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Abstract: Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired
drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition
(EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the
mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of
the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most
differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and
their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection
of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and
inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors,
and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally
relieving cells of osimertinib reversed transition trends, suggesting that the implementation of
treatment pauses could provide prolonged benefits for patients. Our results provide new insights
into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and
highlight their role as potential biomarkers and therapeutic targets.

Keywords: NSCLC; EMT; EMP-hybrid; miRNA; drug resistance; EGFR-mutated; EGFR inhibitor;
miR-205-5p; ZEB1; extracellular vesicles; cancer stem cells

1. Introduction

Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer, ac-
counting for approximately 85% of all cases and the leading cause of cancer-related deaths
worldwide [1]. In 15–20% of NSCLC cases, mutations located in exon 19 and exon 21 of
the epidermal growth factor receptor (EGFR) lead to constitutive activation, resulting in
poor prognosis and short progression-free survival (PFS). EGFR tyrosine kinase inhibitors
(TKIs) have significantly improved therapeutic options for patients with tumors harboring
EGFR-activating mutations [2–4].

First-generation EGFR-TKIs, such as erlotinib and gefitinib, became the standard-of-
care for NSCLC patients with EGFR-activating mutations and provided significant clinical
benefits, including improved PFS and quality of life. However, their use was associated with
relatively rapid resistance formation [2–4]. Second- and third-generation EGFR-TKIs, like
afatinib and the current standard-of-care osimertinib, were designed to address resistance
mechanisms caused by first-generation EGFR-TKI treatment [2–4]. Despite improved
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outcomes, resistance formation also occurs in response to third-generation EGFR-TKI
treatment in a majority of patients within 9 to 12 months [3,5–8]. Intensive research efforts
have revealed multiple resistance mechanisms, including C797S and T790M gatekeeper
EGFR mutations, MET amplification, PIK3CA mutations, and epithelial-mesenchymal
transition (EMT) [7,9,10].

EMT is a dynamic and reversible genetic program in which epithelial cells lose their
apical-basal polarity and acquire traits typically associated with mesenchymal cells [11–13].
Moreover, EMT is associated with drug resistance, increased metastasis, and the acquisition
of stem-like traits [13–18]. Emerging evidence has revealed that EMT is not a binary model
but instead a hybrid epithelial/mesenchymal state [19–21]. EMT-hybrid cells can exhibit
remarkable plasticity, enabling them to transition between epithelial and mesenchymal
states in response to microenvironmental stimuli [22]. Circulating tumor cells (CTCs) are
often associated with an EMT-hybrid state [23,24], emphasizing the urgency to develop
therapeutics targeting this state.

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by
binding the 3′-untranslated regions (3′-UTR) of mRNA transcripts, resulting in transcript
degradation and/or translational repression [25,26]. There is mounting evidence linking
miRNAs to lung cancer, where they exert crucial roles in cellular transformation, function-
ing as either oncogenes or tumor suppressors [27,28]. Moreover, miRNAs have emerged as
key regulators of EMT by targeting EMT transcription factors (EMT-TFs) belonging to the
SNAIL, TWIST, and ZEB families [29–34], which act as molecular switches for EMT [35–37].
Additionally, miRNAs participate in the regulation of the tumor microenvironment when
secreted in extracellular vesicles (EVs).

EVs are small nanovesicles with a diameter of approximately 30–150 nm that enve-
lope components, such as proteins, nucleic acids, and lipids. EV-derived miRNAs hold
promising potential for diagnostic and prognostic applications [38–42] due to their stability
and availability in sputum and plasma. Although numerous studies have aimed to identify
appropriate miRNA candidates for diagnostic purposes [42–46], miRNAs are not yet diag-
nostically used in a clinical setting. Due to the heterogeneity of the resistance mechanisms,
the understanding of specific miRNA fingerprints may be required to predict accurately
the resistance status of tumors of individual patients.

Here, we identified EMT-related miRNAs contributing to drug resistance in NSCLC
by analyzing NSCLC cell lines adapted to 1st-, 2nd-, and 3rd-generation EGFR-TKIs.

2. Results
2.1. Drug Resistance Was Accompanied by EMT-Induced Phenotypic Changes and
Increased Migration

The NSCLC cell line HCC4006 was adapted to the EGFR-TKIs afatinib (HCCrA),
erlotinib (HCCrE), gefitinib (HCCrG), and osimertinib (HCCrO) by continuous exposure
to increasing drug concentrations. Resistance development was accompanied by signifi-
cant changes in cell morphology, including the downregulation of cell-cell adhesion junc-
tions, remodeling of the actin cytoskeleton, and the emergence of stress fibers (Figure 1a).
Cell transformation was further associated with enhanced cell migration, as indicated
by more rapid wound closure in wound healing assays (Figure 1b,c). Additionally, the
proliferation of resistant cells was comparatively slower than that of the parental cell line
(Supplementary Table S2). The T790M gatekeeper mutation was not the primary resistance
mechanism, as all 1st and 2nd generation EGFR-TKI-resistant sublines were cross-resistant
to the 3rd generation EGFR-TKI osimertinib (Figure 1d).

We hypothesized that the cells had undergone EMT, which is often observed in EGFR-
TKI-resistant cells [16,17]. To confirm this, we analyzed the mRNA and protein levels
of EMT-marker and EMT-TF genes by qPCR, Western blotting, and immunofluorescence
(Figure 2).
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Figure 1. Resistance formation of the EGFR-mutant HCC4006 NSCLC cell line to EGFR-TKIs results 

in increased cell migration and cross-resistance to osimertinib: (a) Immunofluorescence staining of 

the actin cytoskeleton with phalloidin (green) revealed the introduction of actin stress fibers. Nuclei 

were stained with DAPI (blue). Scale bar: 25 µm. (b) Migration of cells was assessed by wound 

healing assay. Images were taken directly after the wound was mechanically introduced and after 

24 h. Cells were fixed and stained with crystal violet solution for better visualization. Scale bar: 100 

µm. (c) The extent of the area covered by the cells was analyzed with ImageJ. Results are displayed 

as means + SD with n = 4. A 1-way ANOVA with Dunnett’s post hoc test was used to test for 

statistically significant differences relative to the parental HCC4006 cell line. ** p < 0.01, *** p < 0.001 

(d) Cells were treated with increasing concentrations of osimertinib for 72 h and then incubated with 

resazurin. Fluorescence was determined at 560 nm excitation and 590 nm emission. Cell viability 

was assessed by normalization to the DMSO-treated control and is shown as the mean ± SD of three 

biological replicates. 

We hypothesized that the cells had undergone EMT, which is often observed in 

EGFR-TKI-resistant cells [16,17]. To confirm this, we analyzed the mRNA and protein 

levels of EMT-marker and EMT-TF genes by qPCR, Western blotting, and 

immunofluorescence (Figure 2). 

Figure 1. Resistance formation of the EGFR-mutant HCC4006 NSCLC cell line to EGFR-TKIs results
in increased cell migration and cross-resistance to osimertinib: (a) Immunofluorescence staining
of the actin cytoskeleton with phalloidin (green) revealed the introduction of actin stress fibers.
Nuclei were stained with DAPI (blue). Scale bar: 25 µm. (b) Migration of cells was assessed by
wound healing assay. Images were taken directly after the wound was mechanically introduced and
after 24 h. Cells were fixed and stained with crystal violet solution for better visualization. Scale
bar: 100 µm. (c) The extent of the area covered by the cells was analyzed with ImageJ. Results are
displayed as means + SD with n = 4. A 1-way ANOVA with Dunnett’s post hoc test was used to
test for statistically significant differences relative to the parental HCC4006 cell line. ∗∗ p < 0.01,
∗∗∗ p < 0.001 (d) Cells were treated with increasing concentrations of osimertinib for 72 h and then
incubated with resazurin. Fluorescence was determined at 560 nm excitation and 590 nm emission.
Cell viability was assessed by normalization to the DMSO-treated control and is shown as the mean
± SD of three biological replicates.
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by Western blot. A representative blot of three biological replicates is shown. (e) 
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areas. Scale bar: 25 µm. 

We observed downregulation of the epithelial marker CDH1 (n = 3, p < 0.001) and a 

significant increase of the mesenchymal markers MMP2, CDH2, and VIM (Figure 2a), 

confirming that all resistant sublines had undergone EMT. The EMT-TFs ZEB1/2 and 

TWIST1 were uniformly upregulated in the resistant cells (n = 3, p < 0.001), but there was 

no change in SNAI2 expression (Figure 2b). SNAI1 expression was increased in HCCrO 

compared to HCC4006 but not in HCCrA, HCCrE, or HCCrG.  

CDH1 CDH2 MMP2 VIM
0.0
0.1
0.2
0.3
0.4
0.5

2
4
6
8

10

10
20
30
40
50

HCC

HCCrA

HCCrE

HCCrG

HCCrO

R
e

la
ti

v
e

 Q
u

a
n

ti
ty

✱✱✱

✱✱✱

✱

✱
✱
✱

✱
✱
✱

✱
✱

✱
✱

SNAI1 SNAI2 TWIST1 ZEB1 ZEB2
0
1
2
3
4
5

10
20
30
40
50

50
100
150
200
250
300
350
400

HCC

HCCrA

HCCrE

HCCrG

HCCrO

R
e

la
ti

v
e

 Q
u

a
n

ti
ty

✱✱✱

✱✱✱
✱✱✱

✱
✱
✱

✱
✱
✱

✱

ALDH1A1 CD24 CD44 PTEN
0.0

0.1

0.2

0.3

0.4

0.5

1
2
3
4
5

5
10
15
20

HCC

HCCrA

HCCrE

HCCrG

HCCrO

R
e

la
ti

v
e

 Q
u

a
n

ti
ty

✱✱✱

✱
✱
✱

✱
✱
✱

✱
✱
✱
✱
✱

Figure 2. Epithelial-mesenchymal transition (EMT) is confirmed in all resistant sublines: (a) Gene
expression of EMT markers, (b) EMT transcription factors, and (c) stem cell markers measured by
qPCR. Results are displayed as the mean + SD of the relative quantity (displayed as ∆CT in Figure S1)
with n ≥ 3. A 1-way ANOVA with Dunnett’s post hoc test was used to test for statistically significant
differences relative to the HCC4006 cell line, * p < 0.05, ** p < 0.01, *** p < 0.001. (d) Protein levels of
the EMT-markers, ZEB1, and tyrosine-protein kinase receptor UFO (AXL) were measured by Western
blot. A representative blot of three biological replicates is shown. (e) Immunofluorescence staining of
cadherin-1 and cadherin-2 in parental and erlotinib-resistant HCC4006; DAPI (blue), actin (green),
cadherin-1/cadherin-2 (red). White squares depict magnified areas. Scale bar: 25 µm.

We observed downregulation of the epithelial marker CDH1 (n = 3, p < 0.001) and
a significant increase of the mesenchymal markers MMP2, CDH2, and VIM (Figure 2a),
confirming that all resistant sublines had undergone EMT. The EMT-TFs ZEB1/2 and
TWIST1 were uniformly upregulated in the resistant cells (n = 3, p < 0.001), but there was
no change in SNAI2 expression (Figure 2b). SNAI1 expression was increased in HCCrO
compared to HCC4006 but not in HCCrA, HCCrE, or HCCrG.
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We also analyzed the expression of cancer stem cell markers ALDH1A1, CD24, and
CD44, which are often associated with EMT induction [47–51] (Figure 2c). However, there
was no distinct expression pattern that would classify the resistant cells as cancer stem cells.
CD44 expression was significantly lower (>27-fold, p < 0.001) in the resistant cells, and CD24
expression remained mostly unchanged except for HCCrA. ALDH1A1 was overexpressed
in HCCrE (23-fold, p < 0.001) but downregulated in HCCrG and HCCrO cells (>42-fold,
p < 0.01). Moreover, transcriptional repression of tumor suppressor and EMT inducer
phosphatase and tensin homolog (PTEN) [52–54] was not observed in the resistant cells.

The analysis of the protein levels of EMT-markers and EMT-TFs by Western blot
and immunofluorescent microscopy (Figure 2d,e), confirmed the downregulation of the
epithelial marker cadherin-1 and the upregulation of the mesenchymal markers cadherin-
2 and vimentin and of the EMT-TF ZEB1. In addition, protein levels of the tyrosine-
protein kinase receptor UFO (AXL), which is often cited as an EMT inducer [55–57], were
upregulated in all resistant cell lines. The replacement of cadherin-1 with cadherin-2 and its
localization in filopodia in erlotinib-resistant cells was confirmed with immunofluorescence
microscopy (Figure 2e).

2.2. Differential Expression of EMT-Associated miRNAs Indicates ZEB1 as the Main Driver of
EMT-Linked Drug Resistance

miRNAs have been shown to play a critical role in the post-transcriptional gene
regulation of EMT. Therefore, we investigated miRNAs that have been implicated in the
regulation of EMT-TFs to identify key EMT-related miRNAs that displayed similar changes
in all resistant cell lines. We also decided to include the epithelial lung cell line 16HBE14o-
as an untransformed control cell line.

We analyzed the abundance of 15 miRNAs that were found to be involved in the
regulation of EMT [29,30,58,59]. The results are displayed as a heatmap (Figure 3a) with an
expression fold change threshold ranging from ≤0.5 to ≥2. To be regarded as a relevant
EMT-related miRNA, the levels of the miRNA needed to (1) exceed the defined threshold,
(2) show a uniform expression in the resistant cell lines, and (3) a ≥2-fold expression
increase compared with the parental and untransformed cell lines. Although most of the
selected miRNAs showed differential expression in at least one resistant subline, only
5 miRNAs (miR-155-5p, miR-183-5p, miR-200c-3p, miR-203a-3p, miR-205-5p) met the
criteria defined above (Figure 3a,b). Interestingly, the analysis of potential targets of these
miRNAs using the miRNA target prediction tools TargetScanHuman 8.0 (Release September
2021) [60] and miRDB [61,62] identified ZEB1 as a key target for miR-183-5p, miR-200c-3p,
miR-203a-3p, and miR-205-5p (Figure 3c).

2.3. EMT-Associated miRNAs Were among the Highest-Ranked EV-Derived miRNAs Revealed by
RNA-Sequencing

Subsequently, we aimed to validate whether the EMT-miRNA profile identified within
the cells could also be verified in EVs released by the cells. We isolated EVs from the
cell culture supernatants of HCC4006, HCCrE, HCCrA, and HCCrO using ultracentrifuga-
tion for the enrichment of the EVs in cell culture supernatants followed by the capturing
of exosomes and other EVs using membrane affinity spin columns. EVs were charac-
terized for size and size distribution by dynamic light scattering and scanning electron
microscopy (Supplementary Figure S2a,b; Supplementary Tables S5 and S6). The ex-
osome marker CD63 was used for the identification of exosomes by Western blotting
(Supplementary Figure S2c).
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Figure 3. Expression of key EMT-regulating miRNAs in 16HBE14o- (untransformed), HCC4006
(NSCLC), and EGFR-TKI resistant HCC4006 sublines: miRNA levels were measured by qPCR and
results (a) were displayed as a heatmap in a range from <0.5 to >2-fold or (b) shown as individual
plots. Results are shown as the mean + SD of the relative quantity with n ≥ 3. A 1-way ANOVA
with Dunnett′s post hoc test was used to test for statistically significant differences relative to the
HCC4006 cell line, * p < 0.05, ** p < 0.01, *** p < 0.001. (c) Binding sites of miRNAs at the ZEB1 3′-UTR
predicted by TargetScanHuman 8.0. Predicted consequential pairing (red) of target region (top) and
miRNA (bottom).
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Next, we sequenced the miRNAs from the affinity-captured EVs of parenteral and
resistant HCC4006 (Figure 4). Erlotinib, afatinib and osimertinib-resistant sublines were
analyzed to represent cells adapted to EGFR-TKIs from each generation. The majority of
the analyzed miRNAs were downregulated in the resistant sublines (52 up, 97 down, fold
change <−2/> 2, FDR < 0.01). We identified 42 miRNAs that were uniformly deregulated in
all resistant sublines (Figure 4c). Target prediction analysis employing the MIENTURNET
web tool [63] using the miRTarBase database [64] identified MYC, ZEB1, DNMT1, and
CDH1 (FDR < 0.002) among the top-ranked targets of these miRNAs. To determine the
miRNAs that displayed the highest level of differential expression compared to the parental
HCC4006 cell line, data from all resistant sublines were pooled into one dataset (Table 1).
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Figure 4. Sequencing of EV-derived miRNA reveals resistance-induced deregulation: (a) Clustered
heatmap of EV-derived miRNA levels from HCC4006, HCCrO, HCCrE, and HCCrA; the x-axis shows
the individual samples and the y-axis shows the miRNAs. (b) Volcano plot of the most strongly up-
(green) and downregulated (yellow) miRNAs comparing the data from all resistant sublines merged
into one dataset to HCC4006, log2 fold change < −2/> 2, log10 FDR < 2 (omitted shown in grey).
(c) Venn diagram indicating uniformly deregulated miRNAs in the EVs derived from the resistant
sublines, fold change < −2/> 2, FDR < 0.01. (d) Number of interactions between miRNAs and gene
targets predicted by miRTarBase using the MIENTURNET algorithm.
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Out of the ten most downregulated miRNAs detected in EVs, seven exhibited ZEB1/2
as a predicted target, according to TargetScanHuman and miRDB, with nine out of ten
inhibiting at least one EMT-associated gene. Moreover, the miR-200/429 family members
were among the most strongly downregulated miRNAs. Noteworthy, the relative miRNA
levels detected in EVs showed substantial similarities to the cellular miRNA expression
patterns measured by qPCR.

Table 1. The top 10 differentially regulated miRNAs in HCC4006 vs. its EGFR-TKI-adapted sublines.

Gene ID Fold Change FDR p-Value p-Value Up-/Down-
Regulation

hsa-miR-205-5p −151.9 1.37 × 106 5.34 × 108 Down
hsa-miR-200b-3p −87.6 8.51 × 1013 4.07 × 1015 Down
hsa-miR-203a-3p −85.7 8.51 × 1013 3.10 × 1015 Down
hsa-miR-200a-5p −81.0 5.27 × 1013 8.40 × 1016 Down
hsa-miR-655-3p −72.4 7.23 × 105 5.53 × 106 Down
hsa-miR-375-3p −64.9 9.99 × 1012 9.56 × 1014 Down
hsa-miR-432-5p −33.1 5.63 × 1010 7.19 × 1012 Down
hsa-miR-431-3p −31.6 7.96 × 1012 6.35 × 1014 Down

hsa-miR-429 −30.6 3.35 × 108 9.61 × 1010 Down
hsa-miR-2276-3p −28.1 6.74 × 105 4.84 × 106 Down
hsa-miR-99a-5p 133.2 1.99 × 108 4.76 × 1010 Up
hsa-miR-1246 111.0 3.44 × 107 1.15 × 108 Up

hsa-miR-767-5p 93.8 1.13 × 103 1.63 × 104 Up
hsa-miR-1290 89.5 6.71 × 106 3.32 × 107 Up
hsa-miR-4508 70.6 1.41 × 109 2.48 × 1011 Up
hsa-miR-9901 63.2 2.00 × 109 3.83 × 1011 Up
hsa-miR-4497 27.8 9.06 × 104 1.24 × 104 Up
hsa-miR-4455 25.6 7.32 × 104 9.58 × 105 Up

hsa-miR-99a-3p 25.1 6.96 × 105 5.22 × 106 Up
hsa-miR-3182 25.0 1.45 × 1010 1.62 × 1012 Up

2.4. Transfection of Erlotinib-Adapted HCC4006 (HCCrE) Cells with a miR-205-5p Mimic Partly
Reversed EMT

To investigate what effect the reversal of changes in the levels of EMT-associated
miRNAs has on the resistant cells, HCCrE, which displayed the lowest miR-205-5p levels,
were left untreated (Control) or transfected with either a miR-205-5p mimic (Mimic) or a
negative control siRNA (NC). Transfection of 10 nM miR-205-5p mimic led to a 410-fold
increase (n = 3, p < 0.001) of ectopic miRNA expression compared with the untreated and
mock-transfected cells (Figure 5a). This was still well below the miR-205-5p expression of
the parental HCC4006 cells, which was 3000-fold higher than in the untreated HCCrE cells.
Reintroduction of the miRNA partly reversed EMT by significantly reducing the expression
of ZEB1 (2-fold, n = 3, p < 0.05) and restoring CDH1 expression (4.3-fold, n = 3, p < 0.05)
(Figure 5b).

Next, we conducted wound healing and transwell migration assays to assess the
effects of the miR-205-5p mimic on cell migration. Wound healing, as well as transwell
migration, were both significantly inhibited by the mimic (n = 4, p < 0.01) (Figure 5c,d).

To gain insights into the progression of EMT during resistance formation to EGFR-TKI,
we employed a stepwise adaptation approach osimertinib, which is currently the standard
of care for NSCLC patients with tumors harboring EGFR-activating mutations. This allowed
us to simulate the development of drug resistance and EMT induction. We analyzed
the expression of EMT-TFs, EMT-markers, and EMT-miRNAs in osimertinib-adapted
HCC4006 cells at seven adaptation levels (6.7, 12, 25, 50, 100, 250, 500 nM) to elucidate how
the expression levels of EMT drivers evolved throughout the adaptation process.
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Figure 5. miR-205-5p transfection inhibits ZEB1, restores CDH1, and inhibits cell migration: Erlotinib-
adapted HCC4006 (HCCrE) were either untreated (Control) or transfected with either 10 nM of a
miR-205-5p mimic (Mimic) or 10 nM of a negative control siRNA (NC) for 48 h. (a) Validation of
miR-205-5p mimic transfection. miR-205-5p expression in transfected and untransfected HCCrE-
and HCC4006 (HCC) cells was measured by qPCR. (b) Gene expression in ZEB1 and CDH1 after
miR-205-5p transfection in HCCrE cells measured by qPCR. (c) Wound healing migration assays after
mimic transfection. Scale bar: 100 µm (d) Transwell migration assays after mimic transfection. Scale
bar: 100 µm. Results are displayed as means + SD with n = 3. A 1-way ANOVA with Dunnett’s post
hoc test was used to test for statistically significant differences relative to the untreated HCCrE cell
line. An unpaired Student’s t-test was used to compare the NC and Mimic group, ns = not significant,
* p < 0.05, ** p < 0.01, *** p < 0.001.
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The adaptation was carried out as a continuous process in two major stages, from
3.5 to 50 nM and from 50 to 500 nM over the course of 278 days (Figure 6). After reaching
the 50 nM adaptation level, the cells were cultivated in osimertinib-free media for one
week to determine whether they would maintain the changes acquired during osimertinib
adaptation. Cells were harvested for genetic characterization at the start of the subsequent
adaptation level. Interestingly, upon continuing the adaptation process after the treatment
pause, the cells displayed enhanced sensitivity against osimertinib, as seen by a substantial
increase in doubling time (150 h).
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Figure 6. Stepwise adaptation of HCC4006 against 3rd generation EGFR-TKI osimertinib:
HCC4006 cells were adapted to grow in increasing concentrations of osimertinib. Concentration was
increased when doubling times plateaued in drug-tolerant cells. Adaptation was done in two major
steps. After reaching 50 nM concentration, cells were cultured in inhibitor-free media for a week,
then returned to osimertinib. Adaptation was completed after cells were able to grow in the presence
of 0.5 µM osimertinib with a constant doubling time of ~60 h.

The expression of EMT-TFs increased over the course of the adaptation, reaching their
maxima at the highest adaptation level (Figure 7a). A significant fold change increase
(TWIST1 = 2.8, ZEB1 = 3.2, ZEB2 = 3.1, n = 3, p < 0.001) was already reached at the lowest
analyzed adaptation level (6.7 nM). Moreover, the expression pattern of EMT-marker genes
displayed a similar trend (Figure 7b). The development of MMP2 and VIM closely mirrored
the expression pattern of ZEB1 and ZEB2, exhibiting an early and substantial increase in
expression (MMP2 = 7.8, VIM = 6, n = 3, p < 0.001). In contrast, the expression of CDH1 and
CDH2 only significantly exceeded the 2-fold threshold at the 100 nM adaptation level.

Our next objective was to verify that the identified EMT-miRNAs drove the induction
of EMT-TFs and the repression of CDH1. As expected, miR-183-5p, miR-203-3p, and
miR-205-5p expression was dramatically reduced (>5-fold) even at the lowest adaptation
level and continuously decreased during the adaptation process (Figure 7c). In contrast,
miR-200c-3p expression first increased 2.5-fold but then sharply declined at the 100 nM
adaptation level. When osimertinib was removed from the culture media for one week
between the adaptation steps, there was a reversal of the observed trends. The expression
of EMT-miRNAs miR-200c-3p, miR-203a-3p, and miR-205-5p increased significantly in the
absence of osimertinib (p < 0.01) compared to the previous adaptation level (25 nM). In
turn, the expression of the EMT-miRNA target genes ZEB1 and ZEB2 declined significantly
(p < 0.001). Removal of osimertinib also had a significant effect on the expression of the
EMT-markers CDH1 (p < 0.05) and MMP2 (p < 0.001). However, TWIST1, CDH2, and VIM
were not significantly affected. There was a close correlation between miR-200c-3p ∆CT
and CDH1 ∆CT (Pearson’s r = 0.8694, n = 24, p < 0.0001), while miR-203-3p and miR-205-5p
showed strong correlations with ZEB1 (r = −0.8521, n = 24, p < 0.0001; r = 0.9028, n = 24,
p < 0.0001) and ZEB2 (r = −0.8157, n = 24, p < 0.0001; r = −0.8872, n = 24, p < 0.0001)
(Figure 7d).
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Figure 7. Cont.
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Figure 7. EMT-miRNA expression is closely correlated with the expression of EMT-TFs and
EMT-markers: Expression of (a) EMT-markers, (b) EMT-TFs, and (c) EMT-miRNAs in HCC4006
grown in increasing concentrations of osimertinib as measured by qPCR. A treatment pause of
1 week was implemented after the 50 nM adaptation level was reached. Cells were harvested for
characterization at the start of the subsequent adaptation level and after the treatment pause was
completed (50 nMi). Results are displayed as the relative quantity as means + SD of three biological
replicates. A 1-way ANOVA with Dunnett’s post hoc test was used to test for statistically significant
differences relative to untreated HCC4006 cells. An unpaired Student’s t-test was used to compare
the 25 nM and 50 nMi adaptation levels in cases of visible trend reversions, * p < 0.05, ** p < 0.01,
*** p < 0.001. (d) Graphical representation of the Pearson correlation of the delta-CT of EMT-miRNAs,
EMT-TFs, and EMT-markers. r = Pearson correlation coefficient.
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3. Discussion

The emergence of drug resistance typically after 9–12 months of treatment limits the
success of osimertinib as a first-line therapeutic for EGFR-mutant NSCLC [5,65–67]. EMT
contributes to drug resistance and is often observed in NSCLC patients with acquired
EGFR-TKI resistance [5,16,65–67]. However, the induction of EMT during treatment and
the role of resistance-induced miRNAs remain poorly understood. Therefore, the objective
of this study was to investigate the role of miRNAs in the initiation and sustenance of EMT
in EGFR-TKI-induced drug resistance.

To accomplish this, we established a cell panel comprising HCC4006 sublines that
were individually adapted to various EGFR-TKIs. We selected EGFR-TKIs that are currently
in use for patient treatment. The resistant sublines uniformly underwent EMT, which was
confirmed by comprehensive EMT-marker and EMT-TFs expression analyses. Transition-
ing from an epithelial to a mesenchymal phenotype in EGFR-TKI resistant sublines was
associated with increased cell mobility and migration, probably as a consequence of the
remodeling of the actin cytoskeleton and the introduction of actin stress fibers. However,
these changes were, in agreement with findings by others [65,68], accompanied by a re-
duced cell doubling time. This demonstrated that the HCC4006 cell line is a reliable in-vitro
model to simulate EGFR-TKI resistance-induced EMT. Furthermore, all cell lines remained
resistant to osimertinib, which indicates that they had not acquired the common T790M
gatekeeper mutation [66,67]. Previous studies have often focused on a single EGFR-TKI,
which may limit their generalisability [69,70]. In addition, concentrating solely on one
specific resistant cell line could lead to confounding results and erroneous conclusions.
Therefore, adopting a broader approach when using in-vitro cell models emulating drug
resistance to identify reoccurring mechanisms is of utmost importance, as shown by this
study in the case of cancer stem cell (CSC) markers. Our findings suggest that the expres-
sion patterns of the common CSC markers ALDH1A1 (high), CD24 (low), and CD44 (high)
did not indicate a CSC phenotype of the resistant sublines. The use of these markers has
been controversial in the literature [48,50,51,71,72], but they are often used due to the lack
of better alternatives. Further research is necessary to discover markers or combinations
thereof that can accurately identify CSCs in in-vitro NSCLC models and patients with
high sensitivity.

Moreover, our cell line panel analysis revealed that TWIST1, ZEB1, and ZEB2 were the
predominant EMT-TFs responsible for maintaining the EMT phenotype in drug-resistant
HCC4006 cells, whereas SNAI2 showed no significant involvement. SNAI1 was not uni-
formly deregulated in all resistant cells and might therefore represent a less universal drug
target than TWIST1 or ZEB1/2. These results support previous findings reported by other
authors [31,37,73–75]. In contrast, the commonly cited miRNA target PTEN [52,54,76–78]
was not deregulated in this cell model. Interestingly, we observed an upregulation of
AXL in the resistant cells, which has previously been proposed as a potential resistance
mechanism [56,79,80].

In our study, we identified EMT-associated miRNAs that were uniformly deregu-
lated in drug-resistant cells. Global miRNA expression was reduced in the resistant cells,
consistent with other reports [81,82]. qPCR analysis and RNA-sequencing revealed that
miR-183-5p, the miR-200/429 family, miR-203a-3p, and miR-205-5p were closely associated
with EMT in drug resistance. These miRNAs and their likely target ZEB1 have previ-
ously been linked to drug resistance [54,83–88]. Additionally, a miRNA target enrichment
analysis identified MYC and DNMT1 as main targets, which have also been proposed as
resistance factors in other studies [89–97]. Furthermore, we noticed substantial similarities
in the miRNA levels between cells and EVs, indicating that EV-derived miRNAs may
be used in liquid biopsies for the monitoring of the resistance status. Their application
as potential biomarkers for the identification of EMT-positive, drug-resistant tumor cells
should therefore be further investigated, considering that not all findings from in-vitro
resistance models translate into the clinics [98].
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The transfection of a miR-205-5p mimic partly reversed EMT by inhibiting ZEB1 and
restoring CDH1 expression. Additionally, the miR-205-5p mimic reduced cell migration
in wound healing and transwell assays, highlighting the therapeutic potential of miRNAs
as drug targets [99–102]. However, given the extensive genetic alterations and cancer
cell heterogeneity induced by drug resistance [42–45], a potential strategy for achieving a
complete reversal of EMT and restoring therapeutic efficacy might involve the targeting
of multiple miRNAs or the simultaneous modification of their expression levels with
demethylating agents [22,93].

Through the analysis of the stepwise HCC4006 cell line adaptation to osimertinib,
we revealed a close association between the loss of key miRNAs and the upregulation of
EMT-TFs, leading to changes in EMT-marker expression. Our findings also showed that
cellular reprogramming commenced at low doses and after a short treatment duration
but intensified with escalating osimertinib concentrations. Consequently, low drug con-
centrations achieved in less perfused regions of the tumor might be sufficient to induce
EMT reprogramming, generating drug-tolerant cells. Noteworthy, the downregulation
of miR-183-5p, miR-203a-3p, and miR-205-5p expression was followed by an increase in
ZEB1/2 and TWIST1 expression, with miR-200c-3p being lost only at higher osimertinib
concentrations. Expression of the EMT-markers CDH1 and CDH2 exceeded the 2-fold
threshold at higher adaptation levels, similarly to miR-200c-3p, suggesting a coordinated
regulatory mechanism. Consequently, solely classifying tumors in patients based on epithe-
lial or mesenchymal markers is inadequate [103–106]. The observed expression patterns
of EMT-markers, EMT-TFs, and EMT-miRNAs during osimertinib adaptation provide
valuable insights into the transition from an epithelial to a hybrid state (Figure 8), which is
associated with increased invasion and migration capabilities [19,21,105–107]. Our results
suggest that miRNA fingerprints could be reliable diagnostic markers to detect the early
onset of EMT and transition from the epithelial to the hybrid state.
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Figure 8. Expression patterns provide insights into EMT states in osimertinib-adapted HCC4006:
Relative Expression data from Figure 7 is shown to visualize the trends of CDH1, mesenchymal
markers MMP2, CDH2, and VIM; EMT-TFs TWIST1, ZEB1, and ZEB2; and EMT-miRNAs miR-183-3p,
miR-200c-3p, miR-203a-3p, and miR-205-5p. Expression was normalized to the maximum fold change.
A treatment pause of 1 week was implemented after the 50 nM adaptation level was reached. The
cells were harvested for genetic characterization after the treatment pause was completed (50 nMi).
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Additionally, circulating tumor cells, which have the potential to form distant metas-
tases, often co-express these markers [24,108]. Therefore, identifying novel treatment
strategies to specifically target hybrid cells remains a top priority and should be pursued
with rigorous research efforts and clinical trials to improve treatment outcomes for pa-
tients. Temporally relieving the cells of the therapeutic pressure reversed transition trends,
particularly evident at the miRNA level, where we observed a remarkable increase in
expression. Therapy regimens with the implementation of treatment pauses, as previously
employed [109,110], could potentially delay the onset of EMT and prolong the benefits for
patients from these drugs. However, further validation of this hypothesis through clinical
investigations under real-world conditions is necessary.

4. Materials and Methods
4.1. Chemicals

All chemicals were of analytical grade or higher. Primary antibodies and AlexaFluor®-
conjugated secondary antibodies were purchased from Cell Signaling Technology (Leiden,
The Netherlands) or ThermoFisher (ThermoFisher Scientific, Darmstadt, Germany).
IRDye®-conjugated secondary antibodies were purchased from LI-COR Biosciences
(Bad Homburg, Germany). A full list of used antibodies and dilutions is provided in
Supplementary Table S1.

4.2. Cell Culture

The NSCLC cell line HCC4006 (HCC) was purchased from ATCC (Manassas, VA,
USA). The resistant sublines HCC4006rAFA0.1 (HCCrA), HCC4006rERLO0.5 (HCCrE),
HCC4006rGEFI0.5 (HCCrG) were established as previously described [111] and derived
from the Resistant Cancer Cell Line (RCCL) collection (https://research.kent.ac.uk/
industrial-biotechnology-centre/the-resistant-cancer-cell-line-rccl-collection/; accessed
on 18 August 2023). The resistant subline HCC4006rOSI0.5 (HCCrO) was established
by adapting parental chemo-sensitive HCC to grow in the presence of osimertinib by
continuous exposure to increasing concentrations, as described before [111]. Once drug
tolerance reached 0.5 µM, the cells were continuously exposed to 0.5 µM osimertinib
throughout the cultivation process. The corresponding doubling times and IC50 values for
the parental cell line and their resistant sublines are provided in Supplementary Table S2.

The cell line 16HBE14o- (HBE) was gifted by Jan-Peter Hildebrand
(University of Greifswald).

All cell lines were cultured in DMEM high glucose medium (Sigma-Aldrich Chemie
GmbH, Munich, Germany) supplemented with 10% fetal bovine serum (FBS) (PAN Biotech
GmbH, Aidenbach, Germany) and the respective EGFR-TKI at 37 ◦C in a humidified 5%
CO2 atmosphere. Cell count and viability were assessed by electronic current exclusion
(CASY, Omni Life Sciences GmbH & Co KG, Bremen, Germany). Cells were routinely
tested for mycoplasma contamination by quantitative real-time PCR (qPCR).

4.3. Cell Proliferation Analysis

Cells were seeded into 96-well plates (10,000 cells/well for HCC, 4000 cells/well
for the resistant cell lines) and incubated with inhibitors solubilized in a maximum of
0.1% DMSO for 72 h. Cells were then further incubated with 4 mg/mL resazurin for 3 h.
Fluorescence of the metabolite resorufin was determined after 3 h at 560 nm excitation and
590 nm emission wavelength (Infinite 200 PRO, Tecan Group AG, Männedorf, Switzerland).

4.4. RNA Extraction and cDNA Synthesis

All reverse transcription (RT) and PCR reagents were purchased from New England Bi-
olabs (Frankfurt/Main, Germany) unless stated otherwise. Total RNA was prepared using
the Monarch Total RNA miniprep Kit according to the manufacturer’s recommendations.

Isolated RNA was treated with DNase I (ThermoFisher Scientific, Darmstadt, Ger-
many) for 20 min at 37 ◦C to remove any residual genomic DNA. After adding 5 mM

https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-line-rccl-collection/
https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-line-rccl-collection/
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EDTA, enzyme inactivation was carried out for 10 min at 65 ◦C. Following this step, the
purification process was performed using the Monarch Total RNA miniprep Kit according
to the manufacturer’s recommendations. For mRNA analysis, RNA was converted to
cDNA using the LunaScript RT Supermix Kit according to the manufacturer’s instructions.

cDNA synthesis and analysis of miRNA was adapted from [112]. Briefly, 100 ng of
RNA in a final volume of 10 µL including 2 µL of LunaScript RT Supermix Kit Primer-
free, 0.1 mM of ATP, 1 µM of universal RT-primer, and 1 unit of poly(A) polymerase was
incubated at 42 ◦C for 1 h followed by enzyme inactivation at 95 ◦C for 5 min.

4.5. Quantitative Real-Time PCR

All primers were purchased from either Sigma-Aldrich (Sigma-Aldrich Chemie GmbH,
Munich, Germany) or ThermoFisher (ThermoFisher Scientific, Darmstadt, Germany)
Primer sequences and efficiencies are provided in Supplementary Table S3. qPCR was
carried out in a 7 µL total volume with 0.14 µL of cDNA, 250 nM of each primer, and 3.5 µL
Luna Universal qPCR Master Mix. Cycling conditions were 95 ◦C for 60 s, followed by
45 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. A melting curve analysis (60 ◦C to 95 ◦C) was
performed to ensure specificity in the amplification. All qPCR experiments were performed
on a QuantStudio® 12K Flex (ThermoFisher Scientific, Darmstadt, Germany) with fast
ramp speed. NormFinder [113] and BestKeeper [114] algorithms were employed to vali-
date GAPDH and ACTB as suitable reference genes for mRNA, while miR-544a and snRNA
RNU6 were identified as appropriate reference miRNA/snRNA for miRNA. Samples were
measured in triplicates, and the resulting data was analyzed by the comparative ∆∆CT
method. Statistical tests and Pearson correlation were performed on the raw ∆CT data sets.

4.6. Western Immunoblotting

We seeded 5 × 105 cells in 6-well plates and lysed them with 100 µL lysis buffer
(50 mM Tris pH 7.6, 100 mM NaCl, 5 mM EDTA, 0.2 mM sodium vanadate, 1% Triton®

X-100). Next, 30 µg protein or 10 µL of lysed EVs were separated on 10–12% polyacrylamide
gels, and proteins were subsequently transferred to nitrocellulose membranes through elec-
troblotting (6 mA/cm2) for 1.25 h. Membranes were blocked with 5% milk powder in TBST
buffer (Tris 2.42 g/L, NaCl 8.5 g/L, Tween-20 0.1%) for 2 h at room temperature. Antibody
dilutions and incubations were performed according to the manufacturer’s recommenda-
tions. Membranes were analyzed with Odyssey imaging system (Licor Biosciences GmbH,
Bad Homburg, Germany). Signal intensities were normalized to the total protein amount
visualized by Ponceau S staining.

4.7. Immunofluorescent Microscopy

We seeded 8 × 104 cells on 18 mm2 cover slips (Carl Roth GmbH & Co. KG, Steinheim,
Germany) and grew them overnight. Cells were then fixed with 4% paraformaldehyde,
permeabilized with 0.1% Triton® X-100 and blocked with 3% BSA. Primary antibody
incubation was done overnight at 4 ◦C and subsequent secondary antibody staining for
1 h at room temperature. Nuclei were stained with DAPI (0.5 µg/mL) and the actin
cytoskeleton with Phalloidin-AlexaFluor®488. Samples were visualized with a Leica DMi8
fluorescent microscope (Leica Microsystems GmbH, Wetzlar, Germany).

4.8. RNA Interference

miR-205-5p mimic and mock miRNA control (NC) were purchased from Sigma-
Aldrich (Sigma-Aldrich Chemie GmbH, Munich, Germany). The sequence of the miRNA
mimic and mock miRNA control are provided in Supplementary Table S4. Sense and
antisense strands were annealed by mixing at an equal molar concentration and heating
at 95 ◦C (Thermocycler PCR W, Analytik Jena GmbH+Co. KG, Jena, Germany) for 5 min,
followed by gradually cooling to room temperature. Next, 1 × 105 cells were transfected
with 10 nM negative control mimic (NC), 10 nM miR-205-5p mimic (Mimic) or left untreated



Int. J. Mol. Sci. 2023, 24, 14742 17 of 23

(Control) for 48 h using Lipofectamine RNAiMAX (ThermoFisher Scientific, Darmstadt,
Germany) according to the manufacturer’s recommendations.

4.9. Wound Healing Migration Assay

We seeded 1 × 105 cells in a 12-well plate and grew them overnight. The confluent
monolayer was scratched with a 100 µL tip and washed with PBS. Cells were incubated
with 5 mM N-hydroxyurea to inhibit cell proliferation. After 24 h, cells were fixed with
70% ethanol for 30 min and stained with 0.01% crystal violet in deionized water. Images
were taken (Primo Vert, Carl Zeiss Microscopy GmbH, Wetzlar, Germany) immediately
and 24 h after the scratch was made. The area covered by the cells through migration was
determined by manually analyzing the cell-free area with ImageJ [115]. The migrated area
was calculated by subtracting the cell-free area measured at the end of the experiment from
the cell-free area measured directly after the scratch was made.

4.10. Transwell-Migration Assay

After miR-205-5p mimic transfection, 1 × 105 cells were seeded in the upper chamber
of a 24-transwell plate (Sarstedt AG & Co. KG, Nümbrecht, Germany) with 8.0 µm pores
containing serum-free medium. The lower chamber was filled with a complete medium
containing 10% FBS. After 24 h, cells on the upper surface of the membrane were removed
with a cotton tip. Migrated cells on the lower surface were fixed with 70% ethanol and
stained with 0.1% crystal violet in deionized water. After extensive washing with deionized
water, images were taken (Primo Vert, Carl Zeiss Microscopy GmbH, Wetzlar, Germany),
and crystal violet was dissolved with 100% methanol, and the absorption analyzed (Infinite
200 PRO, Tecan Group AG, Männedorf, Switzerland) at 590 nm.

4.11. miRNA Isolation from Extracellular Vesicles

Cells were cultivated on five T150 dishes until they reached 70–80% confluency. Cells
were then washed twice with PBS and incubated for 48 h with media supplemented with
5% exosome-depleted FBS. Exosome-depleted media was obtained by ultracentrifugation
(Optima XPN-80/L7-65, Beckman Coulter GmbH, Krefeld, Germany) of media supple-
mented with 20% FBS at 110,000× g for 18 h at 4 ◦C and subsequent dilution as described
before [116]. EV-containing cell culture supernatant (CCS) was carefully collected without
disturbing the cells and centrifuged at 4000× g for 30 min at 4 ◦C to pellet cells. Cells
were then washed with PBS and trypsinized to assess cell count and viability by electronic
current exclusion. Only experiments with a cell viability value of >90% were considered
acceptable for subsequent isolation. EV-containing CCS was then filtered through a 0.2 µm
polyethersulfone (PES) filter (Sartorius AG, Göttingen, Germany) to retain cell debris
and large vesicles. The filtered CCS was stored for not longer than 48 h at 4 ◦C before
subsequent processing. Concentration of EV-containing CCS was done by ultracentrifu-
gation at 110,000× g for 130 min at 4 ◦C. EVs and miRNAs from the EVs were isolated
from the concentrated CCS using the exoRNeasy® Midi Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Briefly, the EV-enriched CCS was mixed
with EV-binding solution (1:1) and placed on an EV-binding column. After binding and
subsequent washing, the EVs were lysed with the use of Qiazol lysis buffer. After Qiazol-
chloroform-extraction, the RNA-containing fraction was mixed (1:2) with 100% ethanol
and placed on an RNA-binding column for purification. After all washing steps were
concluded, the RNA was eluted with 14 µL nuclease-free water, and a 1 µL aliquot was
used for concentration measurement with the Qubit™ microRNA Assay Kit (ThermoFisher
Scientific, Darmstadt, Germany) All samples were immediately stored at −80 ◦C.

4.12. Size and Size Distribution of Extracellular Vesicles

EVs from the concentrated EV-containing CCS were analyzed by dynamic light scat-
tering (DLS) and scanning electron microscopy (SEM). DLS measurements were performed
using a Zetasizer Nano ZS (Malvern Pananalytical GmbH, Kassel, Germany) equipped with
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a 633-nm He-Ne laser and operating at an angle of 173◦. EVs were diluted 1:100 to a total of
500 µL in PBS filtered through a 100 kDa cut-off filter and loaded into a disposable cuvette
for particle size measurement. The particle size and size distribution were measured as
cumulant (Z-Average) size and polydispersity index (PdI). Background measurements
were done to ensure that the results were reliable. Data were acquired and analyzed us-
ing Zetasizer Software (V7.13) (Malvern Pananalytical GmbH, Kassel, Germany). All the
experiments were performed in triplicates.

SEM was used for single vesicle analysis. Immediately after isolation, EV samples
were fixed with 2% glutaraldehyde in PBS for 90 min. Next, 5 µL of fixed EVs were
mounted on a clean cover slip and dried overnight at 4 ◦C. The fixed Evs were then treated
with 30%, 50%, 70%, 80%, 95%, and 100% ethanol sequentially for 10 min each. Samples
were then dried in a desiccator over desiccated silica gel. The samples were sputtered
(Mini Sputter Coater SC7620, Judges House, Lewes Road, Laughton, UK) with a 2–5 nm
gold-palladium coat with argon plasma for 3 × 90 s at 18 mA. Sputtered samples were
kept in the desiccator until analysis. SEM (Phenom G1, ThermoFisher Scientific, Dreieich,
Germany) was performed under low-beam energy (5–10 kV).

4.13. RNA-Sequencing and Analysis

We used 100 ng purified RNA (if available; for HCCrO-2: 54.6 ng; HCC-3: 80.2 ng;
HCC-2: 93.7 ng) as the starting material to prepare miRNA libraries using the QIAseq
miRNA UDI Library Kit (Qiagen, Hilden, Germany) and QIAseq miRNA 12 Index Kit IL
UDI (Qiagen) according to the manufacturer’s instructions. Briefly, adapters and primers
were employed undiluted, and library amplification was performed with 16 cycles. Gen-
erated miRNA libraries were quality-controlled with Qubit dsDNA-HS-Assay-Kit (Ther-
moFisher Scientific, Darmstadt, Germany) and Agilent Bioanalyzer 2100 High Sensitivity
DNA Kit (Agilent Technologies, Waldbronn, Germany) and all libraries passed quality
criteria. Library concentrations were normalized to 4 nM and pooled prior to sequencing.
Single-end sequencing with 72 bp and dual index sequencing of 10 bp each was performed
on an Illumina NextSeq2000 (Illumina, San Diego, CA, USA). Processing, read mapping,
and differential expression analysis of the resulting FASTQ files were performed with the
QIAGEN RNA-seq Analysis Portal 4.0 (Qiagen, Aarhus, Denmark) using the miRNA anal-
ysis workflow. Target prediction analysis of significantly deregulated miRNAs (FDR < 0.01)
was conducted using the MIENTURNET web tool [63] and the miRTarBase database [64].

4.14. Statistical Analysis

All experiments were carried out in triplicates unless stated otherwise. Data are
presented as the mean + standard deviation (SD). Data were analyzed for statistical sig-
nificance using an F-test to determine equal variances and an unpaired Student’s t-test or
Welch’s t-test for single comparisons. One-way analysis of variance analysis (ANOVA)
with Dunnett’s post hoc test were used for multiple comparisons on one dataset. A p-value
of <0.05 was considered statistically significant. Correlations were analyzed using Pearson
linear regression analysis. Statistical tests and Pearson linear regression analysis were
performed using the GraphPad Prism Version 5.02 software (GraphPad Software Inc., San
Diego, CA, USA).

5. Conclusions

In conclusion, our study highlights the crucial role of miRNAs and their target ZEB1
in driving EMT in EGFR-TKI drug resistance and their potential as biomarkers and thera-
peutic targets. Temporally relieving cells of osimertinib demonstrated promising effects on
miRNAs in EMT reversal, indicating prolonged benefits by incorporating treatment pauses
to delay EMT onset and improve therapeutic efficacy. Overall, targeting hybrid cells and
addressing the challenges of drug resistance through rigorous research and clinical trials
remain imperative for advancing NSCLC treatment.
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