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Abstract

Automated monitoring technologies can increase the efficiency of ecological data

collection and support data-driven conservation. Camera traps coupled with infra-

red light barriers can be used to monitor temperate-zone bat assemblages at under-

ground hibernacula, where thousands of individuals of multiple species can

aggregate in winter. However, the broad-scale adoption of such photo-monitoring

techniques is limited by the time-consuming bottleneck of manual image proces-

sing. Here, we present BatNet, an open-source, deep learning-based tool for auto-

mated identification of 13 European bat species from camera trap images. BatNet

includes a user-friendly graphical interface, where it can be retrained to identify new

bat species or to create site-specific models to improve detection accuracy at new

sites. Model accuracy was evaluated on images from both trained and untrained

sites, and in an ecological context, where community- and species-level metrics

(species diversity, relative abundance, and species-level activity patterns) were com-

pared between human experts and BatNet. At trained sites, model performance was

high across all species (F1-score: 0.98–1). At untrained sites, overall classification

accuracy remained high (96.7–98.2%), when camera placement was comparable to

the training images (<3 m from the entrance; <45° angle relative to the opening).

For atypical camera placements (>3 m or >45° angle), retraining the detector model

with 500 site-specific annotations achieved an accuracy of over 95% at all sites. In

the ecological case study, all investigated metrics were nearly identical between

human experts and BatNet. Finally, we exemplify the ability to retrain BatNet to

identify a new bat species, achieving an F1-score of 0.99 while maintaining high

classification accuracy for all original species. BatNet can be implemented directly to

scale up the deployment of camera traps in Europe and enhance bat population

monitoring. Moreover, the pretrained model can serve as a baseline for transfer

learning to automatize the image-based identification of bat species worldwide.

Introduction

Effective conservation depends on the ability to quantify

biodiversity and monitor species-level population dynam-

ics in threatened ecosystems (Primack, 1995). Bats are an

integral part of nearly all terrestrial ecosystems, where

they provide essential ecosystem services and act as eco-

logical indicators of general ecosystem health (Kunz

et al., 2011). Despite their essential ecological role, bat

populations across the globe face multiple threats, such as

the loss and degradation of suitable roosting and foraging

sites, the introduction of new infectious diseases, and

global warming coupled with increasingly unpredictable

climatic conditions (Frick et al., 2020). These effects are

especially problematic for bats, which exhibit slow life

strategies, and thus, their populations may require

decades to recover from individual mortality events

(Fleischer et al., 2017). Therefore, the need for accurate
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estimates of population trends and a fundamental under-

standing of how these effects are changing bat behavior

and life history has never been more pressing.

One of the primary techniques used for monitoring

temperate-zone bat populations is visually counting bats

at their winter hibernacula. Hibernation sites are attrac-

tive for monitoring as they are used by individuals of

multiple species and by individuals from multiple sum-

mer maternity colonies (Dekeukeleire et al., 2016). How-

ever, as bats are small and many prefer to hibernate in

deep crevices, there can be large discrepancies between

winter hibernation counts and the actual population sizes

(Battersby, 2008), and some species may be entirely

missed by these visual surveys (e.g., Toffoli &

Calvini, 2021).

More accurately monitoring bat activity and population

dynamics at hibernacula is possible with the combination

of infrared light barriers and custom-made camera traps

(Krivek et al., 2023). These camera traps consist of a mir-

rorless digital camera and a white flash, which provides

high image quality (Fig. 1A) and thus allows reliable

species-level identification (Fig. 1B–D). Moreover, bats do

not change their behavior in response to the fast, white

flash of such camera traps (1/5500 s, 1/16 power), making

these photo-monitoring systems suitable as a minimally

invasive method for bat monitoring (Krivek et al., 2022).

These camera traps can either be installed on the inner

side of the light barrier and be triggered by each bat

entering the hibernaculum (i.e., ‘entry’ camera), and/or

on the outer side and be triggered by each bat leaving the

hibernaculum (i.e., ‘exit’ camera). In this study, we

focused on the use of entry cameras to describe ecological

metrics, such as species diversity, relative abundance of

species and species-level activity patterns at hibernation

sites. To obtain these metrics, thus far, the species of the

bat that triggered the camera trap had to be manually

identified, which is a time-consuming task that requires

extensive experience with the subtle morphological differ-

ences between species. Given that a site with around 600

hibernating bats may yield up to 30 000 camera trap

images every year (Krivek et al., 2023), manual image

analysis represents a substantial hurdle for large-scale

monitoring projects. Although deep learning-based species

identification from camera trap images is now common-

place for many terrestrial mammals (e.g., Norouzzadeh

et al., 2018; Tabak et al., 2019) and several automated

species identification tools have been developed for bats

from acoustic recordings (see examples in Rydell

et al., 2017), such resources do not exist for identifying

bat species from camera trap images. While manual vali-

dation of some identifications (e.g., with low confidence

or of rare species) should be performed prior to ecologi-

cal inference, such automated solutions can nevertheless

considerably speed up the identification process. Here, we

present BatNet, an open-source, deep learning-based tool

for automated bat species identification from camera trap

images. This tool was developed to identify 13 bat species

or species-complexes (i.e., similar species within a genus

that cannot be reliably distinguished based on the mor-

phological characteristics visible on the camera trap

images), encompassing all species commonly observed at

hibernacula in Northwestern Europe. BatNet consists of

three main stages: a detector that localizes all bats in an

image, a segmentation network that removes the back-

ground around the detected bats and a classifier that uses

the image crops for species identification. To train the

baseline model, we used an imbalanced training dataset of

16 333 camera trap images of 13 bat species from 32

hibernation sites (range: 375–3576 images; see Table S1

for sample sizes per species). For new locations and spe-

cies, both the detector and the classifier stages can be

retrained from within the user-friendly, coding-free

graphical interface of BatNet. Here, the detector of the

baseline model was retrained to create site-specific models

for six new hibernation sites, and the classifier was

retrained to identify one additional bat species. Model

performance was evaluated in four ways: (1) accuracy on

test images of all 13 species from trained sites (N = 2163)

using the baseline model; (2) accuracy on images from

six new, untrained sites (N = 49 873) using the baseline

and the site-specific models; (3) in an ecological case

study, where community- and species-level ecological

metrics (species diversity, relative abundance, and species-

level activity patterns) were compared between human

and BatNet using 5-month datasets from three sites

(N = 54 748), encompassing the entire hibernation-entry

phase; and (4) accuracy on test images of the original 13

species (N = 2163) supplemented by images of a newly

added species (N = 1143) using the retrained classifier

model. BatNet is freely available under a CC BY-NC-SA

4.0 license (https://github.com/GabiK-bat/BatNet).

Materials and Methods

Training data and model architecture

In total 18 496 images of bats were collected at the entrance

of 32 hibernacula across Germany using custom-built cam-

era traps (Fig. 1) that were triggered by infrared light bar-

riers (ChiroTEC, Lohra). For each image, two human

experts classified the bat to species level (Barbastella barbas-

tellus, Eptesicus serotinus, Myotis bechsteinii, M. dasycneme,

M. daubentonii, M. emarginatus, M. nattereri and Nyctalus

noctula) or to species complex (the whiskered bats: Myotis

alcathoe, M. brandtii, M. mystacinus; the mouse-eared bats:

Myotis blythii, M. myotis; the long-eared bats: Plecotus
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auritus, P. austriacus; the pipistrelles: Pipistrellus pipistrellus,

Pi. pygmaeus; and the horseshoe bats: Rhinolophus ferrume-

quinum, R. hipposideros). The location and species identity

of each bat in all images were annotated with bounding

boxes using the LabelMe software (Torralba et al., 2010),

and these annotations were used to train an object detector

and classifier networks. Using the same annotation tool, a

random subset of 3685 images were subsequently manually

traced to crop the bat out from the background, which

were used to train a segmentation network. From the total

dataset, 90% (N = 16 333) was used to train the detector

and the classifier, and 10% (N = 2163) was used for testing

final model performance (see Table S1 for sample sizes per

species). All networks were trained for 30 epochs with a

learning rate of 0.05 and a stochastic gradient descent

optimizer.

BatNet is composed of three distinct stages: detection,

segmentation, and species classification (Figure S1). First,

a Faster-R-CNN object detector (Ren et al., 2015) with a

ResNet50 (He et al., 2016) Feature Pyramid Network (Lin

et al., 2017) places a bounding box around each bat

detected in an image. Localizing classifications within an

image rather than classifying the image as a whole was

preferred, as this approach decreases the noise resulting

from the image background and provides the ability to

count and identify all animals in an image (Schneider

et al., 2020). Second, the image is cropped to the bound-

ing box and a U-Net segmentation network (Ronneberger

et al., 2015) with a MobileNet V3 backbone (Howard

et al., 2019) removes the background. Because deep learn-

ing models have the tendency to learn static background

features (Miao et al., 2019), this segmentation step

Figure 1. (A) The camera trap setup used in this study for bat monitoring at hibernation sites, composed of a mirrorless digital camera and an

external white flash. (B–D) Camera trap images of bats (insets show enhanced image crops of the captured bats) entering three of the

investigated hibernacula in Germany: (B) Batzbach (Plecotus auritus), (C) Comthurey (Myotis nattereri) and (D) Eldena (Myotis daubentonii). The

entrances of these sites were monitored with infrared light barriers, which automatically triggered the camera trap when the bat entered the

hibernaculum.
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ensures that the actual bat characteristics are used for

classification in the next step and not the background fea-

tures that remain within the bounding box. Finally, the

segmented crop of the image is classified by an ensemble

of three MobileNet V3 networks (Howard et al., 2019).

This configuration was selected, because ensemble net-

works are less prone to make highly confident yet incor-

rect predictions than a single neural network (Li &

Hoiem, 2020). Each of the three networks classifies the

original and the flipped version of the image crop, and

the six resulting predictions are then averaged. This tech-

nique, called test-time augmentation, is known to

improve the performance of image classification models

(e.g., Kim et al., 2020). The final output of the classifier

is composed of the predicted identification for each

detected bat and a confidence value between 0 and 1 for

each prediction, which indicates the level of certainty in

the species identification.

Since transfer learning is an established technique to

improve neural network performance and reduce training

time (Yosinski et al., 2014), the object detector was pre-

trained on the COCO (Common Objects in Context)

dataset (Lin et al., 2014), and all other networks were pre-

trained on ImageNet (Russakovsky et al., 2015). In addi-

tion, the training dataset was augmented with random

horizontal flips of the original camera trap images, with

image crops of bats from these modified camera trap

images, and with empty images (i.e., only background

without any bats). Since outlier exposure (i.e., training

with natural images that do not contain the target

objects) is commonly used to improve detection perfor-

mance at untrained background locations (Hendrycks

et al., 2018), random images from the ImageNet dataset

(Russakovsky et al., 2015) were also included in the train-

ing dataset of the baseline model as negative examples

(i.e., images of anything else than a bat).

Using BatNet

Camera trap images can either be processed in a fully

automated way using the command-line interface (‘batch

mode’, no limit to the number of images within the pro-

cessed folder), or in a semi-automated workflow using a

browser-based graphical user interface, which supports

manual validation of the output (‘manual mode’, opti-

mized to process around 1000 locally stored images at a

time). Both approaches result in an output that includes

species labels with confidence levels for each detected bat,

the coordinates of the corresponding bounding boxes,

metadata from the images (e.g., file name, timestamp)

and flags to denote images where the confidence level of

any identifications is below a user-defined threshold, or

where multiple bats were detected in an image or where

no bats were detected (i.e., empty images). Using these

flags, users can quickly sort and filter images that require

manual review, which is further supported by the possi-

bility to zoom in and change the brightness of the images.

Although empty images as a result of false triggers are

uncommon in this photo-monitoring system due to high

light barrier accuracy (Krivek et al., 2023), the camera

traps can be set to trigger at regular intervals (i.e., time

lapse mode) when the light barrier is blocked for an

extended period (e.g., by a spiderweb or a predator sitting

in the hibernaculum entrance), which can result in large

numbers of empty images. Flagging these empty images

drastically reduces the time required for filtering and

allows users to focus on images containing the species of

interest (Beery et al., 2019).

Within the BatNet graphical user interface, both the

object detector and the species classifier can be retrained

on new images in a coding-free environment. In both

cases, new images can either be manually annotated with

bounding boxes and species identifications in the graphi-

cal user interface, or the baseline model output can be

corrected within the user interface (i.e., possibility for

adding, removing, and modifying both bounding boxes

and species labels) and used directly. All training parame-

ters (i.e., species of interest, number of epochs, learning

rate) are adjustable, and the resulting retrained model can

be selected from a drop-down menu within the user

interface. A step-by-step guide for BatNet image proces-

sing and retraining is provided on GitHub (https://

github.com/GabiK-bat/BatNet).

Evaluation on test data

As an initial evaluation, we quantified BatNet perfor-

mance on the 2163 test images that were withheld from

the training dataset but were taken at trained background

locations. To evaluate the performance of the object

detector, we compared the intersection between the pre-

dicted and the manually created bounding boxes around

each labeled bat. We considered predictions as true posi-

tive above 0.4 Intersection over Union (IoU; 0 – no over-

lap, 1 – perfect overlap) and false negative if the overlap

was below the threshold. Predicted bounding boxes with-

out any bats were considered false positive errors. To

evaluate classifier performance, identifications were con-

sidered true positive when the human and predicted clas-

sifications were the same, false negative when the species

of interest was incorrectly classified as a different species,

and false positive when a different species was incorrectly

classified as the species of interest.

The object detection and classifier performance were

quantified by three common accuracy metrics: precision

(i.e., ratio of correctly predicted positive observations to
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the total predicted positive observations; high precision

minimizes false positive errors), recall (i.e., ratio of cor-

rectly predicted positive observations to all observations

in the actual class; high recall minimizes false negative

errors) and F1-score (i.e., weighted average of precision

and recall; used for evaluation when both false negative

and false positive errors are equally undesirable).

Untrained sites and model retraining

Next, we evaluated the baseline model performance on

49 873 images from six untrained sites that were spatially

and temporally independent from the training data (for

example images see Figure S2). Untrained sites were cate-

gorized based on their similarity to the training dataset

and included three typical sites, where the camera angle

and distance from the entrance were similar to the train-

ing images (i.e., camera installed <3 m from the entrance

and at a <45° angle relative to the opening), one with

atypical camera distance (i.e., >3 m from the entrance),

and two sites with atypical camera angle (i.e., >45° angle

relative to the opening). Images from the untrained sites

were classified by one human expert and annotated with

bounding boxes and species labels.

Besides using the baseline object detector model, a total

of 24 site-specific detector models were trained for the six

sites (10 epochs, learning rate 0.001) using 25, 50, 100 or

500 site-specific annotations (i.e., bounding boxes without

species labels). As for the baseline detector model, F1-

scores were calculated for each of these detector models

to evaluate their performance.

Ecological case study

We explored the utility of BatNet for describing

community- and species-level ecological metrics using a

continuous 5-month camera trap dataset comprising the

complete hibernation-entry phase (01 August–01 January)

from one trained (Eldena) and two untrained locations

(Batzbach, Comthurey). In these datasets (N = 54 748

images), the human expert only identified the species of

the bat that triggered the camera trap without considering

the bats flying in the background or annotating them with

bounding boxes. This represents the typical manual identi-

fication procedure, where the primary goal is to quantify

the number of bats per species that entered the hibernacu-

lum. In terms of the automated identifications, BatNet pre-

dictions were based on the baseline model for images from

the trained site (Eldena) and from the untrained site with

typical camera angle (Batzbach). For the untrained site

with atypical camera angle (Comthurey), images were iden-

tified using a site-specific model that was trained with 500

site-specific bounding boxes of bats.

In addition to the overall accuracy as described above,

we focused on three ecological metrics: species diversity

(i.e., the list of species detected at a site), relative abun-

dance (i.e., the percentage of identifications attributed to

each species at a site) and species-level activity patterns of

bats throughout their hibernation-entry phase (i.e., the

dates at which the total number of identifications per spe-

cies within a site had reached the 5th, 25th, 50th, 75th

and 95th percentiles). For these applications, different

confidence thresholds can be applied to the output of

BatNet to optimize the balance between high accuracy

(i.e., F1-score) and the proportion of identifications that

are retained in the final output (i.e., above confidence

threshold). Instead of using the test data (i.e., images

withheld from the baseline training), we used the data

from the ecological case study to generate an optimal

confidence threshold for each ecological application,

because these were considered more informative for real-

world applications. To define the optimal thresholds for

each application, we evaluated the proportion of false

positive errors (i.e., errors retained in the final output)

versus the false negative errors and the identifications

below the selected threshold (i.e., identifications not

retained in the final output) across all confidence thresh-

olds (Fig. 2). Based on these results, species diversity at a

hibernaculum was determined using a 95% confidence

threshold, which minimizes the proportion of false posi-

tive errors while still retaining each species, including the

rare ones. To eliminate the small number of remaining

false positives, we manually reviewed all identifications of

species that constitute less than 1% of the total dataset

based on the BatNet output. To estimate the relative

abundance of each species and describe species-specific

activity patterns, we selected a 70% confidence threshold

and discarded all identifications below this threshold. At

this threshold, the proportion of false-positive errors is

strongly reduced, but the proportion of false-negative

errors and identifications that are discarded as below the

threshold has not started to exponentially increase yet

(Fig. 2).

To describe overall accuracy in the ecological case study,

we generated confusion matrices using a 70% confidence

threshold for the BatNet output. As BatNet provides pre-

dictions for all bats detected in an image, including the

ones in the background, some images yielded multiple bat

identifications. Since true species labels were missing for

the bats that were not considered to have triggered the

camera trap by the human evaluator, BatNet predictions

for these images were manually corrected so that only the

bat that triggered the camera trap was retained for the

accuracy assessment (if the associated confidence value

exceeded the 70% confidence threshold). To correct for

human error, if there was a mismatch between the human
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label and the prediction above 70% confidence threshold

(N = 243 out of 54 748 images), two additional human

experts manually reviewed the identifications. Based on this

consensus scoring, the original human identification was

either considered correct (i.e., BatNet prediction was incor-

rect, 76.5%), or incorrect (23.5%), and thus, the original

human label was corrected.

For the investigated ecological metrics, all BatNet pre-

dictions above the selected confidence threshold were

considered, including cases where multiple bats per image

met these criteria. To investigate the ability of BatNet to

accurately describe species diversity from a camera trap

dataset, we compared the list of species identified by Bat-

Net using a 95% confidence threshold with the species

that were truly present at the site based on human identi-

fications. For relative abundance, we compared the per-

centage of the dataset assigned to each species by human

identification (i.e., the bat that triggered the image) and

by BatNet using a 70% confidence threshold (i.e., includ-

ing multiple identifications per image when they were

above the threshold). Finally, we compared the activity

patterns of the four most common bat species at the

investigated sites (Myotis nattereri, M. daubentonii, M.

myotis and P. auritus) between a human expert and Bat-

Net. Specifically, we quantified the differences in the

species-level activity patterns between the two datasets by

calculating the dates at which certain percentiles (5, 25,

50, 75 and 95%) of the total number of identifications

had been reached per species and per site. For each per-

centile, differences were quantified as the number of days

between the date of the percentile obtained by the human

expert and BatNet. Additionally, we used Lin’s concor-

dance correlation coefficients (CCC) to quantify the

agreement between the human expert and BatNet regard-

ing the number of identifications per species per night

throughout the hibernation-entry phase.

Classifier retraining: adding new species

We explored the feasibility of adding a new species to the

classifier, while maintaining the classification accuracy for

the original 13 species. The baseline classifier was

retrained with 58 annotations of a new species (Miniop-

terus schreibersii) and 40–50 annotations per species origi-

nally included in the baseline training. The classifier was

retrained for 10 epochs at a learning rate of 0.001. This

comparatively small number of epochs and low learning

rate were selected to lead to smaller weight updates,

which is needed to minimize forgetting of the original

species classes (i.e., catastrophic forgetting). The

Figure 2. Proportion of false positive errors (i.e., errors retained in the final output; blue dashed lines) versus the proportion of false negative

errors and the identifications below threshold (i.e., identifications not retained in the final output; red solid lines) across all confidence thresholds

(0–100%), when using the baseline model of BatNet to process camera trap images of bats collected at three hibernation sites in Germany. For

the visualization, only those species were considered that had at least 100 identifications within a site in the BatNet output, represented by the

blue and red lines. Vertical dashed black lines indicate the confidence thresholds used for describing relative abundance and activity patterns of

species (70%) and species diversity (95%), when using 5-month camera trap datasets that encompass the entire hibernation-entry phase of bats

at these sites.
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performance of the retrained model was evaluated on

1143 test images of Mi. schreibersii, in addition to the

original 2163 test images of the other 13 bat species.

Results

Test dataset evaluation

Out of the 2163 BatNet identifications on test images

from trained background locations, 15 were incorrect (12

misidentifications and 3 missed detections), yielding an

overall classification accuracy of 99.3% (CI 98.9–99.6%).

Precision, recall and F1-score ranged from 0.97 to 1.00

for all 13 bat species (for confusion matrix see Figure S3).

Untrained sites

Object detection performance of the baseline model,

quantified using the F1-score, ranged from 0.95 to 1.00 at

five of six untrained locations. It was noticeably lower at

one site (0.38 in Calw; Fig. 3), where the camera trap was

installed further from the entrance than usual (>3 m).

After retraining the baseline detector using 500 site-

specific annotations (i.e., bounding boxes without species

labels) for each of the six previously untrained sites, the

F1-score of the site-specific object detection model

increased to 0.94 in Calw and to over 0.98 at the other

five previously untrained locations.

Classification accuracy of the baseline model varied

depending on the camera angle and the distance between

the camera and the entrance (Table 1; example camera

trap images: Figure S2, confusion matrices: Figure S4).

Classification accuracy was high (96.7–98.2%) at

untrained locations with typical backgrounds (i.e., similar

camera angle and distance to the training dataset). It was

markedly lower and more variable at sites with atypical

camera placement (17.8, 86.3 and 90.8%; Table 1), pre-

sumably because many bats were not detected or

Figure 3. The object detection performance of BatNet on camera trap images of bats from six untrained hibernacula from Germany using the

baseline model (i.e., no retraining) and using site-specific models after retraining the baseline detection model with a varying number of site-

specific annotations (25, 50, 100 or 500 bounding boxes without species labels). The performance was quantified by the F1-score without using a

confidence threshold. At three of the sites (Batzbach, Gemeinezeche, Silberberg), the camera angle and distance from the entrance were similar

to the training images (i.e., camera installed <3 m from the entrance and at a <45° angle relative to the opening). In Calw, the camera distance

was atypical (i.e., >3 m from the entrance), and in Comthurey and Grube Emma, the camera angle was atypical (i.e., >45° angle relative to the

opening).
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incorrectly segmented. Notably, after retraining the detec-

tor with 500 site-specific annotations for each of the six

previously untrained sites, classification accuracy

improved to over 95% at all sites (Table 1; 95.5–99.9%).

Ecological case study

Species diversity

BatNet detected all species that were identified by human

experts at all three sites (Batzbach, Comthurey, Eldena;

Table 2). Across the three evaluated datasets

(N = 54 748), manual review for the species that consti-

tuted less than 1% of the total dataset was required for

62 images (0.1% of total), resulting in the confirmation

of three true positive species (N = 60) and the detection

of one false positive species (N = 2).

Relative species abundance

To describe relative species abundance, we used a 70%

confidence threshold that maintained high precision and

recall for all species (Fig. 4) and retained over 90% of the

dataset at all sites (Eldena 90.1%, Batzbach 93.7%,

Comthurey 92.1% of images above the confidence thresh-

old). The difference in the relative abundance of all spe-

cies was within 1.1% at all three sites when comparing

BatNet predictions with 70% confidence threshold to

human identifications (Table 3).

Species-specific activity patterns

Species-specific activity patterns of the four investigated

species (M. daubentonii, M. myotis, M. nattereri and P.

auritus) across a 5-month period were nearly identical

between the human and BatNet identifications (see

Fig. 5A for one example per species, all other combina-

tions in Figure S5A). When the activity patterns were

compared based on the percentiles (5, 25, 50, 75 and

95%) obtained from the human and BatNet outputs, the

difference between the two methods was always less than

3 days across all percentiles per species and per site. Only

one exception occurred, when a 6-day discrepancy was

observed between the 95th percentile obtained by human

vs. BatNet (Myotis daubentonii in Comthurey;

Figure S5A).

The overall sample sizes between the human and Bat-

Net datasets differed due to classifications being discarded

below threshold (reduces the BatNet sample size), and the

classification of multiple bats per image where humans

only scored a single bat per image (increases the BatNet

Table 1. BatNet classification accuracy of bat species from camera trap images with 95% confidence interval at six untrained background loca-

tions from Germany, using the baseline model and the site-specific detector models retrained with 500 site-specific annotations (r500).

Site category Site Nimages Accuracy (95% CI) baseline Accuracy (95% CI) r500

Typical Batzbach 39 430 98.2 (98.1–98.3) 98.1 (97.9–98.2)

Gemeinezeche 997 97.6 (96.4–98.5) 99.9 (99.4–100)

Silberberg 1000 96.7 (95.4–97.7) 99.8 (99.3–100)

Atypical angle Comthurey 6472 90.8 (90.1–91.5) 97.3 (96.9–97.7)

Grube Emma 979 86.3 (84–88.4) 97.5 (96.3–98.3)

Atypical distance Calw 995 17.8 (15.5–20.3) 95.5 (94–96.7)

N indicates the number of images used for evaluation. Hibernation sites were categorized based on their similarity to the training dataset in terms

of the camera angle and distance from the entrance. In a typical monitoring setup, the camera was installed <3 m from the entrance and at a

<45° angle relative to the opening. The setup was considered atypical when the camera was installed more than 3 m away from the entrance or

it was positioned at a >45° angle relative to the opening.

Table 2. Bat species diversity (i.e., species present at the site) based

on BatNet predictions of species identity with 95% confidence thresh-

old and human expert species identifications at three hibernation sites

in Germany.

Site Species NBatNet Nhuman

Batzbach Myotis nattereri 13 304 (43.2%) 19 416

Myotis bechsteinii 11 077 (36%) 11 901

Plecotus sp. 2202 (7.16%) 2191

Myotis daubentonii 1827 (5.94%) 2666

Myotis myotis 1470 (4.78%) 1653

Myotis brandtii 879 (2.86%) 1363

Myotis dasycneme 2 (0.01%) 0

Comthurey Myotis nattereri 2836 (45.7%) 3019

Myotis myotis 2239 (36.1%) 2263

Myotis daubentonii 1024 (16.5%) 1071

Barbastella barbastellus 73 (1.18%) 76

Plecotus sp. 36 (0.58%) 37

Eldena Myotis nattereri 5542 (72.4%) 6403

Myotis daubentonii 1743 (22.8%) 2192

Plecotus sp. 345 (4.51%) 375

Myotis myotis 19 (0.25%) 71

Myotis brandtii 5 (0.07%) 51

The number of identifications (N) and the proportion of all identifica-

tions within the site that it represents (%) are provided for each spe-

cies identified by BatNet. Bold text indicates that the total proportion

of predicted BatNet identifications for that species was below the 1%

threshold, which was used to recommend manual review of these

identifications.
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sample size). Despite these differences, we observed high

concordance between human and BatNet classifications

per species, per day (range: 0.989–0.999; Fig. 5B and

Figure S5B).

New species

After retraining the baseline model with 58 annotations

of Mi. schreibersii, BatNet achieved an F1-score of 0.99

for the new species (Fig. 6). The performance for the

original 13 species remained high (F1-score range: 0.94–
0.99). Overall classification accuracy of the model was

98% (CI 97.3–98.3%). When applying a 70% confidence

threshold, out of the 1413 Mi. schreibersii identifications

196 were below the threshold and only 1 identification

was incorrect (F1-score 1.00; Fig. S6).

Figure 4. Confusion matrix of human species identifications and

BatNet predictions of species identity with 70% confidence threshold

for camera trap images of bats collected at three hibernation sites in

Germany. The confusion matrix shows the distribution of classification

error within a species, where the diagonal represents the number of

accurate classifications and all other cells in the matrix describe the

number of errors (i.e., missed detections or misclassifications). The

color of the cells reflects the number of classifications within each

category, with dark purple cells indicating high numbers and light

blue cells indicating low numbers. Identifications below the

confidence threshold (70%) were summarized according to their true

species label (‘below threshold’). For images when multiple bats were

detected by BatNet, but humans only identified the bat that triggered

the camera trap, additional BatNet identifications were summarized

according to their predicted species label (‘multiple bats’). Precision

refers to the ratio of correctly predicted positive observations to the

total predicted positive observations. Recall indicates the ratio of

correctly predicted positive observations to all observations in the

actual class. F1-score is the weighted average of precision and recall.

Table 3. Relative bat species abundance per site based on BatNet

predictions of species identity with 70% confidence threshold and

human species identifications at three hibernation sites in Germany.

Site Species BatNet % Human %

Batzbach

Nimages = 39 190

Myotis nattereri 48.40 49.50

Myotis bechsteinii 31.40 30.40

Myotis daubentonii 6.67 6.80

Plecotus sp. 5.86 5.59

Myotis myotis 4.32 4.22

Myotis brandtii 3.28 3.48

Myotis dasycneme 0.03 0.00

Barbastella barbastellus <0.01 0.00

Myotis emarginatus <0.01 0.00

Pipistrellus sp. <0.01 0.00

Rhinolophus sp. <0.01 0.00

Comthurey

Nimages = 6466

Myotis nattereri 47.30 46.70

Myotis myotis 34.70 35.00

Myotis daubentonii 16.20 16.60

Barbastella barbastellus 1.24 1.18

Plecotus sp. 0.55 0.57

Eldena

Nimages = 9092

Myotis nattereri 70.90 70.40

Myotis daubentonii 24.30 24.10

Plecotus sp. 3.99 4.12

Myotis myotis 0.64 0.78

Myotis brandtii 0.16 0.56

Myotis emarginatus 0.01 0.00

Pipistrellus sp. 0.01 0.00

The number of images evaluated (N) is indicated for each site.
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Figure 5. (A) Activity patterns of four bat species (Myotis daubentonii, M. myotis, M. nattereri and Plecotus auritus) throughout the hibernation-

entry phase (01 August–01 January), based on species identifications from camera trap images by human experts (orange) and BatNet predictions

with 70% confidence threshold (blue). Camera trap images of bats were collected at three hibernation sites in Germany (Batzbach, Comthurey,

Eldena). To quantify the differences between the activity patterns obtained by human experts vs. BatNet, percentiles were used across the 5-

month datasets (5% and 95% indicated with vertical dashed gray lines, 25% and 75% indicated with vertical solid gray lines, and 50% indicated

with vertical solid black lines). The sample size (N) indicates the total number of identifications across the season. (B) Concordance plots indicate

the agreement between the number of human and BatNet identifications per bat species per night, quantified by the Lin’s CCC (range: 0–1).

These coefficients indicate how far the observed data deviate from the line of perfect concordance (black solid line).
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Discussion

BatNet is a deep learning-based tool for automated iden-

tification of 13 Northwestern European bat species, that

can be retrained to adjust to new sites and to include

new species within a coding-free environment. On test

images from trained locations, the baseline model

achieved high species-level classification accuracy across

all 13 bat species (F1-score range: 0.98–1.00). This is

likely a result of the localization and segmentation steps

implemented before species classification, which were not

used in other image-based identification studies that

found highly variable model performance for different

species (e.g., V�elez et al., 2023; Whytock et al., 2021).

Overall classification accuracy of the baseline model

remained remarkably high at untrained sites (96.7–
98.2%), where the camera angle and distance from the

entrance were comparable to the training images. At

untrained sites with an atypical camera setup, site-specific

models reached an overall classification accuracy above

95% after retraining with 500 annotations. These results

are particularly important, as classification accuracy

Figure 6. Confusion matrix of human species identifications and BatNet predictions of species identity after retraining the baseline model to be

able to identify a new European bat species, Miniopterus schreibersii, in addition to the 13 bat species included in the original training data. The

confusion matrix shows the distribution of classification error within a species, where the diagonal represents the number of accurate

classifications and all other cells in the matrix describe the number of errors (i.e., missed detections or misclassifications). The color of the cells

reflects the number of classifications within each category, with dark purple cells indicating high numbers and light blue cells indicating low

numbers. Precision refers to the ratio of correctly predicted positive observations to the total predicted positive observations. Recall indicates the

ratio of correctly predicted positive observations to all observations in the actual class. F1-score is the weighted average of precision and recall.
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measures derived from trained locations are known to

decrease significantly when applied on images from new

locations (Schneider et al., 2020), despite models being

trained with broad and diverse image datasets. The possi-

bility to retrain the object detector and create site-specific

models with minimal manual annotation effort allows

BatNet to overcome detection difficulties related to new

backgrounds and camera setups. Beyond overall accuracy,

we showed that BatNet yields nearly identical results to

manual identification when used to quantify ecologically

relevant community- and species-level metrics, such as

species diversity, relative abundance, and species-specific

activity patterns. Finally, retraining the baseline model

with an additional, morphologically similar, new bat spe-

cies resulted in high classification accuracy, both for the

new species (F1-score: 0.99), and for all other 13 species

(F1-score: 0.94–0.99). Consequently, BatNet represents an
accurate and highly adaptable platform for automation of

camera trap-based bat monitoring.

Improving the speed and scalability of camera trap-

based monitoring of bats has large implications for bat

conservation, given the improvement this method consti-

tutes over winter hibernation counts for monitoring bat

population dynamics (Krivek et al., 2023). Importantly,

camera traps attached to infrared light barriers can be

used to accurately describe species diversity at a hibernac-

ulum, since they are able to detect all species entering the

site, including those that are often vastly undercounted or

not detected at all during visual surveys (e.g., crevice-

roosting species; Toffoli & Calvini, 2021). Furthermore,

the continuous nature of camera trap-based monitoring

allows us to describe the activity patterns of different spe-

cies. Here this was exemplified using percentiles, where

the 5th and 95th percentiles can serve as a reliable mea-

sure of the start and end of the species-specific activity

during the hibernation-entry phase, and the combination

of the 25th, 50th and 75th percentiles can indicate the

peak activity of different species. These measures can be

used then to compare activity patterns between species,

sites and years in a standardized way. Exploring these

fine-scale changes in bat activity can help describe how

species differ in their hibernation phenology and in terms

of their response to changing weather conditions (cf.

Meier et al., 2022) and contribute to data-driven conser-

vation actions. Finally, the installation of camera traps

with infrared light barriers could be a promising new sur-

vey method to minimize direct contact with bats and

thus, prevent human disturbance and possible introduc-

tion of pathogens to new sites (e.g., WNS, Covid-19; Ble-

hert et al., 2009; Kingston et al., 2021).

Although not investigated here, dual camera trap setups

(i.e., both entry and exit camera) have the potential to

also quantify the absolute abundances of bat species at

hibernacula, which remains difficult for many species

based on traditional monitoring methods (Van der Meij

et al., 2015). By adding up the net number of entries (i.e.,

identifications in the entry camera) and exits (i.e., identi-

fications in the exit camera) per species throughout the

hibernation entry or emergence phases, species-level pop-

ulation sizes could be estimated – an approach similar to

estimating population sizes of mixed species assemblages

using light barrier data (Krivek et al., 2023). For such

applications, BatNet should be implemented in a semi-

automated workflow, where identifications below the con-

fidence threshold of all species are manually reviewed in

the graphical user interface. Additionally, in images with

multiple bats, users must select the identification of the

bat that triggered the camera trap and discard the identi-

fications of bats in the background.

The primary limitation to the implementation of this

photo-monitoring method is that the light barriers that

are used to trigger the camera trap can only monitor

entrance sizes of up to 35 9 300 cm. However, in Ger-

many and many other European countries, the entrances

of many large complex mines and caves, where gains in

monitoring resolution are expected to be greatest, have

already been reduced in size to limit human disturbance

and access (Krivek et al., 2023). Thus, although modifica-

tions to the entrance should always be performed with

caution (e.g., Pugh & Altringham, 2005), the method may

be nevertheless widely applicable to monitor temperate

zone bats that predominantly make use of underground

sites as hibernacula. Finally, it should be noted that if

absolute population estimates are not needed, the system

could also be installed to only cover a portion of the total

entrance, in which case ecological metrics could still be

estimated under the assumption that the bats flying

through the monitored area constitute a random sample

of the total assemblage.

Comparison with other automated species
identification approaches

The accuracy of BatNet, both at trained and untrained

sites, is remarkably high in comparison to other deep

learning solutions for automated, image-based mammal

species identification (e.g., Norouzzadeh et al., 2018;

Tabak et al., 2019). In large part, this may be explained

by several key differences between classic wildlife camera

trap setups and the camera traps triggered by infrared

light barriers here used for bat monitoring. First, these

custom-made camera traps are installed at the entrance of

hibernation sites that are nearly exclusively used by bats.

Therefore, only a relatively narrow species range had to

be considered for training the networks. Second, since

these camera traps are triggered by bats flying through an
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infrared light barrier, their distance from the camera

when the image is taken remains highly consistent. Thus,

the camera can be manually focused at a fixed depth to

ensure that most bats appear sharp on the images. Third,

the environment is often comparatively simple and artifi-

cial, and the bats are only rarely partially occluded, which

contrasts sharply with the complex, vegetation-rich back-

drop of most camera trap studies. This allows for rela-

tively simple segmentation and isolation of the target

from the background. Finally, the use of white flash with

standardized settings provides a fixed amount of white

light in an otherwise completely dark environment. This

results in a better and more standardized image quality

than afforded by infrared flashes and variable lighting

conditions in most traditional wildlife camera setups. The

resulting high image quality allows identification of differ-

ent bat species with high certainty, even though the mor-

phological differences between bat species are far more

subtle than between many other mammals. However, the

image quality also depends on the camera trap angle and

distance from the entrance, as demonstrated here for sev-

eral sites with atypical camera placements (Calw,

Comthurey, Grube Emma). Therefore, for optimal perfor-

mance of BatNet, camera traps should be placed 2–3 m

away from the entrance and ideally in a 45° angle or less

to ensure the best possible image conditions for reliable

species identification.

The performance of BatNet was further improved by

implementing techniques that have not been commonly

used in other automated, image-based species identifica-

tion pipelines (e.g., Norouzzadeh et al., 2018; Tabak

et al., 2019). First, deep learning models can learn the

background features of specific camera trap stations

instead of the focal animals (Miao et al., 2019), which

introduces bias. To ensure that the classifier focuses on

the characteristics of bats instead of the common back-

ground features, we trained a U-Net segmentation net-

work to automatize background removal. While such

approaches may be more difficult to implement for data-

sets with more complex backgrounds, they may neverthe-

less be worthwhile. Second, single neural networks are

more prone to make highly confident yet incorrect pre-

dictions (Li & Hoiem, 2020). Here, we used an ensemble

of three neural networks for classification, where each

network classified the original and the flipped version of

the image (i.e., test-time augmentation). This resulted in

more informative confidence levels that could be used for

discarding low-confidence identifications or filtering them

out for manual review. Exploring the adoption of these

techniques in other deep learning-based species identifica-

tion approaches may similarly improve their performance.

For bats, deep learning-based species identification of

passive acoustic recordings have become increasingly

popular, with several automated classifiers of echolocation

calls being developed (Mac Aodha et al., 2018; Rydell

et al., 2017; Tabak et al., 2022). Such approaches can sim-

ilarly be applied to characterize bat assemblages at under-

ground sites. However, several taxa, most notably the

genus Myotis, remain difficult to identify automatically

(Rydell et al., 2017) due to the high variability in call fea-

tures within species. This is exacerbated when multiple

individuals of several species are calling simultaneously

(Bergmann et al., 2022). Moreover, these issues similarly

affect the manual validation of acoustic recordings,

whereas validation from camera trap images is readily fea-

sible. Despite these shortcomings, acoustic surveys repre-

sent an important method for wide-spread surveillance

and scouting and remain one of the only methods for

monitoring hibernation sites where light barriers cannot

be readily installed and that cannot be visually counted

(e.g., complex sites with many large entrances, rock crev-

ices and piles; Blomberg et al., 2021).

Application in bat monitoring and
conservation

Automated monitoring of hibernacula combined with the

implementation of BatNet has the potential to improve bat

population monitoring worldwide. In Northwestern

Europe, the ability to retrain BatNet for new locations

allows it to be directly applied to vastly scale up camera

trap-based bat monitoring while maintaining high accu-

racy. In other regions, the pretrained model of BatNet can

be used as a baseline for transfer learning to automatize

identification of a broad range of bat species, beyond our

target species list. In adjacent regions this may only require

minor modification of the species list, to add species such

as illustrated here for Mi. schreibersii. In other areas, using

the pretrained model as a baseline is expected to produce

more accurate and stable results with less computational

expense than pretraining on conventional image datasets,

because of the general features the baseline model learned

from a diverse, yet bat-specific camera trap dataset.

Prior to ecological inference for new datasets, model

performance should always be carefully evaluated by a

human using a subsample of manually identified images

to detect any new or hidden biases (Norouzzadeh

et al., 2021; Schneider et al., 2020). In this context, Bat-

Net and its graphical user interface improve the efficiency

of camera trap analysis in several ways. First, it allows

sorting and filtering images based on their flags (i.e.,

empty, with multiple bats, below confidence threshold).

Second, it is possible to manually review the final output

within a user-friendly graphical interface (i.e., add,

remove, or modify bounding boxes around bats and their

species labels). Finally, the user interface also supports the
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coding-free retraining of the baseline detector model for

new sites and of the classifier model for new bat species.

Overall, these aspects can help ecologists establish more

efficient workflows for processing large camera trap data-

sets (V�elez et al., 2023). Given the numerous stressors

affecting global bat populations (Frick et al., 2020) and

the legal obligation to monitor bat populations world-

wide, a greater flow of monitoring data is essential to

support data-driven wildlife management and conserva-

tion decisions. BatNet drastically improves our ability to

achieve these objectives.

Acknowledgements

We would like to thank the entire ChiroTEC team for

providing an identified set of camera trap images and

Karl Kugelschafter for his valuable insights, to Alexander

Seliger and Marvin Marzenberger for helping with the

training data preparation, to Jonas Denck for advice

regarding the development of BatNet, and to Thomas Lil-

ley and two anonymous reviewers for their helpful com-

ments on a previous version of this manuscript. This

work was funded by a joint research project DIG-IT! That

is supported by the European Social Fund (ESF), refer-

ence: ESF/14-BM-A55-0014/19, and the Ministry of Edu-

cation, Science and Culture of Mecklenburg-

Vorpommern, Germany. G. Kr. is an associate member of

the DFG Research training Group ‘Biological Responses

to Novel and Changing Environments’; RTG 2010. Open

Access funding enabled and organized by Projekt DEAL.

Author Contributions

Conception: GKe, JvS, GKr; Training data collection:

GKr, MH, MF, JvS; Training data preparation: GKr, KF,

LT, LM; Human image identification: KF, MH, GKr, JvS;

Software development: AG, UFvL; Evaluation: GKr, JvS;

Writing: GKr, JvS. All authors commented on the manu-

script and gave final approval for publication.

Data Availability Statement

BatNet is freely available under a CC BY-NC-SA 4.0

license at https://github.com/GabiK-bat/BatNet, along

with data and scripts used for evaluation, under a CC

BY-NC-ND 4.0 license.

References

Battersby, J. (2008) Surveillance and monitoring methods for

European bats. Guidelines Produced by the Agreement on

the Conservation of Populations of European Bats

(EUROBATS). p. 85.

Beery, S., Morris, D., Yang, S., Simon, M., Norouzzadeh, A. &

Joshi, N. (2019) Efficient pipeline for automating species ID

in new camera trap projects. Biodiversity Information Science

and Standards, 3, e37222.

Bergmann, A., Burchardt, L.S., Wimmer, B., Kugelschafter, K.,

Gloza-Rausch, F. & Kn€ornschild, M. (2022) The soundscape

of swarming: proof of concept for a noninvasive acoustic

species identification of swarming Myotis bats. Ecology and

Evolution, 12(11), e9439.

Blehert, D.S., Hicks, A.C., Behr, M., Meteyer, C.U., Berlowski-Zier,

B.M., Buckles, E.L. et al. (2009) Bat white-nose syndrome: an

emerging fungal pathogen? Science, 323(5911), 227.

Blomberg, A.S., Vasko, V., Meierhofer, M.B., Johnson, J.S.,

Eeva, T. & Lilley, T.M. (2021) Winter activity of boreal bats.

Mammalian Biology, 101, 609–618.

Dekeukeleire, D., Janssen, R., Haarsma, A.-J., Bosch, T. & Van

Schaik, J. (2016) Swarming behaviour, catchment area and

seasonal movement patterns of the Bechstein’s bats:

implications for conservation. Acta Chiropterologica, 18(2),

349–358.
Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. (2017)

Rare catastrophic events drive population dynamics in a bat

species with negligible senescence. Scientific Reports, 7(1),

1–9.
Frick, W.F., Kingston, T. & Flanders, J. (2020) A review of the

major threats and challenges to global bat conservation.

Annals of the New York Academy of Sciences, 1469(1), 5–25.

He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual

learning for image recognition. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp.

770–778.

Hendrycks, D., Mazeika, M. & Dietterich, T. (2018) Deep

anomaly detection with outlier exposure. arXiv [Preprint]

Arxiv:1812.04606.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan,

M. et al. (2019) Searching for MobileNetV3. Proceedings of

the IEEE International Conference on Computer Vision, pp.

1314–1324.
Kim, I., Kim, Y. & Kim, S. (2020) Learning loss for test-time

augmentation. Advances in Neural Information Processing

Systems, 33, 4163–4174.

Kingston, T., Frick, W., Kading, R., Leopardi, S., Medellin, R.,

Mendenhall, I.H. et al. (2021) IUCN SSC Bat Specialist

Group (BSG) recommended strategy for researchers to

reduce the risk of transmission of SARS-CoV-2 from

humans to bats. Version 2.0, AMP: Assess, Modify, Protect.

Krivek, G., Mahecha, E.P.N., Meier, F., Kerth, G. & van

Schaik, J. (2023) Counting in the dark: estimating

population size and trends of bat assemblages at hibernacula

using infrared light barriers. Animal Conservation. Available

from: https://doi.org/10.1111/acv.12856

Krivek, G., Schulze, B., Poloskei, P.Z., Frankowski, K.,

Mathgen, X., Douwes, A. et al. (2022) Camera traps with

white flash are a minimally invasive method for long-term

772 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Automated Bat Species Identification G. Krivek et al.

 20563485, 2023, 6, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.339 by U

niversitätsbibliothek G
reifsw

ald, W
iley O

nline L
ibrary on [15/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/GabiK-bat/BatNet
https://doi.org/10.1111/acv.12856


bat monitoring. Remote Sensing in Ecology and Conservation,

8(3), 284–296.

Kunz, T.H., Braun de Torrez, E., Bauer, D., Lobova, T. &

Fleming, T.H. (2011) Ecosystem services provided by bats.

Annals of the New York Academy of Sciences, 1223(1), 1–38.
Li, Z. & Hoiem, D. (2020) Improving confidence estimates for

unfamiliar examples. IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 2686–2695.
Lin, T.-Y., Doll�ar, P., Girshick, R., He, K., Hariharan, B. &

Belongie, S. (2017) Feature pyramid networks for object

detection. IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 2117–2125.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,

Ramanan, D. et al. (2014) Microsoft COCO: common

objects in context. European Conference on Computer Vision,

8693, 740–755.
Mac Aodha, O., Gibb, R., Barlow, K.E., Browning, E., Firman,

M., Freeman, R. et al. (2018) Bat detective—deep learning

tools for bat acoustic signal detection. PLoS Computational

Biology, 14(3), e1005995.

Meier, F., Grosche, L., Reusch, C., Runkel, V., van Schaik, J. &

Kerth, G. (2022) Long-term individualized monitoring of

sympatric bat species reveals distinct species-and

demographic differences in hibernation phenology. BMC

Ecology and Evolution, 22(1), 1–12.

Miao, Z., Gaynor, K.M., Wang, J., Liu, Z., Muellerklein, O.,

Norouzzadeh, M.S. et al. (2019) Insights and approaches using

deep learning to classify wildlife. Scientific Reports, 9(1), 1–9.
Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N. &

Clune, J. (2021) A deep active learning system for species

identification and counting in camera trap images. Methods

in Ecology and Evolution, 12(1), 150–161.
Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A.,

Palmer, M.S., Packer, C. et al. (2018) Automatically

identifying, counting, and describing wild animals in

camera-trap images with deep learning. Proceedings of the

National Academy of Sciences of the United States of America,

115(25), E5716–E5725.
Primack, R.B. (1995) Essentials of conservation biology, Vol. 23.

Sunderland: Sinauer Associates.

Pugh, M. & Altringham, J.D. (2005) The effect of gates on

cave entry by swarming bats. Acta Chiropterologica, 7(2),

293–299.
Ren, S., He, K., Girshick, R. & Sun, J. (2015) Faster R-CNN:

towards real-time object detection with region proposal

networks. Advances in Neural Information Processing Systems,

28, 1–9.
Ronneberger, O., Fischer, P. & Brox, T. (2015) U-Net:

convolutional networks for biomedical image segmentation.

International Conference on Medical Image Computing and

Computer-Assisted Intervention, 9351, 234–241.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.

et al. (2015) ImageNet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3), 211–252.

Rydell, J., Nyman, S., Ekl€of, J., Jones, G. & Russo, D. (2017)

Testing the performances of automated identification of bat

echolocation calls: a request for prudence. Ecological

Indicators, 78, 416–420.

Schneider, S., Greenberg, S., Taylor, G.W. & Kremer, S.C.

(2020) Three critical factors affecting automated image

species recognition performance for camera traps. Ecology

and Evolution, 10(7), 3503–3517.
Tabak, M.A., Murray, K.L., Reed, A.M., Lombardi, J.A. & Bay,

K.J. (2022) Automated classification of bat echolocation call

recordings with artificial intelligence. Ecological Informatics,

68, 101526.

Tabak, M.A., Norouzzadeh, M.S., Wolfson, D.W., Sweeney,

S.J., VerCauteren, K.C., Snow, N.P. et al. (2019) Machine

learning to classify animal species in camera trap images:

applications in ecology. Methods in Ecology and Evolution,

10(4), 585–590.

Toffoli, R. & Calvini, M. (2021) Long term trends of

hibernating bats in North-Western Italy. Biologia, 76(2),

633–643.
Torralba, A., Russell, B.C. & Yuen, J. (2010) LabelMe: online

image annotation and applications. Proceedings of the IEEE,

98(8), 1467–1484.

Van der Meij, T., Van Strien, A., Haysom, K., Dekker, J., Russ, J.,

Biala, K. et al. (2015) Return of the bats? A prototype indicator

of trends in European bat populations in underground

hibernacula.Mammalian Biology, 80(3), 170–177.

V�elez, J., McShea, W., Shamon, H., Castiblanco-Camacho, P.J.,

Tabak, M.A., Chalmers, C. et al. (2023) An evaluation of

platforms for processing camera-trap data using artificial

intelligence.Methods in Ecology and Evolution, 14(2), 459–477.

Whytock, R.C., �Swie_zewski, J., Zwerts, J.A., Bara-Słupski, T.,

Koumba Pambo, A.F., Rogala, M. et al. (2021) Robust ecological

analysis of camera trap data labelled by a machine learning

model.Methods in Ecology and Evolution, 12(6), 1080–1092.

Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. (2014) How

transferable are features in deep neural networks? Advances

in Neural Information Processing Systems, 27, 1–9.

Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Table S1. Number of camera trap images per bat species

used for training BatNet and testing the baseline model

performance.

Figure S1. Schematic overview of BatNet, a deep learning-

based tool that automatically identifies bat species from

camera trap images in three steps: bat detection (object

detector), background removal (segmentation network) and

species classification (ensemble of classifiers). The final
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output includes a species prediction with a confidence level.

Optionally, low-confidence predictions can be manually

reviewed in the graphical user interface by human experts.

Figure S2. Example camera trap images from six untrained

locations that were categorized based on their similarity to

the training dataset, including three typical hibernation

sites (camera installed <3 m from the entrance and at a

<45° angle relative to the opening; A – Batzbach, B –
Gemeinezeche, C – Silberberg), two sites with atypical cam-

era angle (>45° angle relative to the opening; D –
Comthurey, E – Grube Emma) and one with atypical cam-

era distance (>3 m from the entrance; F – Calw).

Figure S3. Confusion matrix of human identifications

and BatNet predictions (without confidence threshold)

for test images from trained background locations. The

confusion matrix shows the distribution of classification

error within a species, where the diagonal represents the

number of accurate classifications and all other cells in

the matrix describe the number of errors (i.e., missed

detections or misclassifications). The color of the cells

reflects the number of classifications within each category,

with dark purple cells indicating high numbers and light

blue cells indicating low numbers. Precision refers to the

ratio of correctly predicted positive observations to the

total predicted positive observations. Recall indicates the

ratio of correctly predicted positive observations to all

observations in the actual class. F1-score is the weighted

average of precision and recall.

Figure S4. Confusion matrix of human identifications

and BatNet predictions (without confidence threshold)

for camera trap images from six untrained background

locations using the baseline model and the site-specific

models retrained with 500 local annotations (r500). The

confusion matrix shows the distribution of classification

error within a species, where the diagonal represents the

number of accurate classifications and all other cells in

the matrix describe the number of errors (i.e., missed

detections or misclassifications). The color of the cells

reflects the number of classifications within each category,

with dark purple cells indicating high numbers and light

blue cells indicating low numbers. Precision refers to the

ratio of correctly predicted positive observations to the

total predicted positive observations. Recall indicates the

ratio of correctly predicted positive observations to all

observations in the actual class. F1-score is the weighted

average of precision and recall.

Figure S5. (A) Activity patterns of Myotis daubentonii,

Myotis myotis, Myotis nattereri and Plecotus auritus

throughout the hibernation-entry phase (01 August–01
January), based on species identifications from camera

trap images by human experts (orange) and BatNet pre-

dictions with 70% confidence threshold (blue). Camera

trap images of bats were collected at three hibernation

sites in Germany (Batzbach, Comthurey, Eldena). To

quantify the differences between the activity patterns

obtained by humans versus BatNet, percentiles were used

across the 5-month datasets (5 and 95% indicated with

vertical dashed gray lines, 25 and 75% indicated with ver-

tical solid gray lines, and 50% indicated with vertical solid

black lines). The sample size (N) indicates the total num-

ber of identifications across the season. (B) Concordance

plots indicate the agreement between the number of

human and BatNet identifications per bat species per

night, quantified by the Lin’s concordance correlation

coefficient (CCC, range: 0–1). These coefficients indicate

how far the observed data deviate from the line of perfect

concordance (black solid line).

Figure S6. Confusion matrix of human identifications

and BatNet predictions with 70% confidence threshold

after retraining the baseline model to be able to identify

a new European bat species, Miniopterus schreibersii, in

addition to the 13 bat species included in the original

training data. The confusion matrix shows the distribu-

tion of classification error within a species, where the

diagonal represents the number of accurate classifications

and all other cells in the matrix describe the number of

errors (i.e., missed detections or misclassifications). The

color of the cells reflects the number of classifications

within each category, with dark purple cells indicating

high numbers and light blue cells indicating low num-

bers. Precision refers to the ratio of correctly predicted

positive observations to the total predicted positive

observations. Recall indicates the ratio of correctly pre-

dicted positive observations to all observations in the

actual class. F1-score is the weighted average of precision

and recall.
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