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Soil CH4 fluxes are driven by CH4-producing and -consuming microorganisms that determine whether soils are sources or sinks of
this potent greenhouse gas. To date, a comprehensive understanding of underlying microbiome dynamics has rarely been
obtained in situ. Using quantitative metatranscriptomics, we aimed to link CH4-cycling microbiomes to net surface CH4 fluxes
throughout a year in two grassland soils. CH4 fluxes were highly dynamic: both soils were net CH4 sources in autumn and winter
and sinks in spring and summer, respectively. Correspondingly, methanogen mRNA abundances per gram soil correlated well with
CH4 fluxes. Methanotroph to methanogen mRNA ratios were higher in spring and summer, when the soils acted as net CH4 sinks.
CH4 uptake was associated with an increased proportion of USCα and γ pmoA and pmoA2 transcripts. We assume that methanogen
transcript abundance may be useful to approximate changes in net surface CH4 emissions from grassland soils. High methanotroph
to methanogen ratios would indicate CH4 sink properties. Our study links for the first time the seasonal transcriptional dynamics of
CH4-cycling soil microbiomes to gas fluxes in situ. It suggests mRNA transcript abundances as promising indicators of dynamic
ecosystem-level processes.
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INTRODUCTION
CH4 is a powerful greenhouse gas [1]. Between 41% and 53% of
global CH4 emissions derive from aquatic systems. Therein
freshwater wetlands are the largest single source, emitting about
138–165 Tg CH4 yr

−1 [2, 3]. Since 1700, between 54% and 57% of
the wetlands were lost due to drainage to gain agricultural land,
such as grasslands [4, 5]. Drainage lowers the water table, altering
water content and oxygen availability. These altered soil physical
conditions, in turn, substantially affect the soil microbiota and
activity and thus the soils’ greenhouse gas fluxes [6, 7]. Drained
former wetlands are a large source of CO2 but can also emit
substantial amounts of CH4, depending on their dynamic
hydrological status throughout the year [4, 5].
More than two-thirds of global CH4 emissions derive from

microbial production [8]. CH4-producing microbes (i.e., methano-
gens) are mostly anaerobic Archaea that inhabit anoxic environ-
ments [8, 9]. Four types of methanogens can be characterized
according to their substrate specificity. Acetoclastic methanogens
utilize acetate, hydrogenotrophic methanogens utilize H2/CO2 and
formate, and methylotrophic methanogens utilize methanol/
methylamines to form CH4 [9]. Recently, methoxydotrophic
methanogens that utilize methoxylated aromatic compounds
were proposed as a novel methanogenic group [10, 11]. In soils,
acetoclastic and hydrogenotrophic methanogens are considered
the predominant sources of CH4 [9, 12]. However, recent research
indicates that methanogenesis from methylated compounds also
contributes to CH4 emissions from soils and wetlands [13, 14].

Up to 90% of CH4 produced in oxygen-limited soils can be
mitigated through oxidation by aerobic methane-oxidizing
Bacteria (MOB) within the lineages Alphaproteobacteria, Gamma-
proteobacteria, and Verrucomicrobia [15–17]. CH4 oxidation can
also be conducted anaerobically by Bacteria of the NC10 phylum
and Archaea in the ANME group that couple oxidation of CH4 to
the reduction of other electron acceptors such as nitrite (NC10),
nitrate (ANME-2d), or ferric iron [18–20]. Aerobic methanotrophs
are considered the main oxidizers in wetland soils since alternative
electron acceptors favoring anaerobic methanotrophs are often
scarce in wetland soils. Tracing stable isotopes and radioisotopes
can link CH4 consumption to active methanotrophs [21–25]. For
instance, incubating soil cores with 13C-CH4 identified γ-
proteobacterial subgroups as the main active methanotrophs in
a riparian floodplain [22]. Additionally, methanotrophs provide the
only known biological sink for atmospheric CH4 [26]. However, it is
not fully understood which microorganisms oxidize CH4 at
atmospheric concentrations in soils. Bacteria of upland soil clusters
(USC)α and USCγ have been identified as likely important
atmospheric MOBs in upland soils [15, 27–29], while well-known
methanotrophic lineages may also oxidize atmospheric CH4 in
anoxic paddy soils [30]. A study using stable-isotope labeled CH4

identified type II methanotrophs related to Methylocapsa acid-
ophila active in grassland and forest soils at low CH4 concentra-
tions [25].
Presumably, the combined net activities of methanogens and

methanotrophs determine whether wetland soils act as net sources
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or sinks for CH4 [31]. However, linking CH4-cycling microbiome
dynamics of soils in situ to CH4 fluxes, especially at the
transcriptional level, has rarely been achieved [32]. DNA- and
RNA-based meta-omics techniques have provided insight into the
microbiome compositions of soils. However, DNA is long-term
stable; extracted soil DNA may therefore partially originate from
persistent extracellular DNA of dead organisms [33, 34]. In contrast,
ribosomal RNA (rRNA) acts as a proxy for ribosomes. Even though
dormant cells can contain high loads of ribosomes [35, 36], RNA-SIP
studies [37, 38] indicate that approximately 94% of microbial taxa in
soil are active and synthesize new rRNA [39]. Still, rRNA content
does not necessarily reflect the gene expression. Hence, although
rRNA is a good proxy for potential active soil microbiome, it may
not relate well to ecosystem processes. The simultaneous sequen-
cing of mRNA and rRNA potentially can overcome this issue [40]
because messenger RNA (mRNA), can serve as a proxy for
transcriptional activity. Other metatranscriptome studies indicate
that mRNA is more responsive to environmental factors than rRNA
[41, 42]. For instance, methanogen-related mRNA, but not SSU
rRNA, decreased in soil microcosms exposed to drought [43]. The
relationship between the abundances of rRNA and mRNA of CH4-
cycling microbes and CH4 fluxes has not been studied in situ. We
thus aim to explore differences between small subunit (SSU) rRNA
and mRNA transcripts of the CH4-cycling microbiomes and their
links to gas fluxes.
Another drawback of meta-omics techniques is that they usually

yield only relative abundances. However, the relationship between
absolute abundances and relative abundances is not predictable [44].
It is thus challenging to relate ecosystem processes to relative
abundances. Studies have applied absolute quantification for
metatranscriptomes in marine microbiomes [45, 46]. Recently, a
quantification approach that uses total RNA to infer absolute from
relative abundance has been developed for metatranscriptomics [47].
In this study, we aimed to link transcriptional dynamics of CH4-

cycling microbiomes to CH4 fluxes in two grassland soils. These
soils were wetlands in the past but have been drained for
agricultural use several decades ago. We used quantitative
metatranscriptomics to analyze ribosomal rRNA and mRNA
[40, 47] of 60 soil samples taken from different soil depths during
autumn, winter, spring, and summer. In addition, we measured
CH4 and CO2 net surface fluxes from the two sites. We aimed to (a)
evaluate the RNA content of the soils as a marker for microbial
activity, (b) examine the CH4 fluxes of the two in grasslands
throughout a year, (c) study the composition and abundance of
SSU rRNA and mRNA transcripts of CH4-cycling microbes, and (d)
link microbiome composition of CH4-cycling organisms to net
surface CH4 fluxes across seasons.

MATERIALS AND METHODS
Site description
The experiment was conducted in the framework of the Biodiversity
Exploratories project for long-term functional ecosystem research [48].
Samples were taken at two grassland sites (LI and HI) located in the
Biosphere Reserve „Schorfheide-Chorin“ (Supplementary Table S1). Both
sites are drained peatlands with a histosolic soil type (according to WRB
2015 [49]). The upper 30 cm of the peat soils was highly degraded. The two
sites differ in the intensity of grassland management; the low land-use
intensity site (LI) was mowed once or twice a year, while the high land-use
intensity site (HI) was grazed by cows (400–700 livestock units * grazed
days ha-1 y-1) and additionally mowed sometimes once a year. Vegetation
on LI was dominated by Poa trivialis (60%) and Alopecurus pratensis (25%);
vegetation on HI was dominated by Poa pratensis aggr. (32 %), Trifolium
repens (15%) and Agrostis stolonifera (10%).

Soil Sampling
On each site, an area of 1 m × 7m was sampled at all four seasons: autumn
(11/09/2017), winter (03/08/2018), spring (05/30/2018), and summer (09/
13/2018). At each sampling date, three spatial replicate samples were

taken between 12:00 and 13:00 at each site from the upper 10 cm and the
20–30 cm layer. Each soil sample was a mixture of the respective soil layer
from three soil cores, taken close to each other (5–10 cm). The replicates
were located at least 1 m apart from each other. At each seasonal
sampling, the replicates were taken at least 1 m apart from replicates taken
during the previous sampling campaigns. In spring, additional samples
were taken at sunrise (05:00) and sunset (21:30), but only at the HI site.
Samples for RNA, ammonium (NH4

+), and nitrate (NO3
−) extraction were

immediately frozen at −80 °C and subsequently stored as follows: RNA:
−80 °C, NH4

+, and NO3
− −20 °C. Samples for determination of Cmic, Nmic,

pH, and soil water content were transported on ice and subsequently
stored at −20 °C. Redox potentials were measured with Mansfeld redox
electrodes with an Ag/AgCl-reference electrode and a handheld ORP-
meter GMH3531 (ecoTech, Bonn, Germany). For equilibration. the
electrodes were placed in the soil 24 h before sampling. Redox potentials
were measured at soil depths of 5 cm and 25 cm.

Determination of soil properties
Gravimetric soil water content was determined by drying 3–6 g soil at 65 °C
to constant weight. Soil pH was determined by mixing 10 g dried sieved
soil with 25ml 0.01 M CaCl2 solution; pH of the suspension was then
measured with a glass electrode (pH Electrode LE438, Mettler Toledo,
Columbus, OH, USA). For total carbon and total nitrogen, samples were
sieved (< 2mm) and air-dried, ground in a ball mill (RETSCH MM200,
Retsch, Haan, Germany), and analyzed in an elemental analyzer (VarioMax,
Hanau, Germany) at 1100 °C. Inorganic carbon was determined with the
same elemental analyzer after the organic carbon had been removed by
combustion of soil samples at 450 °C for 16 h. Organic carbon concentra-
tion was calculated as the difference between total carbon and inorganic
carbon. Microbial biomass carbon (Cmic) and nitrogen (Nmic) were
determined by the chloroform-fumigation-extraction method (CFE) [50].
For this, frozen soils were thawed (at 4 °C for 10 h), then 5 g field moist soils
were fumigated with ethanol-free CHCl3 for 24 h in a desiccator. C and N
were extracted with 40ml 0.5 M K2SO4, shaken horizontally (30 min, 150
rpm), and centrifuged (30 min, 4400 g) to separate extract from the soil.
Non-fumigated soil samples were treated identically. Aliquots of the
extracts were dissolved (1:4 extract:deionized. H2O) and measured on a
TOC/TN analyzer (Multi N/C 2100S, Analytik Jena AG, Jena, Germany). A kEC
factor [51] and a kEN factor [52] were used to calculate Cmic and Nmic,
respectively. The organic C and N content determined from non-fumigated
samples were used as a measure for the extractable C (EOC) and N (EN)
which can be considered as microbially available resource in soil [53].
Mineral nitrogen in the forms of ammonium (NH4

+) and nitrate (NO3
−) was

determined in the non-fumigated, non-diluted extracts with an Auto-
Analyzer 3 (Bran & Luebbe, Norderstedt, Germany).

Gas fluxes
On each sampling date, gas emissions were measured with four closed
chambers per site. With each chamber, the measurements were repeated
four to six times per day and site, resulting in 15–24 net surface rate
measurements. Excessive vegetation was removed before pressing the
stainless steel chambers (A= 150 cm2, V= 1800ml) into the soil [54]. The
chambers had a sharp-edged bottom, which allowed the installation in the
organic soils without compacting the soil. Gas samples (12ml) were taken
with syringes from the headspace immediately, 20, 40, and 60min after
closing the chambers via a three-way stopcock, and transferred into pre-
evacuated exetainers (5.9 ml, Labco Lt, UK). Gas concentrations were
measured on an Agilent 7890 gas chromatograph equipped with a flame
ionization detector (for CH4) coupled with a methanizer (for CO2) (Agilent
Technologies Inc., Santa Clara, CA, USA). Gas flux rates were calculated by
the slope of the regression line of a linear regression of the gas
concentration against time [27].

RNA extraction, library preparation, and sequencing
Total nucleic acids were extracted using a phenol/chloroform/isoamylal-
cohol protocol [40]. The extracts were subsequently treated with DNase to
remove DNA (DNase I, Zymo Research, Freiburg, Germany). RNA
concentrations were measured with the Qubit RNA HS Assay Kit (Qubit3.0
Fluorometer, Invitrogen, Waltham, MA, USA.). RNA extracts were cleaned
with the MEGAclear kit (Thermo Fisher Scientific, Waltham, MA, USA); the
quality of the RNA was verified by agarose gel electrophoresis and
bioanalyzer (2100 Bioanalyzer, Agilent, Santa Clara CA, USA). We enriched
the mRNA fraction and diluted inhibitory substances in the RNA extracts
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using the MessageAmp II-Bacteria RNA Amplification Kit (Thermo Fisher
Scientific, MA, USA, input: 12.5 ng RNA). This method was previously
validated for the preparation of metatranscriptomes [55]. Sequencing
libraries were prepared with NEBNext Ultra II RNA Library Prep Kit for
Illumina (New England Biolabs, Ipswich, MA, USA; input 60 ng). Manufac-
turer’s instructions were followed except for Step 4, where fragmentation
time was adjusted to 3min and a size selection step with HighPrep PCR
beads (MagBio Genomics Inc., Gaithersburg, USA) was introduced (desired
insert size 250 bp). Libraries were paired-end sequenced with a NextSeq
550 System using the NextSeq 500/550 High Output Kit v2.5 (300 Cycles)
(Illumina, San Diego, CA, USA).

Bioinformatic processing and statistics
Reverse and forward sequences were overlapped with a minimum overlap
of 10 or 5 bp with FLASH [56]. The sequences were filtered to a minimum
mean quality score of 25 with PrinseqLite [57]. Sequences were then sorted
into SSU rRNA, LSU rRNA, and non-rRNA fractions with SortMeRNA [58].
The SSU rRNA fraction was randomly subsampled to 200000 sequences
with USEARCH [59]. Sequences were taxonomically classified against the
SilvaMod128 databases [60] with BlastN [61] using a lowest common
ancestor (LCA) algorithm in MEGAN (min score 155; top percent 2.0; min
support 1 [62]). The non-rRNA fraction was aligned against the NCBI_nr
database (retrieved 12/03/2020) with Diamond [63]. The sequences were
taxonomically and functionally aligned with LCA in MEGAN (2011, min
score 155; top percent 4; min support 1 [62]). Absolute abundances were
calculated from read counts according to Söllinger et al. [47]. This
calculation integrates the relative read abundance obtained from
metatranscriptomics with the amount of mRNA and SSU rRNA extracted
from the soil, respectively, and the average number of transcripts per µg
RNA. At mRNA level, methanogenesis transcripts refer to sequences
assigned to the SEED category “methanogenesis”. Methanotrophy
transcripts refer to sequences assigned to the SEED category “Particulate
methane monooxygenase (pMMO)”. To classify pmoA sequences, the non-
rRNA fraction was searched against a pmoA database [64] and
taxonomically classified with MEGAN as described in reference [64]. To
assess the transcriptional activity of CH4-cycling microbes throughout the
years, we binned mRNAs taxonomically classified as methanogens
(Euryarchaeota) and alpha and gammaproteobacterial methanotrophs,
respectively to then analyze the functionally assigned mRNAs using SEED
and KEGG.
Statistical analyses were performed in R [65]. Distance-based redun-

dancy analysis was performed on the Bray–Curtis dissimilarity matrix read
counts of the 60 samples (function “dbrda” in the vegan package [66]).
Counts were Hellinger-transformed beforehand. We tested the following
parameters: site (HI; LI), depth (“0–10 cm”, “20–30 cm”), season (“autumn”,”-
winter”, “spring”, “summer”), temperature, water content, nitrite, and
nitrate. Continuous variables were z-scaled. The difference of transcript
abundances and the ratio of methanotrophs to methanogens between
seasons at one and the same site was assessed by ANOVA and subsequent
post-hoc Tukey’s test, resulting in adjusted p-values. We used the
arithmetic mean of methanogenesis and methanotroph transcript
abundances from the upper (0–10 cm) and the lower (20–30 cm) of one
sample. Significant differences between seasons were identified with the R
package “multcompView” with p-adjusted <0.05 [67].

RESULTS AND DISCUSSION
Highly dynamic CH4 fluxes across the year
We measured net surface fluxes from two grasslands across one
day during autumn, winter, spring, and summer to assess their
seasonal variation, in particular CH4. Daytime did not affect CH4

emissions (Supplementary Fig. 1A). In contrast, CH4 and CO2 fluxes
were highly dynamic throughout the year (Fig. 1). While the soils
emitted CH4 in autumn and winter (7.0 and 6.9 mg C m−2d−2, in
autumn in LI and HI, respectively), they took up CH4 in spring and
summer (−0.9 and −0.8 mg C m−2d−2, in summer in LI and HI,
respectively) (Fig. 1A). CO2 fluxes showed an opposite trend, with
higher CO2 emissions in spring and summer than in autumn and
winter (Fig. 1B). The opposing trends of CO2 and CH4 fluxes
reflected the changes in soil physicochemical properties across
the year (Fig. 1C, D, Supplementary Table S2). Especially water
content and temperature were likely the key factors in regulating
gas turnover. High water content and low redox potentials in

autumn and winter (Fig. 1C, Supplementary Table S2) likely
favored anaerobic microbial processes, such as methanogenesis,
while at the same time hampering aerobic microbial processes
such as respiration (Supplementary Fig. 2). Low temperatures in
winter likely resulted in smaller CH4 fluxes compared to autumn
(Fig. 1A, D). In spring and summer, soils had lower water content
and positive redox potential favoring aerobic over anaerobic
degradation processes. Generally, mean CO2 net surface emissions
were about 1.5 times higher than IPCC default emission factors
[68, 69]. Our observed higher emissions may have been due to the
degraded peat at the studied site. Soils with highly disturbed peat
have been reported to have higher CO2 emissions than less
degraded peat soils [70]. Next to soil water content, also
temperature may have caused relatively high CO2 emissions as
spring and summer 2018 were dry and hot compared to the long-
term average. High temperatures increase organic matter decom-
position and CO2 emissions [71, 72].
Net surface CH4 emissions rates in autumn and winter were

lower compared to IPCC default emission factors [68]. However,
we measured emissions at only four days and may have not
accounted for high emissions after heavy rainfall events. Net CH4

uptake rates in spring and summer were in the range of other
herbaceous and temperate ecosystems (0.36 and 0.47 ± 0.63mg C
m−2d−1) [73, 74] and higher than in pastures (mean 0.05mg C
m−2d−1) [74]. The beginning drought in 2018 caused low soil
water content (Supplementary Table S2), favoring CH4 oxidation.
The soil water content of the upper layer was mostly within the
optimal range for atmospheric CH4 oxidation [75].
Our results underscore the high temporal variability of green-

house gas emissions from temperate drained peatlands and their
dependence on dynamic soil physicochemical properties, like
temperature and soil moisture, which are themselves linked to
seasons. Moreover, depending on the time of the year and
conditions in the soil such sites can be net sinks for CH4 as well as
net sources. This versatility regarding CH4 sink and source
functions requires further long-term monitoring of such
groundwater-impacted and organic-rich drained grassland soils
in postglacial landscapes to ensure proper consideration in global
budgets.

Linking metatranscriptomics and microbial biomass
We quantified soil total RNA content to examine if it reflects
microbial biomass in the soils. Total RNA and Nmic and Cmic were
determined from 60 top- and subsoil samples. They exhibited
similar dynamics across seasons. Overall, total RNA per gram soil
was positively correlated with both Nmic and Cmic (rNmic= 0.68,
rCmic= 0.54, p < 0.001, Fig. 2, Supplementary Fig. 3). The RNA
content correlated better with Nmic, than with Cmic, likely due to
the high nitrogen content of the RNA. This finding supports the
validity of RNA as a proxy for living microorganisms and the use of
RNA content to infer transcript abundances per gram soil from
relative transcript abundances obtained in metatranscriptomics
[47]. Through this quantitative approach, one can overcome
challenges typically associated with the interpretation of relative
abundance data in ‘meta-omics’ datasets. A recent study used this
quantitative approach and found that absolute transcript abun-
dance correlated better to ecosystem processes than relative
transcript frequencies [47].

Spatial and seasonal dynamics in CH4-cycling (micro-)biomes
High-throughput sequencing of metatranscriptomes yielded
approximately 20 million paired-end reads per sample [76].
Three-domain analysis based on SSU rRNA reads revealed that
the (micro-)biomes of the 60 samples were dominated by Bacteria,
followed by eukaryotes and Archaea (Supplementary Tables S3
and S4, Supplementary Fig. 4). The community composition of all
taxa in the soil samples exhibited a clear site- and depth-specific
pattern (Fig. 3A), with site and depth explaining 20.0% and 19.6%
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of the variance, respectively (p < 0.001, Supplementary Table S5).
Site-specific differences are likely attributed to site-specific soil
properties, such as pH, texture, organic carbon, and nitrogen
content, and land-use intensity (Supplementary Table S1). Depth is
generally considered to be associated with differences in oxygen
and nutrient availability. Eukaryotes were usually higher abundant
in the upper soil layer, compared with the lower soil layer
(Supplementary Fig. 4).
The composition of CH4-cycling microbes was also influenced

by site, season, and depth (Fig. 3B). Site had the most explanatory
power (14.0%, p < 0.001), but season, depth, and water content
accounted for 6.5%, 5.7%, and 5.3% (p < 0.001) of the variance,
respectively (Supplementary Table S6). Thus, the seasonal
variability of the CH4 fluxes was accompanied by seasonal
changes in CH4-cycling community composition. The seasonal
effect likely resulted from varying precipitation, water table depth,
and plant growth activity throughout the year. Especially the
drought in spring and summer may have strongly affected the
CH4-cycling microorganisms by lowering the soil water content.
Oxygen diffusion into dry soils is much faster than into water-
saturated soils, resulting in a higher O2 availability, which, in turn,
is a fundamental factor shaping CH4-cycling community composi-
tion [77].
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Methanogen community composition and transcriptional
activity
We aimed to evaluate if SSU rRNA and mRNA abundances of CH4-
cycling microbes reflected the seasonal changes in CH4 fluxes of the
soils. For this purpose, we integrated the total RNA content and
metatranscriptomes [47] to infer methanogen SSU rRNA and mRNA
transcript abundances per gram soil (Fig. 4A, C). Generally,
methanogen SSU rRNA abundances were higher in autumn and
winter and the deeper soil layer, with abundances up to 1.4 ×1010

transcripts g−1 soil (Fig. 4A). Most methanogen families in the soils
were class II methanogens, e.g., Methanosarcinaceae, Methanosaeta-
ceae (now Methanotrichaceae) (Fig. 4B) which generally possess
more antioxidant features than class I methanogens [78]. The
predominance of class II methanogens likely reflected the dynamic
water and redox status across seasons (Fig. 1C, Supplementary
Table S2).
Methanogenesis mRNA transcripts were generally less abundant

in spring and summer (0.21 and 0.43 * 107 transcripts g−1 in summer
in LI and HI, respectively) than in autumn and winter (5.6 and 3.6 *
107 transcripts g−1in winter in LI and HI, respectively) (Fig. 4C).
According to Tukey’s HSD test, methanogenesis transcript abun-
dances were significantly lower (p < 0.05) in spring and summer
compared to autumn and winter, in both LI and HI (Supplementary
Tables S7 and 8). This drop in methanogenesis mRNA agrees with
the cessation of CH4 emissions from the soils in spring in summer;
both correlated significantly with each other (r= 0.87, p < 0.01,
Fig. 4D). In contrast, the abundances of methanogen SSU rRNA
transcripts and CH4 fluxes did not correlate significantly (Supple-
mentary Fig. 7). Our results indicate that methanogenesis mRNA
transcripts are better indicators of net CH4 fluxes than methanogen
SSU rRNA transcripts (Fig. 4D, Supplementary Fig. 7). We thus
underscore studies that have found mRNA more responsive to
environmental factors than rRNA [41, 42].
We only sampled two sites and cannot make statistically

assured statements about the influence of land-use intensity.
Nevertheless, we observed some site-specific patterns. Methano-
gen SSU rRNA transcript abundances were higher in HI than in LI
soils (Fig. 4A) despite similar methanogenesis mRNA transcript
abundances (Fig. 4C). The taxonomic composition may influence
the transcriptional activity of methanogenesis transcripts (Fig. 4B).
The strictly acetoclastic Methanosaetaceae (Methanothrix) were
more pronounced in HI than in LI (Fig. 4B). Methanosaeta have
lower growth rates and can grow at lower acetate concentrations

than the metabolically diverse Methanosarcina [79]. In turn, the
share of hydrogenotrophic methanogens, such as Methanocella-
ceae, Methanoregulaceae, and Methanobacteriaceae, was higher in
LI than in HI. The energy yield of hydrogenotrophic methanogen-
esis is larger than that of acetoclastic methanogenesis [9, 80]. The
varying proportions of acetoclastic and hydrogenotrophic metha-
nogens and lower acetate concentrations may explain lower
transcriptional activity at HI compared to LI. Messenger RNA
transcripts that were unambiguously attributed to a certain
methanogenesis pathway, support that the share of acetoclastic
mRNAs was lower in LI than in HI (Supplementary Fig. 8). However,
large-scale studies, that include more sites would be needed to
explore this effect further.
The consistent presence throughout the year of the obligate

methylotrophic Methanomassiliicoccales (up to 14% of the
methanogen SSU rRNA in the topsoils, Fig. 4B) points to
methylated compounds as additional substrates for methanogen-
esis in both sites. The contribution of methanogenesis from
methylated compounds to terrestrial CH4 emissions is considered
to be small [9]. However, recent research suggests it to be more
important [10, 13, 81, 82]. For instance, the methylotrophic
Methanomassiliicoccales were the second most abundant metha-
nogenic group in Zoige peatlands [83] and also highly abundant
in wetlands in northeast Germany [84].
Furthermore, we wanted to know if methanogens exhibited a

differential gene expression across seasons. For this purpose, we
assessed broad functional categories of mRNA transcripts
taxonomically binned to Euryarchaeota. Methanogen transcript
profiles had similar seasonal patterns in both soils. For instance,
protein biosynthesis and transcription were upregulated in
methanogens during winter (Supplementary Fig. 9). The upregula-
tion of the protein biosynthesis machinery in soil microbiomes
was recently attributed to diminished enzymatic reaction rates of
metabolic enzymes at colder temperatures [85]. Likewise, our
results point to a temperature-dependent regulation of central
cellular processes in the here studied methanogens.

High spatio-temporal dynamics of methanotrophs
The aerobic methanotrophs in the soils, assessed by SSU rRNAs,
mostly belonged to canonical MOBs, i.e., Methylococcaceae, Creno-
trichaceae, Methylocystaceae (Fig. 5A, B). They were generally higher
abundant in topsoils, as compared to subsoils, except of summer
(Fig. 5A). Anaerobic methanotrophic bacteria (Ca. Methylomirabilis)
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and Archaea (ANME-2d) comprised a substantial part of the
methanotroph community (up to 20% of all methanotrophs in
subsoil) (Fig. 5B). They were present mainly in the deeper soil layer
(20–30 cm), which was likely due to their sensitivity to oxygen [86].
Across seasons, methanotroph abundance (aerobic and anaerobic)
was highest in autumn and winter (Fig. 5A), resembling seasonal
dynamics of methanogens.
In addition to SSU rRNA, we assessed the active MOBs using

transcripts of the most widespread functional marker, the alpha
subunit of the pMMO [64]. While the same clades were detected,
their relative abundance was sometimes different to the SSU rRNA
derived MOB profiles (Fig. 5C). For instance, Methylococcales SSU
rRNA transcripts (type I) clearly dominated in LI (up to 96% of all
methanotroph SSU rRNA) but comprised less than 50% of pmoA
transcripts (Fig. 5C). Generally, type II methanotrophs were more
abundant in the pmoA than in the SSU rRNA transcripts. Studies
assessing SSU rRNA composition might generally underrepresent
this group. Especially in autumn and winter, the pmoA transcripts
were dominated by canonical MOBs that probably feed on the
CH4 produced by the methanogens. Remarkably, the proportions
of pmoA transcripts classified as USCα, USCγ, and pmoA2 increased

in spring and summer in both sites (Fig. 5C). These pmoAs are
assumed to be associated with atmospheric MOBs [15, 28, 87, 88].
Their increase matched the net CH4 uptake of the soils in spring
and summer (Fig. 1A). The relative abundance of USCα and γ
pmoA and pmoA2 transcripts was up to 34%. Still, other type I and
type II pmoA sequences dominated the soils. Recently, atmo-
spheric CH4 oxidation in paddy soils was attributed to canonical
CH4 oxidizers rather than USCα and USCγ [30]. Thus, also the
detected type I and type II methanotrophs might be involved in
atmospheric CH4 oxidation in spring and summer. However, it is
also possible that CH4 is still produced in deeper soil layers and
that the canonical CH4 oxidizers feed on this CH4. To complicate
matters even more, the, yet only isolate of USCα methanotrophs,
Methylocapsa gorgona, can grow at both atmospheric and
elevated CH4 concentrations [89].
Similar as with methanogens, we wanted to explore differences

in expression of general functions of methanotrophs across
seasons. Transcripts taxonomically binned to gamma and
alphaproteobacterial methanotrophs showed an upregulation of
protein synthesis and processing as well as transcription and RNA
processing in autumn and winter (Supplementary Fig. 13). This is
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strikingly similar to the gene expression in methanogens,
providing further support that protein biosynthesis apparatus
might be larger at lower temperatures [85]. In some samples only
a few mRNAs could be functionally assigned. This must be
considered when interpreting these results.

Functional transcript abundances as a proxy for soil net
surface CH4 fluxes
We have shown above that the abundance of methanogenesis-
related mRNAs was a good estimator of CH4 fluxes in the studied
soils (Fig. 4D). We now aimed to integrate methanotroph and
methanogen markers to assess if a comprehensive under-
standing of soil CH4 fluxes can be derived from quantitative
metatranscriptomics.
The pMMO mRNA transcripts of both sites correlated positively

with methanogenesis transcripts (r= 0.62, p < 0.001) but there
was no significant correlation in SSU rRNA transcripts across sites
(Supplementary Fig. 14). The correlation of mRNA transcripts
suggests that methanotrophs predominantly use CH4 derived
from methanogenesis in the soil. They thus act as a filter
mitigating CH4 emission to the atmosphere [31]. However, there
is seasonal variation; the pMMO to methanogenesis mRNA ratio
was higher in spring and summer than in autumn and winter (4.8
and 3.6 in winter, and 30.0 and 12.1 in summer, in LI and HI,

respectively) (Fig. 6B). Such a ratio may thus indicate whether soils
are CH4 sources or sinks. A high methanotroph to methanogen
ratio may hint at a soil being a CH4 sink, while a low ratio may hint
at a soil being a net CH4 source. Yet, it is necessary to consider
transcriptional activity since the ratio of methanotroph to
methanogen SSU rRNA was not indicative of soils’ CH4 fluxes
(Fig. 6A). Furthermore, the MOB community composition could be
an additional indicator for soil CH4 uptake since a high proportion
of atmospheric CH4 oxidizers in the pmoA transcripts was linked to
net CH4 uptake of the soils.

CONCLUSIONS
This study is, to our knowledge, the first that uses quantitative
metatranscriptomics to link CH4 fluxes from grasslands with CH4-
cycling microbiomes through all seasons of the year. We validated
mRNA transcripts rather than SSU rRNA transcripts to be necessary
for linking microbial activity to soil net surface CH4 fluxes in the
two studied soils measured on a daily time scale. If this holds for
annual rates based on temporarily highly resolved real-time data,
requires more research. Still, since the abundance of mRNA of
methanogenesis pathways correlated well with the net CH4 fluxes,
it may thus be feasible to estimate soil CH4 fluxes using mcr
transcript abundances when additionally considering the

0

0.2

0.4

0.6

0.8

1.0

au
t
win sp

r
su

m au
t
win sp

r
su

m au
t
win sp

r
su

m au
t
win sp

r
su

m

R
el

at
iv

e 
ab

un
da

nc
e

0−10 cm 20−30 cm 0−10 cm 20−30 cm
LI HI

B

au
t
win sp

r
su

m au
t
win sp

r
su

m au
t
win sp

r
su

m au
t
win sp

r
su

m
0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0A

0−10 cm 20−30 cm 0−10 cm 20−30 cm
LI HI

10
10

 S
S

U
 r

R
N

A
 tr

an
sc

rip
ts

 g
− 1

 s
oi

l D
W

Anaerobic methanotrophs

ANME−2c

ANME−2d

candidate division NC10

Candidatus Methylomirabilis

Aerobic methanotrophs

(type I)

unclassified Methylococcales 

Methylococcaceae (type I)

Crenotrichaceae (type I)

Methylocystaceae (type II)

Beijerinckiaceae (type II)

au
t
win sp

r
su

m au
t
win sp

r
su

m au
t
win sp

r
su

m au
t
win sp

r
su

m
0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
ab

un
da

nc
e

0−10 cm 20−30 cm 0−10 cm 20−30 cm
LI HI

C

pmoA like

pxmA

Type I

Type II

pmoA2 (type  II)

USCα (type II)

USCγ (type I)

Fig. 5 Absolute and relative methanotroph SSU rRNA abundances and composition of pmoA transcripts. Absolute abundances (SSU rRNA
transcripts g−1 soil DW) of methanotrophic microorganisms (Archaea and Bacteria) (A), proportion of SSU rRNA transcripts belonging to
methanotrophic microorganisms normalized to the total amount of SSU rRNA transcripts belonging to methanogenic Archaea and
methanotrophs (B), and the proportion of pmoA groups normalized to the total amount of pmoA transcripts (C). Columns show means
per seasons and depth in soils from the upper (0–10 cm) and the deeper soil layer (20–30 cm) of the grassland sites with low (LI) and high (HI)
land-use intensity taken in autumn (aut) 2017 and winter (win), spring (spr) and summer (sum) 2018. “unclassified Methylococcales” contain
Methylococcales unclassified at the family level and low abundance Methylococcales families. “pmoA like” = unclassified pmoA-like sequences.
Bars represent the means of three replicates. Abbreviations: DW dry weight. We refer to Supplementary Figs. 10–12 showing the absolute and
relative abundances of methanotroph SSU rRNA and the pmoA composition in the individual samples, respectively.

J. Täumer et al.

1794

The ISME Journal (2022) 16:1788 – 1797



transcript ratio of methanotroph and methanogen key enzymes.
The latter is suggested by the different ratios between the seasons
in both grasslands.
Soils are the largest biological sink for atmospheric CH4, an

important ecosystem function given the increasing concentration
of atmospheric CH4 [1]. However, its magnitude and controlling
factors are currently poorly constrained [3, 27]. Our study adds to
the growing body of literature (e.g., [30]) that suggests that in soils
with internal CH4 formation, such as the drained peatlands
investigated here, many methanotroph groups contribute to
atmospheric CH4 oxidation as compared to upland soils that are
permanent net sinks of CH4. Stable isotope probing may be well
suited to investigate this further [21–25].
We investigated 60 samples by RNAseq, a technique currently

still restricted in terms of throughput and costs. Two RT qPCR
studies found a relationship between mcrA transcript abundances
and CH4 fluxes in a paddy soil and a peat bog, respectively
[90, 91]. Parallel RT qPCRs of mcrA and pmoA transcripts
might thus currently be also viable tools to estimate CH4 fluxes
of soils from many samples and sites, respectively. Nevertheless,
more large-scale studies, such as the one presented here,
are encouraged to further investigate the link between methano-
gens and methanotrophs and CH4 fluxes across different soil
types and seasons, especially when considering the ever
decreasing costs of sequencing and further automatization in
bioinformatics workflows.

DATA AVAILABILITY
All raw sequencing data have been deposited in NCBI sequence read archive under
BioProject ID PRJNA741868.
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