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As good as human experts 
in detecting plant roots 
in minirhizotron images 
but efficient and reproducible: 
the convolutional neural network 
“RootDetector”
Bo Peters 1*, Gesche Blume‑Werry 1,2, Alexander Gillert 3, Sarah Schwieger 1,2, 
Uwe Freiherr von Lukas 3,4 & Juergen Kreyling 1

Plant roots influence many ecological and biogeochemical processes, such as carbon, water and 
nutrient cycling. Because of difficult accessibility, knowledge on plant root growth dynamics in field 
conditions, however, is fragmentary at best. Minirhizotrons, i.e. transparent tubes placed in the 
substrate into which specialized cameras or circular scanners are inserted, facilitate the capture of 
high‑resolution images of root dynamics at the soil‑tube interface with little to no disturbance after 
the initial installation. Their use, especially in field studies with multiple species and heterogeneous 
substrates, though, is limited by the amount of work that subsequent manual tracing of roots in 
the images requires. Furthermore, the reproducibility and objectivity of manual root detection is 
questionable. Here, we use a Convolutional Neural Network (CNN) for the automatic detection of 
roots in minirhizotron images and compare the performance of our RootDetector with human analysts 
with different levels of expertise. Our minirhizotron data come from various wetlands on organic soils, 
i.e. highly heterogeneous substrates consisting of dead plant material, often times mainly roots, in 
various degrees of decomposition. This may be seen as one of the most challenging soil types for root 
segmentation in minirhizotron images. RootDetector showed a high capability to correctly segment 
root pixels in minirhizotron images from field observations (F1 = 0.6044;  r2 compared to a human 
expert = 0.99). Reproducibility among humans, however, depended strongly on expertise level, with 
novices showing drastic variation among individual analysts and annotating on average more than 
13‑times higher root length/cm2 per image compared to expert analysts. CNNs such as RootDetector 
provide a reliable and efficient method for the detection of roots and root length in minirhizotron 
images even from challenging field conditions. Analyses with RootDetector thus save resources, are 
reproducible and objective, and are as accurate as manual analyses performed by human experts.

Quantifying and monitoring biomass accumulation from plants is of growing interest for many scientific 
fields as it provides a valuable metric for complex ecosystem dynamics. Around 30–95% of plant biomass is 
located belowground across biomes in form of  roots1, and roots mediate the carbon input into the soil through 
 rhizodeposition2. Thus, knowledge about root growth dynamics, i.e. spacial and temporal differences in growth, 
longevity and turnover, is crucial for the understanding of carbon stocks and fluxes in ecosystems, and their 
representation is essential in coupled biosphere–atmosphere  models3,4. However, even basic data such as root 
length, density, seasonal activity or growth rates are fragmentary at best due to difficult accessibility and high 
susceptibility of roots to  disturbance5. Many methods for surveys of root growth dynamics under field conditions 
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are not very accurate and highly destructive. The washing out of soil samples, for example, has been shown to 
record only 60% of the biomass, as fine roots, functionally the most important root type, are commonly  lost6. 
Destructive methods also do not allow for insights into root growth dynamics over time, as they provide a mere 
snapshot. Therefore, by far the most important tool for recording root growth dynamics in the field has become 
the so-called minirhizotron  technique7. Minirhizotrons are transparent tubes, which, once inserted into the soil, 
enable regular recordings of root growth at the tube-soil interface via imaging by circular scanners or cameras. 
As this method of sampling is non-destructive and minimally invasive, it can be conducted as often as required 
and over any length of time, thus enabling precise measurement and visualization of important root growth 
parameters such as initiation of growth, elongation and increase in diameter as well as turnover. Therefore, the 
use of minirhizotrons is a highly effective method for detailed investigation even of the finest and most short-
lived root types (lifespans of days to weeks) in high temporal and spatial resolution, allowing for investigations 
of ever more apparent decoupled belowground and aboveground seasonal growth patterns (‘phenology’)8–10. 
Until now, the detection of roots in the minirhizotron images is done manually by human analysts, at least in 
field studies dealing with heterogeneous substrates and multiple species. Depending on image quality and root 
abundance, the processing of a single image can take several hours. This is one reason why there are very few 
long-term measurement series in fine temporal resolution on root growth dynamics. Moreover, the high time 
demand does not allow for the quantification of spatial variation in root traits and root growth  dynamics11. This 
shows that the biggest obstacle for providing sound, temporally and spatially highly resolved data on root growth 
dynamics is the arduous detection of roots in complex minirhizotron images.

The recent development of Convolutional Neural Networks (CNN) has sparked interest due to their capacity 
to automatically extract relevant features directly from images without the need for human feature design. CNNs 
have been shown to outperform traditional algorithms in most computer vision  tasks12 and as such provide a 
powerful, inexpensive and time-saving new method for (semi-)automatic analysis of minirhizotron images. 
Indeed, first attempts under ideal conditions with relatively homogeneous substrate and young roots of single 
species are  promising13–15. Another advantage of using CNNs over manual segmentation is their improved 
objectivity and repeatability in comparison to human analysts. As long as the conditions and image quality are 
relatively constant (e.g., illumination, contrast), the accuracy of automatic feature recognition using CNNs is 
constant as well. In contrast, accuracy of human analysts may vary greatly depending on state of mind (e.g., 
fatigue, time pressure) and even more so between individuals.

Here, we introduce RootDetector, a Convolutional Neural Network-based approach for classifying roots and 
extracting metrics for root length in minirhizotron images from field studies. We trained RootDetector with 
data from a mesocosm experiment and a field experiment that included different organic soils and a variety 
of plant species. We compared RootDetector’s performance with that of human analysts and investigated how 
differences in experience with plant physiology and digital root measuring tools between groups of human 
analysts (novice, advanced, expert) affect the accuracy of manual root segmentation. We furthermore validated 
RootDetector’s ability to classify root pixels and to quantify root length on randomly selected minirhizotron 
images from the field.

Material and methods
Datasets. Image acquisition. For this study, we assembled three datasets: one for training of the RootDe-
tector Convolutional Neural Network (Training-Set), one for a performance comparison between humans and 
RootDetector in segmenting roots in minirhizotron images (Comparison-Set), and one for the validation of the 
algorithm (Validation-Set). The Training-Set contained 129 images comprised of 17 randomly selected minirhi-
zotron images sampled in a mesocosm experiment (see “Mesocosm sampling” Section), 47 randomly selected 
minirhizotron images sampled in a field study (see “Field sampling” Section) as well as the 65 minirhizotron im-
ages of soy roots published by Wang et al.15. The Comparison-Set contained 25 randomly selected minirhizotron 
images from the field-study which all were not part of the images included in the Training- and Validation-Sets. 
The Validation-Set contained 10 randomly selected minirhizotron images from the same field study, which had 
not been used in the Training-Set. All images were recorded with 2550 ✕ 2273 pixels at 300 dpi with a CI-600 
In-Situ Root Imager (CID Bio-Science Inc., Camas, WA, USA) and stored as .tiff files to reduce compression loss. 
For all training and evaluation purposes we used raw, unprocessed output images from the CI-600.

Mesocosm sampling. The mesocosm experiment was established in 2018 on the premises of the Institute for 
Botany and Landscape Ecology of the University of Greifswald (Fig. S1). It features 108 heavy duty plastic buck-
ets of 100 l each, filled to two thirds of their height with moderately decomposed sedge fen peat. Each mesocosm 
contained one minirhizotron (inner diameter: 64 mm, outer diameter: 70 mm, length: 650 mm) installed at a 
45°angle and capped in order to avoid penetration by light. The mesocosms were planted with varying composi-
tions of plant species that typically occur in north-east German sedge fens (Carex rostrata, Carex acutiformis, 
Glyceria maxima, Equisetum fluviatile, Juncus inflexus, Mentha aquatica, Acorus calamus and Lycopus europaeus). 
The mesocosms were subjected to three different water table regimes: stable at soil surface level, stable at 20 cm 
below soil surface and fluctuating between the two levels every two weeks. The minirhizotrons were scanned 
weekly at two levels of soil depth (0–20 cm and 15–35 cm) between April 2019 and December 2021, resulting in 
roughly 9500 minirhizotron images of 216 × 196 mm. Manual quantification of root length would, based on own 
experience, take approximately three hours per image, resulting in approximately 28,500 h of manual processing 
for the complete dataset. Specimens planted were identified by author Dr. Blume-Werry, however no voucher 
specimen were deposited. All methods were carried out in accordance with relevant institutional, national, and 
international guidelines and legislation.
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Field sampling. The field study was established as part of the Wetscapes project in  201716. The study sites were 
located in Mecklenburg-Vorpommern, Germany, in three of the most common wetland types of the region: 
alder forest, percolation fen and coastal fen (Fig. S2). For each wetland type, a pair of drained versus rewetted 
study sites was established. A detailed description of the study sites and the experimental setup can be found 
in Jurasinski et al.16. At each site, 15 minirhizotrons (same diameter as above, length: 1500 mm) were installed 
at 45° angle along a central boardwalk. The minirhizotrons have been scanned biweekly since April 2018, then 
monthly since January 2019 at two to four levels of soil depth (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm), 
resulting in roughly 12,000 minirhizotron images of 216 × 196 cm, i.e. an estimated 36,000 h of manual process-
ing for the complete dataset. Permission for the study was obtained from the all field owners. 

The CNN RootDetector. Image annotation. For the generation of training data for the CNN, human 
analysts manually masked all root pixels in the 74 images of the Training-Set using GIMP 2.10.12. The result-
ing ground truth data are binary, black-and-white images in Portable Network Graphics (.png) format, where 
white pixels represent root structures and black pixels represent non-root objects and soil (Fig. 2b). All training 
data were checked and, if required, corrected by an expert (see “Selection of participants” for definition). The 
Validation-Set was created in the same way but exclusively by experts.

Architecture. RootDetector’s core consists of a Deep Neural Network (DNN) based on the U-Net image seg-
mentation architecture[27]nd is implemented in TensorFlow and Keras  frameworks18. Although U-Net was 
originally developed for biomedical applications, it has since been successfully applied to other domains due to 
its generic design.

RootDetector is built up of four down-sampling blocks, four up-sampling blocks and a final output block 
(Fig. 1). Every block contains two 3 × 3 convolutional layers, each followed by rectified linear units (ReLU). The 
last output layer instead utilizes Sigmoid activation. Starting from initial 64 feature channels, this number is 
doubled in every down-block and the resolution is halved via 2 × 2 max-pooling. Every up-block again doubles 
the resolution via bilinear interpolation and a 1 × 1 convolution which halves the number of channels. Impor-
tantly, after each up-sampling step, the feature map is concatenated with the corresponding feature map from 
the down-sampling path. This is crucial to preserve fine spatial details.

Our modifications from the original architecture include  BatchNormalization19 after each convolutional layer 
which significantly helps to speed up the training process and zero-padding instead of cropping as suggested by 
Ronneberger, Fischer, &  Brox20 to preserve the original image size.

In addition to the root segmentation network, we trained a second network to detect foreign objects, specifi-
cally the adhesive tape that is used as a light barrier on the aboveground part of the minirhizotrons. We used 
the same network architecture as above and trained in a supervised fashion with the binary cross-entropy loss. 
During inference, the result is thresholded (predefined threshold value: 0.5) and used without post-processing.

Training. We pre-trained RootDetector on the COCO  dataset21 to generate a starting point. Although the 
COCO dataset contains a wide variety of image types and classes not specifically related to minirhizotron images, 
Majurski et al.22 showed, that for small annotation counts, transfer-learning even from unrelated datasets may 
improve a CNNs performance by up to 20%. We fine-tuned for our dataset with the Adam  optimizer23 for 15 
epochs and trained on a total of 129 images from the Training-Set (17 mesocosm images, 47 field-experiment 
images, 65 soy root images). To enhance the dataset size and reduce over-fitting effects, we performed a series 

Figure 1.  Overview of the RootDetector system. The main component is a semantic segmentation network 
based on the U-Net architecture. The root length is estimated by skeletonizing the segmentation output and 
applying the formula introduced by Kimura et al.17. During training only, a weight map puts more emphasis on 
fine roots.
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of augmentation operations as described by Shorten &  Khoshgoftaar24. In many images, relatively coarse roots 
(> 3 mm) occupied a major part of the positive (white) pixel space, which might have caused RootDetector to 
underestimate fine root details overall. Similarly, negative space (black pixels) between tightly packed, parallel 
roots was often very small and might have impacted the training process to a lesser extent when compared to 
large areas with few or no roots (Fig. 2). To mitigate both effects, we multiplied the result of the cross-entropy 
loss map with a weight map which emphasizes positive–negative transitions. This weight map is generated by 
applying the following formula to the annotated ground truth images:

where ω(x) is the average pixel value of the annotated weight map in a 5 × 5 neighborhood around pixel x. Ron-
neberger, Fischer, &  Brox20 implemented a similar weight map, however with stronger emphasis on space between 
objects. As this requires computation of distances between two comparatively large sets of points, we adapted 
and simplified their formula to be computable in a single 5 × 5 convolution.

For the loss function we applied a combination of cross-entropy and Dice loss 25:

where x are the predicted pixels, y the corresponding ground truth labels, N the number of pixels in an image and 
λ a balancing factor which we set to 0.01. This value was derived empirically. The Dice loss is applied per-image 
to counteract the usually high positive-to-negative pixel imbalance. Since this may produce overly confident 
outputs and restrict the application of weight maps, we used a relatively low value for λ.

Output and post‑processing. RootDetector generates two types of output. The first type of output are greyscale 
.png files in which white pixels represent pixels associated with root structures and black pixels represent non-
root structures and soil (Fig. 2c). The advantage of .png images is their lossless ad artifact-free compression at 
relatively small file sizes. RootDetector further skeletonizes the output images and reduces root-structures to 
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Figure 2.  Example of segmentation and result of skeletonization. A 1000 by 1000 pixel input image (a), 
the manually annotated ground truth image (b), the RootDetector estimation image (c), the combined 
representation image (error map, d with green indicating true positives, red indicating false positive, blue 
indicating false negatives), the skeletonized RootDetector estimation image (e), and the skeletonized ground 
truth image (f).
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single-pixel representations using the skeletonize function of scikit-image v. 0.17.1 (26; Fig. 2e,f). This helps to 
reduce the impact of large diameter roots or root-like structures such as rhizomes in subsequent analyses and 
is directly comparable to estimations of root length. The second type of output is a Comma-separated values 
(.csv) file, with numerical values indicating the number of identified root pixels, the number of root pixels after 
skeletonization, the number of orthogonal and diagonal connections between pixels after skeletonization and 
an estimation of the physical combined length of all roots for each processed image. The latter is a metric com-
monly used in root research as in many species, fine roots provide most vital functions such as nutrient and 
water  transport3. Therefore, the combined length of all roots in a given space puts an emphasis on fine roots 
as they typically occupy a relatively smaller fraction of the area in a 2D image compared to often much thicker 
coarse roots. To derive physical length estimates from skeletonized images, RootDetector counts orthogonal- 
and diagonal connections between pixels of skeletonized images and employs the formula proposed by Kimura 
et al.17 (Eq. 3).

where  Nd is the number of diagonally connected and  No the number of orthogonally connected skeleton pixels. 
To compute  Nd we convolve the skeletonized image with two 2 × 2 binary kernels, one for top-left-to-bottom-right 
connections and another for bottom-left-to-top-right connections and count the number of pixels with maxi-
mum response in the convolution result. Similarly,  No is computed with a 1 × 2 and a 2 × 1 convolutional kernels.

Performance comparison. Selection of participants. For the performance comparison, we selected 10 
human analysts and divided them into three groups of different expertise levels in plant physiology and with the 
usage of digital root measuring tools. The novice group consisted of 3 ecology students (2 bachelor’s, 1 master’s) 
who had taken or were taking courses in plant physiology but had no prior experience with minirhizotron im-
ages or digital root measuring tools. This group represents undergraduate students producing data for a Bachelor 
thesis or student assistants employed to process data. The advanced group consisted of 3 ecology students (1 
bachelor’s, 2 master’s) who had already taken courses in plant physiology and had at least 100 h of experience 
with minirhizotron images and digital root measuring tools. The expert group consisted of 4 scientists (2 PhD, 2 
PhD candidates) who had extensive experience in root science and at least 250 h of experience with digital root 
measuring tools. All methods were carried out in accordance with relevant institutional, national, and interna-
tional guidelines and legislation and informed consent was obtained from all participants.

Instruction and root tracing. All three groups were instructed by showing them a 60  min live demo of an 
expert tracing roots in minirhizotron images, during which commonly encountered challenges and pitfalls were 
thoroughly discussed. Additionally, all participants were provided with a previously generated, in-depth manual 
containing guidelines on the identification of root structures, the correct operation of the root tracing program 
and examples of often encountered challenges and suggested solutions. Before working on the Comparison-Set, 
all participants traced roots in one smaller-size sample image and received feedback from one expert.

Image preparation and root tracing. Because the minirhizotron images acquired in the field covered a variety of 
different substrates, roots of different plant species, variance in image quality, and because tracing roots is very 
time consuming, we decided to maximize the number of images by tracing roots only in small sections, in order 
to cover the largest number of cases possible. To do this, we placed a box of 1000 × 1000 pixels (8.47 × 8.47 cm) 
at a random location in each of the images in the Comparison-Set and instructed participants to trace only roots 
within that box. Similarly, we provided RootDetector images where the parts of the image outside the rectangle 
were occluded. All groups used RootSnap! 1.3.2.25 (CID Bio-Science Inc., Camas, WA, USA;27), a vector based 
tool to manually trace roots in each of the 25 images in the comparison set. We decided on RootSnap! due to 
our previous good experience with the software and its’ relative ease of use. The combined length of all roots 
was then exported as a csv file for each person and image and compared to RootDetector’s output of the Kimura 
root length.

Validation. We tested the accuracy of RootDetector on a set of 10 image segments of 1000 by 1000 pixels 
cropped from random locations of the 10 images of the Validation-Set. These images were annotated by a human 
expert without knowledge of the estimations by the algorithm and were exempted from the training process. As 
commonly applied in binary classification, we use the F1 score as a metric to evaluate the performance Root-
Detector. F1 is calculated from precision (Eq. 4) and recall (Eq. 5) and represents their harmonic mean (Eq. 6). 
Ranging from 0 to 1, higher values indicate high classification (segmentation) performance. As one of the 10 
image sections contained no roots and thus no F1 Score was calculable, it was excluded from the validation. We 
calculated the F1 score for each of the nine remaining image sections and averaged the values as a metric for 
overall segmentation performance.

(3)L =
[

N2

d + (Nd + No/2)
2
]1/2

+ No/2

(4)Precision (P) =
tp

tp+ fp

(5)Recall (R) =
tp

tp+ fn
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where P = precision, R = recall, tp = true positives; fp = false positives, fn = false negatives.

Statistical analysis. We used R Version 4.1.2 (R Core Team, 2021) for all statistical analyses and R pack-
age ggplot2 Version 3.2.128 for visualizations. Pixel identification-performance comparisons were based on 
least-squares fit and the Pearson method. Root length estimation-performance comparisons between groups 
of human analysts (novice, advanced, expert) and RootDetector were based on the respective estimates of total 
root length plotted over the minirhizotron images in increasing order of total root length. Linear models were 
calculated using the lm function for each group of analysts. To determine significant differences between the 
groups and the algorithm, 95% CIs as well as 83% CIs were displayed and RootDetector root length outside the 
95% CI were considered significantly different from the group estimate at α = 0.0529. The groups of human ana-
lysts were considered significantly different if their 83% CIs did not overlap, as the comparison of two 83% CIs 
approximates an alpha level of 5%30,31.

This study is approved by Ethikkommission der Universitätsmedizin Greifswald, University of Greifswald, 
Germany.

Results
Performance comparison. Human analysts differed strongly in total root length annotated per minirhi-
zotron image section (Fig. 3). Novice participants generally estimated highest root length, while experts found 
the lowest total root length. Novices estimated on average 1324% (SD 2508%), and advanced participants on 
average 320% (SD 342%) of total root length(mm) as compared to the expert group. RootDetector estimated on 
average 87% (SD 38%) of total root length (mm) compared to experts. Variation in total root length estimation, 
as expressed by the 95% CI in Fig. 3, was highest between the three novices and lowest between the four experts. 
Root length quantification by RootDetector was indifferent from the expert group, but lower than the novice 
and advanced groups.

Overall performance of RootDetector. RootDetector showed a high capability to correctly segment 
roots in the Validation-Set of minirhizotron images not used during the training phase. Total root pixels in the 
images were detected with a F1 score of 0.6044. The correlation between total number of root pixels detected 
by RootDetector and, independently, by one human expert was very high  (r2 = 0.99) and with uniform residuals 
across the data range (Fig. 4a). The correlation was also high after skeletonization  (r2 = 0.96; Fig. 4b).

(6)F1 = 2 ∗
P ∗ R

P + R
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Figure 3.  The CNN RootDetector performs as good as human experts (analysts with scientific background in 
root ecology and > 250 h experience in annotating roots), as indicated by the linear regression of RootDetector 
lying within the 95% CI (darker shaded ribbons) of the expert group. Groups of human analysts differ in 
their estimation of root lengths, as indicated by non-overlapping 83% CIs (lighter shaded ribbons). Novices 
had theoretical input on root ecology but no experience with minirhizotron images, advanced analysts had 
theoretical input on root ecology and > 100 h of experience with annotating minirhizotron images. Images are 
sorted by increasing root length according to RootDetector along the x-axis. The regression coefficient was 0.23 
for the novice group; 0.67 for the advanced group, 0.74 for the expert group and 0.82 for RootDetector.
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Discussion. RootDetector provides the general advantage of perfect reproducibility and objectivity, two 
points that are questionable at best for human  analysts32. Our study clearly showed that there was large variation 
in root length estimates with novices annotating almost 3-times higher root length/cm2 per image compared 
to expert analysts (Fig. 3). Interestingly, this variation shrank for more experienced analysts, i.e., the more time 
analysts have already spent on analysing root images, the more similar their estimates become. No matter the 
level of experience though, the annotation of minirhizotron images clearly is not objective if done by humans, 
which hinders comparisons between studies or even between years within long-term studies. For the training 
of RootDetector, we invested roughly 1300 (± 200) h annotating training images. Compared to an estimated 
duration of > 60,000 h for manual annotation of the roots in the two experimental setups used here (see methods 
section), this is an enormous step forward in efficiency.

Up to now, the manual annotation of roots in the minirhizotron images has been the bottleneck for studying 
root growth dynamics in high spatial and temporal resolution. Automated minirhizotrons for field studies exist, 
but manual analysis of the resulting images have so far prevented tapping their full potential concerning tempo-
ral resolution and  replication[33,34]. Once trained to the given ecosystem (soil type, root morphology, etc.), the 
algorithm solves this limitation. While we assume that additional training is needed for high-quality analysis of 
images from other ecosystems, this re-training of the algorithm to other conditions should require less training 
data than the initial  training22. According to our experience, we estimate that training the algorithm for data from 
a new experiment will roughly require 25–60 training images of 2550 × 2273 pixels, which may take approximately 
150–300 h of manual annotation. This would mean that training and using the algorithm becomes less work than 
analyzing images by hand already after 70 images—which would be reached for 6 minirhizotron tubes with 3 
image levels after only one month of weekly sampling. As minirhizotron tubes are often the least expensive part 
of a respective experimental set-up and as roots are highly variable in space, a high number of replicate tubes 
is clearly desirable. Similarly, it is known that, especially in highly productive ecosystems, fine root lifespan can 
be a few days or weeks  only35 which illustrates the need for a high temporal resolution in addition to the spatial 
one. This goal can only be achieved if the resulting images are annotated automatically.

The RootDetector CNN reached a F1 score of 0.6044 for our field study of various wetlands. This is lower than 
previously published algorithms for root segmentation in rhizotron images achieved (Wang et al.15: F1 = 0.6479; 
Smith et al.14: F1 = 0.7; Narisetti et al.13F1 = 0.87). However, those studies were conducted under highly controlled 
conditions, often with single plant species and homogeneous mineral soils resulting in much more uniform 
soil and root appearance and therefore higher quality images than what can commonly be achieved under 
field conditions (a detailed comparison of these algorithms is shown in Table 1). Thus, to increase the under-
standing of root growth dynamics and their influence on ecosystem processes, we aimed to develop a tool that 
gives consistently accurate measures of root pixels and root length on minirhizotron images from natural plant 
communities, even when those are growing in organic soils consisting of plant material in varying degrees of 
decomposition. The poor performance of traditional automatic image analysis tools has left field ecologists with 
little choice but to continue analysing minirhizotron images by hand, limiting the amount of data that can be 
processed and ultimately our understanding of root ecology. Here, we show a very high correlation between 
automated annotation by RootDetector and traditional annotation by human experts. There was also no sign 
of changing variance in the residuals across a wide range of root lengths (Figs. 3 and 4), which further supports 
the conclusion that this algorithm provides a promising solution for the annotation of roots in minirhizotron 
images in ecological studies. As to be expected, RootDetector works best on clear and sharp images with strong 
contrast between roots and substrate. Just like in human analysts, quality of analysis may be disrupted by foggy 
images due to water condensation, daylight entering the minirhizotron at substrate surface or cavations in the 
substrate opening to the minirhizotrone and leaving the image out of focus. Independent of manual or automatic 
detection of the roots, we therefore advice to put strong emphasis on the quality of minirhizotrone imagery dur-
ing sampling, as there is little to nothing that can be done to it after-the-fact. Nonetheless, RootDetector showed 
reasonable performance even for images with subpar quality such as the ones where human analysts differed 
mostly (Fig. 3). Other linear, root-like structures, such as earthworms or outer rims of water droplets, were only 
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very seldomly misidentified as roots and the detection of the tape covers worked well. We have observed roots 
from 1 pixel (0.084 mm) to ~ 100 pixel (8.4 mm) width. We are not aware of any biases in detecting roots below 
50 pixels (4.2 mm) width. In wider roots however, the two edges are sometimes identified as separate roots as 
the space between is wrongly identified as soil.

Conclusion
CNNs such as RootDetector provide a reliable and efficient method for the detection of roots in minirhizotron 
images. In comparison with human analysts, whose ability to detect roots varies widely, RootDetector saves 
resources, is objective and reproducible, and performs as well as human experts. RootDetector furthermore pro-
vides not only root pixel estimations but also root length data, which is the most commonly used metric in root 
ecological research and is not regularly delivered by existing CNNs. RootDetector is supplied as readily usable 
code on GitHub, enabling easy use by ecologists without the need of advanced programming skills. Transfer to 
other ecosystems or technical setups of the minirhizotrons will require re-training of the algorithm, but this is 
an initial and one-time investment which likely will pay off already after around 70 images, i.e. during common 
study length.Particularly coupled with automated minirhizotrons, this tool for automatic analysis of minirhi-
zotron images will allow for unprecedented detail and comprehensiveness in studies of root growth dynamics, 
thereby answering globally important ecological and biogeochemical questions.

Data availability
GitHub repository accessible under https:// github. com/ ExPlE coGre ifswa ld/ RootD etect or.
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