggctgatg
ctgtttccggcatggtttccgtggaacatttatgaagcagcaagctgggcacgcggttgtgttgttccgctgattgttctgctggaaaaaaaaccggtgtttcaggttaaaccggaagtcagctttg
atgaactgtatgttgaaggtcgtgcacatgcctgtaaagccctgccgtttagcgcacatgattgggttagcaacatttttgttgcagcagatcgtgcctttaaactgatggaacgttttggtgcagttc
cgtttcgtcagtggtcaattaaagaagccaaaaaatgggtgcttgatcgccaagaagaaatgggcgattttattggttataatcctccgatgctgtattttgccgtttgtctgaaactgtggggttatg
aagttaccgatccgctgttacagcgtgccctgctggcccataaaaaactgaccgttgaaaccgaagatgaatgttggctgcagagcagccagagtccggtttgggataccgcactggttattc
cagcactggttgaaagcggtctgcctccggatcatcctgcgctgcagaaagcaggtcagtggctgttagaaaaacaaattctgaaacatggcgactgggctctgaaaacaggtggtggtcg
catgcaggatgacattggtggtggctgggcatttcagtttgttaatagctggtatccggatgtggatgatagcgcagcagttgttattgcactgaactgcattaaaatgccggatgaggatgttaa
aaatggtgcaattgcccgttgcctgaaatggattgcatttatgcagggtcgtaatggcggatgggcagcatttgatcgtgatagcaatcagcgttggatggatgcaaccccgtttagtgatattga
agcaatgctggatgttagcaccgcagatgttaccgcacgtgttctggaaatggttggtctgatgcgtctgaaacacgcagcacagcctgcaaataattcactgggtaaagcacatcgtcatatt
agcaccgaaagcattgcccgtggtgttgattatctgaccaaagaacaagaaaaagaaggctgttggtggggacgttggggtgtgaattatatctatggcacccgtggtgcactgatgggtctg
agccaggttgcagcaaaaacacataaaaaagaaattgcgcgtggtgcagcatggctggttaaagttcagaacaaaaagaacgagaagaaacagggtgcacaggatggcggttgggg
tgaagcatgttttagctatgatgatcctgcaaccaaaggtcagaatagccgtagcaccgccagccagaccggttgggcaatgcagggactgctggcagccggtgaagttctgggtcgtaaa
tatgaaatggaagcagttgaagaaggtgtgcagtttctgttagatacccagcgtaaagatggtagctggtctgaagcagaatttaccggtggtggttttccgaaacactattatctgaaatacca
ctattttgcccagcattttccgctgagcgcactggcacgttatcgtgcccgtctgctgcagctgagccgtccgaaaaatcaggcataa 
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8. AciSHC 

atgacccaggcaagcgttcgtgaagatgcaaaagcagcactggatcgtgcagttgattatctgctgagcctgcaggatgaaaaaggtttttggaaaggtgaactggaaaccaacgttacca
ttgaagccgaagatctgctgctgcgtgaatttctgggtattcgtacaccggatattaccgcagaaaccgcacgttggattcgtgcaaaacagcgtagtgatggcacctgggcaaccttttatgat
ggtccgcctgatctgagcaccagcgttgaagcctatgttgcactgaaactggctggtgatgatccggcagcaccgcacatggaaaaagcagccgcatatattcgtggtgccggtggtgttga
acgtacccgtgtttttacccgtctgtggctggcactgtttggtctgtggccgtgggatgatctgccgacactgcctccggaaatgatttttctgccgagctggtttccgctgaacatttatgattggggtt
gttgggcacgtcagaccgttgtgccgctgaccattgttagcgcactgcgtccggttcgtccgattccgctgagtattgatgaaattcgtacaggtgcaccgcctccgcctcgcgatccggcatgg
accattcgtggtttttttcagcgtctggatgatttactgcgtggttatcgtcgtgttgcagatcatggtccggcacgtctgtttcgtcgtctggcaatgcgtcgtgcagcagaatggattattgcacgtca
agaggcagatggtagctggggtggtattcagcctccgtgggtttatagcctgattgcactgcatctgctgggttatccgctggatcatccggttctgcgtcgtggtctggatggtctgaatggttttac
cattcgcgaagaaacagcagatggtgcagttcgtcgcctggaagcatgtcagagtccggtttgggataccgcactggcagttacagcactgcgtgatgcaggtctgcctgccgatcatccgc
gtgttcaggcagcagcccgttggctggttggtgaagaggtgcgtgttgccggtgattgggcagtgcgtcgtccgggtctgcctcctggtggttgggcatttgaatttgccaatgataattacccgg
ataccgatgatacagcagaagttgttctggccctgcgtcgcgttcgtctggaagatgcagatcagcaggcgctggaagcagccgttcgtcgtgcaaccacctgggttattggtatgcagagca
ccgatggcggttggggtgcatttgatgcagataatacccgtgaactggtgctgcgtctgccgttttgtgattttggtgccgttattgatccgcctagcgcagatgttaccgcacatattgttgaaatgc
tggcagccctgggtatgcgtgatcatcctgccaccgttgcgggtgttcgttggctgctggcacatcaagaacctgatggtagttggtttggtcgttggggagcaaatcatatttatggtacgggtgc
agttgttccggcactgattgcagccggtgttagtccggatacaccgcctattcgtcgcgcaattcgctggctggaagaacatcagaatccggatggtggatggggtgaagatttacgtagctat
accgatcctgcactgtgggttggtcgtggtgttagcaccgcaagccagaccgcatgggcactgctggcattactggcagcgggtgaagaagcaagtccggcagttgatcgtggcgttcggtg
gctggttaccacacagcagcctgatggtggctgggatgagccgcattacaccggtacaggttttccgggtgatttctatattaactatcatctgtatcgcctggtgtttccgattagtgcactgggtc
gttatgttaatcgt 

9. GvuSHC 

atggttgcagatgaacgtagcgttctgattgatgcactgaaacagagccaggcagcagatggtagctggcgttttccgtttgaaaccggtattagcaccgatgcctatatgattattctgctgcgt
accctggaaattaatgatgaaccgctgattcaggcactggttgaacgtattgaaagccgtcaagaggcaaatggtgcatggaaactgtttgccgatgaaggtgatggtaatgttaccgcaac
caccgaagcatactatgcactgctgtatagcggttatcgtaaaaaaaccgatccgcacatgcagaaagcaaaaatgcgtattctggaaatgggtggtctggaaaatgttcacctgtttaccaa
agttatgctggcactgacaggtcagcatccgtggcctcgtcgttttccgctgccgctggcattttttctgctgccaccgagctttccgctgaatatgtatgatctgagcgtttatggtcgtgccaatatg
attccgctgctggttgcagccgaacgtcgttatagccgtaaaaccgcaaaaagtccggatctgagtgatctggcagcaagccgtggtggttggcgtctgccggaaaatcgtgcactgtggtca
tatatcaaacgtgcactgaccggttttccggatgaactgcatgatgcagcaaaacagcgtgcagttcgttatatgtttggtcatattgaaccggatggcaccctgtatagctattttagcagcacct
ttctgtttatctttgccctgctggccctgggttatccgaaagatgatctgcatattgcacgtgccgttcgtggtctgcgtagcctgcgtaccgaaattgatggtcatacccacatgcagtataccaccg
caagcgtttggaataccgcactggcaagctatgccctgcaagaagcaggcgttccgagcaccgatcgtaccattgaaaaagcaaatcgttatctgctgagccgtcagcatattcgttatggtg
attgggcagttcataatccgcatagcctgcctggtggctggggttttagtgatgttaataccatgaatccggatgtggatgataccacagcagcactgcgtgcaattcgtcgtgcagcagcaaa
agaaaccgcatttcgtcatgcatgggatcgtgcgaatcgttggctgtttagcatgcagaataacgatggtggttttgcagcctttgaaaaaaatgtgggtaaacgcttttggcgctacctgctgatt
gaaggtgcagaatttctgctgatggacccgagtaccgcagatctgaccggtcgcaccctggaatatttcggcacctttgcaggtctgaccaaagatcatccggcagttgcccgtgcagttgatt
ggctgctggatcatcaagaggccgatggtagttggtatggtcgttggggtatttgttatgtttatggcacctgggcagcagttaccggtctgagcgcagttggtgttagtgccgatcatcctgcaat
gcaaaaagccgttcactggctgctgagcattcagaatgcagatggcggttggggtgaaagctgtaaaagtgatggtgcaaaaacctatgttccgctgggtgcaagcacaccggttcatacc
gcatgggcattagatgccctgattgcagccgcagaacgtccgacaccggaaatgaaagccggtgttcgtgccctggttcgtatgctgcaccatcctgattggaccgcaagctatccggttggt
caaggtatggcaggcgcattctatattcattatcatagctatcgctacatcttccctctgctggcgctggcacattatgaacagaaattttgtctgatcgccaattaa 

10. MfuSHC 

atgcatagcggtcgtctgtttctgaaaaaagaaaatgaagtgggcgacaacaaaaaactgcatagcgttccgctgagcctggttgaagaaaccctgaattttccgcagaaagtggaaaaa
accatcaaaaaagcacagcgttatctgctgagcatccagaaagaagatggtcattgggttggtgaactgtttgttgatgttaccctggcatgtgattgtatccatctgatgcattggcgtggcaaa
atcgattacaaaaaacagaaacgcctggtgaaacatattctggatcgtcagctgccggatggtggttggaacatttatcctggtggtccgagcgaagttaatgcaaccgttaaagcatattttgc
cctgaaactggcaggttttagtccggatgaaccgctgatggcaaaagcacgtagcaccattctgcgtttaggtggtattccgaaatgtatgacctataccaaactgggtttagcactgctgggtg
tttatccgtgggatcgtctgccggttattccgcctgaaattattctgtttccgaactggtttccgttcaacctgtatgaaattagcgcatggtcacgcaccatgctggtgccgctgagcattattcatcat
tttaaaccgacacgtatcctgccggaaaaattacagctgcatgaactgttcccgtatggcaccgaacgtggtaaatttagctggctgaaaaagggtgcaaaatacctgagcaaagagggcc
tgtttctggcctgtgataaatttctgcagtattgggataaaaccagcctgaaaccgtttcgtaaaatggcaattgaaaaagccgagaaatggattctggaacgtattgcagcaggtagtgatggt
ctgggtgcaatctttccggcaatgcattatgcaattatggcactgattgcactgggttataccgaagataatccgattctgaagaaagccatcaccgattttgaaagcctggaagttgatgatcag
aaaaacgatgatctgcgtattcagccgtgtctgagtccgctgtgggataccgcaattggtctggttgcactggcagaaagcggttatgaacgtaatgcaccgcagcttaaaaaagcagcaca
ttggattattaaccgcgagattcgtattaaaggcgattggtatgttcgtaatccgcatccggaagcaagcggttgggcatttgaatataacaacatgtattatccggatgtggatgacacactgat
ggttctgctggcactgcgtctgattgatattgatgacaaaatcaaaaaagaagaggtgatgcagcgtgcactgcgttgggttattagctttcagtgtgaaaatggtggctgggcagcatttgata
aaaacgtgtacaaaaagtggctggaagatattccgtttgcagatcataatgcaattctggaccctccgtgtagcgatattaccgcacgtgcactggaactgttcggtaaaatgggtattcgcaa
aaacgaaaagtttgtgcagaaagcaatccgctatctgaaagaaacccaagaaagtgatggtagctggatgggtcgttggggtgtgaattatatctatggcacctggcaggccctgcgtggtc
tgcaggcaattggtgaagatatgaatcaagagtggattctgcgtgcacgtgattggctggaaagctgtcagaatgaggatggcggttggggtgaaacaccggcaagctatgataatccgca
gctgaaaggtaaaggtccgagcaccgcaagccagaccgcatgggcaattagcggtattatggcatgtggtgatatttttcgtccgagcattacccgtggtatcaaatatctgtgtgaacgtcag
ctgagtgatggttcatgggcagaagaatttctgaccggcaccggttttccgggtgttttttatctgaaatatgacatgtatcgcaatgcatggcctctgctggttattggtgaatattatcgtcagtatc
agcaggcaaaagaacgtgcaacctattgggttgatgcaaccctgggttgtatggaaaaacgtctgagcgcagtttaa 
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11. TelSHC 

atgccgaccagcctggcaaccgcaattgatccgaaacagctgcagcaggcaattcgtgcaagccaggattttctgtttagccagcagtatgccgaaggttattggtgggcagaactggaaa
gcaatgttaccatgaccgcagaagttattctgctgcataaaatctggggcaccgaacagcgtctgccgctggcaaaagcagaacagtatctgcgtaatcatcagcgtgatcatggtggttgg
gaactgttttatggtgatggtggtgatctgagcaccagcgttgaagcatatatgggtctgcgtctgctgggtgttccggaaaccgatccggcactggttaaagcacgtcagtttattctggcacgtg
gtggtattagcaaaacccgtatttttaccaaactgcatctggcactgattggttgttatgattggcgtggtattccgagcctgcctccgtggattatgctgctgccggaaggtagcccgtttaccattta
tgaaatgagcagctgggcacgtagcagcaccgttccgctgctgattgttatggatcgtaaaccggtgtatggtatggaccctccgattacactggatgaactgtatagcgaaggtcgtgcaaat
gttgtgtgggaactgcctcgtcaaggtgactggcgtgatgtttttattggtctggatcgtgtgttcaaactgttcgaaaccctgaacattcatccgctgcgtgaacagggtctgaaagcagcagaa
gaatgggttttagaacgtcaagaagcatcaggcgattggggtggcattattccggcaatgctgaatagcctgctggcactgcgtgcactggactatgcagttgatgatccgattgttcagcgtgg
tatggcagcagttgatcgttttgcaattgaaaccgaaaccgaatatcgtgttcagccgtgtgttagtccggtttgggataccgcactggtgatgcgtgcaatggttgatagcggtgttgcaccggat
catcctgcgctggtgaaagccggtgaatggctgctgagcaaacaaattctggattatggcgattggcacatcaaaaacaaaaaaggtcgtcctggtggctgggcatttgaatttgaaaatcgt
ttttatccggatgtggatgataccgcagttgttgttatggcactgcatgcggttaccctgccgaatgaaaatctgaaacgtcgtgccattgaacgtgcagttgcatggattgcaagtatgcagtgtc
gtccaggcggttgggcagcatttgatgttgataatgatcaggattggctgaacggtattccgtatggcgatctgaaagccatgatcgatccgaataccgcagatgtgaccgcacgtgttctgga
aatggttggtcgttgtcagctggcatttgatcgtgttgccctggatcgcgcactggcatatctgcgcaatgaacaagaaccggaaggttgttggtttggtcgctggggtgttaattatctgtatggca
ccagcggtgttctgaccgcactgagcctggttgcaccgcgttatgatcgttggcgtattcgtcgtgcagccgaatggctgatgcaatgtcagaatgcagatggtggatggggtgaaacctgttg
gagctatcatgatccgagtctgaaaggtaaaggtgatagcaccgcaagccagaccgcatgggcaattatcggtctgctggcagccggtgatgcaaccggtgattatgcaaccgaagcaat
tgaacgcggtattgcctatctgctggaaacccagcgtccggatggcacctggcatgaagattatttcaccggcaccggttttccgtgtcatttctatctgaaatatcactactatcagcagcattttc
cgctgacagcactgggtcgttatgcacgctggcgtaatctgctggccacctaa 

12. AfuSHC 

atgctgggtgcaattcgtgaaccgcctattgatgttcagattgcactgcatagccgtgatgataatcagacaggtctggttctgcgtggcacccgtcgtaccgttgatcgtgttctgaaaggtctgt
gtagcagcccgtgttttttttgtagcgttagcctgacaatggcaaccctgaccaccacaatggccaccaccgcaacgatggcaaccaccgaagcaagcaaaccgctggaagcacaggca
cgtaccgcactgaccaaagcaaccaattatgcatgggaaatctttagcaatcgtcattggtgtggtgaactggaaagcaatgttaccgttacctgtgaacacatcttctttctgtatgtgctgtacc
agcatattgatcctggtgaaggtagccagtatcgtcagtggctgctgagccagcagaatagtgatggtagctggggtattgcaccgaattatccgggtgatattagcaccagcgcagaagcat
atctggcactgcgtattattggtatgagcaccgatagtccggaactgtatcgtgcacgtacctttattcgtgcagccggtggtctgagcaaaatgcgtatgtttacccgtatcttttttgccgaatttgg
tctggtgccgtggaccgcaattccgcagctgcctgcagaatttattctggttccggcacattttccgattagcatttatcgtctggcaagctgggcacgtagcaatgttgttccgctgctgattattgc
acatcatcgtccgctgtatccgctgccgaatggtctgcataaacagaatccgtttctggatgaactgtggttagatccggcaacaaaaccgctgccttatggtagcagcgatccgaccgatccg
gttgcatttgtttttaccattctggataaagccctgagctatttaggtggtctgcgtcgtagcccgacacgtggttatgcacgtcgtcgttgtgttcagtggattctgcagcatcaagaaaaagccggt
gattgggcaggtattattccgcctatgcatgccggtattaaagcactgctgctggaaggttataaactgcatgatgaaccgattcagctgggtttagcagcaattgaacgttttacctgggcagat
aatcgtggtaaacgtctgcagtgttgtattagtccggtttgggataccgttctgatgattcgtgcactgcaggatacaccggcaagcctgggtattaaacttgatccgcgtattgcagatgcactgg
catggaccgcagaaaatcagcatcgtggtccggaaggtgattggcgtgtgtataaaccgaacattccggttggtggttgggcatttgaatatcataatacatggtatccggacatcgatgatac
cgcagcagccgttctggcatttctgacccatgatcctgcaaccgcacgtagccgtctggttcgtgatgcagttctgtggattgttggtatgcagaatgcagatggtggctgggcagcatttgatcat
gaaaacaatcagctgttcctgaacaaaatcccgtttagcgatatggaaagcctgtgtgatccgagcacaccggatgttaccggtcgtaccattgaatgtctgggtatgctgcgtgatctgctgat
gcgtccggcagaaaatgccgaaaatggtgagaaatatggttatccggatggcgaaggtgatgcagcagcagacgcacatctgctgcagattattaacaccgcatgtgcacgtgccattcc
gtatctgattcgtagccaagaagcaaccggcacctggtatggtcgttgggcagttaattatgtttatggcacctgtctggtgctgtgtggtctgcagtatttcaaacatgatccgaaatttgcaccgg
aaattcaggcaatggcagcacgtgcagttaaatggctgaaacaggttcagaattccgatggcggttggggtgaaagcctgctgagctatcgcgaaccgtggcgtgcaggttgtggtccgtca
acaccgagccagaccgcatgggcactgatgggtattctgaccgtgtgtggtggtgaagatcgtagcgttcagcgtggtgttcgtcatctggttgatacccaggatgataccctgagccaaggt
gatggtggtgcagccgcatggacagaacgtgaatttaccatccgcgaaccgctgcatgaagcaagccagcgtattggtagcgattaa 

13. ApaSHC 

atgaatatggcaagccgtttcagcctgaaaaaaatcctgcgtagcggtagcgatacccagggcaccaatgttaataccctgattcagagcggcaccagcgatattgttcgtcagaaaccgg
caccgcaagaaccggcagatctgagcgcactgaaagcaatgggtaatagcctgacacataccctgagcagcgcatgtgaatggctgatgaaacagcagaaacctgatggtcattgggtt
ggtagcgtgggtagcaatgcaagcatggaagcagaatggtgtctggcactgtggtttctgggtttagaagatcatccgctgcgtccgcgtctgggtaaagcactgctggaaatgcagcgtccg
gatggtagctggggcacctattatggtgcaggtagcggtgatattaatgcaaccgttgaaagctatgcagcactgcgtagcctgggttatgcagaagatgatccggcagttagcaaagcagc
agcatggattattagcaaaggtggtctgaaaaatgtgcgtgtgtttacccgttattggctggcactgattggtgaatggccgtgggaaaaaaccccgaatctgcctccggaaattatctggtttcc
ggataattttgtgttcagcatctataactttgcacagtgggcacgtgcaaccatgatgccgctggcaattctgagtgcacgtcgtccgagccgtccgttacgtccgcaggatcgtctggatgccct
gtttcctggtggtcgtgcaaattttgattatgaactgccgaccaaagaaggtcgcgacgttattgcagattttttccgtctggcagataaaggtctgcattggctgcagagcagctttctgaaacgtg
caccgagccgtgaagcagcaatcaaatatgttctggaatggattatctggcatcaggatgcagatggtggttggggtggtattcagcctccgtgggtttatggtctgatggccctgcatggtgaa
ggttatcagtttcatcatccggttatggcaaaagcactggatgcactgaatgatcctggttggcgtcatgataaaggtgatgcaagctggattcaggcaaccaatagtccggtttgggataccat
gctgagcctgatggcattacatgatgcaaatgccgaagaacgttttacaccggaaatggataaagccctggactggctgctgagccgtcaggttcgtgtgaaaggtgattggagcgttaaact
gccgaataccgaacctggtggctgggcatttgaatatgccaatgatcgttatcctgataccgatgataccgcagttgccctgattgccattgcaagctgtcgtaatcgtccggaatggcaggca
aaaggtgttgaagaggcaattggtcgtggtgttcgttggctggttgcaatgcagagtagctgtggcggttggggagcatttgataaagataacaataaaagcatcctggcgaaaatcccgtttt
gcgattttggtgaagcgctggaccctccgagcgttgatgttaccgctcatgtgctggaagcatttggtctgctgggtctgcctcgtgatctgccgtgtattcagcgtggtctggcatatattcgtaaag
aacaggacccgaccggtccgtggtttggccgttggggtgttaattatctgtatggtacaggtgcagttctgcctgcactggcagcactgggtgaagatatgacccagccgtatattagtaaagc
ctgcgattggctgattaactgccagcaagaaaatggcggatggggtgaaagctgtgcaagctatatggaagttagcagcattggtcatggtgcaaccacaccgagccagaccgcatgggc
actgatgggtctgattgcagcaaatcgtcctcaggattatgaagcaattgcaaaaggttgccgctatctgattgatctgcaagaagaggacggtagctggaatgaagaagaattcaccggta
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caggttttccaggttatggtgttggtcagacaattaaactggatgatccagccattagtaaacgtctgatgcagggtgcagaactgagccgtgcatttatgctgcgttatgatctgtatcgtcagctg
tttccgattattgcactgagtcgtgcaagccgtctgatcaaactgggtaattaa 

14. BamSHC2 

atgattcgtcgcatgaataaaagcggtccgagtccgtggtcagcactggatgcagcaattgcacgtggtcgtgatgcactgatgcgtctgcagcagccggatggtagctggtgttttgaactgg
aaagtgatgcaaccattaccgcagaatatatcctgatgatgcacttcatggataaaatcgatgatgcccgtcaagaaaaaatggcacgttatctgcgtgcaattcagcgtctggatacacatg
gtggttgggatctgtatgttgatggtgatccggatgtgagctgtagcgttaaagcatattttgcactgaaagcagccggtgatagcgaacatgcaccgcacatggttcgtgcacgtgatgcaatt
ctggaattaggtggtgcagcacgtagcaatgtttttacccgtattctgctggcaacctttggtcaggttccgtggcgtgcaaccccgtttatgccgattgaatttgttctgtttccgaaatgggttccgat
cagcatgtataaagttgcatattgggcacgtaccacaatggttccgctgctggttctgtgtagcctgaaagcacgtgcccgtaatccgcgtaatattgcaattccggaactgtttgttacccctccg
gatcaagaacgtcagtattttcctccggcacgtggtatgcgtcgtgcatttctggcactggatcgtgttgttcgtcatgttgaaccgctgctgccgaaacgtctgcgtcagcgtgccattcgtcatgc
acaggcatggtgtgcagaacgtatgaatggtgaagatggtttaggtggtatttttccgcctatcgtttatagctatcagatgatggatgttctgggttatccggatgatcacccgctgcgtcgtgattg
tgaaaatgcactggaaaaactgctggtgacccgtccggatggttcaatgtattgtcagccgtgtctgagtccggtttgggataccgcatggtcaacaatggccctggaacaggcacgcggtgt
tgccgttccggaagcgggtgcaccggcaagtgccctggatgaactggatgcccgtattgcccgtgcctatgattggctggccgaacgtcaggttaatgatctgcgtggcgattggattgaaaa
cgcaccggcagatacccagcctggtggctgggcatttcagtatgcaaatccgtattatccggacattgatgatagcgcagttgttaccgcaatgctggatcgtcgtggtcgtacccatcgtaatg
cagatggtagccatccgtatgcagcccgtgttgcacgtgcgctggattggatgcgtggtctgcagagtcgtaatggtggttttgcagcatttgatgcagattgtgatcgtctgtatctgaatgccatt
ccgtttgcagatcatggtgcactgctggaccctccgaccgaagatgttagcggtcgtgttctgctgtgttttggtgttaccaaacgtgcagatgatcgtgcaagcctggcacgtgcgattgattatgt
taaacgtacccagcagcctgacggttcatggtggggtcgttggggcaccaattatctgtatggcacctggtcagttctggcaggtctggccctggcaggcgaagatccgagccagccgtatat
tgcgcgtgcactggcatggctgcgtgcccgtcagcatgccgatggcggttggggtgaaaccaatgatagttatattgatccggcactggcaggcaccaatgccggtgaaagcaccagcaat
tgtaccgcctgggctctgctggcccagatggcatttggtgatggtgaaagcgaaagcgtgcgtcgtggtattgcatatctgcagagcgttcagcaggatgatggtttttggtggcatcgtagccat
aatgcaccgggttttccgcgtattttctatctgaaatatcatggctataccgcctattttccgctgtgggcattagcccgttatcgtcgtttagccggtggtgttagcgcagcaggcgcacatgcagtt
ccggcaagtaccggtgcagatgcagcactggcctaa 

15. McaSHC 

atgctgcgtgaagcaaccgcaattagcaatctggaaccgcctctgaccgcaagctatgttgaaagtccgctggatgcagcaattcgtcaggcaaaagatcgtctgctgagcctgcagcatct
ggaaggttattgggtttttgaactggaagcagattgtaccattccggcagaatatatcctgatgatgcactttatggatgaaattgatgcagcactgcaggccaaaattgcaaattatctgcgtag
ccatcagagcgcagatggtagctatccgctgtttcgtggtggtgccggtgatattagctgtaccgttaaagtttattacgccctgaaactggcaggcgatagcattgatgcaccgcacatgaaa
aaagcacgtgaatggattctggcacaaggtggtgcagcacgtagcaatgtttttacccgtattatgctggcaatgtttgagcagattccgtggcgtggtattccgtttattccggttgaaattatgct
gctgccgaaatggtttccgtttcatctggataaagttagctattggagccgtaccgttatggtgccgctgtttattctgtgtagccataaagttaccgcacgtaatccgagccgtattcatgttcgtga
actgtttaccgttgatccgcagaaagaacgccattattttgatcatgttaaaacaccgctgggcaaagcaattctggccctggaacgttttggtcgtatgctggaacctctgattccgaaagcagtt
cgtaaaaaagcaacccagaaagcctttgattggtttacagcacgtctgaatggtgttgatggtctgggtgcaatttttccggcaatggttaatgcctatgaagcactggattttctgggtgttcctcc
ggatgatgaacgtcgtcgtctggcacgtgaaagcattgatcgcctgctggtttttcagggtgatagcgtttattgtcagccgtgtgttagcccgatttgggataccgcactgaccagtctgaccctg
caagaagttgcacgtcatacagccgatctgcgtctggatgcggcactgagcaaaggtctgaaatggctggcaagcaaacaaatcgataaagatgcacctggtgattggcgtgttaatcgtg
caggtctggaaggcggtggttgggcatttcagtttggtaatgattattatccggatgtggatgatagcgcagttgttgcacatgcactgctgggtagcgaagatccgagctttgatgataatctgcg
tcgtgcagcaaattggattgcaggtatgcagagccgtaatggtggttttggtgcatttgatgcagataacacctattactatctgaacagcattccgtttgcagatcatggtgccctgctggaccct
ccgaccgcagatgttagcgcacgttgcgcaatgtttctggcacgctgggttaatcgtcagccggaactgcgtccggttctggaacgtaccattgattatttacgtcgtgaacaagaagcagacg
gtagctggtttggtcgttggggcaccaattatatctatggcacctggtcagttctgctggcgtatgaagcagccggtgttccgaatgatgatccgagcgttcgtcgtgccgttgcatggctgaaaa
gcattcagcgtgaagatggtggctggggtgaagataactttagctatcatgatccgtcatatcgtggtcgttttcataccagcaccgcgtttcagaccggttttgcactgattgccctgatggcagc
gggtgaagcaggtagtccggaagttcaggcaggcgttgattatctgctgcgtcagcagcgtccggatggtttttggaatgatgaatgttttaccgcaccgggttttccgcgtgttttttatctgaaat
atcacggctacgacaaatttttcccgctgtgggcattagcacgttatcgtaatgaacgttatgcactggcataa 

16. SfuSHC 

atgcgtcgtctggatacctttccgcctgaaattccgaccggtagccgtgataaaccgcctagcggtgaagaacatagctgtagcacaccggcagaaccgctgcgtagccgtctggatgaag
gtattctgcgtgcagttgattggctggtttgtgatcagcatcctgatggtttttgggcaggtatgctgcagagcaatagctgtatggaagcagaatgggttttagccatgcattttctgggtattgatga
tgatccgaaatatgatggtgtgattcgtgcaattctgggtgaacagcgtgcagatggtagctggggtgtttttcataaagcaccgaatggtgatatcaataccaccgttgaatgttatgcagcact
gcgtgcaagcggtctggcaccggaaagcgcaccgctgagcagcgcacgtgaatggattctggcaggcggtggtctggcaaatattcgtaattttaccaaatattggctggccctgattggtg
aatggccgtgggaaggcaccccgaccattcctccggaactgatcttttttccgcctcgtatgccgctgaacatttatcattttgcaagctgggcacgtagcaccattgttccgctgagtattctgag
cgcacgtcgtccggttcgtccgctgccggaagatcgtcgcctggatgaactgtttccgcagggtcgtagcgcatttgattttcgtctgcctcgtaaagatggttggctgagctgggaaggtttttttc
atgtttgcgatcgtatcctgcgtctgtatgcacgtacccgtcgtgcaccgtttcgtgaaaccgcaattcgtgtttgtctggaatggattattcgtcgtcaagaaaccgatggtgcatggtcaggtattc
agcctccgtggatttatgcactgctggcactgcatgccgaaggttatggtctggatcatccgatcctgcgtgccggtctgcgtgcctttgatagccattggagctatgaacgtgatggtggtatttat
ctgcaggcaagcgaaagtccggtttgggataccgttctgagcctgcgtgcactggcagattgtggcgaagaacgtaaagcaagcgttagcattgcaagcgcactggaatggctgctgaatc
gtcagattagcgttcctggtgattgggcagttcgtgttccgagcgttccgtgtggtggttgggcatttcagcgtgcaaatagcttttatccggatgttgatgataccgcagttgcaattgaagttctggc
acgtctgcgtccgtttaccgcaaatcagagcgcagttgatcgtgccattcgtagtgcacgtgattgggtgttagcaatgcagtgtagcaatggtggctgggcagcatttgatcgtgataatgatttt
aaactggtgaccaagattccgttttgcgattttggtgaactgctggacccaccgagcgttgatgtgaccgcacatgttattgaagccctggcagcattaggttgggatatgaccagccgtgaaat
tgaagcagcagttagctttattcgccgtgaacaagaagccgaaggtagctggtttggtcgttggggtgttaatcatatttatggcaccgcaaccgttctgcctgcgctgcgtgccattggtgaaga
tatgagcagtgcctatgtgctgcgtgcggcagactggctggcaagccgtcagaatgcagatggcggttggggtgaaacaccggcaagctatatggatgatagtctgcgtggtgttggtgaaa
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gcaccgcatcacagaccgcatgggcaattatgggtttagttgcagttggtagcggtgcacatgatgatacagttcgtcgcggtattgattttctgctgtttgcacagcatggtggcacctgggaag
aaccgcagtataccggcaccggttttccgggttatagcgttggtgaacgtattcgtctgcgtgatatgggtgcaagcctgaaacagggcaccgaactgcagcgtgcatttatgattaattataac
ctgtaccgccactactttccgctgatggcactgggtcgtgcacgttatcatctgcagctgcgtcgttcagcacgcgaaggtggtaatggtgaaacaaccccgaatggtagcgcactgtaa 

17. TtuSHC 

atggaaatccaggatgaagttgatctgctggaaccgcaagaaagcctgaccgcaagcgcagatagcgcagttgatcgtgcactgttttggctgctggatgcacagtatgaagatggttattg
ggcaggtattctggaaagcaatgcatgtatggaagcagaatggctgctgtgttttcatgttctgggtattgcaaatcatccgatgagccgtggtctggttcagggtctgctgcagcgtcagcgtgc
agatggtagctgggatgtttattatggtgcacgtgccggtgatattaacaccaccgttgaagtttatgcagcactgcgttgtcagggttatgcagccgatcatccggatattaaacgtgcccgtgat
tggattcagctgcaaggtggtgtgaaacaggttcgtgtttttacccgtttttggctggcactgattggtgaatggccgtgggaagaaaccccgaatctgcctccggaaattctgttttttccgcgttgg
tttccgttcaacatttatcattttgcagcatgggcacgtgcgaccctggttccgctgtgtattctgagcgcacgtcgtatggttgttccgctgaacaaaaaaagctgtctgcaagaactgtttccgga
agatcgtagcgcagtggttgcactgggtaaaaaagccggtgcctggtcaacctttttctatcatgcagatcgtgccctgaaaaaataccagcgtacctttaaacgtccgcctggtcgtcagcag
gccattaaaatgtgtctggaatggattctgcgtcgtcaggatgccgatggtgcatggggtggtattcagcctccgtggatttatagcctgatggcactgaaagcagaaggttatccggttacacat
ccggttatggcaaaaggtctggcagcactggatgcccattggagctatgaacgtcctggtggtgcccgttttgtgcaggcatgtgaaagtccggtttgggataccctgctgagcagctttgcact
gctggattgtggttttagctgtaccagcagcagcgaactgcgtaaagcagttgactggattctggatcagcaggttctgctgcctggtgattggcagcaaaaactgccgaccgtttcacctggtg
gttgggcatttgaacgtgccaatgttcattatcctgatgttgatgataccgcagttgccctgattgttctggcaaaagttcgtcctgattatccagataccgcacgtgttaatctggccattgaacgtg
gtctgaattggctgtttgcaatgcagtgtcgtaatggtggctggggtgcatttgataaagataacgataaagacctgctgaccaaaattccgtttagcgattttggtgaaaccattgatccggcaa
gcgttgatgtgaccgctcatgtgctggaagcactgggcctgctgggttatcgtacaacccatccggcagttgcaaaagcactggaatttattcgtagcgaacaagaaaatgatggttgctggttt
ggtcgttggggtgtgaattatatctatggcaccgcagcagttttaccggcactggcaagcctgaatatgaacatgaatcaagaatttatccgtcgcgcagcaaattggattttaggcaaacaga
ataatgatggcggttggggtgaaagctgtgcaagctatatggatgatacccagcgtggtcgtggtccgagcaccgccagtcagaccgcatgggcaatgatgagcctgctggcagttgatggt
ggcacctatgccgaaagcctgctgcgtgcagaagcatatctgaaaaccacacagacaccggaaggcacctgggatgaaccgtattacaccggcaccggttttccaggttatggtattggtc
gtcgtgaaattaaacgtcagcgtagcctgcagcagcatgcagagctgagtcgtggttttatgattaattataacctgtaccgccactactttccgctgatggccctgggtcgcctggcagccctgc
gtggtgcataa 

18. AcaACH 

atgctgccgtataatcaggatcatcattttggtaaagttgccgaaaatgcaaccatgcctccgacactggatgaagcaattgaacgtagccaggattttctgctgagcctgcagtatccggaag
gttattggtgggcagaactggaagcaaatgttaccctgaccgcacagaccattatgctgtacaaaattctgggcatcgatcataaatacccgatccacaaaatgaaaacctatattctgcgtac
ccagcgtgcacatggtggttgggaaatcttttatggtgatggtggctgtctgagcaccaccattggtgcatatatggcactgcgtattctgggtgttccgaaaaccgatccggtgctgcagaaag
cactgaaactgattcatagcaaaggtggtgttaccaaaagccgcatgtttacaaaaatttgtctggcactgctgggttgctatgattggaaaggtattccgagcctgcctccgtggctggttctgct
gccgagctggtttccgtttagcctgtatgataccgcaagctgggttcgtggttgtgttgttccgctgaccattatctttgataaaaaaccggtgtacaaactgaatccgctgctgtgtctggatgaact
gtatagcgaaggtaaaggtaaagcacgtgttcacctgagctttattccaggtgattggaccagcaacttttttgttggtctggatcacgtgtttaaatacatggaaaatctgggcgttgttccgtttcg
tcagtggggtattaaagaagcagaacgttggaccctggaacgtcatgaagatagcggtgattttcatggcatttatccgcctatgttttatagcattgttagctatagcctgctgggctatgaaatta
cagatccggttgttcatcgtgcactggaaagcatgcgtggttttaccgttgaacgtgaagatgaatgcgttgttcagagctgtattagcccgatgtgggataccgcatttgttattcgtagcctggca
gaaagcggtctgcagccggatcatcctgcactgcaaaaagccggtgaatggctgctgcaaaaacaggcgacccagcatggtaattggttttataagaaacgtaccggtcgtgcaggcggt
tgggcatttcagttttttaaccgttggtatccggatgttgatgatagcgcagcagttagcatggcactgaatgcaattaaactgcaggacgatgatgttaaaaaaggtgccattaaacgttgtgcc
gaatggattagcgttatgcagtgtaaagatggtggatgggcagcctatgattgtgataatgatcgcgaatggctgaattgtaccccgtttggtgatctgaaagcaatgattgatccgaataccgtt
gatgttaccgcacgtgtgctggaaatggttggtcgtgtgaaagaggcaggcgacgcaagcgcaattctgcctccgcgtgcaattgcccgtggtctggcatatctgcgtcgtgaacaagaaac
cgaaggttgttggtatggtcgttggggtgtgaattatatctatggcaccagcggtgcactgatggcactggcactggttgcaccgagcacacataaagaagaaatcgaacgcggagcacgtt
ggctggttgaagttcagaataaacgtggcaccaaaggtgcaaatggttatagccataccaatggcgcacgtgaaggtggcgttgcaatgaatggcaattgtaaaaacatgggtgcaccgg
aagatggcggttggggtgaaacctgttttagctataatgatattaccctgaaaggtcgcaatgaagtttcaaccgttagccagaccgcatgggcactgcagggcctgctggcagccggtgatg
cactgggtaaatatgaagttgaaagcattgaacatggcgtgcagtatctgctgtcaacccagcgcaaagatggtagctggtgtgaaaaacattttaccggtggtggttttccgcgttttttctatatt
cgttatcatctgtatgccggtcattttccgctgagtgccctggcacgttatcgtgatcgtgttcgtgcaggtaaaatggccaaataa 

19. BsuTC 

atgggcaccctgcaagaaaaagttcgtcgttttcagaaaaaaaccattaccgaactgcgtgatcgtcagaatgcagatggtagctggaccttttgttttgaaggtccgattatgaccaacagctt
ttttatcctgctgctgaccagcctggatgaaggtgaaaatgaaaaagaactgattagcagcctggcagcaggtattcatgcaaaacagcagccggatggcacctttattaactatccggatga
aacccgtggtaatctgaccgcaaccgttcagggttatgtgggtatgctggcaagcggttgttttcatcgtaccgaaccgcacatgaaaaaagcagaacagtttattatcagtcatggtggtctgc
gtcatgtgcattttatgacaaaatggatgctggcagcaaatggtctgtatccgtggcctgcactgtatctgccgctgagcctgatggcactgcctccgacactgccgattcatttttatcagtttagc
agctatgcccgtattcattttgcaccgatggcagttaccctgaatcagcgttttgttctgattaatcgcaatatcagcagcctgcatcatctggaccctcacatgaccaaaaatccgtttacctggct
gcgtagtgatgcatttgaagaacgtgatctgaccagcattctgctgcattggaaacgtgtttttcatgcaccgtttgcatttcagcagctgggcctgcagaccgcaaaaacctatatgctggatcgt
attgaaaaagatggcaccctgtatagctatgcaagcgcaaccatttatatggtttatagcctgctgagtctgggtgttagccgttatagcccgattattcgtcgtgcaattaccggtattaaaagcct
ggttaccaaatgcaatggtatcccgtatctggaaaatagcaccagcaccgtgtgggataccgcactgattagttatgcactgcagaaaaatggtgttaccgaaaccgatggtagcgttacca
aagcagccgattttctgctggaacgtcagcataccaaaattgcagattggagcgttaaaaatccgaatagcgttcctggtggttggggttttagcaatatcaataccaataatccggactgtgat
gataccaccgcagttctgaaagcaattccgcgtaatcatagtccggcagcatgggaacgtggtgttagctggctgctgagcatgcagaataatgatggtggttttagcgcctttgagaaaaatg
ttaatcatccgctgattcgtctgctgccgctggaaagcgcagaagatgcagcagttgatccgagcacagcagatctgaccggtcgtgttctgcattttctgggtgaaaaagttggctttaccgaa
aaacatcagcatattcagcgtgcagttaaatggctgtttgaacatcaagaacagaatggcagctggtatggtcgttggggtgtttgttatatctatggcacctgggcagcactgaccggtatgca
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tgcctgtggtgttgatcgtaaacatccgggtattcagaaagcactgcgttggctgaaaagcattcagaacgatgatggttcatggggtgaaagctgtaaaagtgcagaaatcaaaacctatgtt
ccgctgcatcgtggcaccattgttcagaccgcatgggcattagatgcactgctgacctatgaaaacagcgaacatccgagcgttgttaaaggtatgcagtatctgacagatagcagcagcca
tagcgcagatagcctggcatatccggcaggtattggtctgccgaaacagttttatatccgctatcatagctatccgtatgtttttagtctgctggccgttggtaaatatctggatagcatcgaaaaag
aaaccgccaacgaaacctaa 

20. GniPNG 

atggcactgccgtttaatcaggatagctataaaggtgatgatgaagccgatgttagcaaaggtgcagcaaaaagccctccgagcctggaagaagcaattcagcgtagccaagaatttctgc
tggcacagcagtttccggaaggtttttggtttggtgaactggaagcaaacgttaccattattagccataccgtgatcctgtataaactgctgggtatcgaagaaaacttcccgatgtataaattcga
acgttatctgcgtcgtatgcagtgtagtcatggtggttgggaaattgcctatggtattggtagctatctgagcgcaaccattgaagcatatattgcactgcgtctgctgaatgttccgcagagcgatc
cggcactgcagaaagcactgcgtgttattctggatagcggtggtgttaccaaagcacgtatttttaccaaaatttgtctggccctgctgggttcatttgattggcgtggtattccgagtctgcctccgt
ggctgattctgtgtccgacctggtttccgctgagcatttatgaagttagcagctgggcacgtggttgtattgttccgctgctggttatcctggataaaaaaccggtgtttaaagttagtccggaagtga
gctttgatgaactgtatgccgaaggtcgtgaacatgcctgtaaaatcattccgattagcggtgattggaccagcaaatttttcattaccgttgatcgcgtgttcaagatgatggaacgtctgcgtgtt
gttccgtttcgtcagtggggtattcgtgaagcagaaaaatggattctggaacgtcaagaggaatcaggtgattacgttaacatttttccggcaatgttctatagcgtgatgtgcatgaaagttctgg
gttatgaaaccaccgatccggttgttcagcgtgcactgctgggctttaaaggttttaccattgaaaccgcagatgagtgtaaagttcagagcaccgttagtccgatttgggataccgcatttattgtt
cgtgcactggttgatagcggtattccgcctgatcatcctgcgctgcaaaaagcaggtcagtggctgctgcagaaacaaattctgaaacatggtgattgggcctttaaagatcgtcagaatccg
gtgaatcagcgtggttttgcatgtctgcagcgtgatagccagattgaaacagccgatgaatgtcgtgtgcagagcaccctgtcaccggtgtgggatacagcctttgttgttaaagccctggttgat
tcaggtattcctccgaaccatccggctttacagaaagctggccagtggttactgcaaaatcagaccctgacgcacggcgattgggcattcaaaacccagagcggtcatctggcagcaggcg
gttgggcgtttcagagccataatcgttggtatccggatgcagatgatagcgcagcagttatgatggcactggattgcattgaactgccggatgaagatgttaaaaatggtgcaattgcccgtggt
ctgaaatggattagcgcactgcagtcaagaaatggtggctgggcaggttatgataaaaactgtgatcagcagtggattaacaaagtgccgttcaatgatctgaatggcatcctggatgttccg
acagcagatgttaccgcacgtgttctggaaatggttggtcgtctgagccgtctgggtgcagttggcaccccgtatagtccgcgtcattgtaccctggtggaaagcattccgcatctgctgctgccg
gaaaccattgcacgcggtctggcatacctgcgtcgcgaacaagagggtgaaggttgttggtggggtaaatggggtgtgaattatatctatggcacctgtggtgcgctgctggccctgagccag
gttgcaccgaccacacatcaagaagaaatcgcacgcggagcaaaatggctggcccaggttcagaatcgttgtgataaacagaaagcagcacagggtccgcgtgatggtggatggggtg
aaagctgttttagctatgatgatcctgcactgaaaggtcagaatgatgcaagcaccgcaagtcagaccgcatgggcagtgcagggcctgctggcagccggtgatgcactgggtaaatatga
agttgaagcaattgaacagggtgtgcagtatctgctggcgacccagcgtaaagatggtacatggcatgaagcacattttaccggtagctgttttgcccagcatttttatgtgcgttatcactattatg
cgcagcattttccgctgtcagcactgggtctgtatcgtacccgtatcctgcagcatcagtaa 

21. BteSHC 

atgaacagcgaactggaacgtctgaccgcagttctgcagcgtgaacagcaggcagatggtagctggcgttattgttttgaaagcggtccgctgaccgatgcctatgcaattattctgctgcgta
ccctgaatattccgaatgaaccgctgattagcggtctggcaaaacgtattgcaagccgtcaggcaccggatggcacctggaaactgtatagtgatgaacgtgatggtaatctgagcaccacc
attgaaagctattttgcactgctggcagccggtgcagcagcaccgtcagatgaacgtctgcaggcagcacgtcgttttattcgtgcaaaaggtggtctggcacaggcaaatctgggcacccgt
gttatgctggcactgacaggtcagcatccgtggccaccgtttccgattccggcagaatttatgctggttccgcctttttttccgctgcacctgtttgatctggttggttttgcacgtgttcatctggttccga
ttatggttgcagccgcacgtacctttgcagttcgtagtcgtcagatgccggatctgtcagacctgtttcgtggtctgccgagcgcaggtccgcagcagctggatctgatttggtttcatgaactgatt
gatagcggtattcgtagcctgccgagctttctgcgtccggcacgtgaactgggtctgcgtgaagcagaacgttttctgctggatcgtctggaaccggatggtacactgtatagcttttttaccgcaa
cctttctgatgattttcgccctgctggccctgggttatcgtccggatcatccggttattattcgcgcagttcgtggtgcagaacgtctggtttgtccggttggtgatgttctgcacatgcagaatagcac
cagcaccatttgggataccgcactgctgagccatgcactgcagaccgcaggtatgccggttagtcatccggtgattcagcaggcaacccgttatctgctgagtcgtcagcataatcgttatggt
gattgggcacgtcgtagtccgggtgttccgcctggtggttggggttttagcgatattaacaccattaatccggatgtggatgataccaccgcagcactgcgtgcactgcatcgtgcaggtagcgg
tgatccggcaattcgtcaggcatgggatcgcggtctgcgttggctgctgagtatgcagaattcagatggcggttggcctgcatttgaacgtaataccgcaaatccgctggttaaactgttaccgg
caggcggtgccgaagcagcatttaccgatccgagcaccgcagatctgaccggtcgtaccctggaatttctgggtaatcatgcaggtatgaccctgcagcatccggcagtgcgtcgtggtgttg
actggctgctgcgtcatcaagaaaccaatggtagttggcatggtcgttggggtatttcatatctgtatggtacatgggcagcactgagcggtctgattgcagcgggtgttagccctgatcatcctg
caattcagaaaggcgttagctggctgcgtagcgttcagaatcgtgatggtggctggggtgaaagctgtcagtcagatgttctgaaacgttatgttccgctgggtgcaagcaccccgagtcaga
ccgcatgggcagttgatgccctgacagcagttagccgtcgtaccggtccggaactggaagccggtgttcgttttctgttagcagcaggtaaacgtcgtgattggaccagcagctatccgaccg
gtgccgcactgccaggtggcttttatatccattatcatagctatcgctatatctggcctctgctgaccctggcacagtatcgtaacaaatttcagccgtaa 

22. CthSHC 

atgcctggttttgcaccgcgttttgttcagccggttgttgaaagtccgctgcctccggcatttcgtagcgcacgtccggcaccggcaaccgcagcagcagttgaagcagcaattcgtaaagcac
aggcatatctgctgagcaaacagtatccggaaggttattggtgggcagaactggaagcaaatgttaccctgaccgcagaatatgtgtttctgcataaagttctgggcaccgatggtgaacgta
cccgtcagtttgaaaaaattcgtacctatctgcgtcgtcagcagcgtgaacatggtggttgggaactgtattatggtgatggtggtgaactgagcaccagcattgaagcctattttgcactgaaac
tgctgggtgatagtccggatctgccgcacatggcacgtgcgcgtcagtttattctggcacgtggtggtattaccaaagcacgtgtttttaccaaaattcacctggcactgtttggtgcatttccgtgg
gaaggttgtccgacactgcctccgtggattatgctgctgccggattggtttccgtttaccatttatgaactggcaagctgggcacgtagcagcaccgttccgctgctgctggttagcgatcgtaaa
ccggttgttcgtgttcctggtggtgatgcagatgaactgtatgccgaaggtcgtgcacaggccgatctgagcctgccgaatcctgcaggtctgctgagtttaggtggtgtttttattggttttgactgg
atgctgaaactgatggaacgttttgatctgagtccgcgtcgtgccgaagcactggcacgcgcagaacagtggaccctggaacatcaggatgatagcggtgattggggtggcattattccggc
aatgctgaatagcctgctgggtctgcattgtcgtggttatgcaccgacacatccggtaatgcagaaaggtattgcagccgttgaacgtttttgtatcgaaaccgaagatgaatttcatacccagc
cgtgtgttagtccggtttgggataccggtctgaccattctggccctgctggatagcggtctgccgaacgatcatccggcactggttcgtgccggtgaatggctgctgtcaaaacaaatttttcgtga
tggtgattggcgctttaaaaaccgtaccggtccggcaggcggttgggcatttgaattctggaatgatttttttccggatgtggatgataccgcagttgttacaatggcactgcatcgtttaaaactgc
ctgatgaagcagaaaaacagcgtcgtctgaaactggcaattgaatggaccctgagcatgcagagcaaaaatggtggctggggtgcatttgatgttgataataccctggaaatcctgaacga
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tattccgtatggtgatctgaaagcaatgattgatccgcctaccgcagatctgacaggtcatattctggaaatgctgggcgttaccggttatgcagcaccgcgtgaaaaagttgaacgtgcaattg
cctttatcaagagcaaacaagaacctgaaggctgttggtggggtcgttggggtgtgaattacatttatggcacccacatggttatttgtggtctggttgcactgggtttagatccgcgtgaagccttt
attatgcgtggcacccagtggctgaatagttgtcagaatgaagatggcggatggggtgaaacctgtgcaagctatggcgatcgtaccctgatgggtgttggtaaaagcaccccgagccaga
ccgcatgggcactgctgggactgatggctggcggtgaaggtaaaagcgattgtgcccgtcgtggtattgaatatctggttacccatcagaacgatgatggtagctggaccgaagcagaattta
ccggtacaggctttccgaatcacttctatatgaactatcacttttaccgcaactactttccgctgatggcactgggtcgttatcgtgcatttgcacgtacctaa 

23. CttSHC 

atgaatctgagcggtcaggttgatcaggcagttggtcgtctgagcgaaagcctgagccgtatgcagagtgatgatggtagctggcgtttttgttatgaaaatgcagttctgaccgatgcctatatg
attattgcactgcgtaccctggaaattgcagatgaaccgctgattcgtcagctgcgtgatcgtctgctggcaacccagtatgcagatggtgcatggcgtgcatatccggatgaacgtgaaggta
atctgagtgcaaccgttgaatgttattatgcactgctgtatagcggttatagccgtgatgccgatccgcctctggttaaagcccgtgcatttattctggcaaaaggtggtattcagcagattggtggt
ctgctgaccaaagttatgctggcaagcaccggtcagtatccgtggcctcgtagcctgaaaatcccgctggaatttctgctgctgccgagccagtttccgctgagcgtgtttgattttagtggttatg
cacgtgttcacatgattccggcactgctgctggcagatcgtcgttttagcctgcgtaccaaaaccagtccggatctgagtgaactggcaggcgatcgtagccgtgaaccgcctagctggtttgat
ccggcattaggtcgtggtcatccgcgtgaactgcagagcctgctggaacaaattggtaaaggtattgaacgcctgaatggtattccgagccagctgcatgaagaagcagttcgtcgcgcag
aacgttatatgctggaacgtattgaagcagatggcaccctgtatagctatgcaaccagcacctttctgatgatcctggcgctgctggccattggttatgataaacgtcatgcagttattcgtaatgc
cgttcagggtctgcgtgcaatggtttgtcgtggtgcacagccgatttttctgcaaaatgcaccgagcaccgtttgggataccgcactgctgagcagcgcactgcaagaggcaggcgcagatg
caaatagcccgatgattcgtcgtgcaaatgcatatctgctggcgaaacagcatcgtaaacctggtgattggctggttcataatccgagcgcagttccaggtggttggggttttagcgataccaat
accattaatccggatgttgatgataccaccgcagcactgcgtgccattaaacgtcaagccggtgcagatcctgcatatcgtgaagcatggaatcgtggtctgcattggctgctgtctatgcaga
acgatgacggtggttggcctgcatttgaaaaaaacaccgatcgtcagattctggttctgctgccgctgcgtgaagcaaaaagcagcgcaattgatccgagcaccagcgatctgaccggtcg
caccctggaatttttaggtaattatgcaggtttaggtatgggccatgcctttattcgccgtggcaccgattggctgattggtcatcaagaaaaagatggttcatggtatggtcgttggggtgtttgttat
atctatggcacctgggcagcactgacaggtctggcagcagccggtattcgtgcagatcatccggcagttcgtgccggtgcacagtggctgaccgatattcaacaggccgatggtggctggg
gtgaaagctgtgatagcgatcgccagatgcgttatattccgctggaagaaagcaccccgagccagaccgcatgggcattagatgcactgattgcagttcatgaagcaccgacaccgacca
ttgatcgtggtattcgtcgtctgatcggcctgctgcaagaagaaagccgttttgcagcatatccgaccggtgcaggtctgcctggtatcttttatagccactattatagctatcgctacatctggcctc
tgtttgcactggcacactataaaagcaaatatagcagctaa 

24. GthSHC 

atggcaggcgaacgtagcgcactgattaccgcactgaaacgtagccaggcagcagatggtagctggcgttttccgtttgaaaccggtattagcaccgatgcctatatgattattctgctgcgta
ccctggatattaatgatgaaccgctgattcaggcactggttgaacgtattgaaagccgtcaagaggcaaatggtgcatggaaactgtttgcagatgaaggtgatggtaatgttaccgcaaccg
ttgaagcatactatgcactgctgtatagcggttatcgtcagccgaccgatcgtcacatgcagaaagcaaaacgtcgtattctggatatgggtggtctggatcgtattcacctgtttaccaaagttat
gctggcactgacaggtcagtatccgtggccaggtcgttttccgctgccgctggaattttttctgctgccaccgagctttccgctgaatatgtatgatctgagcgtttatggtcgtgccaatatgattcc
gctgctgattgcagcagatagccgttatagccgtaaaaccgataaaagtccggatctgagtgacctgtttgcaagccgtggtgattggggtatgccggaaagccgtagcctgctgacctatgtt
aaacgtagtctgattggtctgcctgcacagctgcatcaggcagcaaaacagcgtgcagttcgttacctgtttgaacatatcgaaccggatggcaccctgtatagctattttagcagcacctttctg
tttatctttgccctgctggccctgggttatcgtaacgatgatccgcgtattcgtcaggcagttcgtggtctgcgttcactgcgtaccaccattgatggtcatgtgcatctgcagtataccaccgcaagc
gtttggaatacagcactggcaagctataccctgcaagaggcaggcgttccgatgaccgatcgcgcaattgaaaaagcaaatcgttatctgctgagccgtcagcatgttcgttatggcgattgg
gcagttcataatccgtatagcacccctggtggttggggttttagtgatgttaataccatgaatccggatgtggatgataccacagcagcactgcgtgcaattcgtcaagcagcagcaaaagaa
accgcatttcgtcatgcatgggatcgtgcaaatcagtggctgtttagcatgcagaatgatgatggtggttttgcagcctttgaaaaaaatgttagcagccgtttttggcgctatctgccgattgaag
gtgcagaatttctgctgatggacccgagcaccgcagatctgaccggtcgcaccctggaatatttcggcacctttgcaggtctgaccaaagatcagcgtgccgttagccgtgcagttgattggct
gctgagtcatcaagaacgtaatggtagttggtatggtcgttggggtatttgttatatctatggcacctgggcagcaattaccggtctgaccgcagttggtgttccggcacatcatccggcactgca
aaaagccgttcgctggctgctgtcaattcagaacgatgacggtggctggggtgaaagctgtaaaagtgatggtgcaaaaacctatgttccgctgggtgatagcacaccggttcataccgcat
gggcattagatgccctggttgcagcagcagaacgtccgacaccggaaatgaaagcaggttttcgtgcactgtttcgtctgctgcatcatcctgattggaccgcaagctatccggttggtcaagg
tatggctggtgccttttatatccattatcatagctatcgctatatcttcccgctgctggcgctggcacattatgaacagaaatttggtccgctggatgactaa 

25. SthSHC 

atggaccctgcactgagccgtgcagttgattggctgctggaacatcaagatccggcaggttggtggtgtggtgaatttgaaaccaatgttaccattaccgcagaacatattctgctgctgcgtttt
ctgggtttagatccgagtccgctgcgtgatgcagttacccgttatctgctgggtcagcagcgtgaagatggtagctgggcactgtattatgaaggtccggcagatctgagcaccagcattgaag
cctatgcagcactgaaagttctgggccttgatccgaccagcgaaccgatgcgtcgtgcactgcaggttattcatgatttaggtggtgttgcacaggcacgtgtttttacccgtatttggctggcaat
gtttggtcagtatccgtgggatggtgttccgagcatgcctccggaactgatttggctgcctccgagcgcaccgtttaatctgtatgattttgcatgttgggcacgtgcaaccattacaccgctgctga
ttattctggcacgtcgtccggttcgtccgctgggttgtgatctgggtgaactggttctgcctggtagcgaacatctgctgacacgtgttccaggtagcggtccgttttggtggggtgataaagttctga
aacgttatgatcatctggttcgtcatccgggtcgtgatcgtgcatgtcagcgtattgttgaatggattattgcacgtcaagaagcagacggtagttggggtggtattcagagcgcatgggttatgag
cctgattgcactgcatctggaaggtctgccgctggatcatccggttatgcgtgcaggtctggcaggttttgatcgtgttgcactggaagatgaacgtggttggcgtctgcaggcaagcaccagtc
cggtttgggataccgcatgggcagttctggcactgcgtcgcgcaggtctgcctcgtgaacatccgcgtctggccctggccgtggactggctgctgcaagagcagattcctggtggtggtgattg
gcaggttcgtaccggcaccattccaggcggtggttgggcatttgaatttgataacgatcattatccggacatcgatgataccgcagttgttgttctggctctgctggaagcaggtcatgaagatcg
tgttcgtaatgcagttgaacgtgcagcccgttggattctggccatgcgtagcaccgatggtggctggggtgcatttgatcgcgataatgcccgtgaagttattcatcgtctgccgattgcagattttg
gcaccctgattgatccgcctagtgaagatgttaccgcacatgttctggaaatgctggcacgcctgagctttccgagcaccgatccggttgttgcccgtggtctggaatttctgcagcagacccag
cgtccggatggtgcatggtttggtcgttggggtgtgaattatatctatggcacctggtgtgcagtttcagcactgaccgcatttgcagataccgatgcaaccgcacgcgcaatggttccgcgtgcc
gttgcctggctgttagatcgtcagaatgcagatggcggttggggtgaaacctgtggtagctatgaagatccgaatctggcaggcgttggtcgtagcaccccgagccagacagcctgggcagt
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tttagccctgcaggcagccggtctgggccagcatcctgcatgtcgtcgcggtctggatttcctgcgtgaacgtcaggttggcggtacatgggaagaacgtgaacacaccggcaccggttttcc
gggtgattttttcattaactatcatctgtatcgccacgtgtttccgacaatggcattagccggtgcagcaaccggtatggatagtccgcgttaa 
 

26. TsgSHC 

atgcagagccagtggattctgcatgttcaggcaatgattcatcgtctgaaaaaagagctgatccagaaacagaatccggatggcacctggccgttttgttttgaaaatggtattggcaccgatg
cctattatgttctgctgcatcaggttctgaaacgtcctgatccgggtacactggcaccggttctggaacgtattctggataaacagaccggtgatggtacatggaaagcatttccggatgaaaaa
gaaggtaacgttagcgcaaccctggatgcaagcctggcactgctgtatagcggtgttaaaacaccggatgatccgagcctgaaacgtgcccgtgattttctgctgagccgtggtatggaaac
caaagcaggtagtctgacccaggttgttctggccctgctgggtcatcgtagctggtcacgtattaccaaactgccggttgaattttttctgcttccggcagcaagtccggttaacttttttgattttgttg
gttatgcccgtgtgcatattgcaccggttatgctggcaagcgatcaggatttctatattcatctgaaaggttatcgcgaggttgaagattggctgccgagcagctttcgtacctatatggaacgcat
gcatccggactatttttggaccaaagaagatctgctgcctgcagttgaaaccaccgcatatagcaccttttttaagaaaaatgttcatcagcgtgccctgtattggggtgaaaactttctgctgtctc
gtattgaagaagatggcaccctgtatagttatatgaccagcacctttctgatgatttttgcactgctgagtctggattatccgcctgatcatccgctgattcagaaagcaatggaaggtctggatcgt
atgatttttccgctgcaagaaggtgcacatctgcaagaggcaaccagcaccgtttgggataccagcctggttatgaccgcactgcagaatgcaggtctgagccctggtcatggtgttattcaaa
aaggtcgtaattacctgctgctgaaacagcataccagctgtggtgattggtgcctgaaaaatcgttatgcaattcctggtggttggggttttagcgataccaatacaattaacccggatgttgatg
ataccgttcagtgtctgcatgcaattgctccggcagttcgtgaaggttgggcacaagatgaatggaaacgtggtctgcagtggctgctgagtatgcagaaccgtgatggtggctggcctgcattt
gaacgtaataccaataaaatgtggctgaaactgctgccagcacgtaatgaaaaacgtgtttggggtgatccgagtaccgcagatctgaccggtcgtgttctgcattttctgggtagcgaattag
gttggaccattgatcgtccggaagttcgtcgtgcatggtcatggctgtatcatcaccagaattcagatggtagctggtttggtcgttggggtgtgagctatatctatggtacgtgggcagcactgaa
aggtctggcagccgttggtgttccggaaacacatgttagcgtgcagaaaggtattcgtttcctgctgagcaaacagcgtccggatggtggatggggtgaatcatgttatagtgatgcagaagat
cgttttgttccgctgagctttagcacaccggttcagaccgcatgggcattagatgcactgattgcatatcatgatcatcctacaccggcaattgaaaaaggtatggcctgtctgctggaaatgatg
gaaaaacgcggtgaagaatggtcatatccggcaggcgcaggtctgtcaggtcagttttatgtttattatcacagctacccgtatgtttggagcctgatggcaatgacccattatctgcagaaatat
agctaa 

27. AfaSHC 

atgaacaccattagccatccgagcaaagttaaagcagcagttagcgcaaccgttccgcctacaccgagctgtgttaccccgacaccgtttaccggtatgggtaatagcctggcacataccgt
tgcagcagcatgtgattggctgattggtgaacagaaagcagatggtcattgggttggtccggttgcaagcaatgcaagcatggaagcagaatggtgtctggcactgtggtatctgggtttaga
agatcatccgctgcgtccgcgtctgggtaaagcactgctgcacatgcagcgtgaagatggtagctggggcacctattggggtgcaggtaatggtgatattaatgcaaccgttgaagcctatgc
agcactgcgtagcctgggttatgcagcagatacaccggaactgagcaaagcatgtgcatggattatgcgtatgggtggtctgcgtaatgttcgtgtttttacccgttattggctggcactgattggc
gaatggccgtgggaacagaccccgaatctgcctccggaagttatttggtttccgaacaaattcgtgttcagcatctataactttgcacagtgggcacgtgcaaccctggttccgctggcaattct
gagcgcacgtcgtccgagccgtccgttacgtccgcaggatcgtctggatgcactgtttccgcagggtcgtgaaaattttgattatgtgctgccgaaaaaagaaggcgttgatctttggagcagct
tttttcgtaccaccgataaaggtctgcattggctgcagagccgttttctgaaacgtaataccgttcgtgaagcagcaattcgccacatgctggaatggattattcgtcatcaggatgcagatggtg
gttggggtggtattcagcctccgtgggtttatggtctgatggcactgcatggtgaagattatcagtttcatcatccggttatggcaaaagcactggcagcactggatgatcctggttggcgtcgtgat
cagggtgatgcaagctgggttcaagcaaccaatagtccggtttgggataccatgctggccctgatggcattacatgatgcaaatgcagaagaacgttatacaccgcagatggataaagccc
tggactggctgctggcacgtcaggttcgtgttaaaggtgattggagcattaaactgccggatgttgaacctggtggctgggcatttgaatatgccaatgatcgttatcctgataccgatgataccg
cagttgccctgattgcactgagcagctgtcgtaatcgtgaagaatggaaagaaaaaggtgtggaagatgcaattacccgtggtgttaattggttaattgcaatgcagagcagttgtggcggttg
gggagcatttgataaagataataatcgtagcctgctgagcaaaatcccgttttgtgattttggtgaagcactggaccctccgagcgttgatgttaccgcacatgttctggaagcatttggtctgctg
ggtgttccgcgtcagacaccggcactgcaacgtggtctggcatatattcgtgcagaacaagaggcaagcggtgcatggtttggccgttggggtgtgaattatctgtatggtacaggtgcagttct
gcctgcgctggcagcaattggcgaagatatgacccagccgtatattacacgtgcctgcgattggcttattgcacatcagcaagaggatggcggatggggtgaaagctgtgcaagctatatgg
atgttagcagcattggttggggcaccaccacaccgagccagaccgcatgggcactgatgggtctgattgcagcaaatcgtgaacaggaccatccggcaattgcacgtggttgtcgttatctg
attgatcgtcaagaaaccgatggtagttggaccgaagaagaattcaccggcaccggttttccaggttatggtgttggtcagacaattaaactggacgatccagcagttgcaaaacgtctgcag
cagggtgcagaactgagccgtgcatttatgctgcgttatgatctgtatcgtcagttttttccgctgatggccctgagtcgtgcagcacgtattatgccggttggtcagtaa 

28. AorSHC 

atgaccacaccgctgtttaaaggtatgggtaatagtctgacccataccgttagcagcgcatgtgaatggctgattagccagcagaatccggatggtcattgggttggtccggttggtagcaatg
caagcatggaagcagaatggtgtctggcactgtggtttctgggtttagaagatcatccgctgcgtccgcgtctgggtaatgcactgctgcagacccagcgtgaagatggtagctgggatgtttat
ttaggtgcaggtaatggtgatattaatgcaaccgttgaagcctatgcagcactgcgtagcctgggttatccggaaaatacaccggcactgcagaaagcagcaacctggattaaacagaaag
gtggcctgaaaaacattcgtgtgtttacccgttattggctggcactgattggtgaatggccgtgggaaaaaaccccgaatctgcctccggaaattatctggtttccgaacaaattcgtgttcagca
tctataactttgcacagtgggcacgtgcaaccctggttccgctggcaattctgagcgcacgtcgtccgagccgtccgttacgtccgcaggatcgtctgaatgcactgtttccggaaggtcgtggt
aattttgattataccctgccgaaaaaagaaggcgttgatctttggagcgatttttttcgtaccaccgataaaggtctgcattggctgcagagcaaatttctgaaacgtaataccatgcgtgaagca
gcaattcgtcacatgctggaatggattattcgtcatcaggatgcagatggtggttggggtggtattcagcctccgtgggtttatggtctgatggccctgcatggtgaaggttatcagtttcatcatccg
gttatggcaaaaggtctggatgccctgaatgatcctggttggcgtcatgataaaggtaatgccagctggattcaggcaaccaatagtccggtttgggataccatgctggccattatggcactgc
atgatgcaaaagcagaagatcgttttacaccgcaggttgataaagcattaggttggctgctggatcgtcaggttcgtgttaaaggtgattggagcattaaactgccggatgttgaacctggtggc
tgggcatttgaatatgccaatgatttttatccggacaccgatgataccgcagttgccctgattgcactggcaagctgtcgtcatcgtccggaatggcaagaacgtggtgttgaagatgcaattgc
ccgtgcagttcgttggctggttgccatgcagagcagctgtggcggttggggagcatttgataaagataataacaaagccctgctgagcaaaatcccgttttgtgattttggtgaagcactggacc
ctccgagcgttgatgttaccgcacatattctggaagcatttggtctgctgggcctgcctcgtgatctgccgtgtattaaacatgcactggattatgttcgtgcagaacaggacccgcaaggtccgt
ggtttggccgttggggtgttaattatgtttatggtacaggtgcagttctgccagcactggcagcaattggtgaagatatgacccagccgtatattaccaaagcctgtgattggctggtagcacatca
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gcaagaggatggcggatggggtgaaagctgtgcaagctatatggatgcaagcaccattggtcgcggtaaaaccacaccgagccagaccgcatgggcactgatgggtctgattgcagca
gcacgtcctcaggattatccggcaattgaaaaaggttgtcgctatctgattgatcgtcaagaaccggatggcagctggaccgaagaagattacaccggtacaggttttccaggttatggtgttg
gtcagaccattcgtctggatgatccggcactgagcaaacgcctgcagcagggtgcagaactgagccgtgcatttatgctgcgttatgatctgtatcgtcagttttttccgattatggccctgagtcg
tgcaagccgtctgattagtccggaaaccgcaaccgaacaggcagttgaagcagccgcaaaaaatctggaaaagattattgcctaa 

29. GfrSHC 

atgggtgtttggcgtatgagcgcaccgattctgaaaggtatgagcaatagcctggcacataccgttagctgtgcatgtgattggctgattggtcagcagaaagcagatggtcattgggttggtag
cgttgaaagcaatgcaagcatggaagcagaatggtgtctggcactgtggtttctgggtttagaagatcatccgctgcgtccgcgtctgggtaatgcactgctggaaatgcagcgtgatgatggt
gcatggggtgtttatctgggtgcacagagcggtgatattaatgcaaccgttgaagcctatgcagcactgcgtagcctgggttatagcgcaaatagtccggttctgctgaaagccggtgcatgga
ttagcgaaaaaggtggtctgaaaaacattcgtgtgtttacccgttattggctggcactgattggtgaatggccgtgggaaaaaaccccgaatctgcctccggaaattatctggtttccgaacaatt
ttgtgttcagcatctataactttgcacagtgggcacgtgcaaccctggcaccgctggcaattctgagcgcacgtcgtccgagccgtccgttacgtccgcaggatcgtctggatgcactgtttccg
gaaggtcgtgaaaaatttgattataccctgccgaaaaaagatcgcgttgatctgtggtctagcttttttcgtaccaccgataaaggtctgcattggctgcagagccgttttctgaaacgtaataccg
ttcgtgaagcagcaattcgtcacatgctggaatggattattcgtcatcaggatgcagatggtggttggggtggcattcagcctccgtgggtttatggtctgatggccctgcatggtgaaggttatcc
gtttcatcatccggttatggcaaaagcactggcagcactggatgatcctggttggcgttatgatcgtggtgaagcaagctggattcaggcaaccaattcaccggtttgggataccatgctggccc
tgatggcattacatgatgcaaatgcacaagaacgttttacaccggaaatggataaagcattaggttggctgctggaacgtcaggttcgtgttaaaggtgattggagcattaaactgccggatgtt
gaaccaggtggttggagctttgaatatgcaaatgatcgttatccggacaccgatgataccgcagttgccctgattgcactgagcttttgtcgtcatcgtgaagaatggaaacagaaaggcgttg
ataaagcaattgatcgtgcagtgaactggctgatcgcaatgcagagcagctgtggtggctggggagcatttgataaagataataacaaaagcctgctgagcaaaatcccgttttgtgattttgg
tgaagcgctggaccctccgagcgttgatgttaccgcacatattctggaagcatttggtctgctgggtctgagccgtgatctgccggttgttcagaaagccctggcctatgttcgtctggaacagga
cccgcaaggtccgtggtttggccgttggggtgttaattatctgtatggtacaggtgcagttctgcctgcgctggcagcaattggtgaagatatgacccagccgtatatcctgaaagcgtgcgaat
ggctgattagctgtcagcaggatgatggcggatggggagaaagctgtgcaagctatatggatattagcagcattggtcgtggtagcaccaccgcaagccagaccgcatgggcactgatgg
gtctgattgcagttggtcgtcctcaggatcatgaagcaattgcaaaaggttgtcgctttctgattgatcgtcaagaggcagatggtagctggaccgaagaagaattcacaggcaccggttttcca
ggttatggtgttggtcagacaattaaactggacgatccggcactgagcaaacgtctgatgcagggtgcagaactgagtcgtgcatttatgctgcgctatgatatgtatcgtcagtattttccgatta
tggcactggcacgtgcgagccgtctgctgacacaggatatttaa 

30. KnaSHC 

atgaatagcgaaagccgtctgagccgtaaacaggcaggcgcaccgggtcctgataaaattgaagcacgtccggatagcacaccggcagcagcatttcgtggtattgataatagcctgaca
cataccctgagcagcgcatgtaaatggctgatggaacagcagaaaccggatggtcattgggttggtagcgttgcaagcaatgcaagcatggaagcagaatggtgtctggcactgtggtttct
gggtttagaagatcatccgctgcgtccgcgtctgggtaaagcactgctggaaatgcagcgtgaagatggtagctggggtatctattatggtgcaggtaatggtgatattaatgccaccgttgaa
agctatgcagcactgcgtagcctgggttatgcagcagatgatccggcactgagccgtgcagcaacctggattgccagcaaaggtggtctgcgtaatgttcgtgtttttacccgttattggctggc
actgattggtgaatggccgtgggaaaaaaccccgaatctgcctccggaaattatctggtttccgaacaaattcgtgttcagcatctataactttgcacagtgggcacgtgcaaccctggttccgc
tggcaattctgagcgcacgtcgtagcagccgtccgttacgtccgcaggatcgtctggatgccctgtttcctggtggtcgtgaaaattttgattatgaactgcctccgcgtgatggtcaggatctgtg
ggcaaccttttttcgtaaaaccgatcgtgcactgcattggctgcagaccaaatttctgaaacgtaataccatgcgtgaagcagcaattcgtcacatgctggaatggattattcgtcatcaggatgc
agatggtggttggggtggtattcagcctccgtgggtttatggtctgatggccctgcatggtgaagattatcagtttcatcatccggttatggcaaaaggtctggcagcactggatgatcctggttgg
cgttatgatcgtggtgatgcaagctgggttcaagcaaccaatagtccggtttgggataccatgctggccctgatggcattacatgatgccgatgccgaaaccgattttacaccggaaatggata
aagcattaggttggctgctggaacgtcaggttcgtgttaaaggtgattggagcgttaaactgccggatctggaacctggtggctgggcatttgaatatgccaatgatcgttatcctgataccgatg
ataccgcagttgccctgattgcactggcagcatgtcgtgatcgtgaagaatggaaaggtcgtggtgttgaagccgcaattacccgtggtgttaattggctggttggtatgcagagcacctgtggc
ggttggggagcatttgataaagataataatcgtgccctgctgagcaaaattccgttttgtgattttggtgaagcactggaccctccgagcgttgatgttaccgcacatgttctggaagcatttggtgt
tctgggtctgcctcgtgatatgcctgcactgcagcgtggtctggcatatattcgtgcagaacaagaggcagatggtccgtggtttggtcgctggggtgtgaattatctgtatggtacaggtgcagtt
ctgcctgcgctggcagcaattggcgaagatatgacccagccgtatattgcccgtgcatgtgattggttagttgcacatcagcaagaaaatggcggatggggtgaaagctgtgcaagctatatg
gaaattgcaagcattggtcgtggtccgaccacaccgagccagaccgcatgggcactgatgggtctgattgcagcaaatcgcaaacaggatcatgaagcaattgttcgtggttgccgttatctg
attgatcagcagcaggccgatggtagttgggaagaaaaagaattcaccggcaccggttttccaggttatggtgttggtcagacaattaaactggacgatccagcactgaccagccgtctgca
gcagggtgcagaactgagtcgtgcatttatgctgcgctatgatctgtatcgtcagttttttccgattatggcactgtcacgtgcagttcgtgttctgaaaggtagcaaataa 

31. KxySHC1 

atggataccaccggtcatacaccggttaccaccgcaccggcagcaccggatgcaaccggtacacagacccagaccgcaggcgcaccgtttgcaggtatgggtaattctatgacccatac
cattagcgcagcatgtgattggctgattcagcagcagaaaccggatggtcattgggttggtagcgtgggtagcaatgcaagcatggaagcagaatggtgtattgcactgtggtttctgggtttag
aaaatcatccgctgcgtccgcgtctgggtaatgcactgctggaaatgcagcgtgaagatggtagctggggtgtttatcatggtgcaggtaatggtgatattaatgcaaccgttgaagcctatgc
agcactgcgtagcctgggttatccggcagatacaccggcactggcacgtgcagcaacctggattgcacgtaaaggtggtctgcgtaatattcgtgtttttacccgttattggctggcactgattgg
tgaatggccgtgggaaaaaaccccgaatctgcctccggaaattatctggtttccgaataaattcgtgttcagcatctataactttgcacagtgggcacgtgcgaccctggttccgctggcaattct
gagcgcacgtcgtccgagccgtccgttacgtccgcaggatcgtctggatgcactgtttccggaaggtcgtgcaaattttgattataccctgccgaaaaaagaaggtcgcgatctttgggcaac
cttttttcgtaccaccgatcgtggtctgcattggctgcagagcaatgttctgcgtcgtagcaccatgcgtggtgcagcaattcgccacatgctggaatggattattcgtcatcaggatgcagatggt
ggttggggtggtattcagcctccgtgggtttatggtctgatggccctgcatggtgaagattatcagctgcatcatccggttatggcacgttcactgggtgcactggatgatcctggttggcgtcatga
tcgtggtaatgccagctggattcaggcaaccaatagtccggtttgggataccatgctggccctgatggcattacatgatgcaggcggtgaagatcgttttacaccggaaatggatcgtgccctg
gactggctgctggcacgtcaggttcgtgttcgtggtgattggagcattaaactgccggatgttgaacctggtggctgggcatttgaatatgccaatgatcgttatcctgataccgatgataccgca
gttgccctgattgccctggcaccgtgtcgtaatcgtccggaatggaaagaaaaaggtgttgatgcagccattgatcgtgcagttcgttggctggttgcaatgcagagcgaatgcggtggatggg
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gtgcatttgataaagataataatcgtagcctgctgagcaaaatcccgttttgtgattttggtgaagcactggaccctccgagcgttgatgttaccgcacatattctggaagcatttggtctgctgggt
ctgcctcgtgatatgcctgcaattcagcgtgcactggcctatgttcgtgcagaacaagatccggcaggtccgtggtttggccgttggggtgttaattatgtttatggtacaggtgcagttctgcctgc
actggcagcaattggcgaagatatgacccagccgtatattgcccgtgcctgcgattggctggtagcacatcagcaagaggatggcggatggggagaaagctgtgcaagctatatggaaatt
gcaagcgttggtcgtggcaccaccacaccgagccagaccgcctgggcagttatgggtttagttgcagcaaatcgtgcacaggattatccagcaattgcgcgtggttgtcgttatctgattgaac
gtcagcagccggatggtagttggcatgaagccgaattcaccggcaccggttttccaggttatggtgttggtcagacaattaaactggatgacccgatgctgagccagcgtctgagccagggt
gcagaactgagccgtgcatttatgctgcgttatgatctgtatcgtcagctgtttccgattatggccctgagtcgtgcagcacgtctgatgccggttggtggcgcaaaacagcagggtacagtttaa 

32. KxySHC2 

atgacccgtgaaagccgtccgctgaccaaaaccgcagcaagcagcggcaatattacaagcggtaatacctttccggcagttggcacccagagcgttaatggtggtggtaaaagcaccgg
tagcgcaagcgcactgcgtacaatggataatagcctgagccatgcaattagcagcgcatgtgattggctggttggtcagcagaaaccggatggtcattgggttggtccggttgcaagcaatg
caagcatggaagcagaatggtgtctggcactgtggtttctgggtttagatgatcacccgctgcgtccgcgtctgggtaaagcactgctggaaatgcagcgtgaagatggtagctggggcacct
attatggtgcaggtaatggtgatattaatgccaccgttgaaagctatgcagccctgcgtagcctgggttatccggcagatgatccggcaattagccgtgcagcaacctggattgccagcaaag
gtggtctgaaaaacattcgtgtttttacccgttattggctggcactgattggtgaatggccgtgggaaaaaaccccgaatctgcctccggaagttatttggtttccgaacaattttgtgttcagcatct
ataactttgcacagtgggcacgtgcaaccctggttccgctggcaattctgagcgcacgtcgtccgagtcgtccgttacgtccgcaggatcgtctggatgccctgtttcctggtggtcgtgcaaattt
tgattatgaactgcctgcacgtggtgatcgtgatctgtgggatcgtttttttcgtgcaaccgatcgtggtctgcattggctgcagagccgttttctgaaacgtaataccctgcgtgaagcagcaattc
gtcacatgctggaatggattattcgtcatcaggatgcagatggtggttggggtggtattcagcctccgtgggtttatggtctgatggccctgcatggtgaagattatcagtttcatcatccggttatgg
caaaagcactgagtgcactgaatgatcctggttggcgtcatgataaaggtgatgcaagctggattcaggcaaccaatagtccggtttgggataccatgctggccattatggcactgcatgatg
ccgatggtgaaacccagtttagtccgcagatggaaaaagcattaggttggctgctggatcgtcaggttcgtgtgaaaggtgattggagcattaaactgcctgatgttgaacctggtggctgggc
atttgaatatgccaatgatcgttatcctgataccgatgataccgcagttgccctgattgcactgagcagctgtcgtaatcgtgaagaatggaaaaaacgtggtgttgaagaggcaatttctcgtg
gtgttaattggctgattggcatgcagtcagaatgtggcggttggggagcatttgataaagataataatcgtagcatcctgagcaaaatcccgttttgtgattttggtgaagcactggaccctccga
gcgttgatgttaccgcacatgttctggaagcatttggtattctgggtctgcctcgccacatgccgaccattcagcgtgcactggcatatattcgtgcagaacaagaacctgatggtccgtggtttgg
tcgctggggtgtgaattatctgtatggtacaggtgcagttctgccagcactggcagcaattggcgaagatatgacccagccgtatattaccaaagcctgcgattggcttgttgcacatcagcaa
gaaaatggcggatggggtgaaagctgtgcaagctatatggaactgagcatggttggtcgtggtgtgaccacaccgagccagaccgcatgggcactgatgggtctgattgcagcaaatcgtc
ctcaggattatggcgcaattgcccgtggttgtcgttatctgattgatctgcagcaggcagatggttcatggcatgaaaaagaattcaccggcaccggttttccaggttatggtgttggtcagacaat
taaactggatgatccagcgctgagcaaacgtctgcagcaaggtgcagaactgagccgtgcatttatgctgcgttatgatctgtatcgtcagttttttccgattatggccctgagtcgtgcaagccgt
ctgatgaaattagaaaaataa 

33. AciSHC_R1.1 

atgacccaggcaagcgttcgtgaagatgcaaaagcagcactggatcgtgcagttgattatctgctgagcctgcaggatgaaaaaggtttttggaaaggtgaactggaaaccaacgttacca
ttgaagccgaagatctgctgctgcgtgaatttctgggtattcgtacaccggatattaccgcagaaaccgcacgttggattcgtgcaaaacagcgtagtgatggcacctgggcaaccttttatgat
ggtccgcctgatctgagcaccagcgttgaagcctatgttgcactgaaactggctggtgatgatccggcagcaccgcacatggaaaaagcagccgcatatattcgtggtgccggtggtgttga
acgtacccgtgtttttacccgtctgtggctggcactgtttggtctgtggccgtgggatgatctgccgacactgcctccggaaatgatttttctgccgagctggtttccgctgaacatttatgattggggtt
gttgggcacgtcagaccgttgtgccgctgaccattgttagcgcactgcgtccggttcgtccgattccgctgagtattgatgaaattcgtacaggtgcaccgcctccgcctcgcgatccggcatgg
accattcgtggtttttttcagcgtctggatgatttactgcgtggttatcgtcgtgttgcagatcatggtccggcacgtctgtttcgtcgtctggcaatgcgtcgtgcagcagaatggattattgcacgtca
agaggcagatggtagctggggtggtattcagcctccgtgggtttatagcctgattgcactgcatctgctgggttatccgctggatcatccggttctgcgtcgtggtctggatggtctgaatggttttac
cattcgcgaagaaacagcagatggtgcagttcgtcgcctggaattttgccagagtccggtttgggataccgcactggcagttacagcactgcgtgatgcaggtctgcctgccgatcatccgcg
tgttcaggcagcagcccgttggctggttggtgaagaggtgcgtgttgccggtgattgggcagtgcgtcgtccgggtctgcctcctggtggttgggcatttgaatttgccaatgataattacccggat
accgatgatacagcagaagttgttctggccctgcgtcgcgttcgtctggaagatgcagatcagcaggcgctggaagcagccgttcgtcgtgcaaccacctgggttattggtatgcagagcac
cgatggcggttggggtgcatttgatgcagataatacccgtgaactggtgctgcgtctgccgttttgtgattttggtgccgttattgatccgcctagcgcagatgttaccgcacatattgttgaaatgct
ggcagccctgggtatgcgtgatcatcctgccaccgttgcgggtgttcgttggctgctggcacatcaagaacctgatggtagttggtttggtcgttggggagcaaatcatatttatggtacgggtgc
agttgttccggcactgattgcagccggtgttagtccggatacaccgcctattcgtcgcgcaattcgctggctggaagaacatcagaatccggatggtggatggggtgaagatttacgtagctat
accgatcctgcactgtgggttggtcgtggtgttagcaccgcaagccagaccgcatgggcactgctggcattactggcagcgggtgaagaagcaagtccggcagttgatcgtggcgttcggtg
gctggttaccacacagcagcctgatggtggctgggatgagccgcattacaccggtacaggttttccgggtgatttctatattaactatcatctgtatcgcctggtgtttccgattagtgcactgggtc
gttatgttaatcgt 

34. AciSHC_R2.1 

atgacccaggcaagcgttcgtgaagatgcaaaagcagcactggatcgtgcagttgattatctgctgagcctgcaggatgaaaaaggtttttggaaaggtgaactggaaaccaacgttacca
ttgaagccgaagatctgctgctgcgtgaatttctgggtattcgtacaccggatattaccgcagaaaccgcacgttggattcgtgcaaaacagcgtagtgatggcacctgggcaaccttttatgat
ggtccgcctgatctgagcaccagcgttgaagcctatgttgcactgaaactggctggtgatgatccggcagcaccgcacatggaaaaagcagccgcatatattcgtggtgccggtggtgttga
acgtacccgtgtttttacccgtctgtggctggcactgtttggtctgtggccgtgggatgatctgccgacactgcctccggaaatgatttttctgccgagctggtttccgctgaacatttatgattggggtt
gttggccgcgccagaccgttgtgccgctgaccattgttagcgcactgcgtccggttcgtccgattccgctgagtattgatgaaattcgtacaggtgcaccgcctccgcctcgcgatccggcatgg
accattcgtggtttttttcagcgtctggatgatttactgcgtggttatcgtcgtgttgcagatcatggtccggcacgtctgtttcgtcgtctggcaatgcgtcgtgcagcagaatggattattgcacgtca
agaggcagatggtagctggggtggtattcagcctccatgggtttatagcctgattgcactgcatctgctgggttatccgctggatcatccggttctgcgtcgtggtctggatggtctgaatggttttac
cattcgcgaagaaacagcagatggtgcagttcgtcgcctggaaatgtgccagagtccggtttgggataccgcactggcagttacagcactgcgtgatgcaggtctgcctgccgatcatccgc
gtgttcaggcagcagcccgttggctggttggtgaagaggtgcgtgttgccggtgattgggcagtgcgtcgtccgggtctgcctcctggtggttgggcatttgaatttgccaatgataattacccgg
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ataccgatgatacagcagaagttgttctggccctgcgtcgcgttcgtctggaagatgcagatcagcaggcgctggaagcagccgttcgtcgtgcaaccacctgggttattggtatgcagagca
ccgatggcggttggggtgcatttgatgcagataatacccgtgaactggtgctgcgtctgccgttttgtgattttggtgccgttattgatccgcctagcgcagatgttaccgcacatattgttgaaatgc
tggcagccctgggtatgcgtgatcatcctgccaccgttgcgggtgttcgttggctgctggcacatcaagaacctgatggtagttggtttggtcgttggggagcaaatcatatttatggtacgggtgc
agttgttccggcactgattgcagccggtgttagtccggatacaccgcctattcgtcgcgcaattcgctggctggaagaacatcagaatccggatggtggatggggtgaagatttacgtagctat
accgatcctgcactgtgggttggtcgtggtgttagcaccgcaagccagaccgcatgggcactgctggcattactggcagcgggtgaagaagcaagtccggcagttgatcgtggcgttcggtg
gctggttaccacacagcagcctgatggtggctgggatgagccgcattacaccggtacaggcttcccgggtgatttctatgttaattatcatctgtatcgcctggtgtttccgattagtgcactgggtc
gttatgttaatcgt 

35. AciSHC_R2.2 

atgacccaggcaagcgttcgtgaagatgcaaaagcagcactggatcgtgcagttgattatctgctgagcctgcaggatgaaaaaggtttttggaaaggtgaactggaaaccaacgttacca
ttgaagccgaagatctgctgctgcgtgaatttctgggtattcgtacaccggatattaccgcagaaaccgcacgttggattcgtgcaaaacagcgtagtgatggcacctgggcaaccttttatgat
ggtccgcctgatctgagcaccagcgttgaagcctatgttgcactgaaactggctggtgatgatccggcagcaccgcacatggaaaaagcagccgcatatattcgtggtgccggtggtgttga
acgtacccgtgtttttacccgtctgtggctggcactgtttggtctgtggccgtgggatgatctgccgacactgcctccggaaatgatttttctgccgagctggtttccgctgaacatttatgattggggtt
gttggccgcgccagaccgttgtgccgctgaccattgttagcgcactgcgtccggttcgtccgattccgctgagtattgatgaaattcgtacaggtgcaccgcctccgcctcgcgatccggcatgg
accattcgtggtttttttcagcgtctggatgatttactgcgtggttatcgtcgtgttgcagatcatggtccggcacgtctgtttcgtcgtctggcaatgcgtcgtgcagcagaatggattattgcacgtca
agaggcagatggtagctggggtggtattcagtggccatgggtttatagcctgattgcactgcatctgctgggttatccgctggatcatccggttctgcgtcgtggtctggatggtctgaatggttttac
cattcgcgaagaaacagcagatggtgcagttcgtcgcctggaaatgtgccagagtccggtttgggataccgcactggcagttacagcactgcgtgatgcaggtctgcctgccgatcatccgc
gtgttcaggcagcagcccgttggctggttggtgaagaggtgcgtgttgccggtgattgggcagtgcgtcgtccgggtctgcctcctggtggttgggcatttgaatttgccaatgataattacccgg
ataccgatgatacagcagaagttgttctggccctgcgtcgcgttcgtctggaagatgcagatcagcaggcgctggaagcagccgttcgtcgtgcaaccacctgggttattggtatgcagagca
ccgatggcggttggggtgcatttgatgcagataatacccgtgaactggtgctgcgtctgccgttttgtgattttggtgccgttattgatccgcctagcgcagatgttaccgcacatattgttgaaatgc
tggcagccctgggtatgcgtgatcatcctgccaccgttgcgggtgttcgttggctgctggcacatcaagaacctgatggtagttggtttggtcgttggggagcaaatcatatttatggtacgggtgc
agttgttccggcactgattgcagccggtgttagtccggatacaccgcctattcgtcgcgcaattcgctggctggaagaacatcagaatccggatggtggatggggtgaagatttacgtagctat
accgatcctgcactgtgggttggtcgtggtgttagcaccgcaagccagaccgcatgggcactgctggcattactggcagcgggtgaagaagcaagtccggcagttgatcgtggcgttcggtg
gctggttaccacacagcagcctgatggtggctgggatgagccgcattacaccggtacaggcttcccgggtgatttctatcttaattatcatctgtatcgcctggtgtttccgattagtgcactgggtc
gttatgttaatcgt 

36. AciSHC_R2.3 

atgacccaggcaagcgttcgtgaagatgcaaaagcagcactggatcgtgcagttgattatctgctgagcctgcaggatgaaaaaggtttttggaaaggtgaactggaaaccaacgttacca
ttgaagccgaagatctgctgctgcgtgaatttctgggtattcgtacaccggatattaccgcagaaaccgcacgttggattcgtgcaaaacagcgtagtgatggcacctgggcaaccttttatgat
ggtccgcctgatctgagcaccagcgttgaagcctatgttgcactgaaactggctggtgatgatccggcagcaccgcacatggaaaaagcagccgcatatattcgtggtgccggtggtgttga
acgtacccgtgtttttacccgtctgtggctggcactgtttggtctgtggccgtgggatgatctgccgacactgcctccggaaatgatttttctgccgagctggtttccgctgaacatttatgattggggtt
gttggccgcgccagaccgttgtgccgctgaccattgttagcgcactgcgtccggttcgtccgattccgctgagtattgatgaaattcgtacaggtgcaccgcctccgcctcgcgatccggcatgg
accattcgtggtttttttcagcgtctggatgatttactgcgtggttatcgtcgtgttgcagatcatggtccggcacgtctgtttcgtcgtctggcaatgcgtcgtgcagcagaatggattattgcacgtca
agaggcagatggtagctggggtggtattcagtggccatgggtttatagcctgattgcactgcatctgctgggttatccgctggatcatccggttctgcgtcgtggtctggatggtctgaatggttttac
cattcgcgaagaaacagcagatggtgcagttcgtcgcctggaactgtgccagagtccggtttgggataccgcactggcagttacagcactgcgtgatgcaggtctgcctgccgatcatccgc
gtgttcaggcagcagcccgttggctggttggtgaagaggtgcgtgttgccggtgattgggcagtgcgtcgtccgggtctgcctcctggtggttgggcatttgaatttgccaatgataattacccgg
ataccgatgatacagcagaagttgttctggccctgcgtcgcgttcgtctggaagatgcagatcagcaggcgctggaagcagccgttcgtcgtgcaaccacctgggttattggtatgcagagca
ccgatggcggttggggtgcatttgatgcagataatacccgtgaactggtgctgcgtctgccgttttgtgattttggtgccgttattgatccgcctagcgcagatgttaccgcacatattgttgaaatgc
tggcagccctgggtatgcgtgatcatcctgccaccgttgcgggtgttcgttggctgctggcacatcaagaacctgatggtagttggtttggtcgttggggagcaaatcatatttatggtacgggtgc
agttgttccggcactgattgcagccggtgttagtccggatacaccgcctattcgtcgcgcaattcgctggctggaagaacatcagaatccggatggtggatggggtgaagatttacgtagctat
accgatcctgcactgtgggttggtcgtggtgttagcaccgcaagccagaccgcatgggcactgctggcattactggcagcgggtgaagaagcaagtccggcagttgatcgtggcgttcggtg
gctggttaccacacagcagcctgatggtggctgggatgagccgcattacaccggtacaggcttcccgggtgatttctatgttaattatcatctgtatcgcctggtgtttccgattagtgcactgggtc
gttatgttaatcgt 
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1. Introduction: 

Studying the recognition and interaction profile between (two) molecules is a common denominator 

of many life sciences [1]. As such, the prediction of these interactions through automated docking 

software has wide-ranging applications, from structure-based drug design [2] to the pre-selection of 

sites in rational design [3], the early stages of drug discovery, and many others. Among the available 

predictive tools, AutoDock Vina [4] has established itself as one of the most popular and widely used 

docking engines within the scientific community, fueled by its open-source nature, speed, and ease 

of use. The software recently received an update that expands its feature set to include additional 

scoring functions, the simultaneous docking of multiple ligands, flexible residue docking, and a 

hydrated docking protocol [5]. However, these exciting new features also raise the barrier of entry, 

as additional steps are required to set up, carry out and analyze the docking protocols.  

For this reason, we developed AlphaDock, an open-source PyMOL (Schrödinger, LLC) plugin, to 

simplify the process of installing, pre-processing, and evaluating docking results in an intuitive 

graphical user interface (GUI). 

2. Overview of Features: 

i) Running AutoDock Vina requires the AutoDock Vina binaries [5], several tools from the ADFR 

software suite [6], and the python package Meeko. To simplify the installation process and avoid 

version mismatches, we provide a docker container that already contains all requirements and can 

be set up on any system with a single command.  

ii) The AlphaDock GUI connects to the running docker container through an SSH connection and can 

be configured to run locally or remotely anywhere on the network. This makes it possible for 

researchers to offload expensive computations to a more capable workstation machine. On top of 

that, running the docking protocols remotely makes the setup for individual users even more 

accessible, as docker and its dependencies are not required on a user's personal computer. 

iii) The AlphaDock GUI provides direct access to AutoDock-Vina v1.2.3, different scoring functions, 

hydrated docking, multiple ligand docking, and flexible residue docking. All the options and 

parameters exposed by AutoDock-Vina can be configured through the AlphaDock GUI. We perform 

the necessary pre-processing from user-selected PyMOL objects and selections. 

iv) To avoid reproducibility issues, a detailed history of all input, intermediate, and result files, as 

well as standard output and standard error, is kept. Users can browse their experiment history and 

restore/visualize the output of previous runs. On top of the standardized docker container, this 

history should make all docking experiments precisely reproducible and traceable.  

3. Implementation 

AlphaDock is a plugin written in Python 3 for PyMOL versions 2.5 and higher. The docking engine and 

its dependencies are packaged in a docker container and, as such, are compatible with any system 

that can run docker. However, docker is only required when docking locally. Additional information 

on how to install and configure AlphaDock can be found on the AlphaDock GitHub page: 

https://github.com/ccbiozhaw/dock. 

 

 

 



  

Figure 1: AlphaDock GUI. Dropdown menus list all available PyMOL selections and objects in the inputs section. All features 
and configuration options the underlying tools provide can be accessed and changed. The "?" buttons display additional 
information. All experiments are tracked and displayed in the experiment history.  

 

 

[1] A. Grosdidier, V. Zoete, and O. Michielin, "SwissDock, a protein-small molecule docking web 

service based on EADock DSS," Nucleic Acids Res, vol. 39, no. SUPPL. 2, Jul. 2011, doi: 

10.1093/nar/gkr366. 

[2] V. Y. Tanchuk, V. O. Tanin, A. I. Vovk, and G. Poda, "A New, Improved Hybrid Scoring Function 

for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina," Chem Biol Drug 

Des, vol. 87, no. 4, pp. 618–625, Apr. 2016, doi: 10.1111/cbdd.12697. 

[3] M. T. Reetz, L. W. Wang, and M. Bocola, "Directed evolution of enantioselective enzymes: 

Iterative cycles of CASTing for probing protein-sequence space," Angewandte Chemie - 

International Edition, vol. 45, no. 8, pp. 1236–1241, Feb. 2006, doi: 10.1002/anie.200502746. 

[4] O. Trott and A. J. Olson, "AutoDock Vina: Improving the speed and accuracy of docking with a 

new scoring function, efficient optimization, and multithreading," J Comput Chem, p. NA-NA, 

2009, doi: 10.1002/jcc.21334. 

[5] J. Eberhardt, D. Santos-Martins, A. F. Tillack, and S. Forli, "AutoDock Vina 1.2.0: New Docking 

Methods, Expanded Force Field, and Python Bindings," J Chem Inf Model, vol. 61, no. 8, pp. 

3891–3898, Aug. 2021, doi: 10.1021/acs.jcim.1c00203. 

[6] S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J. Olson, "Computational 

protein-ligand docking and virtual drug screening with the AutoDock suite," Nat Protoc, vol. 

11, no. 5, pp. 905–919, May 2016, doi: 10.1038/nprot.2016.051. 

  

 



I 
 
 

Eigenständigkeitserklärung  
 

Hiermit erkläre ich, dass diese Arbeit bisher von mir weder an der Mathematisch 

Naturwissenschaftlichen Fakultät der Universität Greifswald noch einer anderen 

wissenschaftlichen Einrichtung zum Zwecke der Promotion eingereicht wurde.  

Ferner erkläre ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die darin 

angegebenen Hilfsmittel und Hilfen benutzt und keine Textabschnitte eines Dritten ohne 

Kennzeichnung übernommen habe.  

 

_____________________ 

David Patsch                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    
 

II 
 

Curriculum Vitae  
 

Persönliche Angaben  

Vorname:    David 

Nachname:    Patsch 

Geburtsdatum:   15.11.1992  

Staatsangehörigkeit:   Österreich 

 

Ausbildung 

04/2020 - heute  Promotionsstudium 

    Universität Greifswald / ZHAW Wädenswil 

08/2017 – 08/2019  Master Biotechnology 

Management Center Innsbruck (MCI) 

10/2012 – 08/2017  Bachelor Biology 

    University of Innsbruck 

2003 – 2011   High School 

    Gymnasium Feldkirch 

     

 

 

 

 

 

 

 

 

 

 

 

 

_____________________  

David Patsch 



    
 

III 
 

List of Publications  
 

Eichenberger, M.*, Hüppi, S.*, Patsch, D.*, Aeberli, N., Berweger, R., Dossenbach, S., 

Eichhorn, E., Flachsmann, F., Hortencio, L., Voirol, F., Vollenweider, S., Bornscheuer, U., & 

Buller, R. Asymmetric Cation–Olefin Monocyclization by Engineered Squalene–Hopene 

Cyclases. Ang. Chem. Int. Ed., 2021, 60(50), 26080–6. DOI: 10.1002/anie.202108037 

* equal contribution 

 

J. Büchler, S. Honda Malca, D. Patsch, M. Voss, N. J. Turner, U. T. Bornscheuer, O. Allemann, 

C. Le Chapelain, A. Lumbroso, O. Loiseleur, R, Buller. Algorithm-aided engineering of aliphatic 

halogenase WelO5* for the asymmetric late-stage functionalization of soraphens. Nat. 

Commun., 2022, 13(1), 371. DOI: 10.1038/s41467-022-27999-1 

 

D. Patsch, R. Buller, Improving Enzyme Fitness with Machine Learning. CHIMIA, 2023, 77(3), 

116. DOI: 10.2533/chimia.2023.116 

 

D. Patsch, M. Eichenberger, M. Voss, U. T. Bornscheuer, R. Buller. LibGENiE – A 

bioinformatic pipeline for the design of information-enriched enzyme libraries. Submitted to 

Comput. Struct. Biotechnol. J., 2023. 

 

 

 

 

 

 

 

 

 



IV 
 

Acknowledgments 
 

I wish to express my gratitude to everyone who has contributed to completing my Ph.D. thesis. 

Your support and guidance have been invaluable throughout this journey. 

First and foremost, I would like to extend my deepest appreciation to Rebecca for your 

supervision and support at every stage of my doctoral research. I genuinely appreciate the 

freedom I had to pursue different ideas and directions. I suspect this is something unique to a 

Ph.D. and what I will miss the most moving forward.  

I also want to express my gratitude to Prof. Bornscheuer for accepting me as a Ph.D. student. 

I was privileged to work in an incredible group filled with amazing people. In particular, I want 

to thank  Michi Eichenberger for his help, discussions, patience,  and direction. You heavily 

influenced a lot of the work in this thesis. Thanks to the people in RT for the fun (scientific) 

debates and drama, Fabian, Sean, Johannes, Thomas, Athena, Katrin, Nicolas, Michi N. and 

Michi E.; the corona time could have been much worse. We ended up always laughing, even 

in new and different situations. I would also like to thank the people in the RU, Moritz, Sumire, 

Nadine, Daniela M., Gigersan, Eimear, and Daniela S.  

To all the members of our research group, I am grateful for your generous support, stimulating 

discussions, and enjoyable coffee breaks. 

I would also like to express my heartfelt appreciation to my family. Thank you to my parents 

and sister, who have supported me from the beginning and accompanied me with unwavering 

trust. 

Once again, I extend my deepest gratitude to all those mentioned above and to anyone else 

who has contributed to my academic and personal growth. Your support has been truly 

invaluable, and I am forever grateful for your presence in my life. 

 


