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Abstract

Convolutional Neural Network-based image classification models are the current state-
of-the-art for solving image classification problems. However, obtaining and using such
a model to solve a specific image classification problem presents several challenges in
practice. To train the model, we need to find good hyperparameter values for training,
such as initial model weights or learning rate. However, finding these values is usually a
non-trivial process. Another problem is that the training data used for model training
is often class-imbalanced in practice. This usually has a negative impact on model
training. However, not only is it challenging to obtain a Convolutional Neural Network-
based model, but also to use the model after model training. After training, the model
might be applied to images that were drawn from a data distribution that is different
from the data distribution the training data was drawn from. These images are typically
referred to as out-of-distribution samples. Unfortunately, Convolutional Neural Network-
based image classification models typically fail to predict the correct class for out-of-
distribution samples without warning, which is problematic when such a model is used
for safety-critical applications. In my work, I examined whether information from the
layers of a Convolutional Neural Network-based image classification model (pixels and
activations) can be used to address all of these issues. As a result, I suggest a method
for initializing the model weights based on image patches, a method for balancing a
class-imbalanced dataset based on layer activations, and a method for detecting out-
of-distribution samples, which is also based on layer activations. To test the proposed
methods, I conducted extensive experiments using different datasets. My experiments
showed that layer information (pixels and activations) can indeed be used to address all
of the aforementioned challenges when training and using Convolutional Neural Network-
based image classification models.
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Zusammenfassung

Modelle basierend auf Convolutional Neural Networks sind der aktuelle Stand der Tech-
nik zur Lösung von Bildklassifizierungsproblemen. Das Training und die Nutzung eines
solchen Modells zur Lösung eines spezifischen Bildklassifizierungsproblems bringt in
der Praxis jedoch einige Herausforderungen mit sich. Um das Modell trainieren zu
können, müssen geeignete Werte für die Trainingshyperparameter identifiziert werden
wie beispielsweise die initialen Gewichte des Modells oder die Lernrate. Die Ermit-
tlung dieser Werte ist üblicherweise jedoch kein trivialer Prozess. Daneben ist zudem
ein weiteres Problem, dass in der Praxis häufig die Trainingsdaten nicht balanciert sind
bezüglich der Klassenverteilung. Dies wirkt sich in der Regel negativ auf das Mod-
elltraining aus. Allerdings ist es nicht nur eine Herausforderung ein Modell basierend
auf einem Convolutional Neural Network zu trainieren sondern dieses auch nach dem
Training zu nutzen. Nach dem Training wird das Modell möglicherweise auf Bilder ange-
wandt, die aus einer anderen statistischen Verteilung stammen als die Trainingsdaten.
Diese Bilder werden üblicherweise als Out-of-Distribution Samples bezeichnet. Leider
schlagen Modelle basierend auf Convolutional Neural Networks häufig auf diesen Out-
of-Distribution Samples ohne Warnung fehl. Dies ist vor allem problematisch wenn ein
solches Modell für sicherheitskritische Anwendungen verwendet wird. In meiner Arbeit
habe ich untersucht, ob Informationen aus den Layern eines Modells basierend auf einem
Convolutional Neural Network (Pixels und Activations) verwendet werden können, um
die aufgeführten Probleme zu lösen. Ich schlage eine Methode zur Initialisierung der
Modellgewichte basierend auf Bildpatches vor, eine Methode zur Balancierung von unbal-
ancierten Trainingsdaten basierend auf Layer Activations und eine Methode zur Erken-
nung von Out-of-Distribution Samples, welche ebenfalls auf Layer Activations basiert.
Um meine vorgeschlagenen Methoden zu testen habe ich umfassende Experimente unter
Verwendung von verschiedenen Datensätzen durchgeführt. Meine Experimente haben
gezeigt, dass Informationen von den Layern eines solchen Modells (Pixels und Activa-
tions) tatsächlich verwendet werden können um alle aufgeführten Herausforderungen
beim Training und bei der Nutzung des Modells zu adressieren.
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1 Introduction and Dissertation Outline

Convolutional Neural Network-based (CNN) image classification models are the current
state-of-the-art for solving image classification problems [46, 71]. To solve a specific
image classification problem, we need to train the weights of such a model using a set
of training images until the model achieves a sufficient classification performance on a
given test dataset. For instance, suppose we have a certain type of plant that has been
grown for agriculture. Some of the plants, however, suffer from a particular plant disease.
Therefore, we need to identify which plants have the disease before the disease spreads
to even more plants and eventually destroys the entire crop. Unfortunately, an expert
cannot manually check all of the plants for the disease as there are too many plants.
However, we can identify plants suffering from the disease by automatically taking images
of all of the plants and aiming to classify them into the two classes healthy plant and plant
with disease using a Convolutional Neural Network-based image classification model. To
obtain the model, we first need to choose a model architecture consisting of a certain
amount of model layers and initialize the weights of each model layer in some way. Then,
an expert manually labels a few of our plant images with their respective classes. These
labeled images are shown to the model for training, i.e., the labeled images are our
training images for the model. During model training, we adjust the model weights over
multiple iterations using the training images with the goal to improve the classification
performance of the model. We train the model until the model achieves a sufficient
classification performance on a test dataset. This test dataset consists of a few other
labeled images that the model did not see during training. Chapter 2 gives more details
about how to train a Convolutional Neural Network-based model. After training the
model, we expect it to have learned an image feature representation of each class of
the respective image classification problem. Then, we typically deploy the model to a
production system (e.g., a mobile app). This production system can be used to classify
all plant images in order to identify the plant disease.

However, obtaining and using a Convolutional Neural Network-based image classifi-
cation model to solve a specific image classification problem presents several challenges.
To train the model, we need to find good hyperparameter values for training, such as the
model architecture, the initial values for the model weights, or specific hyperparameters
for adjusting the weights during model training (e.g., the learning rate). The hyper-
parameters are critical to a successful training process. Therefore, it is important to
find good values for them. However, finding good values for the hyperparameters is a
non-trivial process. Moreover, good hyperparameter values for one classification prob-
lem are not necessarily good hyperparameter values for another classification problem.
Thus, every time we aim to solve a specific image classification problem, it is important
that we find good hyperparameter values for model training. A further issue with re-
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1 Introduction and Dissertation Outline

spect to model training is that the training data is often class-imbalanced in practice. A
class-imbalanced dataset contains images that belong to a specific set of classes, but the
images are not uniformly distributed among the classes. For instance, in our plant dis-
ease example, initially, only a few plants are affected by the disease. We aim to identify
the plants affected by the disease as early as possible in order to prevent the disease from
spreading to other plants. However, this also means that when we collect our training
images, we only find a small number of images showing a plant affected by the disease.
As a result, our collected training dataset may contain a large number of images showing
a healthy plant but only a small number of images showing a plant with the disease. This
class imbalance usually has a negative impact on model training. During training, the
model might only be able to learn an adequate image feature representation of the class
healthy plant but not the class plant with disease because the model sees only a small
number of images of the plant with disease class during model training. However, not
only model training can be challenging but also using the model in a production system
after training. As part of the production system, the model might be applied to an im-
age that was drawn from a data distribution that is different from the data distribution
the training data was drawn from. The model did not see this kind of image during
model training. We typically refer to such an image as an out-of-distribution sample.
However, as the model did not see such an out-of-distribution sample during training,
the model has not been able to learn an adequate image feature representation of that
sample. Therefore, the model will most likely fail to predict the correct class without
warning in this case, which is especially problematic for safety-critical applications such
as driving assistance or medical diagnosis systems. This problem may also arise in our
plant disease example. For instance, suppose the disease suddenly mutates and changes
its visual appearance. However, our model has not yet learned anything about this new
appearance. This results in the model no longer being able to recognize the disease.

In my work, I examined whether information from the model layers of a Convolutional
Neural Network-based image classification model (pixels and activations, Figure 1.1) can
be used to address all of the aforementioned challenges. I suggest a method for initializ-
ing the model weights based on image patches, a method for balancing a class-imbalanced
dataset based on layer activations, and a method for detecting out-of-distribution sam-
ples, which is also based on layer activations. All of these methods search for clusters
within the information obtained from the model layers (pixels and activations). The
identified clusters are then exploited for the proposed methods in order to improve the
classification process. More details on finding clusters within the layer information are
presented in Chapter 3. To test the proposed methods, I conducted extensive experi-
ments using different datasets. The experiments showed that layer information (pixels
and activations) can indeed be used to address all of the aforementioned challenges when
training and using Convolutional Neural Network-based image classification models. In
Chapter 4, it is shown how image patches obtained from the training images can be used
for initializing the model weights. To find suitable image patches, the proposed method
uses clustering in image space of a set of candidate patches extracted from the training
images (results published in Lehmann and Ebner [80]). However, not only the informa-
tion obtained from the input layer of the model (i.e., the image pixels) are exploited but
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Figure 1.1: Considered types of exploiting layer information: The proposed approach uses the
pixels from image patches extracted from the training images (e.g., from the MNIST
[76] dataset) and the activations of the training images with respect to a Convo-
lutional Neural Network-based image classification model (CNN) to improve the
classification process.

also the information from other model layers. These other model layers contain the in-
termediate representations of an input image in image feature space towards classifying
this image. The values of such an intermediate representation of the input image with
respect to a specific model layer are the activations of the input image created at that
layer. In Chapter 5, it is shown that clusters identified within the layer activations of a
specific higher model layer can be used to address the class imbalance problem by bal-
ancing the training dataset before model training. Training a model with the balanced
dataset should result in a model with a significantly better classification performance
than training a model with the class-imbalanced training dataset (results published in
Lehmann and Ebner [83]). Furthermore, it is shown in Chapter 6 that clusters identified
within the activations of multiple model layers also help to identify out-of-distribution
samples. Moreover, out-of-distribution samples can not only be detected using clusters
obtained from the layer activations but can also be detected quickly. This is important
for safety-critical applications running in real-time, such as a driving assistance system,
which usually does not have much time to prevent the car from having an accident (re-
sults presented in three publications [81, 82, 84]). The following contributions have been
made: (1) It was shown that information obtained from the layers of a Convolutional
Neural Network-based image classification model (pixels and activations) can be used

3



1 Introduction and Dissertation Outline

to improve the overall classification process, (2) a method was suggested that initial-
izes the model weights using clusters identified in image space (i.e., the pixels) of image
patches extracted from the training images, (3) a method was proposed that addresses
the class imbalance problem by balancing the training dataset using clusters identified
within the activations from a higher model layer, (4) a method was introduced that is
based on identifying clusters within the activations of multiple model layers in order
to detect out-of-distribution samples, and (5) the suggested methods were evaluated
through extensive experiments on multiple datasets. The code of my work can be found
on GitHub1.

1 https://github.com/bam098/dissertation

4
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2 Fundamentals of Convolutional Neural
Network-based Image Classification

Before explaining how the information from the layers of a Convolutional Neural
Network-based (CNN) image classification model (pixels and activations) can be used to
improve the classification process, this chapter provides an overview of the fundamen-
tals of these models. Chapter 2.1 describes how Convolutional Neural Network-based
image classification models are constructed using a certain set of model layers. After
constructing such a model, Chapter 2.2 explains how to train the model to solve a spe-
cific image classification problem. Finally, Chapter 2.3 describes what the model learned
during model training in order to classify images. More detailed information about the
fundamentals of Convolutional Neural Network-based image classification models can be
found in Goodfellow et. al. [40], Aggarwal [2], or Howard and Gugger [53].

2.1 Model Architecture

A Convolutional Neural Network-based (CNN) image classification model consists of an
input layer, multiple hidden layers, and an output layer (as illustrated in Figure 2.1).
The input layer is the image that is fed into the model as input, while the output layer
contains the classification result with respect to that input image. The hidden layers
contain the intermediate representations of the input image that are required by the
model in order to obtain the classification result at the output layer. The values of
the intermediate image representations with respect to the hidden layers are the activa-
tions of these layers. A Convolutional Neural Network-based image classification model
typically requires multiple intermediate image representations in order to obtain the
classification result. Each intermediate image representation is created by a different
hidden layer. The number and type of the required hidden layers, however, depend on
the image classification problem that needs to be solved. Nevertheless, the set of hidden
layers usually has a certain structure. The model typically contains multiple consecutive
convolutional hidden layers followed by one or more optional linear hidden layers. Each
convolutional layer contains a specific intermediate image representation in the form of
a three-dimensional activation tensor, while each linear layer contains a specific inter-
mediate image representation in the form of an activation vector. Furthermore, each
of the hidden layers (convolutional and linear) contains weights. The values of these
weights are learned during model training with respect to the classification objective of
the model [2], as described in Chapter 2.2.

5



2 Fundamentals of Convolutional Neural Network-based Image Classification

The weights of a convolutional layer are structured into multiple filters (also referred
to as kernels). A filter is a three-dimensional tensor containing a subset of the weights of
the respective convolutional layer. The first two dimensions of this tensor reflect the size
of the filter. Typical filter sizes are 3× 3, 5× 5, or 7× 7. The third dimension depends
on the depth of the activation tensor of the previous convolutional layer, or the depth
of the input image if the previous layer is the input layer (depth of grayscale images:
1, depth of color images: 3) [53]. After model training, each filter of a convolutional
layer detects a specific image feature of the input image. Zeiler and Fergus [148] showed
that the filters of the lower convolutional layers (i.e., the layers closer to the input layer)
detect low-level image features (e.g., edges, corners, simple textures), while the filters of
the higher convolutional layers (i.e., the layers closer to the output layer) detect high-
level image features (e.g., object parts, objects in various poses). The filter size and the
number of filters of each convolutional layer depend on the classification problem that
needs to be solved. Therefore, size and number need to be set as hyperparameters for
each convolutional layer for model training. The weights of all filters of a convolutional
layer result in the total amount of weights of that layer [53].

When an image is fed into the model, each filter of the first convolutional layer is
applied to each pixel of that image using the convolution operation [30]. By applying
the filters to each pixel of the image, we obtain a matrix of values for each of the filters.
The values of this matrix are the pre-activation values [2] of the layer with respect to
the respective filter. Each obtained matrix of pre-activations has the same height and
width as the input image if the convolution operation was applied to every pixel of
the input image. All pre-activation matrices together form the three-dimensional pre-
activation tensor of the layer. Each pre-activation matrix is also referred to as a channel
of this tensor. The total number of channels of the tensor reflects its depth. After
obtaining the tensor of pre-activations, we then apply an activation function, such as the
ReLU activation function (Rectified Linear Unit) [39], to the pre-activations. The ReLU
activation function simply sets all negative pre-activation values to 0. The resulting
values are the post-activation values [2] of the layer. Below, the post-activation values
of a layer are simply referred to as the activations of that layer. After obtaining the
activation tensor of the first convolutional layer, we compute the activation tensor of the
second convolutional layer. To obtain the activation tensor of the second convolutional
layer, the filters of that layer are applied to each activation obtained from the first
convolutional layer using the convolution operation in the same way as the filters of the
first convolutional layer were applied to the pixels of the input image. As a result, we
obtain the tensor of activations of the second convolutional layer. The activations of all
following convolutional layers are computed in the same way [40, 53].

However, the filters of a convolutional layer do not need to be applied to every pixel
or activation of the previous layer using the convolution operation. Certain pixels or
activations can be skipped. If we apply the filters only to every second pixel or activation
using the convolution operation, we reduce the resolution of the pre-activation matrices
by half and thus reduce the final activation tensor of the layer by half compared to
the activation tensor of the previous layer. For instance, the width and height of the
activation tensor of the first convolutional layer would be only half the size of the input
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image in this case. When going from the first to the last convolutional hidden layer, the
resolution of the image representations (i.e., the activation tensors) is usually decreased
to be able to detect increasingly complex image features. Due to the resolution decrease,
an activation of a specific higher layer (i.e., a layer closer to the output layer) corresponds
to a region of the input image in image feature space that is larger than an image pixel.
This region is referred to as the receptive field of the layer with respect to the input image.
The receptive field of a higher layer could encompass a high-level image feature present
in the image, such as a characteristic object part. An activation of a lower layer (i.e., a
layer closer to the input layer), however, corresponds to a receptive field with respect to
the input image that is larger than an image pixel but smaller than the receptive field
of a higher layer. Thus, a lower layer is usually able to detect low-level image features
in the image, such as simple textures. To obtain the different receptive fields, we must
reduce the resolution of the activation tensors among the different convolutional layers
when going from the first to the last convolutional hidden layer. One way to reduce
the resolution is the aforementioned skipping of pixels or activations when applying the
convolution operation. The number of skipped activations or pixels is called stride. The
stride depends on the image classification problem we aim to solve and is therefore a
hyperparameter that needs to be set for model training. However, there is also a second
option to reduce the resolution of the activation tensors. We can apply the pooling
operation [110] to them. The pooling operation moves over each position of each channel
of an activation tensor using a sliding window (e.g., of size 2×2 for reducing the resolution
by half). In order to reduce the resolution, either the average or the maximum from
the activations within the sliding window is taken at each position. However, the stride
is usually preferred over pooling nowadays as it works better for modern Convolutional
Neural Network-based image classification models [40, 53].

After the convolutional layers, we can have one or more optional (fully-connected)
linear layers. A linear layer contains its activations in the form of an activation vector.
Each activation of this activation vector is computed by a linear combination of all
activations of the previous linear layer, followed by applying an activation function (e.g.,
ReLU) to the result of this linear combination. The weights of the linear combination
used to compute the respective activation are the model weights associated with that
activation [2]. If the previous layer is the last convolutional layer, however, we first
need to convert the three-dimensional activation tensor of the convolutional layer into
an activation vector. There are several ways to convert the tensor into a vector. We
could simply flatten the activation tensor. However, this is not a good approach as
the model then only accepts input images with a fixed size because input images of
different sizes result in different-sized activation tensors, which lead to different-sized
activation vectors. Another approach to converting the three-dimensional activation
tensor into an activation vector is using a global average pooling layer [88] between
the last convolutional layer and the first linear layer. A global average pooling layer
averages the activations from the last convolutional layer along the width and height
of the activation tensor but not along its depth. As a result, we obtain a vector of
activations of size 1 × 1 × depth from the last convolutional layer. This approach is
independent of the size of the input images. The third option is to incrementally reduce
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Figure 2.1: The general model architecture of a Convolutional Neural Network-based (CNN)
image classification model consisting of the input layer (e.g., an MNIST [76] image),
multiple consecutive convolutional hidden layers (Conv) followed by one or more
optional linear fully-connected hidden layers (FC), and the output layer.

the resolution of the last convolutional layer to a size of 1 × 1 × depth by stride or
pooling, which provides the last convolutional layer in its vector form. This approach
is also independent of the size of the input image. We finally apply the weights of
the following first linear layer in a linear combination to the resulting activation vector
followed by applying the activation function in order to obtain the activations of that
linear layer. After obtaining the activations from the first linear layer, we compute the
activations of the following linear layers in the same way. Finally, we apply the softmax
function (instead of ReLU) to the result of the linear combination of the last linear layer
to obtain the classification result. The resulting values reflect the classification scores of
the output layer. The highest resulting classification score corresponds to the predicted
class with respect to the image that was fed into the model [40, 53].

Above, the architecture of a standard Convolutional Neural Network-based model is
described. Standard models such as these, with few hidden layers, are usually well suited
to solving simple image classification problems. However, in order to be able to solve
complex problems, we typically need a large number of hidden layers. Unfortunately,
training a standard Convolutional Neural Network-based image classification model does
not work well if the model contains such a large number of hidden layers. Thus, He et. al.
[46] suggested the ResNet (Residual Network) model architecture. The ResNet model
architecture contains additional skip connections (Figure 2.1). At some locations in the
model architecture, the current layer output is combined with the output of a layer that
is further back in the model architecture, i.e., a few layers are skipped. Hereinafter, the
skipped layers will be referred to as a ResNet block. We usually add skip connections at
multiple locations in the model architecture. Adding the skip connections has a positive
effect on model training [53]. Finally, after defining the model architecture, we can train
the model using our training dataset (Chapter 2.2).

8



2.2 Model Training

2.2 Model Training

After specifying the architecture of the Convolutional Neural Network-based (CNN)
image classification model (Chapter 2.1), we need to train the weights of the model using
a set of training images until the model achieves a sufficient classification performance
on a given test dataset. Once the model is trained, we can use the trained model
for solving the respective image classification problem. Such an image classification
problem requires classifying images into a fixed set of classes. However, instead of
using a Convolutional Neural Network-based model to solve the image classification
problem, it would be easier to simply separate the images linearly in pixel space according
to the respective classes. Unfortunately, this is not possible because images are high-
dimensional spaces. Consequently, they cannot be separated linearly in pixel space
according to their classes. A Convolutional Neural Network-based model, therefore,
attempts to incrementally change the representation of the images in multiple steps to
eventually find a representation of the images that is linearly separable. The model
finds this linearly separable image representation through multiple intermediate image
representations. Each intermediate image representation is stored in a certain hidden
layer of the model in the form of the activations of that layer, while the final model
layer should contain the desired linearly separable image representation. In order to find
the linearly separable image representation in the final model layer, we need to train
the model using an iterative optimization algorithm (e.g., Adam1 [65]) for a sufficient
number of training epochs. The optimization algorithm searches for the optimal weights
of the model in an iterative process. Optimal (or near-optimal) weights are required to
find the intermediate and final linearly separable image representation [40, 53].

To train the model, we need to set several hyperparameters for model training. First
of all, we must specify the model architecture (for more information, see Chapter 2.1).
After specifying the architecture, we then need to set the initial values of the model
weights. Initializing the model weights is critical to the training time. State-of-the-
art methods to set the initial weight values are based either on random values or on a
pre-trained model (for more information, see Chapter 4.1). Additionally, I suggest an
alternative weight initialization method in Chapter 4.2, which is based on image patches
extracted from the training images. In addition to the model architecture and initial
weights, we also need to set certain hyperparameters for model training that specify
how the weights should be adjusted during the training process. The most important
of these hyperparameters is the learning rate. The learning rate specifies how much the
model weights should be adjusted at each training step, which is critical to the training
process. If we set the learning rate too high, we might not even get close to the optimal
weight values because we will reach a point where the optimal weight values are between
the weight values of the current training epoch and the weight values of the previous
training epoch. If we set the learning rate too small, it may take us a long time to
reach the optimal weight values, and we may even get stuck in saddle points or even
local minima during the training process. Thus, it is important to find a good value

1 https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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for the learning rate. Furthermore, it may also be beneficial to adjust the learning rate
during model training using a learning rate schedule (e.g., a cosine-annealing learning
rate schedule [91]) or to use different learning rates for different layers (discriminative
learning rates) [54]. In addition to the learning rate, there are other hyperparameters
that are used to adjust the model weights, such as the momentum and the weight decay.
However, the learning rate usually has the strongest impact on training [40, 53].

Along with setting the training hyperparameters, we also need to ensure that we use
a sufficient training dataset for model training. In practice, it can be difficult to collect
and label a sufficient number of training images. Therefore, to add more variation to our
training dataset, we can extend it by using data augmentation [128]. Data augmentation
uses image processing techniques (e.g., cropping, flipping, rotation, adjusting brightness)
to create additional training images by adjusting the original training images. These
additional training images differ slightly from the original training images. Thus, by
using data augmentation, our training dataset obtains a wider range of images with
respect to each class of the image classification problem. This is important because our
model needs to see each class in different forms in order to learn sufficient image feature
representations of the classes [53]. However, if our training dataset is class-imbalanced,
our model will not be able to learn such a sufficient image feature representation for
at least some of the classes. A class-imbalanced training dataset does not contain an
approximately equal number of images from all classes. This has a negative impact
on model training [104]. Unfortunately, training datasets are often class-imbalanced in
practice. As a result, we need to address the class imbalance problem before model
training. In Chapter 5.2, I suggest a method to address this problem, which is based on
exploiting the layer activations of a higher hidden layer of the model.

After obtaining a sufficient training dataset, we group the training images of that
dataset into mini-batches and show the model all obtained mini-batches for several train-
ing epochs in order to train the model. During training, the model adjusts its weights
each time it sees a mini-batch with the aim of incrementally separating the training
images from the first to the final model layer according to their classes. Training images
of the same class are increasingly pushed together in activation space of the first to the
last hidden layer, while training images of different classes are increasingly pushed apart.
We train the model until the model achieves a sufficient classification performance on a
given test dataset. After model training, the obtained model weights should transform
the input images of the model into the intermediate image representations in activation
space of the hidden layers and into the final linearly separable image representation in
activation space of the last model layer [40, 53]. Zeiler and Fergus [148] showed that
the final weights after model training result in an image representation in activation
space of each hidden layer corresponding to the image features that the model learned
to recognize from the training images. The weights of the lower model layers (i.e., the
layers closer to the input layer) detect low-level image features (e.g., edges, corners,
simple textures), while the weights of the higher model layers (i.e., the layers closer to
the output layer) detect high-level image features (e.g., object parts, objects in various
poses). Finally, the trained model can then be applied to novel images for inference
(Chapter 2.3).
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Lower Layer Higher Layer

Figure 2.2: The images of the ImageNet [25] classes soccer ball (red) and baseball (blue) are
arranged in image feature space of the lower layers (left) according to low-level image
features such as color distributions (e.g., black background, white background, grass
background), while they are arranged in image feature space of a higher layer
(right) according to high-level image features such as characteristic object parts
(e.g., baseball glove, baseball player, soccer player, soccer ball).

2.3 Model Inference

After model training (Chapter 2.2), we usually deploy the obtained model to a production
system (e.g., a mobile app, a web server) in order to classify novel images for inference.
After feeding such a novel image into the model, each layer of the model tries to find
specific image features in the image in order to predict the correct class of the image.
Zeiler and Fergus [148] showed that the lower model layers (i.e., the layers closer to the
input layer) detect low-level image features (e.g., edges, corners, simple textures), while
the higher model layers (i.e., the layers closer to the output layer) detect high-level image
features (e.g., object parts, objects in various poses). The images fed into the model
are therefore arranged in image feature space of a specific hidden layer (in the form of
its activations) according to the type of image features the layer detects. As shown in
Figure 2.2, a lower model layer arranges the images according to low-level image features,
such as the overall color distributions of the images, while a higher model layer arranges
the images according to high-level image features, such as characteristic object parts.
From layer to layer, the model tries to find image features that become increasingly
class-specific. At the final layer, the model then tries to detect the image object for
predicting the class of the image. As a result, a novel image fed into the model should
be located in image feature space of each model layer according to the image features
the image contains. As a result, the image should be close to other images of the same
class, which should have similar image features [109].
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However, if a novel image of a certain class was drawn from a data distribution that
is different from the data distribution the training data of the model was drawn from,
the novel image may be located near training data samples of a different class in im-
age feature space of the lower as well as the higher model layers and is therefore mis-
classified without warning. This type of image is commonly referred to as an out-of-
distribution sample. Out-of-distribution samples can occur naturally [51, 108], or they
can be created artificially [41, 59, 135] by an attacker (for more information, see Chap-
ter 6). Out-of-distribution samples pose a serious threat, especially when using the
model for safety-critical applications (e.g., driving assistance systems, medical diagnosis
systems). Data augmentation [128] can help make the model more robust against out-
of-distribution samples [48, 146]. However, this does not work in all cases. As a result,
out-of-distribution samples need to be detected as quickly as possible. In Chapter 6.2, I
propose a method for detecting out-of-distribution samples that is based on the location
of an image in image feature space of various model layers.
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3 Fundamentals of Identifying Clusters in
Model Layer Information

After giving an overview of the fundamentals of Convolutional Neural Network-based
(CNN) image classification models in Chapter 2, I will briefly describe my general ap-
proach to identifying clusters within the information from the layers of such a model
(pixels or activations) in this chapter. My suggested methods for improving the classifi-
cation process in various ways require these clusters, as described in Chapter 4, Chapter
5, and Chapter 6. In order to obtain the clusters at a specific model layer, the proposed
approach requires three steps. First, the information from the layer needs to be com-
pressed by reducing its dimensionality, as described in Chapter 3.1. Without reducing
the dimensionality, it would most likely not be possible to find meaningful clusters within
the layer information. After compressing the layer information using dimensionality re-
duction, clusters need to be identified within the compressed information, as described
in Chapter 3.2. However, not all of the obtained clusters are useful for my proposed
approach. Therefore, the obtained clusters need to be evaluated in a final step in order
to find the useful clusters, as described in Chapter 3.3. Finally, the obtained useful
clusters are exploited in order to improve the classification process.

3.1 Dimensionality Reduction

The goal is to identify clusters within the information of a specific model layer l (pixels
or activations). This information consists of a set of input images in the pixel or acti-
vation space of the layer. My suggested approach to finding the clusters first stores the
information from layer l in a matrix Al of size N ×M . The rows of Al represent the
N input images, while the columns represent the M pixels or activations of the images
with respect to layer l. However, before searching for clusters within matrix Al (i.e., the
layer information), the dimensions of Al need to be reduced. Reducing dimensionality is
necessary as the layer information in Al in the form of pixels (from the input layer) or
activations (from the hidden layers) is usually high-dimensional, and identifying clusters
in high-dimensional spaces does not work well, as pointed out by Chen et. al. [19].
Clustering algorithms use distance metrics to identify clusters, but distance metrics are
not effective in high-dimensional spaces. However, as Domingos [28] highlights, the data
samples of most applications are located within a low-dimensional subspace within such
a high-dimensional space. Thus, Chen et. al. [19] suggested to use dimensionality re-
duction to project matrix Al onto such a low-dimensional subspace before searching for
clusters. As a result, Al is projected to two dimensions. However, before projecting Al,
each of its values needs to be normalized as a preprocessing step for the dimensionality
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reduction. A normalized value is referred to as the z-score1 of the value. Suppose Ali,j
is the value in the ith row and the jth column of matrix Al. To normalize this value,
the mean µj over all values of the jth column of Al need to be subtracted from Ali,j ,

and then Ali,j needs to be divided by the standard deviation σj over all values of the jth

column of Al. As a result, the normalized value z(Ali,j) is obtained (Equation 3.1). This

normalization step is applied to all values of Al. Hereinafter, it is assumed that matrix
Al contains the normalized values z(Ali,j) instead of the non-normalized values Ali,j .

z(Ali,j) =
Ali,j − µj

σj

µj =
1

|Al:,j |
∑
i

Ali,j , σj =

√√√√∑i(A
l
i,j − µj)2

|Al:,j | − 1

(3.1)

Once each value of matrix Al has been normalized, dimensionality reduction is used to
reduce the dimensions of the matrix fromN×M toN×2. In general, I achieved good pro-
jection results with the non-linear dimensionality reduction technique UMAP (Uniform
Manifold Approximation and Projection) [98]. UMAP constructs a high-dimensional
graph from the data in order to approximate its topology. Then, UMAP maps the re-
sulting high-dimensional graph to a low-dimensional graph in order to project the data
onto a low-dimensional space. However, if matrix Al is huge, we may not receive a suf-
ficient projection result. UMAP does not always work well when the dimensionality is
too high. Moreover, UMAP usually requires a long computation time and high memory
consumption when applied to a huge amount of data. Thus, in order to project larger
matrices, I use a combination of UMAP and the linear dimensionality reduction tech-
nique PCA (Principal Component Analysis) [116]. PCA finds the principal components
within the data. The principal components are variables that are constructed by linear
combinations of the variables of the original data (e.g., pixels or activations). However,
the principal components are constructed in such a way that the first principal com-
ponents contain the most information, while the last principal components contain the
least information. As a result, when only the first principal components are used (in this
case the first 2 to obtain a two-dimensional space), we do not lose too much informa-
tion because the first principal components contain the most information. The selected
first principal components form the projected layer information. To combine PCA with
UMAP in order to project Al, I use a similar approach to the method suggested by
Nguyen et. al. [109]. First, the layer information is reduced from N ×M to N × 50
using PCA, and then it is further reduced from N × 50 to N × 2 using UMAP. This
combination of PCA and UMAP achieved the best results in my comparison of different
dimensionality reduction approaches, as shown in Chapter 6.3.2. The resulting reduced
matrix contains the compressed pixels or activations of each image.

1 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html
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3.2 Cluster Analysis

3.2 Cluster Analysis

After obtaining the compressed information from a specific model layer (compressed pix-
els or activations) through dimensionality reduction (Chapter 3.1), clusters are searched
within this compressed layer information. The compressed layer information consists of
the set of input images in the compressed two-dimensional pixel or activation space of
the respective layer. To search for the clusters within this compressed layer information,
I use the k-Means [95] clustering algorithm. I chose k-Means for identifying the clus-
ters as I obtained the best clustering results using k-Means in my experiments (Chapter
6.3.2). k-Means requires us to set the hyperparameter k, which specifies the number
of clusters that k-Means should search for in the data. First, k-Means places k cluster
centers randomly within the compressed pixel or activation space of the respective layer.
Then, each image data sample in that space is assigned to the nearest cluster center.
Once all image data samples have been assigned to their nearest cluster center, each
cluster center is moved to the center of its assigned image data samples by setting the
cluster center to the average over all assigned image data samples in the compressed
pixel or activation space of the respective layer. These last two steps are then repeated
until the assignment of the image data samples to the cluster centers no longer changes.
The final assignments are the identified clusters.

3.3 Cluster Evaluation

Chapter 3.2 describes how to identify clusters within the information of the model layers
(pixels or activations) using the k-Means [95] clustering algorithm. However, k-Means
requires us to set the hyperparameter k. Unfortunately, it is not obvious how to set k.
Thus, I simply identify the best value for k by testing different values. The clustering
result obtained from each tested k is evaluated using a cluster quality metric. The value
for k that results in the clusters with the best cluster quality is chosen. The silhouette
score [121] is used as the cluster quality metric in order to evaluate the obtained clusters.
Chen et. al. [19] reported that the silhouette score is well suited to evaluating clusters
identified in activation data of Convolutional Neural Network-based (CNN) models. The
silhouette score is calculated using the intra-cluster distance dintra and the nearest-cluster
distance dnear of each image data sample of the dataset. To calculate the silhouette
score silscr(ui) of an image data sample ui, it is first necessary to measure the distance
d(ui, uj) from that image data sample ui to other image data samples uj that are located
in the same cluster hu as ui (ui ∈ hu, uj ∈ hu, ui 6= uj). Then, the mean of these distance
measurements is calculated to receive the intra-cluster distance dintra(ui) of sample ui
(Equation 3.2).

dintra(ui) =
1

|hu| − 1

∑
uj∈hu,ui 6=uj

d(ui, uj), ui ∈ hu (3.2)
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After determining the intra-cluster distance dintra(ui) of image data sample ui, the
distance d(ui, vi) from that image data sample ui to image data samples vi of the nearest
cluster hv to cluster hu (ui ∈ hu, vi ∈ hv) is measured. Then, the mean of these distance
measurements is calculated to receive the nearest-cluster distance dnear(ui) of sample ui
(Equation 3.3).

dnear(ui) = min
hu 6=hv

1

|hv|
∑
vi∈hv

d(ui, vi), ui ∈ hu (3.3)

After determining the intra-cluster distance dintra(ui) and the nearest-cluster distance
dnear(ui) of image data sample ui, the silhouette score silscr(ui) of sample ui can be
calculated (Equation 3.4).

silscr(ui) =

{
dnear(ui)−dintra(ui)

max{dintra(ui),dnear(ui)} if |hu| > 1

0 if |hu| = 1
, ui ∈ hu (3.4)

The silhouette score is calculated for all image data samples of the dataset using the
procedure described above. After determining the silhouette score for each image data
sample, the mean over all obtained silhouette scores is calculated to receive the total
silhouette score for the obtained clusters. The value of the resulting total silhouette score
ranges from −1 to 1. A silhouette score close to 1 means that the identified clusters are
well-separated because in this case we mainly have dintra(ui)� dnear(ui). A silhouette
score close to −1, however, means that the majority of the image data samples should
be located in the nearby cluster rather than in their current cluster. Thus, a higher
silhouette score reflects a better cluster quality and is therefore favorable. This results
in selecting the k value for k-Means that leads to the clusters achieving the highest
silhouette score.

16



4 Exploiting Image Patches to Initialize the
Model Weights

As already shown in Chapter 2.2, training a Convolutional Neural Network-based (CNN)
image classification model is a non-trivial process. To train such a model, we need to
find a good training setup, which involves finding good initial values for the weights of
the model and finding good values for the hyperparameters of the training process itself.
These values are not trivial to find. However, information extracted from the training
images of the model can be exploited to improve the process of finding good values for the
model weights and the training hyperparameters. Before going into the details about
how this information can be exploited, however, I need to recap the training process
itself. During model training, we aim to find optimal values for the model weights with
respect to the classification objective of the model. Unfortunately, these optimal weight
values are unknown. To obtain the optimal weight values or weight values that are
at least close to the optimal weight values, we need to use an iterative optimization
algorithm [120, 122]. We first set each model weight to an initial value. After setting the
initial values for the weights, we measure the current loss of the model with respect to
the training data samples. The loss describes how bad the model predictions are for the
labels of the training data samples, when using the model with the current weight values.
Then, we adjust the weight values in multiple training epochs to minimize the loss. In
each epoch, we update the values of the weights towards their optimal values using our
optimization algorithm. The optimization objective is to obtain the model that reaches
zero loss. The weight values of this model are the optimal weight values. In practice,
however, we usually do not reach zero loss. Nevertheless, we aim to minimize the loss
as much as possible by adjusting the weight values of the model without overfitting the
model on the training dataset. To control how much the weight values get adjusted in
each training epoch, we need to set different training hyperparameters beforehand. The
most important of these training hyperparameters is the learning rate. The learning rate
specifies how much we adjust the weight values. Finding a good value for the learning
rate is important. If we set the learning rate too high, we will not even get close to the
optimal weight values because we will reach a point where the optimal weight values
are between the current weight values and the weight values of the previous training
epoch. If we set the learning rate too small, we may need a long time to reach the
optimal weight values, and we may even get stuck in saddle points or even local minima
during the optimization process. Unfortunately, similar to the initial weight values, it is
unknown how to set the training hyperparameters, such as the learning rate, in advance.
Furthermore, the training hyperparameters and the initial weight values usually differ
between different image classification problems [53].
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However, we aim to set the initial weight values at least as close as we can to the
optimal weight values in order to keep the number of required training epochs as low as
possible. If we set the initial weight values close enough to the optimal weight values, we
can even use a lower learning rate because we will not need a high number of training
epochs anymore. Furthermore, the risk of getting stuck in saddle points or even local
minima will be reduced as well. To set the initial weight values close to the optimal weight
values, we usually use the weight values from a pre-trained model [154]. Normally, such
a pre-trained model was trained on the ImageNet [25] dataset. The ImageNet dataset
contains images showing a natural image object (e.g., an orange, a baseball) in front of
a natural image background. If the training images of our current image classification
problem are similar to the ImageNet training images, then the weight values of this
pre-trained model are usually good initial weight values for the model that we aim to
train in order to solve our image classification problem. We expect the weight values
of the pre-trained model to be close to the optimal weight values of our current image
classification problem as our image classification problem is similar to the ImageNet
classification problem. If the training images of our current image classification problem
are significantly different from the ImageNet training images (e.g., medical images),
however, using the weight values of the pre-trained model is most likely not beneficial
for training our model. In this case, the pre-trained model weights are probably too
far from the optimal model weights of our current classification problem. Therefore,
we could alternatively pre-train our model manually using self-supervised learning [32].
Self-supervised learning uses an auxiliary optimization objective for the pre-training to
obtain the initial weight values. These initial weight values are then fine-tuned using our
classification objective. More information about model pre-training is given in Chapter
4.1. Nevertheless, we still need to find initial weight values at least for the pre-training.
To find these initial weight values, we cannot use any model training, i.e., we need to train
the model from scratch. State-of-the-art methods to find these initial weight values are
based on random values in combination with information about the model architecture
[38, 45]. More details about these state-of-the-art methods are given in Chapter 4.1 as
well. However, the state-of-the-art methods only use a general approach to finding good
initial values for the model weights. They do not take into account information about
the classification problem, such as the training data samples. Thus, we may still need a
long training time because the obtained initial weight values might still be far from the
optimal weight values of our current classification problem.

Moreover, it is not clear what the model learns during model training, i.e., how we
get from the initial weight values to the final weight values throughout model training.
Therefore, not only for reasons of efficiency but also for reasons of explainability, it
would be better to set the initial weight values close to the optimal weight values. If we
set the initial weight values for at least some model layers close to the optimal weight
values, the weight values of those layers only need little or no adjustment at all. In this
case, we obtain a simplified training process, as the weights of these layers do not need
much training anymore. Furthermore, the model becomes more explainable, at least
with respect to the layers that require little or no training at all, since we no longer need
to find out what those layers learned during model training when their weights were
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adjusted in a certain way. We only need to interpret the initial setting of the weight
values. As a result, avoiding the need to adjust the weights of at least some model layers,
would be a first step towards making Convolutional Neural Network-based models more
explainable. The explainability of Convolutional Neural Network-based models is still an
active area of research [7, 85, 144]. By explaining how the model classifies a data sample,
it would be easier to detect when the model fails to classify that sample. This is especially
important when using Convolutional Neural Network-based image classification models
for safety-critical applications such as medical diagnosis systems.

I proposed a method that initializes the model weights based on image patches ex-
tracted the from the images of the training dataset of the model (published in Lehmann
and Ebner [80]). The details of the proposed method are presented in Chapter 4.2. By
using information about the current classification problem in the form of image patches
extracted from the training images, I expected the method to set the initial values for
the model weights in such a way that fewer training epochs are needed to train the
model. My first research goal, however, was to examine if image patches can be used
to initialize the model weights at all. My second research goal was then to compare
the proposed weight initialization method with different state-of-the-art methods for
initializing the model weights. In my experiments (Chapter 4.3), I showed that image
patches extracted from the training images can be used to set the initial weights of the
model. A model, whose weights were initialized by my proposed method, even reached
a similar classification performance in my experiments as a model, whose weights were
initialized by a state-of-the-art method, when using an optimal learning rate value. Fur-
thermore, initializing the model weights using my proposed method makes the choice of
the learning rate for model training more robust. If we chose a smaller learning rate for
model training (i.e., a suboptimal value), the model initialized by my proposed method
needed fewer training epochs to achieve a certain classification performance compared
to a model initialized by a state-of-the-art method. The following contributions have
been made: (1) A method was suggested for initializing the weights of a Convolutional
Neural Network-based model that is based on information extracted from the training
images of the model, and (2) it was shown that using the proposed method makes the
choice of the learning rate more robust with respect to the training process.

4.1 Related Work on Model Weight Initialization

To initialize the weights of a Convolutional Neural Network-based (CNN) image classifi-
cation model, we typically use the weight values of a pre-trained model. This pre-trained
model needs to have the same model architecture as our current model. Only the output
layer of our current model may differ from the output layer of the pre-trained model as
the pre-trained model was usually trained with respect to a different classification prob-
lem with a different number of classes compared to our current classification problem.
Such a pre-trained model is typically trained on a huge training dataset such as Ima-
geNet [25]. After initializing our current model with the weight values of the pre-trained
model, we train our model with respect to its respective classification objective. Train-
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ing a model whose weights have been initialized with the weight values of a pre-trained
model is referred to as transfer learning [154]. However, using the weight values of a pre-
trained model to initialize the weights of our current model usually works well only if our
current classification problem is similar to the classification problem of the pre-trained
model. If our training images are significantly different from the training images of the
pre-trained model, however, then using the weight values from the pre-trained model
may not be too beneficial, as pointed out by Raghu et. al. [118] (e.g., medical images
in comparison to ImageNet images). In this case, we could alternatively pre-train our
current model manually using only the training images of our current classification prob-
lem. To pre-train our current model, we use an auxiliary optimization objective instead
of our actual classification objective. One potential auxiliary optimization objective is
learning to reconstruct the input images. Therefore, we must replace the classification
objective of our current model with a reconstruction objective. After pre-training, the
obtained model weights are used as the initial weights to train our model using its actual
classification objective. As a result, the training setup of the model must be adjusted
again to change the reconstruction objective back to the classification objective. Then,
we train our model using its actual classification objective. This pre-training technique
was initially referred to as unsupervised pre-training [10, 31]. It was later summarized
under the term self-supervised learning [9, 32], along with other pre-training techniques
(e.g., colorization [75, 152], context prediction of image patches [27, 111], inpainting
[115], contrastive learning [63]). However, in order to obtain a pre-trained model, we
still need to find the initial weight values at least for pre-training. Therefore, it is still
important to find good initial weight values without any model training, i.e., the model
needs to be trained from scratch. This is the focus of my work.

State-of-the-art methods for initializing the model weights (without any model train-
ing) are techniques that are based on random values and information about the model
architecture. Glorot and Bengio [38], for instance, proposed the Xavier1 initialization
method. To initialize a specific weight at a particular model layer, Xavier initialization
selects a value from a uniform distribution and initializes the weight with the selected
value. They consider a uniform distribution that is located within an interval around 0.
The bounds of the interval are determined by the number of activations of the current
model layer, to which the weight that should be initialized belongs, and by the number
of activations of the previous model layer. The number of activations of the previous
model layer is equal to the number of inputs to each activation of the current model layer.
Xavier initialization is usually well suited for Convolutional Neural Network-based image
classification models that use the tanh (hyperbolic tangent) or the softsign activation
function. However, modern Convolutional Neural Network-based image classification
models rather use the ReLU activation function (Rectified Linear Unit) [39]. There-
fore, He et. al. [45] proposed the Kaiming initialization method, which works better
for models with the ReLU activation function. The Kaiming method initializes each
model weight by selecting a value from a normal distribution whose standard deviation
is determined either by the number of activations of the previous model layer or by

1 https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.xavier_uniform_
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the number of activations of the current model layer. An alternative to the Kaiming
method that uses a normal distribution is a variation of Kaiming that uses a uniform
distribution that is located within an interval around zero in order to select the val-
ues for the model weights. The bounds of that interval are calculated using either the
number of activations of the previous model layer or the number of activations of the
current model layer. Hereinafter, I refer to the Kaiming method that uses a normal
distribution as Kaiming Normal2 and to the Kaiming method that uses a uniform dis-
tribution as Kaiming Uniform3. Furthermore, for models that are based on a ResNet
model architecture (Residual Network) [46], Zhang et. al. [150] suggested an extension
of Xavier and Kaiming named Fixup. Fixup uses either Xavier or Kaiming initialization
along with a special scaling of the weight values in the residual branches of the model
(i.e., the skipped layers, Figure 2.1). This scaling speeds up model training and is an
alternative to using batch normalization layers [61] (patent held by Google LLC [60])
within the model architecture, which have also been introduced to increase the speed
of model training. However, Fixup, Kaiming and Xavier rely only on random values
along with information about the model architecture. None of these techniques uses
information about the current classification problem. My proposed patch-based initial-
ization method, on the other hand, uses information about the classification problem in
the form of patches extracted from the training images. I claim that this information is
beneficial for the training process.

Furthermore, there have also been other studies suggesting alternative methods to
initialize the model weights. Gray et. al. [42], for instance, proposed a method to
find block-sparse weight matrices for the model layers. Saxe et. al. [126], on the
other hand, suggested initializing the weight matrices with orthonormal matrices. This
technique was later extended by Mishkin and Matas [102]. Castillo and Wang [17]
introduced an initialization technique for image forensics that initializes the weights
of the first convolutional model layer as a high-pass filter. Dauphin and Schoenholz
[24] proposed a method that finds weight values through a meta-model. Seuret et. al.
[127] suggested using PCA (Principal Component Analysis) [116] to initialize the model
weights. Ozbulak and Ekenel [112] introduced an initialization method that uses pre-
determined Gabour filters for the first convolutional model layer. However, the weight
initialization methods that are most similar to my method are the method suggested
by Krähenbühl et. al. [69] and the method suggested by Koturwar and Merchant [66].
Krähenbühl et. al. [69] feed a few training images into the model and calculate the
mean and variance of each channel of the created activations at each model layer. Then,
they draw values from a normal distribution and scale those values using the obtained
means and variances. The resulting scaled values are finally used to set the model
weights. Koturwar and Merchant [66], on the other hand, initialize the model weights
by selecting the weight values from a normal distribution. The mean and variance of
the normal distribution are obtained from the mean and covariance matrix that are
computed from a few random crops of a subset of the training images. However, none
of these methods uses the image data directly as my method does.

2 https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_normal_
3 https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_
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Figure 4.1: The proposed method: (1) Extract candidate patches from the training images, (2)
select unique patches from the candidate patches, (3) normalize and resize selected
patches, and (4) use resized patches as weight filters to initialize convolutional layer.

4.2 Image Patch-based Model Weight Initialization

A Convolutional Neural Network-based (CNN) image classification model consists of
multiple consecutive convolutional hidden layers followed by one or more optional linear
hidden layers, as described in Chapter 2.1. Each of these hidden layers (convolutional and
linear) contains weights. The values of these weights are learned during model training
with respect to the classification objective of the model, as described in Chapter 2.2.
However, before we can train the model, we need to assign initial values to the weights
of all hidden layers of the model. The choice of these initial values is crucial as they
affect the training time of the model [2, 53].

My proposed method finds initial values for the weights of a convolutional hidden layer
of the model. Before describing my method in more detail, however, I will recap how
the weights of such a convolutional layer are organized. The weights of a convolutional
layer are structured into multiple filters (also referred to as kernels). A filter is a three-
dimensional tensor containing a subset of the weights of the respective convolutional
layer. The first two dimensions of this tensor reflect the size of the filter. Typical filter
sizes are 3 × 3, 5 × 5, or 7 × 7. The third dimension depends on the depth of the
activation tensor of the previous convolutional layer, or on the depth of the input image
if the previous layer is the input layer (depth of grayscale images: 1, depth of color
images: 3). After model training, each filter of a convolutional layer detects a specific
image feature of the input image of the model. As shown by Zeiler and Fergus [148], the
filters of the lower convolutional layers (i.e., the layers closer to the input layer) detect
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low-level image features (e.g., edges, corners, simple textures), while the filters of the
higher convolutional layers (i.e., the layers closer to the output layer) detect high-level
image features (e.g., object parts, objects in various poses). The filter size and the
number of filters of each convolutional layer depend on the classification problem that
needs to be solved. Therefore, size and number need to be set as hyperparameters for
each convolutional layer for model training. The weights of all filters of a convolutional
layer result in the total amount of weights of that layer [53].

My proposed method initializes the weights of each filter of a convolutional layer of
the model using image information (i.e., pixels) from the training data of the model.
This image information is obtained from a specific set of image patches extracted from
the training images. Each of these patches shows a different characteristic part of an
image object. To identify the patches, my method first extracts a set of candidate
patches from the training images and then selects those candidate patches that are as
unique as possible. The selected candidate patches are the desired characteristic patches.
Finally, the selected patches are used to initialize the filters of the convolutional layer.
An overview of my method is shown in Figure 4.1. Hereinafter, I describe in more detail
how to obtain the candidate patches (Chapter 4.2.1), how to select the characteristic
patches from the candidate patches (Chapter 4.2.2), and how I use the selected patches
for initializing the filters of the respective convolutional layer (Chapter 4.2.3).

4.2.1 Finding Candidate Patches

My proposed method obtains the image patches pa, required for the weight initialization,
from a set of candidate patches paca. These candidate patches paca need to be extracted
from the training images of the model, as shown in step (1) in Figure 4.1. To explain
how to extract the candidate patches paca from the training images, I use the training
images of the MNIST [76] dataset as an example in the following. The MNIST dataset
contains grayscale images of size 28× 28× 1 showing a bright handwritten digit in the
center of the image on black background. First, all of the MNIST training images are
cut into rectangular patches. It is necessary that all of these patches are of the same size,
as I will explain in Chapter 4.2.2. If a patch size of 14× 14× 1 is chosen, for instance,
then 4 of those patches are obtained from each of the MNIST training images, as shown
in (a) in Figure 4.2. However, none of the resulting 4 patches contains information from
the region of the image along the central vertical and central horizontal axis, i.e., the
border region of the patches in (a). Thus, 5 additional patches of size 14 × 14 × 1 are
extracted along the central vertical and central horizontal axis from each of the MNIST
training images (including the central patch), as shown in (b) in Figure 4.2. These
additional patches overlap the initial patches in (a) by 7 pixels. As a result, 9 patches of
size 14× 14× 1 are obtained in total from each of the MNIST training images, as shown
in Figure 4.2. However, not all resulting patches contain a sufficient amount of useful
information. Some patches located at the image edges may only show tiny parts of the
digit (i.e., the image object) as the digits always appear in the center of the MNIST
images. These patches have mainly black pixels from the image background. Thus, if a
patch contains less than 20 non-black pixels, I do not consider this patch for the weight
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(a)

Candidate Patches

(b)

Figure 4.2: Extracting candidate patches from the MNIST [76] training images: (a) Cutting
images in 4 patches, and (b) extracting the central patch and 4 more patches around
the central vertical and the central horizontal axis.

initialization as it does not contain a sufficient amount of information about the image
object (i.e., the digit). The remaining patches form the set of candidate patches paca.

For MNIST, I considered candidate patches paca from all parts of the training images
as long as these patches contain a sufficient amount of information about the image
object. As the MNIST images are small, I obtained a reasonable number of small-sized
candidate patches. However, for datasets containing large color images showing a natural
scene (e.g., a horse in a meadow), this approach would result, depending on the chosen
patch size, either in a reasonable number of large-sized candidate patches or a high
number of small-sized candidate patches. Neither a high number of candidate patches
nor large-sized patches are desirable for my proposed weight initialization method. A
large patch size makes it more difficult to use the patches for the weight initialization,
as discussed in Chapter 4.2.3. A high number of candidate patches, on the other hand,
can lead to memory problems when selecting characteristic patches pa from paca, as
shown in Chapter 4.2.2. Moreover, as the images show a natural scene, it is not possible
to reduce the number of candidate patches by excluding patches that mainly show the
image background, as done for MNIST. The MNIST images show a bright grayscale
handwritten digit in front of a black background. Hence, if a patch, extracted from
one of the MNIST training images, contains almost only black pixels, we know that
this patch shows mainly the background. Images of natural scenes, on the other hand,
show a natural object (e.g., a horse) in front of a natural background (e.g., a meadow).
Normally, natural objects and natural backgrounds each have multiple colors. It is not
known whether a pixel belongs to the image object or the image background. Therefore,
it is not possible to exclude the candidate patches that mainly show the background as
these patches cannot be identified.
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Candidate Patches

(1) Find Keypoints (2) Extract Patches 

Figure 4.3: Extracting candidate patches from the CIFAR-10 [70] training images: (1) Search-
ing for keypoints using SIFT [92], and (2) extracting a candidate patch around each
identified adequate keypoint (yellow). Keypoints that are too close to the image
edge or too close to other keypoints (pink) are not considered.

Due to these issues, I use a different approach for datasets containing large color
images showing a natural scene to be able to obtain a reasonable amount of small-sized
candidate patches paca from these images. Below, I use the CIFAR-10 [70] dataset as an
example. The CIFAR-10 dataset contains color images of size 32 × 32 × 3 that show a
natural image object (e.g., horse, deer, ship) in front of a natural image background (e.g.,
meadow, forest, sea). This dataset is still rather small-sized, but it serves as an example
below to illustrate the proposed approach to obtaining candidate patches paca from large
color images showing a natural image object. A specified number of candidate patches
paca of a certain size are extracted from each of the CIFAR-10 training images. However,
to obtain the candidate patches paca, the entire image is not cut into patches as done
for MNIST. Instead, patches are extracted around keypoints of interest in the image, as
shown in Figure 4.3. For CIFAR-10, patches of size 15 × 15 × 3 may be considered for
instance. I assume that patches around keypoints of interest contain a sufficient amount
of information about the image object.

To find keypoints of interest in an image, I use the OpenCV4 implementation of the
SIFT keypoint detection method introduced by Lowe [92]. First, I search for keypoints in
each of the CIFAR-10 training images using SIFT, as shown in step (1) in Figure 4.3. For
each identified keypoint kp in a CIFAR-10 image, SIFT gives us the keypoint coordinate
(ikp, jkp) and its keypoint strength kpStr(kp). The keypoint coordinate specifies the
location of the keypoint in the image, i.e., the keypoint is the pixel at the intersection
of the ith row and the jth column of the image. The keypoint strength kpStr(kp), on
the other hand, expresses how strong5 keypoint kp is according to the SIFT method.
Then, for each image, I select a specified number of identified keypoints nkp at which I
aim to extract candidate patches from that image. However, it might be not possible
to use all of the keypoints identified by SIFT for extracting candidate patches. If a

4 https://opencv.org
5 https://docs.opencv.org/3.4.2/d2/d29/classcv_1_1KeyPoint.html
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keypoint kp is located near an image edge, it is not possible to extract a full patch
around that keypoint, as shown in Figure 4.3. Thus, I only consider identified keypoints
that are located (patch size/2) pixels away from an image edge. For patches of size
15× 15× 3, for instance, I only consider keypoints that are 7 pixels away from an image
edge. Furthermore, I also do not consider keypoints that are too close to each other.
Extracting patches from two keypoints that are close to each other would result in two
very similar patches. Two keypoints, kp1 and kp2, are considered to be too close to each
other, if these two keypoints have a distance of d(kp1, kp2) pixels from each other, and
this distance d(kp1, kp2) is less than a specified threshold distance dthresh (e.g., 5 pixels),
as shown in Figure 4.3. Thus, among the two keypoints, I only consider the keypoint
with the higher keypoint strength (Equation 4.1). As a result, I only keep the set of
remaining keypoints KPre from the image. Each keypoint of this set is neither too close
to an image edge nor too close to other keypoints with a higher keypoint strength.

arg max
kp∈{kp1,kp2}

kpStr(kp); d(kp1, kp2) < dthresh (4.1)

From the set of remaining keypoints KPre found in an image, I select a subset KPse
(KPse ⊆ KPre) of nkp keypoints with the highest keypoint strengths kpStr. In general, I
assume that the number of remaining keypoints in KPre from each image is significantly
larger than nkp. However, a few images may have less than nkp remaining keypoints. In
this case, I simply select all of the remaining keypoints of that image.

After selecting approximately nkp keypoints from each of the CIFAR-10 training im-
ages, I extract a patch paca around each selected keypoint kpse ∈ KPse, as shown in
step (2) in Figure 4.3. As a result, I obtain patch paca with keypoint kpse in its center.
However, it is possible that some of the resulting patches paca mainly show the image
background. It is not possible to filter out those patches because it is not known which
pixels of the image show the image object and which pixels show the image background.
However, I do not consider the occurrence of background patches among the candidate
patches paca as an issue. I assume that the most important keypoints found by SIFT
are located at the image objects rather than at the image backgrounds. Thus, I assume
that background patches rarely occur in the set of candidate patches paca. Furthermore,
even if I obtain a patch that mainly shows the image background, the patch may still
contain useful information related to the image object. A ship, for instance, is usually
found on water and not in a meadow. The context of the image object in the form of
the image background is important as well in this case. Thus, those patches should be
kept. As a result, I obtain the set of candidate patches paca.

4.2.2 Selecting Required Patches

After obtaining the candidate patches paca from the training images of the model using
the method described in Chapter 4.2.1, a few patches pa need to be selected from these
candidate patches paca that are as unique as possible, as shown in step (2) in Figure
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4.1. This selection is necessary because, in general, the number of obtained candidate
patches paca clearly exceeds the number of filters of the convolutional layer that should
be initialized using image patches. Although I already decreased the number of possible
candidate patches in Chapter 4.2.1 by excluding patches mainly showing the image
background, or by only extracting patches around keypoints of interest, the remaining
number of candidate patches is still significantly higher than the number of filters of the
respective convolutional layer. If the convolutional layer contains 20 filters, for instance,
then 20 patches pa need to be selected from the candidate patches paca for initializing
these filters. The 20 selected patches should be as unique as possible in order to avoid
initializing each filter with a similar patch.

In order to select patches that are as unique as possible, I use an approach based on the
k-Means [95] clustering algorithm. To describe the proposed selection approach, I use
two different sets of candidate patches as an example below. From the MNIST training
images, I extracted a set of candidate patches of size 14 × 14 × 1. From the CIFAR-
10 training images, on the other hand, I extracted a set of candidate patches of size
15× 15× 3. Suppose nca candidate patches were extracted. First, each candidate patch
paca is flattened into a vector a(paca). The size M of this vector depends on the number
of pixels each candidate patch contains. As a result, a vector of size 196× 1 is obtained
for each of the MNIST candidate patches (M = 196), while a vector of size 675 × 1 is
obtained for each of the CIFAR-10 candidate patches (M = 675). After receiving the
nca patch vectors a(paca), the vectors need to be concatenated into a matrix Apaca . All
vectors need to be of the same size to be able to concatenate them. However, the vectors
are of the same size already. When I extracted the candidate patches from the training
images, I made sure that all resulting candidate patches are of the same patch size, as
described in Chapter 4.2.1. As a consequence, after flattening the candidate patches into
vectors, all resulting vectors are also of the same size. Thus, all nca vectors a(paca) are
concatenated into a matrix Apaca . The resulting matrix is of size nca×M . In this matrix,
I search for clusters using k-Means. Each identified cluster h contains a subset pahca of
the candidate patches paca (pahca ⊂ paca) in the form of their vectors ah(paca) from the
rows of Apaca . The patches of one cluster are as different as possible from the patches of
another cluster and therefore also as unique as possible. Hence, a characteristic patch
can be selected from each cluster to obtain the patches pa (pa ⊂ paca) that should be
used for initializing the filters of the respective convolutional layer.

However, matrix Apaca is usually high-dimensional and identifying clusters in high-
dimensional spaces does not work well, as pointed out by Chen et. al. [19]. Clustering
algorithms, such as k-Means, use distance metrics for identifying clusters, but distance
metrics are not effective in high-dimensional spaces. However, the data samples of
most applications are located within a low-dimensional subspace of the high-dimensional
space, according to Domingos [28]. Thus, as suggested by Chen et. al. [19], I use
dimensionality reduction to project matrix Apaca onto such a low-dimensional subspace.
The best results were achieved with the non-linear dimensionality reduction technique
UMAP (Uniform Manifold Approximation and Projection) [98]. However, if matrix
Apaca is huge, a sufficient projection result may not be received. UMAP does not always
work well if the dimensionality is too high. Moreover, UMAP usually requires a long
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MNIST CIFAR-10

Figure 4.4: A few of the characteristic patches that were identified from MNIST [76] (left) and
CIFAR-10 [70] (right) using the proposed method.

computation time and high memory consumption when applied to a huge matrix. Thus, I
avoided extracting large-sized candidate patches or a high number of candidate patches
from each image in Chapter 4.2.1 to keep the dimensionality of Apaca relatively low.
Nevertheless, if the dimensionality of matrix Apaca is still too high for applying UMAP
to the matrix, it is possible to alternatively use either the linear dimensionality reduction
technique PCA (Principal Component Analysis) [116] or a combination of PCA and
UMAP (as done in Chapter 5 and Chapter 6). PCA generally suffers less in very high
dimensions and requires a lower computation time and lower memory consumption.
However, PCA most likely leads to a worse projection result compared to UMAP when
the dimensionality is not too high. Therefore, I only use PCA for large matrices. As a
result, I chose UMAP to project the matrix of the MNIST candidate patches and PCA
to project the matrix of the CIFAR-10 candidate patches. However, before projecting
matrix Apaca , each value of the matrix needs to be normalized as a preprocessing step for
the dimensionality reduction (for more details, see Chapter 3.1). After normalizing each
value of matrix Apaca , the dimensionality of the matrix is reduced from nca ×M down
to nca × 2. To reduce the dimensions, I use UMAP for the MNIST matrix, while I use
PCA for the CIFAR-10 matrix. As a result, the projected matrix r(Apaca) is obtained
from the learned projection model r applied to matrix Apaca . In this projected matrix
r(Apaca), I search for clusters using the k-Means algorithm.

The k-Means algorithm requires setting hyperparameter k. Hyperparameter k spec-
ifies how many clusters the k-Means algorithm should find in r(Apaca). The k-Means
algorithm should find as many clusters as there are filters to initialize. Then, a char-
acteristic patch should be selected from each identified cluster in order to use it for
initializing one of the filters of the respective convolutional layer. Thus, if the convolu-
tional layer contains 20 filters, for instance, I set k = 20. After identifying the k clusters
h ∈ h1, .., hk, a characteristic patch a(pa) (in vector form) is picked from each of these
clusters. The patch most characteristic of its cluster is most likely the patch closest to
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its cluster center. Thus, this patch is selected from each cluster h. However, for datasets
whose images have a neutral image background, such as MNIST (black background), it
is even possible to obtain artificial characteristic patches containing information from
several real patches. In this case, not only the closest patch from its cluster center is
selected but the 10 closest patches. The mean of these 10 patches is taken to obtain
an average artificial patch a(pa)avg (in vector form). This process is repeated for the
remaining clusters to receive such an artificial patch from each cluster h. However, this
approach does not work well for the CIFAR-10 patches. In my experiments, averaging
CIFAR-10 patches resulted in washed-out image patches. I assume that this effect is
caused by the complexity of the CIFAR-10 images. They do not contain a neutral image
background and the image objects are characterized by a higher variance of their visual
appearance. As a consequence, the structure of the image object was not recognizable
anymore in this case. Thus, only the closest patch from its cluster center is used for
the CIFAR-10 patches. Finally, after obtaining a patch vector a(pa) (real or artificial)
from each cluster, each patch is reshaped from vector form a(pa) back to image form pa
to obtain the k characteristic image patches pa that should be used for initializing the
filters of the respective convolutional layer. Figure 4.4 shows a few of these characteristic
patches pa that were identified from MNIST and CIFAR-10.

4.2.3 Initializing the Weights of a Model Layer

The obtained k characteristic patches pa should be used to initialize the k filters of the
convolutional layer of the model. Before using the patches pa for initializing the filters,
however, two preprocessing steps need to be applied to the patches pa, as shown in step
(3) in Figure 4.1. First, each patch pa needs to be normalized. To normalize a patch,
I subtract from each pixel of the patch the mean over all pixels of that patch. After
normalizing the patch, the mean over all pixels of the patch is 0. This normalization
had a positive effect on the subsequent training of the model in my experiments. This
also resembles the state-of-art weight initialization method for Convolutional Neural
Network-based models, Kaiming weight initialization [45], which selects initial weight
values from a distribution with a mean of 0. After normalizing the patches pa, I need
to resize them in a second preprocessing step. The patches were extracted from the
training images with a patch size larger than the size of the filters of the convolutional
layer, as described in Chapter 4.2.1. I chose a patch size of 14× 14× 1 for the MNIST
training images and a patch size of 15× 15× 3 for the CIFAR-10 training images as an
example. In contrast, the typical size of a filter is 3× 3, 5× 5 or 7× 7. Below, I assume
that the filters have a size of 5×5. As a result, I need to adjust the size of the patches pa
to the size of the filters of 5× 5. Thus, the MNIST patches from 14× 14× 1 are resized
down to 5 × 5 × 1, while the CIFAR-10 patches are resized from 15 × 15 × 3 down to
5× 5× 3. However, every time a patch is resized information is lost, and the larger the
resize, the more information is lost. Thus, I avoided extracting huge patches from the
training images, as pointed out in Chapter 4.2.1, to lose as little information as possible.
Alternatively, I could have extracted patches from the training images of the appropriate
size of 5×5 already to avoid the resizing step. However, extracting slightly larger patches
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followed by resizing them achieved better results in my experiments. I assume that this
may be related to the receptive field of a convolutional layer. As explained in Chapter
2.1, the size of the receptive field increases with subsequent model layers to be able to
detect image features of increasing complexity (e.g., from edges over complex shapes to
object parts) [53]. Thus, extracting a patch of size 5×5 may encompass an image region
that is too small for the layer.

After resizing the patches pa, I stack them together. As a result, tensor of size k ×
5× 5× depth is obtained (depth of MNIST: 1, depth of CIFAR-10: 3). This tensor can
be used to initialize the k filters of the first convolutional layer of the model, as shown
in step (4) in Figure 4.1. Only the filters of this layer have the same depth as the input
image, and thus also the same depth as the image patches (depth of MNIST: 1, depth of
CIFAR-10: 3). Therefore, only the weights of the first convolutional layer are initialized
using image patches in the standard setup. The weights of the other layers are initialized
with a state-of-the-art weight initialization method. Nevertheless, it is still possible to
initialize other convolutional layers besides the first one using image patches as well.
The filter depth of these subsequent convolutional layers, however, usually increases
significantly [2]. Therefore, for these layers, I select a higher number of patches pa than
the number of filters of the respective convolutional layer, and use more than one patch
for each filter of the layer. Then, I stack multiple patches together to initialize the filter.
Finally, after initializing all of the weights of the model, I train the model.

4.3 Experiments

To find good initial values for the weights of a Convolutional Neural Network-based
(CNN) image classification model, I proposed a weight initialization method that is
based on image patches extracted from the training images of the model. The details
of the proposed method are described in Chapter 4.2. To evaluate the method, I con-
ducted several experiments. The general setup of these experiments is described in
Chapter 4.3.1. In a first experiment, I tested whether a weight initialization method
based on image patches allows model training at all. Furthermore, I also tested if a
model whose weights were initialized by the proposed method is able to achieve a sig-
nificantly higher classification performance than a model whose weights were initialized
by a state-of-the-art weight initialization method. The results are presented in Chapter
4.3.2. For the experiment in Chapter 4.3.2, I used the optimal value for the learning rate
hyperparameter for training the respective models. To evaluate the training process us-
ing a suboptimal value for the learning rate hyperparameter, I repeated the experiment
using a smaller learning rate. The results are presented in Chapter 4.3.3. However, for
the experiments in Chapter 4.3.2 and Chapter 4.3.3, only the weights of the first convo-
lutional layer were initialized using the proposed method. The weights of the remaining
model layers were initialized by a state-of-the-art weight initialization method (Kaiming
Uniform [45] or Fixup [150]). Therefore, it was examined in a third experiment whether
it is possible to apply the proposed image patch-based weight initialization method to
multiple convolutional layers. The results are presented in Chapter 4.3.4.
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4.3.1 Experimental Setup

To test my proposed image patch-based weight initialization method in comparison
to different state-of-the-art methods (Kaiming Normal [45], Kaiming Uniform [45] and
Fixup [150]), I conducted several experiments using the MNIST [76] dataset, the CIFAR-
10 [70] dataset and the CIFAR-100 [70] dataset. For each experiment, the same experi-
mental setup was used. I first initialized the weights of a Convolutional Neural Network-
based (CNN) image classification model using either my method or a state-of-the-art
method. However, when using my method in its standard setup to initialize the model
weights, I only initialized the model weights of the first convolutional layer of the model
using image patches (only in Chapter 4.3.4 I also initialized other convolutional lay-
ers using image patches). All remaining model layers (convolutional and linear) were
initialized using a state-of-the-art method (Kaiming Uniform or Fixup). To initialize
the weights of the first convolutional layer using image patches, I used the approach
described in Chapter 4.2. I first extracted candidate patches from the training images
of the respective dataset. Then, I selected a certain number of unique patches from
these candidate patches. This number corresponds to the number of filters of the first
convolutional layer. After identifying the unique patches, I first normalized and then
resized the identified patches to the filter size of the layer. Finally, I initialized the fil-
ters of the layer using the resized image patches. As a result, I obtained two models.
One model was initialized using my patch-based weight initialization method, i.e., the
first convolutional layer was initialized using image patches and the remaining layers
were initialized using a state-of-the-art weight initialization method (Kaiming Uniform
or Fixup). The other model, in contrast, was initialized using a state-of-the-art weight
initialization method (Kaiming Normal, Kaiming Uniform or Fixup), i.e., all model lay-
ers were initialized using this state-of-art method only. Then, I trained each model 5
times for a specified number of training epochs using the respective training dataset.
For each of the 5 times, I trained the model with a different seed value from a set of 5
random seed values. The same 5 random seed values were used for both models. A seed
value sets the random number generator used for model training6. By using different
seed values, I ensured that the models do not achieve a certain classification performance
only by chance. If I have only trained each model a single time using a particular seed
value, the resulting model might have received a good classification performance. How-
ever, if I have trained the model again using a different seed value, the model might
have received a classification performance that is significantly worse than the previously
obtained classification performance using the first seed value. Thus, in order to make
sure that the obtained model performances are not mainly dependent on the choice of
a single seed value, I trained each model 5 times using a different seed value each time.
After every training epoch, I tested each model on the respective test dataset to receive
its classification performance in the form of the classification accuracy. As a result, I
obtained for each model 5 accuracies (one for each seed) after each training epoch. From
these 5 accuracies, I calculated the mean and the standard deviation in order to compare
the classification performances of the two models after each training epoch.

6 https://pytorch.org/docs/stable/notes/randomness.html
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I conducted my initial experiments on the MNIST dataset in order to examine whether
my proposed patch-based weight initialization method works at least for a simple dataset
such as MNIST. The MNIST dataset contains grayscale images of size 28×28×1 that are
organized into 10 classes. Each MNIST class represents a different bright handwritten
digit (digits: 0-9). The images of the classes show the respective digit in their center on
black background. To obtain the candidate patches from the MNIST training images, I
used the approach described in Chapter 4.2.1. Each MNIST training image was cut into 9
patches of size 14×14×1 with an overlap of 7 pixels. After obtaining the set of candidate
patches, I identified the unique patches from this set of candidate patches. These unique
patches were used for the weight initialization of the first convolutional layer. To identify
the unique patches, I used the approach described in Chapter 4.2.2. First, all obtained
candidate patches were flattened to vectors and concatenated all received vectors to a
matrix. Then, I needed to project the matrix to a lower dimensional subspace using
UMAP (Uniform Manifold Approximation and Projection) [98] as a preprocessing step.
Finally, I searched for clusters in the projected matrix using the k-Means [95] clustering
algorithm. Hyperparameter k of k-Means was set to the number of filters of the first
convolutional layer that I aimed to initialize. After identifying the k clusters using k-
Means, I chose the 10 corresponding patches from each identified cluster that are closest
to their respective cluster center. For each of the identified k clusters, I then averaged
the 10 chosen patches in order to receive an artificial patch containing the information of
the 10 patches. These k artificial patches were then used for the weight initialization of
the convolutional layer. All remaining layers were initialized using the Kaiming Uniform
initialization method. In order to train the MNIST model initialized using my method
and the MNIST model initialized using a state-of-the-art method (Kaiming Uniform or
Kaiming Normal), I chose a model architecture similar to the Caffe LeNet7 architecture.
The used architecture consisted of 2 consecutive convolutional layers (Conv) followed
by 2 fully-connected linear layers (FC). Each convolutional layer is followed by a max
pooling layer [110]. The ReLU function (Rectified Linear Unit) [39] was used as the
activation function for the pre-activation output of the model layers. The complete
model architecture of the MNIST models is as follows: Conv1 (number of filters: 20,
kernel size: 5) - Pool - Conv2 (number of filters: 50, kernel size: 5) - Pool - FC1 (layer
size: 500) - FC2 (layer size: 10). The images of the training dataset and the images
of the test dataset were normalized before model training using the MNIST statistics
(mean: 0.1307; std: 0.3081). Finally, I trained each model for 20 training epochs using
the SGD8 optimizer (Stochastic Gradient Descent) [122].

After my initial tests using the MNIST dataset, I also aimed to test my proposed
patch-based weight initialization method using more complex datasets. Thus, I con-
ducted additional tests using the CIFAR-10 dataset and the CIFAR-100 dataset for my
experiments. The CIFAR-10 images are color images of size 32×32×3, but they do not
show a simple object such as a digit. Instead, the images of the CIFAR-10 dataset show
a natural image object belonging to one of 10 classes (e.g., horse, deer, ship) in front of

7 https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
8 https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
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a natural image background (e.g., meadow, forest, sea). The CIFAR-100 dataset, on the
other hand, is similar to the CIFAR-10 dataset. However, instead of images belonging to
10 classes, each CIFAR-100 image belongs to one out of 100 classes. To obtain the candi-
date patches from the CIFAR-10 and CIFAR-100 images, I used the approach described
in Chapter 4.2.1. I searched for keypoints on each training image using the SIFT key-
point detection method [92]. However, keypoints that are too close to the image edge or
too close to other keypoints were not considered. Thus, each keypoint was required to be
at least 7 pixels away from an image edge and 5 pixels away from other keypoints. Then,
I chose the 9 best keypoints according to SIFT and extracted a patch from the location
of each of those 9 keypoints. Two patch sizes were tested, 15×15×3 and 3×3×3. As the
patches of size 15×15×3 achieved a superior performance, I decided to use these patches
as the candidate patches. These patches were the considered candidate patches. After
obtaining the candidate patches from all training images, I identified the unique patches
from these obtained candidate patches. These unique patches were used for the weight
initialization of the first convolutional layer. To identify the unique patches, I used the
approach described in Chapter 4.2.2 again. First, I flattened the obtained candidate
patches to vectors and concatenated all received vectors to a matrix. Then, I needed to
project the matrix to a lower dimensional subspace using PCA (Principal Component
Analysis) [116] as a preprocessing step. PCA was used to project the matrix because
the matrix was too huge for UMAP. Finally, I searched for clusters in the projected
matrix using the k-Means clustering algorithm. Hyperparameter k of k-Means was set
to the number of filters of the first convolutional layer that I aimed to initialize. After
identifying the k clusters using k-Means, I chose the patch from each identified cluster
that is closest to its respective cluster center. As a result, I obtained one patch from
each of the k clusters. These k patches were then used for the weight initialization of the
convolutional layer. All remaining layers were initialized using the Fixup initialization
method. In order to train the CIFAR-10 and CIFAR-100 model initialized using my
method and the CIFAR-10 and CIFAR-100 model initialized using the state-of-the-art
method (Fixup), I chose the 20-layer ResNet (Residual Network) architecture [46] from
Zhang et. al. [150]. However, as CIFAR-10 and CIFAR-100 are more complex than
MNIST, I needed to adjust my training setup. To obtain a model achieving a sufficient
classification performance, I used a training setup based on the training setup9 used by
Zhang et. al. [150]. To obtain more variations of the training data samples, I used
different data augmentation techniques [128]. These techniques included randomly flip-
ping training images horizontally, randomly cropping training images and applying the
Mixup augmentation technique [149] to the training images. Moreover, the training and
test images were normalized before model training using the CIFAR-10 statistics (mean:
0.4914, 0.4822, 0.4465; std: 0.2023, 0.1994, 0.2010). The model was trained for 200
training epochs using the SGD optimizer. Furthermore, I used a learning rate schedule
instead of a fixed learning rate value. The best classification performance of the model
was obtained by a cosine-annealing10 learning rate schedule [91].

9 https://github.com/hongyi-zhang/Fixup
10 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR
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4.3.2 Testing against State-of-the-Art Methods

In my first experiment, I aimed to examine whether my proposed method can be used
to initialize the weights of a Convolutional Neural Network-based (CNN) image clas-
sification model at all. Furthermore, I also aimed to compare my method to several
state-of-the-art weight initialization methods. The setup of my experiment is described
in Chapter 4.3.1. First, the proposed method was tested using the MNIST [76] dataset.
If my method can be used for initializing the model weights at all, it should at least
work for a simple dataset such as MNIST. After initializing a model for MNIST using
my method, I trained the model 5 times using a different seed value each time for 20
training epochs, as described in Chapter 4.3.1. To train the model, I used a learning
rate of 0.01, a momentum of 0.9 and a weight decay of 5e−4. During model training, I
tested the model on the MNIST test dataset and received the 5 accuracies of the model
after each training epoch (one for each of the 5 seed values). It was observed that all 5
accuracies of the final training epoch were at least 98%. As a result, I concluded that
my method can be used for initializing a Convolutional Neural Network-based model.
Therefore, I then aimed to test my method in comparison to two state-of-the-art weight
initialization methods for an MNIST model, Kaiming Normal11 [45] and Kaiming Uni-
form12 [45]. To compare my method to these two state-of-the-art methods, I initialized a
second model using Kaiming Normal and a third model using Kaiming Uniform. Then,
I trained each model 5 times in the same way as I trained the model initialized by my
method. During model training, I tested the models on the MNIST test dataset and
received the 5 accuracies for each model after each training epoch (one for each of the
5 seed values). As a result, I obtained 5 accuracies after each training epoch for the
model initialized by my method, for the model initialized by Kaiming Normal, and for
the model initialized by Kaiming Uniform. To better compare these models, I calculated
the mean and the standard deviation from the 5 accuracies of each model. The results
of my experiment with respect to the MNIST dataset are shown in Figure 4.5 (left). As
shown in the figure, all models achieved a similar classification performance. The model
initialized by my method and the model initialized by Kaiming Uniform even achieved
a slightly better model performance than the model initialized by Kaiming Normal.

However, MNIST is a simple dataset. Therefore, I also aimed to test my proposed
method in comparison to a state-of-the-art method for a more complex dataset. As a
result, I conducted additional tests for CIFAR-10 [70]. After initializing a model for
CIFAR-10 using my method, I trained the model 5 times using a different seed value
each time for 200 training epochs, as described in Chapter 4.3.1. To train the model, I
used an initial learning rate value of 0.1 (for the cosine-annealing learning rate schedule
[91]), a momentum of 0.9 and a weight decay of 5e−4. During model training, I tested
the model on the CIFAR-10 test dataset and received the 5 accuracies after each training
epoch (one for each of the 5 seed values). It was observed that all 5 accuracies of the
final training epoch were at least 91%. As a result, I concluded that my method can also
be used for initializing a Convolutional Neural Network-based model for a more complex

11 https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_normal_
12 https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_
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Learning Rate: 0.01

MNIST

Learning Rate: 0.1

CIFAR-10

Figure 4.5: Comparison of my method with different state-of-the-art weight initialization meth-
ods with respect to the MNIST [76] dataset (left) and the CIFAR-10 [70] dataset
(right). Each model was trained 5 times using a different random seed each time
and an optimal learning rate value. The results from each model are given after
each training epoch as mean and standard deviation over the 5 resulting accuracies.

dataset such as CIFAR-10. Therefore, I then aimed to test my method in comparison
to a state-of-the-art weight initialization method for a CIFAR-10 model. Fixup [150]
was chosen as the state-of-the-art method because Fixup performed slightly better than
Kaiming Normal and Kaiming Uniform in my tests for CIFAR-10. To compare my
method to Fixup, I initialized a second model using Fixup. Then, I trained the model
5 times in the same way as I trained the model initialized by my method. During
model training, I tested the model on the CIFAR-10 test dataset and received the 5
classification accuracies after each training epoch (one for each of the 5 seed values). As
a result, I obtained 5 accuracies after each training epoch for the model initialized by
my method and for the model initialized by Fixup. To better compare these models, I
calculated the mean and standard deviation from the 5 accuracies of each model. The
results of my experiment with respect to CIFAR-10 are shown in Figure 4.5 (right). As
shown in the figure, both models achieved a similar classification performance.

4.3.3 Weight Initialization with Suboptimal Hyperparameters

In my experiment in Chapter 4.3.2, I showed for MNIST [76] and CIFAR-10 [70] that a
model initialized by my proposed method achieves a similar classification performance
as a model initialized by a state-of-the-art method. To train each model, I used optimal
values for the training hyperparameters, learning rate (MNIST: 0.01; CIFAR-10: 0.1),
momentum (MNIST: 0.9; CIFAR-10: 0.9), and weight decay (MNIST: 5e−4; CIFAR-
10: 5e−4). The same values for these hyperparameters were also used by the official
Caffe LeNet training13 to obtain a model for MNIST, and by Zhang et. al. [150] to
train a model for CIFAR-10. However, for a novel dataset, it is not always easy to find

13 https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_solver.prototxt
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Learning Rate: 0.001

MNIST

Learning Rate: 0.001

CIFAR-10

Figure 4.6: Comparison of my method with different state-of-the-art weight initialization meth-
ods with respect to the MNIST [76] dataset (left) and the CIFAR-10 [70] dataset
(right). Each model was trained 5 times using a different random seed each time
and a suboptimal learning rate value. The results from each model are given after
each training epoch as mean and standard deviation over the 5 resulting accuracies.

these optimal values for the training hyperparameters. Thus, I repeated my experiment
from Chapter 4.3.2 using suboptimal values for the learning rate (the most important
training hyperparameter) to simulate a scenario in which the optimal values were not
found. I wanted to find out how a model initialized by my method performs in this
scenario in comparison to the state-of-the-art methods. To set the learning rate, I
chose a value for each dataset that is smaller than the value used in my experiment
in Chapter 4.3.2 (MNIST: 0.001, 0.0001, 0.00001; CIFAR-10: 0.001). A larger value
(e.g., 0.1 for MNIST) could not be used as in this case model training was not possible
anymore. Except for the learning rate value, I used the same experimental setup as for
my experiment in Chapter 4.3.2. For MNIST, however, I only compared my method
to the Kaiming Uniform [45] method as it performed better in my first experiment in
Chapter 4.3.2 than Kaiming Normal [45]. The results of this second experiment with
respect to the MNIST dataset are shown in Figure 4.6 (left), while the results with respect
to the CIFAR-10 dataset are shown in Figure 4.6 (right). As shown in the figure, the
classification performances of all models decreased in comparison to the classification
performances of the models in my first experiment in Chapter 4.3.2. However, this was
expected as I used suboptimal values for the learning rate hyperparameter. Nevertheless,
the decline in the classification performance of the models initialized by my method is
smaller than the decline in the classification performance of the models initialized by
the state-of-the-art weight initialization methods with respect to MNIST and CIFAR-10.
Therefore, I showed that a model initialized by my method is able to achieve a superior
classification performance than a model initialized by a state-of-the-art method when
using a suboptimal learning rate value. Similar effects could be observed with respect
to the MNIST dataset when using a suboptimal value for the momentum (0.8, 0.7, 0.6,
0.5) and the weight decay hyperparameter (5e−5, 5e−3, 5e−2).
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4.3.4 Initializing the Weights of Multiple Model Layers

In my first experiment in Chapter 4.3.2, I showed that a model initialized by my pro-
posed method achieves a similar classification performance as the models initialized by a
state-of-the-art weight initialization method when using an optimal value for the learning
hyperparameter to train the models. Furthermore, I showed in my second experiment
in Chapter 4.3.3 that the model initialized by my method achieves a superior classifica-
tion performance than the models initialized by the state-of-the-art weight initialization
methods when using a suboptimal value for the learning rate hyperparameter to train the
models. However, the standard setup of my patch-based weight initialization method
only initializes the weights of the first convolutional layer of the model using image
patches. The weights of the other model layers (convolutional and linear) are initialized
using a state-of-the-art weight initialization method (Kaiming Uniform or Fixup), as de-
scribed in Chapter 4.2.3. However, modern Convolutional Neural Network-based (CNN)
image classification models such as a ResNet-based model (Residual Network) [46] con-
tain a high number of layers. For my tests using CIFAR-10 [70] in Chapter 4.3.2 and in
Chapter 4.3.3, I also used a ResNet-based model using 20 layers. Therefore, the effect
of initializing such a model using image patches might be rather small when initializing
only the first convolutional layer of the model using the image patches. As a result, I
conducted a third experiment in order to test whether initializing other convolutional
layers besides the first convolutional layer of the model is beneficial or not. Therefore,
I repeated my experiments for CIFAR-10 from Chapter 4.3.2 and Chapter 4.3.3 with a
higher number of convolutional layers that were initialized using image patches. The
following layers of the used ResNet-based CIFAR-10 model were chosen to be initialized
with image patches: (a) Only the first convolutional layer (as in my standard setup)
(1 layer), (b) the first convolutional layer and the output of the third ResNet block (2
layers), (c) the same layers as in (b) and the output of the sixth ResNet block (3 layers),
and (d) the same layers as in (c) and the output of the ninth ResNet block (4 layers).
Besides the number of convolutional layers that I initialized using image patches, I used
the same experimental setup for this third experiment as in Chapter 4.3.2 and Chapter
4.3.3. A suboptimal learning rate value of 0.001 was used besides the optimal learning
rate of 0.1. The results of my experiment with respect to the CIFAR-10 dataset are
shown in Figure 4.7. As shown by the figure, the more layers I initialize using image
patches the better gets the classification performance of the model when using a sub-
optimal learning rate value. When using an optimal learning rate value, on the other
hand, the models initialized by my method achieved a classification performance that
is only slightly worse than the model initialized by the state-of-the-art method (Fixup).
However, the initialization approach (c) and (d) could not be trained with the optimal
learning rate value of 0.1 anymore. In these two cases, the learning rate was already too
high. Therefore, model training was not possible anymore.

To check whether these results are statistically significant, I conducted the Stuart
Maxwell significance test [94] on the results. The Stuart Maxwell test is a variation of
the McNemar test, which was recommended by Dietterich [26] to evaluate classification
models. The McNemar test is a significance test to check whether two classification
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Learning Rate: 0.1 Learning Rate: 0.001

Figure 4.7: Comparison of my method applied to different convolutional layers with respect
to the CIFAR-10 [70] dataset using an optimal learning rate value (left) and a
suboptimal learning rate value (right) for the subsequent training process. Each
model was trained 5 times using a different random seed each time. The results
from each model are given after each training epoch as mean and standard deviation
over the 5 resulting accuracies.

models are significantly different from each other or not. However, the McNemar test
can only be used for classification problems with two classes. The Stuart Maxwell test, on
the other hand, can also be used for classification problems with more than two classes. I
conducted the Stuart Maxwell test on the results of the model initialized by my method
with the initialization approach (b) and the results of the model initialized by the state-
of-the-art method (Fixup) when using a suboptimal learning rate value (i.e., the results in
the form of their classification accuracies after each training epoch). The Stuart Maxwell
test showed that the model initialized by my method with the initialization approach
(b) and the model initialized by the state-of-the-art method (Fixup) are significantly
different with a probability of 99% after each training epoch when using a suboptimal
learning rate value. As a result, I concluded that the model initialized by my method
with initialization approach (b) is really superior to the model initialized by the state-
of-the-art method (Fixup) in this case.

Furthermore, I also aimed to conduct the experiment for MNIST [76] and additionally
CIFAR-100 [70] (as an even more complex dataset than CIFAR-10). For MNIST, I used
the same experimental setup as in Chapter 4.3.2 and Chapter 4.3.3. As my MNIST
model only contains two convolutional layers, I simply initialized both convolutional
layers using image patches. Unfortunately, this made the classification performance
slightly worse independently of the learning rate value. As a result, for models with a
lower number of layers such as my MNIST model, initializing more than one layer does
not seem to improve the classification performance when using a suboptimal learning
rate value. For CIFAR-100, on the other hand, I used the same training setup as for
the CIFAR-10 models including the 20-layer ResNet-based model architecture. Then, I
compared my method for CIFAR-100 using the initialization approach (b) with the state-
of-the-art weight initialization method (Fixup). The results of my tests with respect to
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Learning Rate: 0.001Learning Rate: 0.1

Figure 4.8: Comparison of my method applied to different convolutional layers with respect
to the CIFAR-100 [70] dataset using an optimal learning rate value (left) and a
suboptimal learning rate value (right) for the subsequent training process. The
results from each model are given after each training epoch as accuracy.

CIFAR-100 are shown in Figure 4.8. Again, the figure shows that the model initialized
by my method with multiple layers achieved a superior classification performance than
the model initialized by the state-of-the-art weight initialization method (Fixup) when
using a suboptimal learning rate value. As a result, I concluded that it seems to be a
reasonable option to initialize multiple layers using image patches for models containing
a high number of layers such as a ResNet-based model.

4.4 Discussion

To be able to train a Convolutional Neural Network-based (CNN) image classification
model, we need to set the initial weight values of the model and the hyperparameters
for the model training beforehand. Finding good initial weight values as well as good
training hyperparameters is a non-trivial task if we aim to train the model from scratch.
In Chapter 4.1, I gave an overview of different state-of-the-art methods to find good
initial values for the model weights. These state-of-the-art methods, such as Kaiming
[45] or Fixup [150], are based on random values and information about the model archi-
tecture. However, the state-of-the-art methods do not exploit any information about the
classification problem in order to find the initial values for the model weights. There-
fore, I investigated whether using information from the classification problem in the
form of image patches extracted from the training images is beneficial for finding good
initial weight values. I expected that my proposed weight initialization method (Chap-
ter 4.2) would set the initial values for the model weights in such a way that I would
need fewer training iterations to train the model compared to a model initialized by a
state-of-the-art weight initialization method.
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To evaluate my weight initialization method, I conducted several experiments using
different datasets (Chapter 4.3). My first research goal, however, was to examine whether
image patches extracted from the training images can be used to initialize the model
weights at all. In Chapter 4.3.2, I showed that image patches can indeed be used for
weight initialization. When initializing the model weights using my method, I was
able to obtain a reasonable training process. My second research goal was then to
examine how my proposed image patch-based weight initialization method performs in
comparison to the state-of-the-art weight initialization methods. In Chapter 4.3.2, I also
showed that my weight initialization method is able to achieve a similar classification
performance as the state-of-the-art methods over the course of model training, when
using an optimal value for the learning rate hyperparameter. When using a suboptimal
value for the learning rate hyperparameter, however, my method even outperformed the
state-of-the-art methods, as shown in Chapter 4.3.3. This indicates that the choice of
the learning rate for model training becomes more robust when using my method. A
suboptimal learning rate value does not reduce the classification performance as much
as when using a state-of-the-art method. As a result, it would be necessary to train a
model initialized by a state-of-the-art method for significantly more training epochs to
receive the same classification performance as my method when using such a suboptimal
learning rate value. Similar results were obtained for the momentum and the weight
decay hyperparameter.

However, for my experiments in Chapter 4.3.2 and Chapter 4.3.3, I only initialized the
model weights of the first convolutional layer using my method. The weights of the other
layers were initialized using a state-of-the-art method (Kaiming Uniform14 [45] or Fixup
[150]). Therefore, I additionally examined whether it is possible to initialize multiple
convolutional layers using my method, at least for models that contain a high number of
layers. In Chapter 4.3.4, I showed that it is possible to initialize the weights of multiple
convolutional layers of a model using my method. When using a suboptimal value
for the learning rate, initializing the weights of multiple convolutional layers achieved
even a higher classification performance than only initializing the weights of the first
convolutional layer. However, in contrast to the weights of the first convolutional layer,
the weights of the other convolutional layers are not applied to the input images but to
the activations of their respective previous convolutional layer. The image patches, on
the other hand, show parts of the input images but not parts of any layer activations.
Why is it still beneficial then to use the image patches for initializing the weights of the
convolutional layers after the first convolutional layer? I assume that the image patches
may also match the activations of the convolutional layers after the first convolutional
layer to some extent. These activations represent the image features detected by the
model in the input images (e.g., simple textures, object parts). Some of these image
features may be shown by the extracted image patches. Therefore, it is reasonable to
initialize the weights of these other layers using image patches as well. As a result, I have
shown that my image patch-based weight initialization method can be used to make the
choice of the learning rate less critical.

14 https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_
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5 Exploiting Layer Activations to Balance
the Training Dataset

I have shown in Chapter 4 that image information can be exploited to improve the
training process of a Convolutional Neural Network-based (CNN) image classification
model. In this chapter, I show that the layer activations of such a model can be exploited
to improve model training as well. To explain how the layer activations are exploited,
I get back to my example from Chapter 1. Suppose we have images of a certain type
of plant that has been grown for agriculture. Each of these images shows such a plant
either in a healthy state or suffering from a plant disease. We aim to classify the images
into the two classes healthy plant and plant with disease in order to detect if a plant
suffers from the disease or not. This detection is important for determining which plants
may need treatment. Without treatment, the disease can spread quickly and destroy all
plants, resulting in a poor harvest. To be able to classify the images into the two classes,
we train a Convolutional Neural Network-based model on a training dataset containing
the plant images until the model achieves a sufficient classification performance on a
given test dataset. However, the model may never achieve the desired performance if
the training dataset is class-imbalanced. A class-imbalanced dataset is a dataset that
contains a significantly higher amount of images of one class compared to the other
class of the dataset. The class with the higher amount of images is typically referred
to as the majority class, while the class with the lower amount of images is typically
referred to as the minority class. A class-imbalanced dataset usually occurs when it
has not been possible to collect a sufficient amount of images of both classes for that
dataset. For instance, we need to detect the disease before it spreads to the majority
of the plants. However, this means that we are currently only able to collect a limited
amount of images showing plants suffering from that disease. As a result, we are able
to obtain a sufficient amount of images only from the healthy plants. Consequently, our
training dataset is class-imbalanced. The class healthy plant is the majority class, while
the class plant with disease is the minority class. However, this class imbalance has a
negative impact on model training. During training, the model sees the training images
in random mini-batches in order to learn an image feature representation of each class
from these training images [53]. If the training dataset is class-imbalanced, however,
the mini-batches will contain mainly majority class images as these images occur more
frequently in the dataset. As a result, the model will see mainly majority class images
during training in this case. Therefore, the model will only be able to learn an adequate
image feature representation of the majority class but not an adequate image feature
representation of the minority class. Nevertheless, it is still important to reliably detect
the plants with the disease, as the disease poses a serious threat to these plants.
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Various approaches have been suggested to address the problem of training a classifica-
tion model using a class-imbalanced dataset. An overview of different methods is given
in Chapter 5.1. A state-of-the-art method to approach model training using a class-
imbalanced dataset is random undersampling [104]. Random undersampling balances
the class-imbalanced dataset before model training. To balance the dataset, random
undersampling keeps removing images of the majority class at random until the amount
of majority class images is approximately equal to the amount of minority class images.
When training the model with the balanced dataset, the model no longer sees mainly
majority class images during model training but approximately an equal amount of im-
ages of both classes. As a result, for both classes, the model should now be able to learn
an adequate image feature representation. Therefore, we expect the model to achieve a
superior classification performance on the test dataset compared to the previous model
that was trained using the original class-imbalanced dataset.

However, when removing images from the majority class at random, random under-
sampling does not pay attention to which of the majority class images it removes from
the dataset. This is probably not an issue when the set of majority class images has a
low intra-class variance, i.e., when all majority class images are similar to each other. If
the set of majority class images has a high intra-class variance, however, removing ma-
jority class images at random may not be a good approach to balancing the dataset. A
high intra-class variance indicates that the majority class images differ significantly from
each other. Usually, the images may even belong to different subclasses of the majority
class. The ImageNet [25] class orange, for instance, contains images showing a whole
orange on an orange tree and images showing slices of an orange, as shown in Figure 5.1.
Therefore, two potential subclasses of the class orange could be whole orange and orange
slices. Both subclasses represent an orange, but each subclass represents an orange in
a different form, and both forms have different image features. To be able to learn an
adequate image feature representation of both subclasses, the model must see a suffi-
cient amount of images of each subclass during model training. However, when removing
majority class images at random, we cannot ensure that we retain a sufficient amount
of images of both subclasses. Random undersampling may remove images mainly from
only one of the subclasses. In this case, the model can only learn an adequate image
feature representation of the subclass from which we still have a sufficient amount of
images in the dataset. From the other subclass, however, the model is not able to learn
an adequate image feature representation because random undersampling has removed
most of the images of that subclass. It would be better to remove an equal amount of
images from each subclass. However, we do not have the subclass information of the
majority class to be able to identify which image is from which subclass.

To address this issue, I proposed a method named subclass-based undersampling (pub-
lished in Lehmann and Ebner [83]). Subclass-based undersampling also balances a class-
imbalanced dataset by undersampling the majority class. However, in order to balance
the dataset, it does not remove arbitrary majority class images at random, as done by
random undersampling. Instead, it randomly selects an equal amount of images from
each subclass of the majority class. By doing this, I hoped to keep a sufficient amount
of images of each of the subclasses. The selected majority class images are then merged
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Figure 5.1: Potential subclasses of the class orange (left) and the class baseball (right) of the
ImageNet [25] dataset.

with all of the minority class images in order to obtain the balanced dataset. Finally, the
balanced dataset is used to train the model. However, to be able to select images from
each subclass, the subclasses need to be identified beforehand. I suggested identifying
the subclasses based on the activations of a higher layer of the model (i.e., a layer closer
to the output layer). The activations of such a higher model layer represent specific
high-level image features detected by the model [148]. Each subclass, on the other hand,
is characterized by a certain set of such high-level image features. Therefore, I claim
that clusters within the activations of a higher model layer correspond to the different
subclasses of the majority class. Furthermore, for simplicity reasons, I have so far only
considered a class-imbalanced dataset containing two classes, a majority class and a
minority class. However, my method can also be used to balance a class-imbalanced
dataset with multiple majority classes. In this case, my method must be applied to each
majority class separately. The details of my method are presented in Chapter 5.2. To
evaluate my method, I conducted several experiments. My first research goal was to
examine whether the cluster information within the activations of a higher model layer
can be used to undersample the majority class at all. This would be the case if a model
trained using a training dataset balanced by my method achieves a superior classification
performance compared to a model trained using the original class-imbalanced dataset.
Furthermore, I expected that the model trained using the training dataset balanced by
my method would achieve a superior classification performance compared to a model
trained using a training dataset balanced by random undersampling. My second re-
search goal was therefore to compare my method with random undersampling. Finally,
my third research goal was to compare my method also to other state-of-the-art methods
to address the class imbalance problem. In my experiments (Chapter 5.3), I showed that
my method can be used to undersample a class-imbalanced dataset. Furthermore, I also
showed that my method achieves superior results compared to random undersampling
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as well as other state-of-the-art methods to address the class imbalance problem with
respect to two real-world datasets. The following contributions have been made: (1)
a method was proposed that identifies the subclasses of a class, (2) an undersampling
method was suggested that is based on the obtained subclass information, and (3) it was
shown that the proposed undersampling method outperforms random undersampling as
well as other state-of-the-art methods to address the class imbalance problem.

5.1 Related Work on Class-imbalanced Model Training

A state-of-the-art method to address the class imbalance problem is random under-
sampling [13, 77, 104]. Random undersampling balances the class-imbalanced training
dataset before model training. To balance a class-imbalanced dataset, random under-
sampling removes image data samples at random from the majority class of the dataset
until the amount of majority class samples and the amount of minority class samples
of the dataset are approximately equal. In order to improve random undersampling, I
suggested an alternative undersampling method. My suggested method does not remove
majority class samples at random as random undersampling does, but it selects image
data samples from each subclass of the majority class for the balanced dataset and dis-
cards all remaining majority class samples. By selecting image data samples from each
subclass of the majority class, I expect the resulting undersampled set of majority class
samples to still contain a sufficient number of image data samples from each of these
subclasses. As a result, the undersampled set should have a similar intra-class variance
as the original set of majority class samples. Random undersampling, on the other hand,
may remove most of the image data samples from one of the subclasses and therefore
reduces the intra-class variance, which may result in a model that was unable to learn an
adequate representation of the majority class. However, besides my approach, there have
been other studies that also suggested improved undersampling methods. Kubat and
Matwin [72], for instance, proposed a method that undersamples the majority class by
removing majority class samples that are noisy and majority class samples that are close
to the decision boundary between the majority class and the minority class. The major-
ity class samples that are close to the decision boundary are not favorable because even
a tiny amount of noise could be enough to push them to the wrong side of the boundary.
To identify majority class samples close to the decision boundary as well as noisy ma-
jority class samples, they use a nearest neighbor approach. Zhang and Mani [151], on
the other hand, introduced a method that undersamples the majority class by removing
those majority class samples that are closest to the minority class samples. Garcia and
Herrera [37] proposed an undersampling method that is based on an evolutionary algo-
rithm. They evaluate different subsets of the set of majority class samples by training
a model from each of those subsets with the goal to find the model that achieves the
highest classification accuracy. Koziarski [67] suggested a radial-based undersampling
method that removes redundant majority class samples. The redundant majority class
samples are identified by a Gaussian radial basis function. Liu et. al. [90] presented two
undersampling techniques, EasyEnsemble and BalanceCascade. EasyEnsemble is based
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on an ensemble learning strategy. They use different subsets of the set of majority class
samples to train different models. Finally, they combine the different models in order to
obtain an ensemble model. BalanceCascade, on the other hand, is based on a sequential
learning strategy. Again, they train multiple models using different subsets of the set of
majority class samples. Then, they classify all majority class samples using these models.
The majority class samples that are correctly classified by all models are removed from
the dataset. They assume that these majority class samples are redundant because all
models were able to classify them correctly. Finally, the models are retrained using the
training dataset without the removed majority class samples. These steps are repeated
in an iterative process. However, in contrast to my method, none of these approaches is
based on clustering in order to undersample the majority class.

Nevertheless, there have also been studies that suggested undersampling methods
based on clustering. Agrawal et. al. [3], for instance, proposed a method that searches
for clusters within the majority class samples and then randomly removes a certain
amount of majority class samples from each identified cluster. A similar method was
also suggested by Sowah et. al. [133]. Majumder et. al. [97], on the other hand,
introduced a method that also searches for clusters within the majority class samples,
but then they do not randomly remove a certain amount of majority class samples
from each identified cluster. Instead, they aim to identify redundant majority class
samples within each cluster and then remove those redundant majority class samples.
To identify redundant majority class samples within a cluster, they calculate the vector
angle similarities between all majority class samples in the cluster. Tsai et. al. [137]
also aimed to find an approach to selecting majority class samples from each cluster for
the balanced dataset that is better than an approach that selects majority class samples
at random. They compared different selection approaches (e.g., an approach based on a
genetic algorithm). Yen and Lee [147], on the other hand, suggested an undersampling
method based on clustering as well. However, they search for clusters within the entire
dataset (i.e., within the majority and minority class samples). Then, they remove a
specific amount of majority class samples from each identified cluster using a distance-
based selection approach. They determine the amount of majority class samples to
remove from a cluster based on the ratio between the number of majority class samples
and the number of minority class samples in that cluster. Ng et. al. [107] also divide the
dataset into different subsets. However, they do not use clustering to obtain the subsets
but hashing. Finally, they select majority class samples from each obtained subset using
a distance-based selection approach. However, all of these methods have been proposed
for tabular data. They cannot be applied to image data directly. Image data is high-
dimensional, and therefore it is difficult to identify meaningful clusters in image data
space. Thus, I apply clustering to the high-level image features represented by the
activations of a higher convolutional model layer instead. Koziarski [68] also suggests
an undersampling method for image data. The proposed method is applied to high-level
image features as well. However, Koziarski [68] simply applies random undersampling in
image feature space. In contrast, my method searches for clusters within the majority
class samples in image feature space, and then selects which majority class samples to
keep from each identified cluster for the balanced dataset.
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However, undersampling is not the only method to address the class imbalance prob-
lem. Other state-of-the-art methods to address this problem include oversampling and
approaching the problem through the loss function during model training. Oversam-
pling also balances the training dataset before model training. In order to balance a
dataset, however, oversampling does not reduce the amount of majority class samples of
the dataset. Instead, oversampling adds additional minority class samples to the dataset
until the amount of minority class samples and the amount of majority class samples are
approximately equal. A simple method to obtain additional minority class samples is to
duplicate some of the existing minority class samples [104]. Alternatively, in order to
avoid increasing the size of the dataset, we could also increase the frequency of selecting
minority class samples for the mini-batches during model training. The minority class
samples that should be duplicated (or selected more frequently for a mini-batch) are
selected randomly. Thus, this naive oversampling approach is commonly referred to as
random oversampling. In order to improve random oversampling, Singh et. al. [130] in-
troduced an alternative oversampling method. Their method searches for clusters within
the minority class samples and then selects the minority class samples for oversampling
that are closest to their cluster centers. They assume that the minority class samples
closest to the cluster centers are most representative of the minority class. Another
alternative oversampling approach is to artificially obtain novel minority class samples,
rather than simply duplicating already existing minority class samples. Several studies
suggested methods to create synthetic minority class samples [5, 18, 44, 105]. Fur-
thermore, Koziarski [68] suggested a method that uses a combination of oversampling
and undersampling. First, the method applies random oversampling to the minority
class samples in image space. Then, a model is trained using this oversampled training
dataset. Finally, the method applies random undersampling to the majority class sam-
ples in image feature space and fine-tunes the higher model layers (i.e., the layers closer
to the output layer) using the undersampled training dataset. Besides undersampling
and oversampling, approaching the class imbalance problem through the loss function
during model training is another state-of-the-art method to address this problem. In this
case, information about the class imbalance of the dataset is added to the loss function.
A simple approach is to add weights to the loss function that reflect the percentage of
the images of each class of the training dataset (class-weighted loss) [104]. However,
there have also been other studies that suggested more sophisticated loss functions to
address the class imbalance problem [15, 29, 104, 124]. Furthermore, a vast amount of
alternative methods to these state-of-the-art methods have been suggested to address
this problem as well. Huang et. al. [55], for instance, proposed a method to obtain more
discriminative image feature representations from the model in order to better separate
minority and majority class samples in image feature space of the model output layer.
Khan et. al. [62], on the other hand, introduced a method based on cost-sensitive
learning. They assign a higher misclassification cost to minority class samples than to
majority class samples. Zhang et. al. [153] suggested a novel classification method based
on category centers in image feature space. Li et. al. [87] proposed a method based on
a balanced group softmax. Wang et. al. [140] introduced a method based on dynamic
curriculum learning, and Pouyanfar et. al. [117] suggested using dynamic sampling.
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5.2 Subclass-based Undersampling

We aim to train a Convolutional Neural Network-based (CNN) image classification model
using a training dataset (XD

imb, Y
D
imb) containing images of two classes, cmaj and cmin

(Equation 5.1).
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However, the training dataset is class-imbalanced, i.e., the amount of images of one class
is significantly higher than the amount of images of the other class. The class with the
higher amount of images is usually referred to as the majority class, while the class with
the lower amount of images is referred to as the minority class. Hereinafter, I assume
that class cmaj is the majority class and class cmin is the minority class of the dataset
(Equation 5.2).
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Unfortunately, this class imbalance of the training dataset negatively impacts model
training. We can address this issue, for instance, by balancing the dataset before training
the model, i.e., we adjust the amount of images of class cmaj or class cmin so that the
final amounts of images of both classes become approximately equal. A model trained
using the resulting balanced dataset (XD

bal, Y
D
bal) should achieve a superior classification

performance compared to a model trained using the initial class-imbalanced dataset.
My proposed method balances such a class-imbalanced dataset by undersampling the

majority class of the dataset. To undersample majority class cmaj , it selects a subset
(X ′Dcmaj

, Y ′Dcmaj
) of the training images of that majority class. The selected subset of

majority class training images and all training images of the minority class form the
balanced dataset (Equation 5.3).
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As a consequence, the balanced dataset exhibits a smaller difference between the amount
of images of the majority class and the amount of images of the minority class compared
to the initial class-imbalanced dataset. However, my method does not simply select the
subset from the majority class images at random, as done by the state-of-the-art random
undersampling method (for more details, see Chapter 5.1). Instead, it selects the subset
from the majority class images based on information about potential subclasses scmaj
of cmaj . Subclasses of a class occur when the images of that class have a high intra-class
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variance, as shown by Nguyen at. al. [109] or Wei et. al. [141]. Multiple subclasses can
be identified, for instance, for some of the classes1 of the ImageNet [25] dataset used in the
Large Scale Visual Recognition Challenge [123]. The ImageNet class orange, for instance,
contains images showing a whole orange and images showing slices of an orange (Figure
5.1). Therefore, two potential subclasses of the class orange could be whole orange and
orange slices. Each of the two subclasses shows an orange in a different physical form.
As a result, the images of one subclass have different image features compared to the
images of the other subclass, although the images of both subclasses belong to the same
class orange. Hence, the model should be trained using a sufficient amount of images
from both subclasses. Otherwise, the model will learn to recognize images of only one of
the two subclasses. As a result, when the majority class has a high intra-class variance,
it is not a good approach to selecting the subset from the majority class images of the
initial class-imbalanced dataset at random without considering subclasses, as done by
random undersampling. In this case, it cannot be ensured that a sufficient amount of
images was selected from all subclasses of that class. We might have selected a sufficient
amount of images from one subclass but only a tiny amount of images from another
subclass. Hence, I aim to equally select images from all subclasses of the majority class
when undersampling that class. However, I have only considered a dataset containing
images of two classes so far. Nevertheless, my proposed method is also applicable to
class-imbalanced image datasets containing more than two classes. If such a dataset
contains multiple minority classes, my method is the same as described above because
it only focuses on the majority class to balance the dataset. If the dataset contains
multiple majority classes, on the other hand, my method needs to be applied to each
majority class separately. However, the method itself is the same when applied to each
majority class. Hence, to explain my method in detail, I will continue to consider a
class-imbalanced dataset that contains only two classes, a majority class cmaj and a
minority class cmin, without losing the generality of my method.

To undersample the majority class of the class-imbalanced training dataset using my
proposed method, two steps need to be performed. First, potential subclasses scmaj
of the majority class cmaj need to be identified within the training images XD

cmaj
of

class cmaj of the initial class-imbalanced dataset. However, it does not only need to
be identified out how many subclasses the majority class has. It is also necessary to
know, for each image of XD

cmaj
of the majority class, to which identified subclass this

image belongs. Images of the same subclass should be rather similar, while images of
different subclasses should be rather different. After identifying the subclasses scmaj of
the majority class cmaj , representative images are selected from each identified subclass
in the second step of my method. By selecting images from each subclass, I ensure
that as much information as possible is retained from the majority class, as images
from different subclasses are rather different as well. In contrast, images from the same
subclass tend to be similar. Therefore, it is not necessary to select all images from
a subclass, but some of these images can be omitted to balance the class-imbalanced
dataset. The selected majority class images make the required subset (X ′Dcmaj

, Y ′Dcmaj
).

1 https://www.image-net.org/challenges/LSVRC/2017/browse-synsets.php
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Figure 5.2: The proposed method: (1) Feed majority class images into the Convolutional Neural
Network-based image classification model (CNN) that was trained on the class-
imbalanced dataset, (2) choose a higher model layer, (3) fetch activations and
project them to 2D, (4) find clusters within the activations, and (5) select images
from each identified cluster to undersample the majority class.

This subset and all training images of the minority class form the balanced dataset.
Finally, using this balanced dataset, a proper model can be trained. An overview of my
proposed method is shown in Figure 5.2. Hereinafter, I describe in more detail how to
identify potential subclasses scmaj of the majority class cmaj within the training images
XD
cmaj

of class cmaj (Chapter 5.2.1) and how to select majority class images from each
identified subclass scmaj to undersample the majority class cmaj (Chapter 5.2.2).

5.2.1 Identifying Subclasses of the Majority Class

To identify potential subclasses scmaj of the majority class cmaj , I use an approach based
on the work of Ngyuen et. al. [109]. However, the method of Nguyen et. al. [109] was
introduced to visualize multifaceted image features learned by a Convolutional Neural
Network-based (CNN) model during model training. My proposed method, in contrast,
identifies potential subclasses of a class, as shown in steps (1) to (4) in Figure 5.2, with
the goal of using the subclass information to undersample that class (Chapter 5.2.2).
Below, I will explain how such potential subclasses scmaj of the majority class cmaj can
be identified within the training images of class cmaj . First, the image features of all
training images XD

cmaj
of the majority class cmaj need to be obtained. To receive these

image features, an initial model m0 is trained using the entire class-imbalanced training
dataset, i.e., all training images of the majority class cmaj and all training images of the
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minority class cmin. It is important for my method that all images of the dataset are
of the same image size. If they are not, they need to be resized to a specific image size
before model training. After training, the initial model m0 is received. However, as the
amount of minority class images is significantly lower than the amount of majority class
images, the initial model did not see many minority class images during model training
but mainly majority class images. Thus, I do not expect the initial model to have
learned a proper representation of the minority class. Nevertheless, I expect the model
to have learned at least a sufficient representation of the majority class. After training,
the image features of the training images XD

cmaj
of majority class cmaj can be obtained

using the model. To receive the image features, I first freeze the model because I do not
want to change the weights of the model anymore. Then, all of the training images of
the majority class are fed into the model again. As a result, each of the training images
of XD

cmaj
gets classified by the model. However, I am not interested in the classification

result but in the activations that are created at each layer of the model when feeding
a training image xDcmaj

∈ XD
cmaj

into the model again. These activations represent the
image features that the initial model m0 detected to classify this training image. To
be able to identify potential subclasses scmaj of the majority class cmaj , characteristic
image features of these subclasses need to be found.

As shown by Zeiler and Fergus [148], each model layer of a Convolutional Neural
Network-based model detects specific types of image features that are used to classify
images fed into that model. The lower layers (i.e., the layers closer to the input layer)
detect low-level image features (e.g., colors, corners, simple textures), while the higher
layers (i.e., the layers closer to the output layer) detect high-level image features (e.g.,
object parts, objects in various poses). Which kind of image features, however, should
be used to identify the subclasses of a class? It might be possible to find the subclasses
using the image features detected by the lower layers of the initial model. However,
these subclasses are not the subclasses I aim to find because they are subclasses with
respect to low-level image features (e.g., colors, corners, simple textures). The Ima-
geNet class orange, for instance, may contain subclasses with respect to different color
distributions, such as a subclass containing images showing an orange on a black back-
ground, a subclass containing images showing an orange on a white background, or a
subclass containing images showing an orange on a colored background (e.g., on an or-
ange tree, in a kitchen). However, all low-level feature-based subclasses may contain
images showing a whole orange and images showing orange slices (for more information,
see Chapter 2.3). Instead, I aim to receive images showing a whole orange and images
showing orange slices, each in a separate subclass that is characterized by its specific
semantic concept regardless of the background. Therefore, low-level image features are
not adequate for identifying subclasses of different semantic concepts, as these types of
image features are most likely shared by several such subclasses of a class. It is neces-
sary to identify subclasses with respect to different semantic concepts, such as a whole
orange or orange slices. Semantic concepts are characterized by object parts or whole
objects, i.e., high-level image features. Therefore, to identify subclasses with respect to
different semantic concepts, high-level image features from the higher model layers need
to be used (Figure 5.3). However, the image features from the output layer of the model
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Figure 5.3: The Clusters that were found within the activations of the ImageNet [25] class
orange with respect to a higher model layer represent different subclasses of that
class regarding different semantic concepts (e.g., cluster 1: sliced orange, cluster 3:
orange on a tree, cluster 9: multiple oranges).

cannot be used because the image feature representation of this layer does not contain
any subclass information anymore. The optimization objective of model training is to
find an image feature representation from the first to the final model layer that forces
images of the same class to be located close to each other in image feature space and
images of different classes to be located far from each other in image feature space. As
a result, at the output layer, all images of a class will be close to each other, which also
includes images of different subclasses of the class (for more information, see Chapter
2.3). Hence, it will be difficult to identify subclasses using the image features of the
final layer. As a consequence, the image features detected by one of the higher layers
before the output layer need to be used. However, which of these higher layers is the
best for identifying the subclasses depends on the classification problem that should be
solved. This can be a different higher model layer for different classification problems.
To find the best layer for a specific classification problem, different higher model lay-
ers are evaluated with respect to the identifiable clusters within the activations of each
layer. The layer with the best cluster quality is selected because clusters are important
for identifying the subclasses using my proposed method.
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To identify the subclasses scmaj of the majority class cmaj based on image features
of a particular higher model layer l, I first feed the Nmaj majority class images XD

cmaj

of the initial class-imbalanced training dataset into model m0. Then, the activations of
each image xDcmaj

are fetched from layer l. The activations represent the image features
of these images detected by layer l. If layer l is a convolutional layer, the activations of
an image are obtained in the form of a three-dimensional tensor. This three-dimensional
activation tensor needs to be flattened to an activation vector. However, this step is
only necessary if layer l is a convolutional layer. If layer l is a linear layer, on the other
hand, this step can be omitted because the activations from linear layers are in vector
form already. As a result, an activations vector al(xDcmaj

) of a layer-specific length M l is

obtained for each of the Nmaj training images xDcmaj
. Finally, these activation vectors are

concatenated into a matrix AlD of size Nmaj ×M l. Each row of this matrix represents
the activations of a majority class image xDcmaj

, generated at layer l.

After obtaining the activations AlD of the majority class images from the chosen higher
layer l, I aim to search for clusters in these activations. I expect the clusters to represent
the subclasses because each identified cluster hl will contain images of the class cmaj
with similar semantic image features in the form of their activations from higher layer
l. Thus, the images of a particular semantic concept should be close to each other in
image feature space, while they should be farther apart from the images of another
semantic concept. This corresponds to the expectation of a subclass. As a result, the
different subclasses of the majority class should be identifiable by finding clusters among
the images of that class in image feature space of layer l. The clustering result with
respect to the ImageNet class orange, for instance, may have one cluster containing
images showing a whole orange and another cluster containing images showing orange
slices. However, the matrix AlD, which contains the activations of the majority class
images XD

cmaj
of class cmaj , is usually high-dimensional because of the large amount of

activations that are generally obtained from layer l. Unfortunately, identifying clusters
in high-dimensional spaces does not work well, as pointed out by Chen et. al. [19].
Clustering algorithms use distance metrics to identify clusters, but distance metrics are
not effective in high-dimensional spaces. However, as pointed out by Domingos [28], the
data samples of most applications are located within a low-dimensional subspace within
this high-dimensional space. Thus, I use dimensionality reduction to project matrix AlD
onto such a low-dimensional subspace, as suggested by Chen et. al. [19].

Chapter 6.3.2 shows a comparison of suitable projection approaches with respect to
finding well-separated clusters, which I evaluated with activation data from different
datasets. The best projection result was obtained with a combination of the linear
dimensionality reduction technique PCA (Principal Component Analysis) [116] and the
non-linear dimensionality reduction technique UMAP (Uniform Manifold Approximation
and Projection) [98] (for more information about PCA and UMAP, see Chapter 3.1).
A similar approach was also used by Nguyen et. al. [109]. Thus, I use a combination
of PCA and UMAP to project matrix AlD. However, before projecting the matrix AlD,
each of its values need to be normalized as a preprocessing step for the dimensionality
reduction (for more details, see Chapter 3.1). After normalizing each value of matrix

52



5.2 Subclass-based Undersampling

AlD, the dimensionality of AlD is reduced from Nmaj×M l down to Nmaj×50 using PCA.
Then, in a second reduction step, the dimensionality is further reduced from Nmaj × 50
down to Nmaj × 2 using UMAP. As a result, the projected matrix rl(AlD) is obtained
from the learned projection model rl applied to matrix AlD.

In this projected matrix rl(AlD), I search for clusters. I expect these clusters to rep-
resent the subclasses of the majority class cmaj (Figure 5.3). To determine the best
approach to finding the clusters, I evaluated different clustering algorithms applied to
activation data from different layers of a Convolutional Neural Network-based model.
Furthermore, I also tested each clustering method for different image datasets. This
evaluation is presented in Chapter 6.3.2. I found that the k-Means [95] clustering algo-
rithm is generally best suited for activation data, which was also suggested by Chen et.
al. [19]. Thus, I chose k-Means to search for clusters in the matrix rl(AlD). However,
k-Means requires setting hyperparameter k. Hyperparameter k specifies how many clus-
ters k-Means should search for in the matrix. Unfortunately, it is not known in advance
how to set k. It cannot be predicted how many meaningful subclasses of cmaj can be
identified in the matrix. Thus, it is also not known how many clusters k-Means should
search for. Since I reduced the dimensions of the activations of the Nmaj images of the
majority class cmaj from M l dimensions in AlD down to 2 dimensions in rl(AlD) (the
rows of the matrices), the resulting compressed two-dimensional activations for each of
the images can be visualized in a scatter plot. In this scatter plot, it might be possible
to visually identify clusters. Thus, hyperparameter k of k-Means could be set according
to the number of clusters that were identified in the scatter plot. However, it cannot
be guaranteed that this method works well in every case. It may not always be easy to
identify all clusters visually. Thus, I use a different approach to finding a good value for
hyperparameter k. I simply test different values for k, e.g., values between 2 and 9. For
each of these values, I apply k-Means to matrix rl(AlD) using this value for hyperparam-
eter k. As a result, for each of these values, I obtain a set of clusters hl ∈ hl1, .., hlk found
by k-Means and evaluate the received clusters with respect to their cluster quality. The
value for k that results in the clusters achieving the best overall cluster quality is chosen.

I use the silhouette score [121] to evaluate the clusters. The silhouette score is a cluster
quality metric, which is calculated using the intra-cluster distance and the nearest-cluster
distance of each data sample of a set of clusters (for more details, see Chapter 3.3). In
our case, a data sample is the compressed activation vector rlD(AlD)i,: = rl(al(xDcmaj

)) of

an image xDcmaj
in a row i of matrix rl(AlD). Chen et. al. [19] reported that the silhouette

score is well suited for evaluating clusters identified in activation data of Convolutional
Neural Network-based models. The value of the silhouette score of an obtained set of
clusters ranges from −1 to 1. A silhouette score close to 1 means that we have well-
separated clusters. A silhouette score close to −1, however, means that a majority of
data samples should be located in the nearby cluster rather than in their current cluster.
Thus, a higher silhouette score for a set of clusters reflects a better cluster quality and is
therefore favorable. After computing the silhouette score for the resulting clusters from
each of the considered values for k, I pick the clusters corresponding to the value for k
that achieved the highest silhouette score.
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Selecting Closest Images Selecting Farthest  Images

Figure 5.4: Selecting the images from each cluster to undersample the majority class: (a) Se-
lecting the images closest to their respective cluster center, and (b) selecting the
images farthest from their respective cluster center within an 80th percentile to
avoid outliers.

5.2.2 Undersampling of the Majority Class

After the subclasses scmaj of the majority class cmaj are identified in the form of the
obtained clusters hl in image feature space of the chosen higher layer l (Chapter 5.2.1),
the majority class can be undersampled using these subclasses, as shown in step (5) in
Figure 5.2. To undersample majority class cmaj , a subset of the training images of cmaj
is selected. This reduces the difference between the amount of images of the majority
class cmaj and the amount of images of the minority class cmin. For instance, if the
number of majority class images is 300 and the number of minority class images is 100,
then a subset of 100 images of the majority class may be selected to undersample this
class. However, the images for this subset are not selected at random. I expect images
of each subclass of the majority class to have different image features compared to the
images of another subclass. Thus, to retain as much information as possible for model
training, I uniformly select majority class images from each identified subclass through
its corresponding cluster. If I found 2 clusters, and I aim to select 100 images in total,
for instance, then I select 50 images from each of the 2 clusters. Unfortunately, the
clusters do not contain the images themselves but the compressed activation vectors
rl(AlD)i,: = rl(al(xDcmaj

)) of the images xDcmaj
∈ XD

cmaj
in each row i of matrix rl(AlD).

However, as these compressed activation vectors can be directly associated with their
corresponding images xDcmaj

, the clusters can be used for selecting the subset. Thus, I
refer to the activation vectors contained in the clusters as images below.
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To select nhl images from a cluster hl, I consider different approaches. Similar to the
state-of-the-art random undersampling method (for more details, see Chapter 5.1), the
images from a cluster can be selected at random. However, I also consider two other
more sophisticated approaches. First, I select from a cluster hl the images Xhl

near that
are closest to the center cthl of that cluster hl (Equation 5.4), as shown in Figure 5.4
(left). The images that are located closest to the center of the cluster are likely the
images that are most representative of the cluster.

Xhl

near = arg min
h′l⊂hl,|h′l|=n

hl

∑
xhlcmaj

∈h′l

d(xh
l

cmaj
, cthl) (5.4)

However, the images Xhl
near of a cluster hl, which are closest to the cluster center of

the cluster, could also be visually quite similar to each other because they are most
likely close to each other in image feature space as well. Hence, I also consider a second
approach. I select the images Xhl

far that are farthest from the cluster center cthl of hl,
as shown in Figure 5.4 (right). These images should be still significantly different from
images of other clusters, but they should also be at least slightly more different from
each other. However, to avoid selecting outliers, such as noisy or mislabeled images,
I only consider images within the 80th percentile η.8(h

l) of cluster hl for the selection
(Equation 5.5).

Xhl

far = arg max
h′l⊂η.8(hl),|h′l|=nhl

∑
xhlcmaj

∈h′l

d(xh
l

cmaj
, cthl) (5.5)

After selecting the subset of images of the majority class cmaj from each cluster hl

using one of the three approaches described above (selecting randomly, selecting samples
closest to the cluster center, or selecting samples farthest from the cluster center), this
subset is merged with all images of the minority class cmin in order to obtain the balanced
dataset. Finally, a final model m1 is trained using this balanced dataset.

5.3 Experiments

To address the problem of training a Convolutional Neural Network-based (CNN) image
classification model using a class-imbalanced training dataset, I proposed a method that
balances the dataset beforehand by undersampling its majority class based on potential
subclasses of the majority class. I describe the details of my method in Chapter 5.2.
To evaluate my method, I conducted several experiments. The general setup of these
experiments is described in Chapter 5.3.1. In a first experiment, I tested if a model
trained using a training dataset balanced by my method is able to achieve a significantly
higher classification performance than a model trained using the corresponding initial
class-imbalanced training dataset. This way, I aimed to find out whether my method is
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beneficial for balancing a dataset at all. Furthermore, I also tested if a model trained us-
ing the training dataset balanced by my method is able to achieve a significantly higher
classification performance than a model trained using the training dataset balanced by
random undersampling [104]. The results are presented in Chapter 5.3.2. To ensure that
the results of my experiment in Chapter 5.3.2 are not dependent on the model archi-
tecture that I used for the experiment, I repeated the experiment using two alternative
model architectures. The results are presented in Chapter 5.3.3. Finally, I evaluated in
a third experiment my proposed subclass-based undersampling method in comparison
to two other state-of-the-art methods to address the class imbalance problem, random
oversampling [104] and a class-weighted loss function [104]. The results are presented in
Chapter 5.3.4.

5.3.1 Experimental Setup

To test my proposed subclass-based undersampling method in comparison to different
state-of-the-art methods (e.g., random undersampling [104]), I conducted several exper-
iments using two different class-imbalanced real-world datasets. For each experiment, I
used the same experimental setup. I first addressed the class imbalance problem of the
training dataset of the respective real-world dataset using either my proposed subclass-
based undersampling method or a state-of-the-art method. To undersample the training
dataset using my method, I used the approach described in Chapter 5.2. I first trained
an initial Convolutional Neural Network-based (CNN) image classification model using
the original class-imbalanced training dataset. After receiving this initial model, I fed
all training images of the majority class (that should be undersampled) into the model
again. The model then creates the activations of these images at each model layer. To
obtain the activations required for undersampling the majority class using my subclass-
based undersampling method, I picked a higher model layer (i.e., a layer closer to the
output layer) and fetched the activations from this layer. Then, I searched for clusters
within these activations. After identifying a set of clusters, I used them to undersample
the respective majority class. I assumed that the identified clusters reflect the subclasses
of the majority class. To undersample the majority class, I selected a specified number of
majority class training images from each identified cluster. The selected images formed
the undersampled set of training images of the majority class. Finally, I merged this
undersampled set of training images of the majority class with the training images of
the other classes of the dataset, which include all training images of the minority classes
and optionally the undersampled sets of other majority classes if the dataset contains
more than one majority class. The resulting dataset is the balanced dataset obtained
by my method. As a result, I received two balanced datasets, the dataset balanced by
my subclass-based undersampling method and a dataset balanced by a state-of-the-art
method (e.g., random undersampling). Then, I trained a final model for each balanced
dataset. Depending on the experiment, I trained a model for each dataset either a single
time or 6 times for a specified number of training epochs. When I trained a model 6
times, I trained the respective model with a different seed value each time. I took each
seed value from a set of 6 random seed values. The same 6 random seed values were used
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for both models. A seed value sets the random number generator used for model train-
ing2. By using different seed values, I should have obtained a more reliable classification
performance of the respective models because different seed values for a model could lead
to a certain variance in the corresponding classification performances. However, I only
trained a model 6 times, if the model or the dataset were not too complex. Otherwise, I
only trained each model a single time. After model training, I tested each model on the
respective test dataset to receive its classification performance. As a result, depending
on how many times I trained the models, I obtained for each model either one or 6 clas-
sification metrics (one for each seed). When I obtained only a single classification metric
for each model, I directly compared the classification performances of the two models
using their respective classification metrics. When I obtained 6 classification metrics for
each model, on the other hand, I calculated the median and the standard deviation from
these 6 classification metrics in order to compare the classification performances of the
two models.

I conducted my experiments on two class-imbalanced real-world datasets taken from
two image classification competitions that are hosted by the data science website Kaggle3,
the Plant Pathology 2020 competition and the Nature Conservancy Fisheries Monitoring
competition. A few sample images of both datasets are shown in Figure 5.5. The images
of the Plant Pathology dataset4 [136] show apple trees that are either healthy or that
suffer from a particular plant disease. These images are grouped into 4 different classes:
The rust disease class (622 training data samples), the scab disease class (592 training
data samples), the healthy class (516 training data samples), and the multiple diseases
class (91 training data samples). The dataset is class-imbalanced because it contains a
significantly lower amount of images of the multiple diseases class compared to the other
three classes of the dataset. Therefore, I considered the multiple diseases class to be the
minority class and the other three classes to be the majority classes. As a result, I aimed
to undersample these three majority classes. The Fisheries Monitoring dataset5, on the
other hand, contains images taken from the surveillance camera on different fishing boats
in order to detect the catch of illegal fish species. The images of the dataset are grouped
into 8 different classes: The Albacore tuna class (ALB, 1719 training data samples), the
Yellowfin tuna class (YFT, 734 training data samples), the Bigeye tuna class (BET, 200
training data samples), the various sharks class (SHARK, 176 training data samples),
the Dolphinfish class (DOL, 117 training data samples), the Moonfish class (LAG, 67
training samples), the another fish species class (OTHER, 299 training data samples)
and the no fish in the image class (NoF, 465 training data samples). The dataset is
class-imbalanced because it contains a significantly higher amount of images of the ALB
class compared to the other seven classes of the dataset. Therefore, I considered the ALB
class to be the majority class and the other seven classes to be the minority classes. As
a result, I aimed to undersample the ALB class as the majority class.

2 https://pytorch.org/docs/stable/notes/randomness.html
3 https://www.kaggle.com
4 https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7/data
5 https://www.kaggle.com/competitions/the-nature-conservancy-fisheries-monitoring/data
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Plant Pathology

rust scab

multiple healthy scab

rust BET YFT

LAG ALB

NoF

OTHER

Fisheries Monitoring

Figure 5.5: Sample images of the datasets used in my experiments, the Plant Pathology 2020
[136] dataset and the Nature Conservancy Fisheries Monitoring dataset.

In all of my experiments, I used the same training setup for the respective models.
To train the models, I used a pre-trained model with a ResNet50 architecture (50-layer
Residual Network) [46] that was trained on the ImageNet [25] dataset (only in Chapter
5.3.3 I also tested other model architectures). To fine-tune the pre-trained model using
the respective dataset, I replaced the ImageNet-related output layer of the pre-trained
model with the following model layers: A special pooling layer - batch normalization
layer [61] - dropout (p = 0.25) [134] - fully-connected linear layer (layer size: 512) -
batch normalization layer - dropout (p = 0.5) - fully-connected linear layer (layer size:
numberofclasses). I used the ReLU activation function (Rectified Linear Unit) [39] for
the pre-activations of the hidden linear layer. The special pooling layer consisted of a
combination of an average pooling layer and a max pooling layer [88, 110] that were
applied in parallel. Then, the results of both pooling layers were concatenated. Before
model training, however, I first resized all training images of the respective dataset
to 224 × 224 pixels. Furthermore, to obtain more variations of the training images, I
used different data augmentation techniques [128]. For the Plant Pathology dataset, I
used the data augmentation techniques that were used by the winner6 of the original
corresponding competition. These techniques included randomly flipping training images
horizontally and vertically, randomly rotating and scaling training images, randomly
shifting training images, adjusting their brightness and contrast, and applying blur.
For the Fisheries Monitoring dataset, on the other hand, I chose almost the same data
augmentation techniques. I only did not flip the training images vertically. Images
showing the leaves of an apple tree could appear in a wide range of orientations. Images
taken from the surveillance camera of the fishing boats, on the other hand, will most
likely not appear to be upside down. Thus, I excluded flipping the training images of
the fisheries monitoring dataset vertically. In order to train the model for both datasets,
I used a mixed precision training setup [101]. Mixed precision training allowed me

6 https://github.com/ant-research/cvpr2020-plant-pathology
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to shrink the memory usage of the model in order to increase the batch size for model
training to 25. Then, I trained the model in two stages using a discriminative fine-tuning
strategy [54]. I first trained only the initial model weights of the newly added model
layers (replacement for the ImageNet-related output layer) for 3 training epochs using
the Adam7 optimizer [65]. The model weights of all remaining layers (the ResNet50
layers) were not changed. Then, I fine-tuned the model weights of all layers of the model
for 8 more training epochs using the Adam optimizer as well. To set the learning rate
for model training, I used a cyclical learning rate schedule8 [132] with an initial learning
rate value of 0.01.

To evaluate the models for each dataset, I used the Kaggle submission system from
each corresponding competition. The test images of each dataset are divided into two
groups by Kaggle, a set of private test images and a set of public test images. While a
competition is active, Kaggle only shows the results of a model on the public test images.
When the competition ended, Kaggle also shows the results of the tested models on the
private test images. The participant with the best result on these private test images
wins the respective competition. However, the Plant Pathology 2020 competition and
the Nature Conservancy Fisheries Monitoring competition were both no longer active.
As a result, the public and the private test images from both corresponding datasets
were already available. Thus, I chose to evaluate my models using the private test
images as these are also important to win the competition. Furthermore, as I used the
Kaggle submission system to evaluate the models, I used the classification performance
metrics from each competition for evaluating my own models. Hence, I tested my Plant
Pathology models using the ROC AUC9 metric and the Fisheries Monitoring models
using the multi-class logarithmic loss metric10 (LogLoss).

5.3.2 Testing against Random Undersampling

In my first experiment, I aimed to examine whether my proposed method can be used
to undersample a class-imbalanced training dataset at all. If my method can be used for
undersampling, then a model trained using a training dataset balanced by my method
should achieve a significantly higher classification performance than a model trained
using the original class-imbalanced training dataset. Furthermore, I also aimed to test
my method in comparison to random undersampling [104]. Therefore, I additionally
investigated whether a model trained using a training dataset balanced by my method
is able to achieve a superior classification performance than a model trained using a
training dataset balanced by random undersampling. I conducted my experiment on
the Plant Pathology dataset and the Fisheries Monitoring dataset. My setup for the
experiment is described in Chapter 5.3.1.

7 https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
8 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CyclicLR.html
9 https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7/overview/evaluation
10 https://www.kaggle.com/competitions/the-nature-conservancy-fisheries-monitoring/

overview/evaluation
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I first tested my proposed method on the Plant Pathology dataset. The Plant Pathol-
ogy dataset contains images of 4 different classes: The rust disease class (622 training
data samples), the scab disease class (592 training data samples), the healthy class (516
training data samples), and the multiple diseases class (91 training data samples). The
dataset is class-imbalanced because it contains a significantly lower amount of images of
the multiple diseases class compared to the other three classes. Therefore, I considered
the multiple diseases class to be the minority class and the other three classes to be the
majority classes. As a result, I aimed to undersample these three majority classes using 4
different undersampling strategies: (a) undersample only the rust disease class (from 622
down to 100 training data samples), (b) undersample only the scab disease class (from
592 down to 100 training data samples), (c) undersample only the healthy class (from
516 down to 100 training data samples), and (d) undersample the rust disease class, the
scab disease class and the healthy class at the same time (down to 100 training data
samples for each of the three classes). To undersample the training dataset using one of
the strategies mentioned above, I needed to find clusters within the activations of the
respective training images at a certain higher model layer. I considered fetching these
activations from one of the newly added model layers (replacement for the ImageNet-
related output layer) or from the last layer before the newly added model layers (i.e.,
the last ResNet50 layer) (for more details about the layers, see Chapter 5.3.1). To pick
one of these layers, I used the best silhouette score [121] that I obtained from each layer
when searching for the clusters within the activations of the layer (for more details, see
Chapter 5.2.1). The silhouette score is a cluster quality metric that indicates how well
the clusters are separated. I picked the layer with the highest silhouette score, i.e., the
layer whose clusters are best separated. For the rust disease class and the healthy class,
the layer with the highest silhouette score was the special pooling layer from the newly
added layers. For the scab disease class, on the other hand, the layer with the highest
silhouette score was the second last fully-connected linear layer from the newly added
layers (i.e., the linear layer before the output layer). After obtaining the clusters from
the chosen layer, I selected an equal amount of majority class training images from each
of these clusters. For instance, if I aim to select 100 training images of the class that
should be undersampled and I found 2 clusters within the activations of these images,
I select 50 images from each of these clusters to obtain the 100 images in total for that
class. In order to select the images, I tested my two selection approaches (picking the
closest images from each cluster center and picking the farthest images from each cluster
center). As a result, I obtained the following datasets: The original class-imbalanced
dataset (baseline), a dataset balanced by my method for each of the 4 undersampling
strategies (a) to (d), and my two selection approaches (closest images and farthest images
from each cluster center), and 6 different datasets balanced by random undersampling
for each of the undersampling strategies (a) to (d) (using a different random seed value
for each of the 6 times to apply random undersampling). After creating the datasets, I
trained a model 6 times using a different seed value each time for each of these datasets,
as described in Chapter 5.3.1. Then, I tested the resulting models on the private test
dataset from Kaggle. As a result, I obtained the classification performances in the form
of their 6 ROC AUC metrics for each model (one for each seed). To be able to better
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compare the different models, I computed the median and standard deviation over the 6
ROC AUC metrics. The results of my experiment with respect to the Plant Pathology
dataset are shown in Table 5.1. As shown in the table, the model trained using the
dataset balanced by my method with strategy (b) (undersample only the scab disease
class) and picking the closest images from each cluster center achieved the best classi-
fication performance. The model surpassed the performance of the baseline model and
the models trained using a dataset balanced by random undersampling.

Table 5.1: Comparison of my method with the baseline (class-imbalanced dataset) and random
undersampling with respect to the Plant Pathology 2020 dataset. All models were
trained using 6 different random seed values. The results are given as median ROC
AUC scores (a higher score is better).

Method Undersampled Class ROC AUC
median std

Baseline - 0.9387 0.0045

Random Undersampling healthy 0.9375 0.0086
rust 0.9187 0.0092
scab 0.9377 0.0024
healthy, rust, scab 0.9068 0.0233

My Method (closest) healthy 0.9391 0.0058
rust 0.9171 0.0069
scab 0.9425 0.0088
healthy, rust, scab 0.8909 0.0166

My Method (farthest) healthy 0.9353 0.0059
rust 0.9183 0.0098
scab 0.9369 0.0080
healthy, rust, scab 0.9004 0.0054

After the Plant Pathology dataset, I also tested my proposed method on the Fisheries
Monitoring dataset. The Fisheries Monitoring dataset contains images of 8 different
classes: The ALB class (1719 training data samples), the YFT class (734 training data
samples), the BET class (200 training data samples), the SHARK class (176 training
data samples), the DOL class (117 training data samples), the LAG class(67 training
data samples), the OTHER class (299 training data samples) and the NoF class (465
training data samples). The dataset is class-imbalanced because it contains a signifi-
cantly higher amount of images of the ALB class compared to the other seven classes.
Therefore, I considered the ALB class to be the majority class and the other seven
classes to be the minority classes. As a result, I aimed to undersample the ALB class as
the majority class (from 1719 down to 734 data samples). To undersample the training
images of the ALB class using my method, I needed to find clusters within the acti-
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vations of these training images at a certain higher model layer (i.e., a layer closer to
the output layer). I considered fetching these activations from one of the newly added
model layers (replacement for the ImageNet-related output layer) or from the last layer
before the newly added model layers (i.e., the last ResNet50 layer) (for more details
about the layers, see Chapter 5.3.1). Again, to pick one of these layers, I used the best
silhouette score [121] that I obtained from each layer when searching for the clusters
within the activations of the layer (for more details, see Chapter 5.2.1). For the ALB
class that I aimed to undersample, the layer with the highest silhouette score was the
last layer before the newly added layers. After obtaining the clusters from the chosen
layer, I selected an equal amount of training images from each cluster. In order to select
the images, I tested my two selection approaches (picking the closest images from each
cluster center and picking the farthest images from each cluster center). As a result,
I received the following datasets: The original class-imbalanced dataset (baseline), a
dataset balanced by my method with respect to my two selection approaches (closest
images and farthest images from each cluster center), and 5 different datasets balanced
by random undersampling (using a different seed value for each of the 5 times to apply
random undersampling). After receiving the datasets, I trained a model for each of these
datasets, as described in Chapter 5.3.1. As the Fisheries Monitoring dataset is larger
than the Plant Pathology dataset, I only trained one model for each dataset. Then, I
tested the resulting models on the private test dataset from Kaggle. As a result, I ob-
tained the classification performances in the form of their LogLoss metric for each model.
As I obtained 5 models trained using a dataset balanced by random undersampling (one
for each of the 5 random seeds), I computed the median over their LogLoss metrics. The
results of my experiment with respect to the Fisheries Monitoring dataset are shown
in Table 5.2. As shown in the table, the model trained using the dataset balanced by
my method with picking the closest images from each cluster center achieved the best
classification performance. The model surpassed the performance of the baseline model
and the models trained using random undersampling.

Table 5.2: Comparison of my method with the baseline (class-imbalanced dataset) and ran-
dom undersampling (median over 5 random seed values) with respect to the Nature
Conservancy Fisheries Monitoring dataset. The results are given as multi-class log-
arithmic loss scores (a lower score is better).

Method LogLoss

Baseline 5.7333
Random Undersampling 4.0771
My Method (closest) 3.8657
My Method (farthest) 3.9302
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Table 5.3: Comparison of my method with the baseline (class-imbalanced dataset) and random
undersampling (median over 5 random seed values) with respect to the Plant Pathol-
ogy 2020 dataset (undersampled class: healthy) using different model architectures.
The results are given as ROC AUC scores (a higher score is better).

Method CNN Architecture ROC AUC

Baseline VGG16 0.9435
Random Undersampling 0.9404
My Method (closest) 0.9447
My Method (farthest) 0.9322

Baseline DenseNet121 0.9461
Random Undersampling 0.9384
My Method (closest) 0.9294
My Method (farthest) 0.9465

5.3.3 Comparing Different Model Architectures

In my experiment in Chapter 5.3.2, I examined whether my proposed method is able to
address the class imbalance problem at all. Furthermore, I also tested my method in
comparison to random undersampling [104]. I could show that a model trained using
a training dataset balanced by my method achieves a better classification performance
than a model trained using the original class-imbalanced training dataset and a model
trained using a training dataset balanced by random undersampling. However, for all of
my tests, I trained the respective models based on a pre-trained model with a ResNet50
architecture (50-layer Residual Network) [46], which was trained on the ImageNet [25]
dataset. To make sure that my method does not only work for models with a ResNet50
architecture, I repeated my experiment from Chapter 5.3.2 with respect to undersam-
pling of the healthy class of the Plant Pathology dataset with two alternative model
architectures, a DenseNet121 [56] and a VGG16 [129] (with batch normalization layers
[61]). However, except for the model architecture, I used the same experimental setup
as in Chapter 5.3.2. For each model architecture, I received the following datasets:
The original class-imbalanced dataset (baseline), a dataset balanced by my method with
respect to my two selection approaches (closest images and farthest images from each
cluster center), and 5 different datasets balanced by random undersampling (using a
different seed value for each of the 5 times to apply random undersampling). After re-
ceiving the datasets, I trained a model for each of these datasets, as described in Chapter
5.3.1. Then, I tested the resulting models on the private test dataset from Kaggle. As a
result, I obtained the classification performances in the form of their ROC AUC metric
for each model. As I obtained 5 models trained using a dataset balanced by random
undersampling (one for each of the 5 random seeds), I computed the median over their
ROC AUC metrics. The results of my experiment are shown in Table 5.3. As shown in
the table, the model trained using a dataset balanced by my method achieved the best
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classification performance for both model architectures. For each architecture, the model
surpassed the performance of the baseline model and the models trained using random
undersampling. However, for the DesNet121 architecture, my method was better when
picking the farthest images from each cluster center instead of picking the closest images
from each cluster center.

5.3.4 Testing against Different State-of-the-Art Methods

In my experiments in Chapter 5.3.2 and Chapter 5.3.3, I tested my proposed method
only in comparison to random undersampling [104]. However, as pointed out in Chapter
5.1, there are also other state-of-the-art methods to address the class imbalance prob-
lem. Therefore, I conducted a third experiment with respect to the Plant Pathology
dataset to test my method in comparison to two other state-of-the-art methods, random
oversampling [104] of the minority class (the multiple diseases class, 91 training data
samples) and using a class-weighted loss function [104] for model training. For random
oversampling, I considered two approaches: Oversampling of the minority class to 182
training data samples (original size × 2) and oversampling of the minority class to 546
training data samples (original size × 6). For the class-weighted loss function, on the
other hand, I used a loss function with special weights that were set by the fraction of
the training data samples of each class in relation to the total size of the training dataset.
Furthermore, I also tested additional undersampling approaches. For this experiment, I
only considered undersampling the healthy class (516 training data samples). However,
besides undersampling the healthy class to 100 training data samples using either my
method or random undersampling, I also tested to undersample the healthy class to 250
training data samples. Moreover, for my method, I also tested a third selection approach
to picking training images from each identified cluster. Besides picking the closest or
the farthest training images from each cluster center, I also considered picking training
images from each cluster at random. Except for these additional approaches, however, I
used the same experimental setup as in Chapter 5.3.2. I received the following datasets:
The original class-imbalanced training dataset (baseline), a training dataset balanced
by my method with respect to my three selection approaches (closest training images
and farthest training images from each cluster center as well as selecting training images
at random from each cluster), and 5 different training datasets balanced by random
undersampling (using a different seed value for each of the 5 times to apply random un-
dersampling). After receiving the datasets, I trained a model for each of these datasets,
as described in Chapter 5.3.1. Then, I tested the resulting models on the private test
dataset from Kaggle. As a result, I obtained the classification performance in the form
of their ROC AUC metric for each model. As I obtained 5 models trained using a train-
ing dataset balanced by random undersampling (one for each of the 5 random seeds),
I computed the median over these 5 ROC AUC metrics. The results of my experiment
are shown in Table 5.4. As shown in the table, the model trained using the dataset
balanced by my method using the random selection approach of 250 training data sam-
ples achieved the best classification performance. The model surpassed the classification
performance of all of the state-of-the-art methods.
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Table 5.4: Comparison of my method with the baseline (class-imbalanced dataset), random un-
dersampling, random oversampling and a class-weighted loss approach with respect
to the Plant Pathology 2020 dataset. For my method and random undersampling, I
undersampled the healthy class. The results are given as ROC AUC scores (a higher
score is better).

Method ROC AUC

Baseline 0.9343
Class-Weighted Loss 0.9466
Oversampling (182 samples) 0.9469
Oversampling (546 samples) 0.9268

Random Undersampling (100 samples) 0.9370
My Method (closest, 100 samples) 0.9451
My Method (farthest, 100 samples) 0.9301
My Method (random, 100 samples) 0.9377

Random Undersampling (250 samples) 0.9474
My Method (closest, 250 samples) 0.9488
My Method (farthest, 250 samples) 0.9453
My Method (random, 250 samples) 0.9551

5.4 Discussion

A state-of-the-art method to address the class imbalance problem is random under-
sampling [104]. Random undersampling balances the class-imbalanced training dataset
before model training. To balance a dataset, random undersampling removes images of
the majority class from the dataset at random until the amount of majority class images
and the amount of minority class images are approximately equal. If the majority class
of the training dataset contains different subclasses, however, random undersampling
may remove a significant amount of majority class images from one of those subclasses.
As a result, a model trained using this undersampled dataset may not have been able
to learn an adequate representation of the majority class. Therefore, I suggested an im-
proved undersampling method (Chapter 5.2). Rather than randomly removing majority
class images to balance the dataset, my method identifies clusters within the majority
class images in image feature space of a higher model layer (i.e., a layer closer to the
output layer) and selects a specific amount of majority class images from each identified
cluster for the balanced dataset. I assume that the identified clusters correspond to the
subclasses of the majority class. Thus, a model trained using the dataset balanced by
my method should learn an adequate representation of the majority class. As a result,
if the majority class of a specific dataset contains subclasses, I expected that a model
trained using the dataset balanced by my method would achieve a significantly higher
classification performance than a model trained using the dataset balanced by random
undersampling.
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To evaluate my proposed undersampling method, I conducted several experiments
(Chapter 5.3). My first research goal was to examine whether a subclass-based approach
is beneficial for undersampling at all. In Chapter 5.3.2, I showed for two class-imbalanced
real-world datasets that a model trained using a dataset balanced by my method achieves
a higher classification performance than a model trained using the corresponding origi-
nal class-imbalanced dataset. This indicates that a subclass-based approach is beneficial
for undersampling a dataset. However, I not only aimed to show that a subclass-based
approach can be used for balancing a dataset but also that my method achieves a higher
classification performance than random undersampling. Therefore, my second research
goal was to examine how my subclass-based undersampling method performs in compar-
ison to random undersampling. In Chapter 5.3.2, I also showed for the two real-world
datasets that a model trained using the dataset balanced by my method achieves a higher
classification performance than a model trained using the dataset balanced by random
undersampling. Moreover, I could show in Chapter 5.3.3 that my method outperforms
random undersampling even for different model architectures. In my experiments, se-
lecting the majority class images from each cluster that are closest to their respective
cluster center turned out to work best in most cases. In one case, however, selecting the
majority class images farthest from the cluster centers resulted in a better classification
performance.

However, as shown in Chapter 5.1, random undersampling is not the only state-of-the-
art method to address the problem of training a Convolutional Neural Network-based
image classification model using a class-imbalanced training dataset. Other state-of-the-
art methods to address this problem include oversampling and approaching the problem
through the loss function during model training. Therefore, my third research goal was
to examine how my subclass-based undersampling method performs in comparison to
random oversampling [104] and an approach based on a class-weighted loss function
[104]. In Chapter 5.3.4, I showed for the two class-imbalanced real-world datasets that
my subclass-based undersampling method also outperforms these two alternative state-
of-the-art methods. Selecting a slightly higher amount of majority class images from
each identified cluster at random turned out to work best in this case. However, in
contrast to oversampling and a loss function-based approach, an undersampling method,
such as my method or random undersampling, removes information from the training
dataset by excluding majority class images. As a result, I assume that the classification
performance of undersampling methods might be dataset dependent. Nevertheless, I
have shown that my subclass-based undersampling method is an additional approach to
addressing the problem of training an image classification model using a class-imbalanced
training dataset.
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Out-of-Distribution Samples

I have shown in Chapter 4 and Chapter 5 that the layer information (pixels and activa-
tions) of a Convolutional Neural Network-based (CNN) image classification model can
be exploited to improve the training of such a model. In this chapter, I show that the
layer activations of the model can be exploited to improve the usage of the model after
model training as well. By using the activations of multiple model layers, it is possible to
detect when the model fails to predict the correct class for an image at inference. Usu-
ally, we train such an image classification model on a training dataset until the model
reaches a sufficient classification performance on a given test dataset. To be able to
achieve a sufficient classification performance, the test dataset must have been drawn
from the same data distribution as the training dataset. However, the test dataset does
not share any images with the training dataset. After model training, we typically de-
ploy the resulting model to a production system (e.g., a mobile app, a web server). This
production system receives images at inference that should be classified by the model. If
these incoming images have been drawn from the same data distribution as the training
and test dataset, then our model usually achieves a similar classification performance on
these incoming images as on the test dataset. We typically refer to this kind of incoming
images as in-distribution samples. If the incoming images have been drawn from a data
distribution that differs from the data distribution of the training and test dataset, how-
ever, then our model most likely achieves a classification performance on those incoming
images that is significantly lower than the classification performance on the test dataset.
We typically refer to this kind of incoming images as out-of-distribution samples [145].
The model achieves a lower classification performance on these out-of-distribution sam-
ples because it did not see this kind of images during model training. As a result, the
model was not able to learn any image features of these images in order to classify them
correctly. However, not only does our model fail to classify out-of-distribution samples
correctly, it also fails without warning. When feeding an out-of-distribution sample into
the model, we would like our model to signal that it is not sure how to classify this im-
age. The model could signal that it is not sure by assigning each possible class an equal
confidence value obtained by the softmax scores of the model, when predicting a class
for the out-of-distribution sample. Unfortunately, this is not what typically happens in
practice. In practice, such a model might predict a class for an out-of-distribution sam-
ple even with a high softmax score, as pointed out by Gal [35] as well as by Hendrycks
and Gimpel [49]. This behavior of Convolutional Neural Network-based models makes
it difficult to use them for safety-critical applications such as driving assistance systems
[47] or medical diagnosis systems [103]. The problem could also arise in my plant disease
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example from Chapter 1. For instance, suppose after training the model to detect the
plant disease, the disease suddenly mutates and changes its visual appearance. However,
our model has not yet learned anything about this new appearance. As a result, the
model is no longer able to recognize the disease because images of the mutated disease
are out-of-distribution samples with respect to our model.

In general, two different types of out-of-distribution samples are considered, natural
out-of-distribution samples and adversarial out-of-distribution samples. A natural out-
of-distribution sample might belong to a class that is different from the classes that
our model learned about during model training. For instance, suppose our model was
trained to classify images of different kinds of apples. If the model then receives an
image at inference that shows an orange, however, it is not able to correctly classify that
image as an orange. Instead, the model incorrectly classifies that image as a certain
kind of apple because the model only learned about apples during model training, not
oranges. The model knows nothing about the concept of an orange. Nevertheless,
the model might even misclassify the image with high confidence (i.e., a high softmax
score). Therefore, the image showing an orange is a natural out-of-distribution sample
with respect to our model that was trained to classify apples. However, not every natural
out-of-distribution sample belongs to an unknown class. A natural out-of-distribution
sample might also belong to one of the classes that the model learned about during model
training. However, this out-of-distribution sample shows the class object in a form that
is different from the form of the class object appearing on the training images, which the
model saw during model training. For instance, suppose our model, which was trained
to classify different kinds of apples, only saw images showing whole apples during model
training. If the model then receives an image at inference that shows a certain type
of apple in the form of a sliced apple, however, it is not able to correctly classify that
image as the correct type of apple, even though it might have learned about this type of
apple (but in the form of a whole apple) during model training. Images showing apple
slices have different image features than images of whole apples. However, during model
training, our model learned to recognize only the image features of whole apples, not the
image features of apple slices. Again, it is possible that the model misclassifies the out-of-
distribution sample even with high confidence (i.e., a high softmax score). Therefore, the
image showing the sliced apple is a natural out-of-distribution sample with respect to our
model, which only learned about whole apples during model training. These two kinds
of out-of-distribution samples (unknown class, unknown form) are typically referred to
as natural out-of-distribution samples [51, 108] because these images occur naturally.
However, it is also possible to create out-of-distribution samples artificially. This kind
of out-of-distribution samples are usually referred to as adversarial out-of-distribution
samples. To create an adversarial out-of-distribution sample, an attacker usually alters
an in-distribution image in a subtle way using the model by changing only a few specific
pixels of that in-distribution image [41, 59, 135]. This alteration is usually imperceptible
to the human eye but negatively impacts the model to predict the incorrect class for
that image with high confidence (i.e., a high softmax score). Alternatively, it is also
possible to obtain such an adversarial out-of-distribution sample by altering the physical
image object before the image of that object was captured [12, 34, 73]. Adversarial
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out-of-distribution samples are typically used by attackers to attack our model [11]. The
attacker can even create an adversarial out-of-distribution sample using his own model
to attack our model because adversarial out-of-distribution samples are transferable
between different models [58, 142]. It is debatable whether the model behavior caused
by adversarial out-of-distribution samples is a bug or not. Ilyas et. al. [59] argue that
the behavior is expected because the added noise from the attacker results in image
features for the model as well. These noise-based image features just do not correspond
to what humans recognize as image features. Nevertheless, out-of-distribution samples
pose a serious threat, especially when using the model for safety-critical applications
(e.g., driving assistance systems, medical diagnosis systems).

To be able to reliably use Convolutional Neural Network-based models in practice, it
is important to detect whether an incoming image at inference is an out-of-distribution
sample. Therefore, a large number of approaches to detecting out-of-distribution samples
have been suggested [145]. An overview of different detection methods is given in Chapter
6.1. A promising method named DkNN (Deep k-Nearest Neighbors) was suggested by
Papernot and McDaniel [113, 114]. DkNN calculates a credibility score for the incoming
image at inference, which is a float value that ranges between 0 and 1. This credibility
score indicates how closely this image resembles the training images of the model. A
credibility score close to 1 indicates that the image highly resembles the training images.
Therefore, DkNN concludes that the image is an in-distribution sample. A credibility
score close to 0, on the other hand, indicates that the image does not resemble or only
slightly resembles the training images. Therefore, DkNN concludes that the image is
an out-of-distribution sample. To calculate the credibility score of an image, the DkNN
method runs a k-nearest neighbor classification at each model layer in order to predict
the class of the image in activation space (i.e., image feature space) of the layer. DkNN
is based on the assumption that each in-distribution image is always close to other in-
distribution images of the same class in activation space (i.e., image feature space) of
each layer of the model. Therefore, DkNN checks the classes of the k-nearest neighbors of
the image among the training images of the model in activation space (i.e., image feature
space) of each model layer. The class that appears most frequently among the k-nearest
neighbors at a certain layer, is assumed to be the class of the image with respect to that
layer. If the predicted class is the same class at every layer, the assumption of DkNN
is satisfied. The image is always close to other in-distribution samples (the training
images) of the same class in activation space (i.e., image feature space) of each model
layer. As a result, DkNN computes a credibility score close to 1, which indicates that
the image is also an in-distribution sample. If the predicted class differs significantly
across the different model layers, however, the assumption of DkNN is violated. The
image is not always close to other in-distribution samples (the training images) of the
same class in activation space (i.e., image feature space) of each model layer. As a
result, DkNN computes a credibility score close to 0, which indicates that the image is
an out-of-distribution sample. Papernot and McDaniel [113, 114] showed on different
simple datasets that they were able to detect out-of-distribution samples using their
DkNN method.
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However, DkNN has two disadvantages. First, DkNN is slow at inference due to the
use of the k-nearest neighbor classification. A naive k-nearest neighbor classification
requires measuring the distance between the incoming image and every training image
at inference. However, a training dataset typically contains a huge number of train-
ing images. Therefore, the k-nearest neighbor classification requires a huge number of
distance measurements at inference resulting in a slow runtime at inference. In order
to reduce the runtime, it is possible to use an approximate k-nearest neighbor classi-
fication. DkNN uses such an approximate k-nearest neighbor classification based on
locality-sensitive hashing [6]. An approximate k-nearest neighbor classification requires
measuring the distance of the image not to every training image at inference but only to
a subset of the images of the training dataset. However, this subset of training images
usually still contains a relatively high number of images. As a result, an approximate
k-nearest neighbor classification has a lower runtime at inference compared to a naive
k-nearest neighbor classification, but the approximate k-nearest neighbor classification
is still relatively slow. Moreover, DkNN does not need to run the k-nearest neighbor
classification only once but once for each model layer in order to calculate the credibility
of an image. This causes DkNN to be slow at inference. However, we usually want our
model to quickly detect at inference if an incoming image is an out-of-distribution sam-
ple. A driving assistance system, for instance, usually only has a short period of time to
react to dangerous situations. In addition to slow runtime at inference, the high memory
consumption of the k-nearest neighbor classification is a second disadvantage of DkNN.
To be able to measure the distance between the incoming image and the training images,
DkNN needs to store the entire training dataset for inference. However, if our training
dataset is huge, we might not be able to store the entire training dataset on a production
system with only small storage capabilities (e.g., a mobile phone, an embedded system).

To address the disadvantages of DkNN, I proposed a novel method named LACA
(Layer-wise Activation Cluster Analysis) to detect out-of-distribution samples (published
in Lehmann and Ebner [81]). LACA is based on the same assumption as the DkNN
method that each in-distribution image is close to other in-distribution images of the
same class in activation space (i.e., image feature space) of each model layer. However,
LACA is based on clustering rather than a k-nearest neighbor classification. LACA
does not compare an incoming image at inference to the training images but applies
a clustering model to the image and compares the clustering result to a set of pre-
computed in-distribution statistics. The details of LACA are described in Chapter 6.2.
I expected that a clustering-based method such as LACA would have a significantly
lower runtime and memory consumption at inference than a method based on a k-
nearest neighbor classification such as DkNN. However, my first research goal was to
find out whether LACA is able to detect out-of-distribution samples at all. In my initial
work (published in Lehmann and Ebner [81]), I showed on different simple datasets that
LACA is indeed capable of detecting out-of-distribution samples. However, the focus
of my initial work was only to examine whether a method based on clustering works
at all. The goal was not to already present a ready-to-use detection method that is
better than DkNN. Therefore, a sufficient detection performance was not yet achieved.
Furthermore, I only calculated a binary detection score (Chapter 6.2.3), which was not

70



6.1 Related Work on Out-of-Distribution Detection

comparable to DkNN because DkNN calculates a credibility score that is a float value
between 0 and 1. To improve LACA, I proposed in a follow-up work to calculate a
credibility score (Chapter 6.2.4) based on the information provided by LACA (published
in Lehmann and Ebner[82]). This credibility score is a float value that ranges between
0 and 1 as well. This finally allowed me to compare LACA with DkNN. My second
research goal was therefore to examine whether LACA has a significantly lower runtime
and memory consumption than DkNN, while achieving a similar detection performance
as DkNN. In this follow-up work, I showed on different simple datasets that LACA is
indeed faster at inference than DkNN, while achieving a similar detection performance
as DkNN (Chapter 6.3.3). Moreover, LACA only needs to store a clustering model
(Chapter 6.2.1) and a set of pre-computed in-distribution statistics of the training dataset
(Chapter 6.2.2) from each model layer for inference. LACA does not need to store
the entire training dataset for inference as DkNN. Thus, it also has a lower memory
consumption at inference than DkNN. Additionally, LACA has the same advantages
as DkNN. LACA does not require retraining the model, nor does it require obtaining
any out-of-distribution samples in advance. Obtaining out-of-distribution samples in
advance would be difficult as it is not known which kind of out-of-distribution samples
will the model see at inference. However, similar to Papernot and McDaniel [113, 114],
initially, I only tested LACA in comparison to DkNN on simple datasets. Thus, I
later conducted additional experiments in order to also compare LACA to DkNN on
more complex datasets (published in Lehmann and Ebner [84]). Again, I showed that
LACA is significantly faster at inference than DkNN. Moreover, LACA was still able to
detect out-of-distribution samples on these more complex datasets, while DkNN failed
to detect any out-of-distribution samples (Chapter 6.3.5). The following contributions
have been made: (1) It was shown that a clustering-based method is able to detect
out-of-distribution samples, (2) a clustering-based method was proposed to detect out-
of-distribution samples that has a significantly lower runtime and memory consumption
than the DkNN method, while achieving at least a similar detection performance, and
(3) it was shown that the proposed method outperforms the DkNN method on more
complex datasets in terms of both runtime at inference and detection performance.

6.1 Related Work on Out-of-Distribution Detection

A wide variety of methods using different kinds of approaches have been suggested for
detecting out-of-distribution samples with respect to a Convolutional Neural Network-
based (CNN) image classification model. Grosse et. al. [43], for instance, proposed to
detect out-of-distribution samples with an additional model output that signals if an
image is out-of-distribution or not. Gal et. al. [36], on the other hand, suggested using
dropout [134] as an approximate Bayesian inference that provides the model prediction
for an image along with the uncertainty of that prediction. A low uncertainty indicates
that the image is an out-of-distribution sample. Meng and Chen [99] introduced a de-
tection method that is based on modeling the in-distribution samples using a generative
model. In order to check if an image is an out-of-distribution sample, they measure the
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distance of that image to the learned generative representation of the in-distribution
samples. Lee et. al. [78] suggested a novel loss function for model training in order to
calculate improved confidence estimates for the model predictions. A low confidence of a
model prediction for an image indicates that the image is an out-of-distribution sample.
Hendrycks et. al. [50] proposed a detection method based on self-supervised learning.
However, none of these methods uses the activations of the model layers directly to de-
tect out-of-distribution samples, as my method or the DkNN method (Deep k-Nearest
Neighbors) from Papernot and McDaniel [113, 114] does.

Nevertheless, the activations of the model layers also have proven to be beneficial for
detecting out-of-distribution samples in a vast amount of other studies. Chen et. al. [20],
for instance, introduced a method that calculates the confidence of a model prediction
for an image using a meta-model. This meta-model is applied to the layer activations of
the image. A low confidence indicates that the image is an out-of-distribution sample.
Lee et. al. [79], on the other hand, suggested a method that computes the confidence
of a model prediction for an image using a class-conditional Gaussian distribution. This
class-conditional Gaussian distribution is applied to the layer activations of the image
as well. Carrara et. al. [16] proposed a method that detects out-of-distribution sam-
ples by running a k-nearest neighbor scoring on the layer activations. Cohen et. al.
[22], on the other hand, use sample influence scores along with a k-nearest neighbor
classification that they apply to the activations of the model layers in order to detect
out-of-distribution samples. Li and Li [86] suggested a cascade-based out-of-distribution
detector. This cascade-based out-of-distribution detector uses specific statistics obtained
from the activations of the convolutional layers of the model. Caldelli et. al. [14] pro-
posed a method that computes for each class of the classification problem the mean
image in activation space of each model layer. To check if an image is out-of-distribution
or not, they compare the image with the computed mean images in activation space of
the model layers. Ma et. al. [93] calculate local intrinsic dimensionality estimates from
the activations of the model for detecting out-of-distribution samples. Metzen et. al.
[100] attach a subnetwork to a particular model layer. They use this subnetwork as a de-
tector for out-of-distribution samples. Crecchi et. al. [23] attach a detector to multiple
layers of the model. When feeding an image into the model, these detectors calculate
a probability score for each class of the classification problem that indicates whether
the image is an in-distribution sample with respect to that class. Finally, the probabil-
ity scores from each detector are fed into a final multi-layer detector, which decides if
the image is an out-of-distribution sample or not. Sastry and Oore [125] introduced a
method that checks if the intermediate layer activations of an image contain anomalies
with respect to the predicted class for that image. If anomalies can be detected, they
conclude that the image is an out-of-distribution sample. Lin et. al. [89] suggested a
multi-level detection method. They added an out-of-distribution detector after multiple
layers of the model. When they feed an out-of-distribution sample into the model, one
of those detectors will recognize that the sample is out-of-distribution. However, all of
these methods use layer activations of the model in order to detect out-of-distribution
samples, but none of them obtains cluster information from these layer activations in
order to detect the out-of-distribution samples, as my method does.
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Huang et. al. [57] and Sinhamahapatra et. al. [131] also used cluster information for
their suggested detection methods. Huang et. al. [57] claimed that out-of-distribution
samples cluster together in activation space. Therefore, their method checks if an image
is an out-of-distribution sample by measuring the distance of the image to the center
of this cluster. If the distance is below a specified threshold, they concluded that the
image is an out-of-distribution sample. Sinhamahapatra et. al. [131], on the other hand,
adjusted the training of a model to obtain an activation representation at the last model
layer that separates in-distribution samples from out-of-distribution samples by pushing
in-distribution samples together into one cluster and out-of-distribution samples together
into another cluster. Therefore, if an image is far from the in-distribution cluster, they
considered that image to be out-of-distribution. However, both methods use an approach
based on measuring the distance between in-distribution and out-of-distribution samples.
My proposed method, on the other hand, detects whether an image is out-of-distribution
by examining which training images (i.e., in-distribution samples) are in the same cluster
as the image in activation space of each model layer.

However, clusters obtained from the layer activations are not only used for detecting
out-of-distribution samples. Nguyen et. al. [109] identify clusters within the activations
of the last model layer in order to visualize multi-faceted image features that the model
learned during model training. Chen et. al. [19], on the other hand, use cluster infor-
mation within the activations of the last model layer in order to check if an attacker
poisoned the training dataset of the model to be able to trigger a specific behavior of
the model after model training (backdoor attack). Furthermore, I suggest a method
in Chapter 5 for balancing a class-imbalanced training dataset that is based on finding
clusters in the activations of a higher layer (i.e., a layer closer to the output layer).

6.2 Layer-wise Activation Cluster Analysis

A Convolutional Neural Network-based (CNN) model is trained using a training dataset
(XD, Y D) in order to predict the correct class for incoming images at inference among a
fixed set of classes C. The training dataset consists of the training images XD and their
respective labels Y D. I assume that all training images are of the same image size. This is
important for my method LACA. Therefore, if the training images are not all of the same
size, they need to be resized before model training. The value of each label of Y D, on the
other hand, corresponds to a specific class in C. After model training, the model is tested
on a given test dataset (XT , Y T ). The test dataset consists of the test images XT and
their respective labels Y T . Again, the value of each label of Y T corresponds to a specific
class in C. The images from both datasets, the training and the test dataset, have been
drawn from the same data distribution. However, both datasets do not share any images
in order to avoid obtaining an overly optimistic classification performance of the model
on the test dataset. Nevertheless, suppose that the model achieves at least a sufficient
classification performance on the test dataset. As a result, the model is embedded into
a production system (e.g., a mobile app, a web server). In this production system,
the model should predict the correct class cxI of each incoming image xI at inference
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among the set of classes C. However, the classification performance of the model on
those images xI depends on the data distribution from which the images xI have been
drawn. If the images xI have been drawn from the same data distribution as the training
and test images, the model should achieve a similar classification performance on the
images xI as on the test images xT . We refer to this type of images at inference as in-
distribution samples. If the images xI have been drawn from a different data distribution
than the training and test images, however, the model might achieve a significantly lower
classification performance on the images xI than the classification performance of the
model on the test images xT . For most images xI , the model usually fails to predict
the correct class cxI . We refer to this type of images at inference as out-of-distribution
samples. The failing of the model to predict the correct class for an image at inference
can lead to severe human-impacting consequences. This is especially the case when
the model is used in the production system of a safety-critical application, such as a
medical application for diagnosing a specific disease or a driving assistance system of a
vehicle. Therefore, it is important to detect whether an image xI is an in-distribution
sample or an out-of-distribution sample with respect to the model. This detection helps
to prevent any severe consequences. If we are able to detect that an image xI is an
out-of-distribution sample with respect to the model, we can issue an alert and request
human intervention to manually check if the predicted class for that image is correct.

My proposed method LACA detects whether an image xI at inference is an out-of-
distribution sample with respect to a model. To detect whether xI is out-of-distribution,
it examines how closely xI resembles the training images XD of the model. If xI highly
resembles the training images, I assume that xI has probably been drawn from the
same data distribution as the training images. Thus, I conclude that xI must be an
in-distribution sample. If image xI does not resemble or only slightly resembles the
training images, however, I assume that xI has probably been drawn from a different
data distribution than the training images. Thus, I conclude that xI must be an out-of-
distribution sample. To express how closely an image xI resembles the training images,
I proposed two different metrics, a binary similarity score and a credibility score. The
binary similarity score simDet(xI) ∈ {0, 1} is a boolean value reflecting whether image
xI resembles the training images. A similarity score of 1 indicates that xI does resemble
the training images and therefore, I conclude that xI is an in-distribution sample. A
similarity score of 0, on the other hand, indicates that xI does not resemble the training
images and therefore, I conclude that xI is an out-of-distribution sample. The similarity
score simDet is easy to calculate. However, simDet may not always achieve a sufficient
detection performance. Thus, I proposed a second metric, the credibility score. The
credibility score credib(xI) ∈ [0, 1] is a value between 0 and 1 reflecting how closely xI

resembles the training images. A credibility score close to 1 indicates that xI closely
resembles the training images and therefore, I conclude that xI is most likely an in-
distribution sample. A credibility score close to 0, on the other hand, indicates that xI

does not resemble the training images and therefore, I conclude that xI is most likely
an out-of-distribution sample. The credibility score is more complex to calculate than
the binary similarity score. However, the credibility score generally achieves a better
detection performance than the binary similarity score.
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Figure 6.1: The proposed method: (1) Find clusters within the layer activations of the training
images (e.g., MNIST [76]) before inference, (2) obtain several in-distribution statis-
tics from the obtained clusters, and (3) calculate a detection score (e.g., credibility)
for an image at inference reflecting whether the image is an out-of-distribution
sample (OOD) (e.g., KMNIST [21]).

The calculation of these two metrics, simDet and credib, for an image xI at inference
is based on several in-distribution statistics. These in-distribution statistics are obtained
from clusters found in the activations of the layers of the Convolutional Neural Network-
based image classification model. The required in-distribution statistics include the
class-distribution statistics obtained from each layer of the model, the layer weights
computed from those class-distribution statistics, and the cluster-distribution statistics
that are obtained from each model layer as well. These in-distribution statistics only
need to be obtained once. They are typically computed after model training but before
the model is embedded into the production system (i.e., before inference). An overview
of my proposed method is shown in Figure 6.1. Hereinafter, I first describe in more detail
how to identify clusters in the activations of the model (Chapter 6.2.1). To explain how
to identify these clusters, I use some of the classes1 of the ImageNet [25] dataset used
for the Large Scale Visual Recognition Challenge [123] as an example. Then, I describe
how to use the clusters to obtain the in-distribution statistics (Chapter 6.2.2), and how
to calculate the binary similarity score (Chapter 6.2.3) as well as the credibility score
(Chapter 6.2.4) based on these obtained in-distribution statistics.

1 https://www.image-net.org/challenges/LSVRC/2017/browse-synsets.php
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Figure 6.2: My method fetches the activations of the training images from each layer of the
Convolutional Neural Network-based model (CNN) and then searches for clusters
within the fetched activations.

6.2.1 Identifying Clusters in Layer Activations

My proposed method LACA for detecting out-of-distribution samples at inference with
respect to a Convolutional Neural Network-based (CNN) model requires obtaining sev-
eral in-distribution statistics (Chapter 6.2.2). These in-distribution statistics are based
on clusters that need to be identified within the layer activations of the model, as shown
in step (1) in Figure 6.1. To create activations suitable for obtaining the required in-
distribution statistics, a set of in-distribution images is fed into the model. The activa-
tions created at the model layers represent the image features that the layers detected
in those images. As shown by Zeiler and Fergus [148], the lower model layers (i.e., the
layers closer to the input layer) detect low-level image features (e.g., colors, corners, sim-
ple textures), while the higher model layers (i.e., the layers closer to the output layer)
detect high-level image features (e.g., object parts, objects in various poses). As a re-
sult, images with similar low-level image features are close to each other in image feature
space (i.e., activation space) of the lower layers of the model. These images may even
belong to a wide variety of different classes because low-level image features are typi-
cally not class-specific. Different classes usually share the same low-level image features
(for more information, see Chapter 2.3). The ImageNet classes baseball and soccer ball,
for instance, both contain images that share the same low-level image features, such as
color-based or simple texture-based features of the playing field, the sportswear, or the
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faces of the players next to the respective ball. As a result, potential clusters within the
activations of the lower model layers typically contain images (in image feature space)
of a high number of different classes. Furthermore, these clusters are usually not well
separated from each other, as shown in Figure 6.2. Images with similar high-level image
features, on the other hand, are close together in image feature space (i.e., activation
space) of the higher layers of the model. These images typically belong to only a few
different classes because high-level image features tend to be class-specific (for more in-
formation, see Chapter 2.3). The ImageNet classes baseball and soccer ball, for instance,
each contain distinct characteristic high-level image features, such as parts of a baseball
or a soccer ball. As a result, potential clusters within the higher layer activations typi-
cally contain images (in image feature space) of only a few different classes. Clusters in
feature space of the final layer generally even contain only a single class. In contrast to
potential clusters in feature space of the lower layers, potential clusters in feature space
of the higher layers tend to be well separated, as shown in Figure 6.2. This difference
in the image feature representations between the lower and the higher model layers is
caused by the classification objective of the model to find a linearly separable feature
representation of the images at the final model layer that separates these images accord-
ing to their classes C (for more information, see Chapter 2.2). To classify images, the
model attempts to incrementally push images of the same class together and images of
different classes apart from each other in image feature space when passing those images
from the input to the output model layer, as shown in Figure 6.2.

My approach to identifying clusters within the model activations is based on the
work of Nguyen et. al. [109]. However, the method of Nguyen et. al. [109] searches
for clusters in the activations in order to visualize multifaceted image features learned
by a Convolutional Neural Network-based model during model training. In contrast,
I search for clusters within the activations to use the obtained cluster information for
detecting out-of-distribution samples with respect to the model. However, before it is
possible to search for any clusters, the activations need to be obtained from a set of
in-distribution images using the model. I use the images XD of the training dataset
as the in-distribution images. As pointed out above, the training images must be in-
distribution because they were used to train the model. To obtain the activations from
the training images, I first freeze the model as I do not want to change the weights of
the model anymore. Then, the training images are fed into the model again. As a result,
each of the training images gets classified by the model. However, I am not interested
in the classification result but in the activations that are created at each model layer,
when a training image xD is fed into the model. Thus, the activations of each image
xD are fetched from the model layers. In general, I fetch the activations from all model
layers. However, it is also possible to omit some of the lower model layers to decrease the
runtime of my method without significantly reducing its detection performance later, as
my experiment in Chapter 6.3.4 shows. The higher model layers, however, should not
be omitted as they are important to my method. In the following, I use a specific model
layer l as an example in order to explain how to obtain the activations from a layer and
how to identify clusters within the obtained activations. The same procedure must also
be applied to the remaining layers.
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After feeding the training images XD into the model, the activations of these images
are fetched from each model layer l. If layer l is a convolutional layer, the activations of
a training image xD are obtained in the form of a three-dimensional tensor. This three-
dimensional activation tensor needs to be flattened to an activation vector. However,
this step is only necessary if layer l is a convolutional layer. If layer l is a linear layer,
on the other hand, this step can be omitted because the activations from linear layers
are in vector form already. Suppose the training dataset contains N training images xD.
Then, an activations vector al(xD) of a layer-specific length M l is obtained for each of
the N training images xD. To be able to obtain activations vectors that are all of the
same length M l, it is important that the training images XD were all of the same image
size, as pointed out above. Finally, the activation vectors are concatenated into a matrix
AlD of size N ×M l. Each row of this matrix represents a training image xD in feature
space of layer l in the form of its activations.

After obtaining the activations of the training images XD from model layer l, I aim to
search for clusters in these activations. However, matrix AlD, which contains the activa-
tions of the training images XD, is usually high-dimensional because of the large amount
of M l activations that are generally obtained from model layer l. Unfortunately, iden-
tifying clusters in high-dimensional spaces does not work well, as pointed out by Chen
et. al. [19]. Clustering algorithms use distance metrics to identify clusters, but distance
metrics are not effective in high-dimensional spaces. However, as pointed out by Domin-
gos [28], the data samples of most applications are located within a low-dimensional
subspace within this high-dimensional space. Thus, I use dimensionality reduction to
project matrix AlD onto such a low-dimensional subspace, as suggested by Chen et. al.
[19]. However, my method for detecting out-of-distribution samples does not only re-
quire the projected matrix but also a projection model. Therefore, I needed to choose a
projection technique that also provides a projection model in addition to the projected
matrix. Chapter 6.3.2 shows a comparison of different suitable projection approaches
with respect to finding well-separated clusters, which I evaluated with activation data
received from different image datasets. The best projection result was obtained with
a combination of the linear dimensionality reduction technique PCA (Principal Com-
ponent Analysis) [116] and the non-linear dimensionality reduction technique UMAP
(Uniform Manifold Approximation and Projection) [98] (for more information about
PCA and UMAP, see Chapter 3.1). A similar approach was also used by Nguyen et. al.
[109]. Therefore, I project matrix AlD using this approach. However, before projecting
the matrix AlD, each of its values needs to be normalized as a preprocessing step for
the dimensionality reduction (for more details, see Chapter 3.1). After normalizing each
value of the matrix, the projection approach is used to learn a projection model rl from
this matrix. This projection model is actually a pipeline of two models, first the PCA
and then the UMAP model. Finally, the learned projection model is applied to matrix
AlD to project the matrix to a low-dimensional subspace. The projection model rl first
reduces the dimensionality of the matrix from N ×M l down to N × 50 using the PCA
model of rl. Then, in a second reduction step, rl further reduces the dimensionality from
N × 50 down to N × 2 using the UMAP model of rl. As a result, the projected matrix
rl(AlD) and the projection model rl are obtained.
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In this projected matrix rl(AlD), I search for clusters. To determine the best approach
to finding the clusters, I evaluated different clustering algorithms applied to activation
data from different layers of a Convolutional Neural Network-based model. Furthermore,
I also tested each clustering method for different image datasets. This evaluation is pre-
sented in Chapter 6.3.2. I found that the k-Means [95] clustering algorithm is generally
best suited for activation data, which was also suggested by Chen et. al. [19]. Thus, I
chose k-Means to search for clusters in the projected matrix rl(AlD). However, k-Means
requires setting hyperparameter k. Hyperparameter k specifies how many clusters k-
Means should search for in the projected matrix. The number of meaningful clusters
within the activations of the final layer should correspond to the number of classes in the
fixed set of classes C of the classification problem. This follows from the classification
objective of the model to find a linearly separable feature representation of the images
XD at the final model layer that separates these images according to their classes (for
more information, see Chapter 2.2). The other layers, however, may contain a number
of meaningful clusters that is different from the number of classes in C. Unfortunately,
it is not known how many meaningful clusters the activations of these layers contain.
Furthermore, this number is most likely different for each of these layers. The activations
of a higher layer before the final layer, for instance, may contain a number of meaningful
clusters that is higher than the number of classes in C. If the images of a particular
class can be grouped into different subclasses with respect to different semantic con-
cepts, the images of each subclass are typically found in a different cluster in feature
space of such a higher layer. Each cluster contains images of a particular semantic con-
cept characterized by the high-level image features that were detected by this higher
layer (for more information, see Chapter 2.3). The ImageNet class baseball, for instance,
contains images showing only the ball and images showing a baseball player with the
ball. Therefore, two potential subclasses of the class baseball could be baseball ball and
baseball player. The images of the subclass baseball ball are located in a different cluster
in feature space of the higher layer than the images of the subclass baseball player, as
illustrated in Figure 6.3. As a result, the activations of this higher layer may contain
|C| + 1 meaningful clusters. The activations of a lower layer, on the other hand, may
contain a number of meaningful clusters that is smaller than the number of classes in
C. As mentioned earlier, the lower layers detect low-level image features (e.g., color,
corners, simple textures) (for more information, see Chapter 2.3). Therefore, in feature
space of such a lower layer, a cluster containing images of different classes that share
similar low-level features might be found. The ImageNet classes baseball, soccer ball,
and golf ball, for instance, all contain images showing the respective ball and images
showing the respective ball player. Thus, it might be possible to identify one cluster
containing the images showing a ball and another cluster containing the images show-
ing a ball player in feature space of the lower layer. Both clusters contain images with
similar low-level image features, regardless of the classes of those images. As a result,
the activations of these lower layers may contain |C| − 1 meaningful clusters. However,
the number of meaningful clusters within the activations of a layer before the final layer
is dataset-dependent. This number cannot be predicted in advance, and therefore, it is
not known how to set hyperparameter k of the k-Means algorithm for these layers.
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Figure 6.3: The representation of the images of the ImageNet [25] class baseball in image feature
space (i.e., activation space) of a higher model layer. The images that show a
baseball player are located in a different cluster than the images that show the ball.

To find a value for k, the number of meaningful clusters needs to be estimated in the
activation data of the respective layer and hyperparameter k of k-Means needs to be
set according to this estimated number. Since the dimensions of the activations of the
N training images were reduced from M l dimensions in AlD down to 2 dimensions in
rl(AlD) (the rows of the matrices), the resulting compressed two-dimensional activations
for each of the images can be visualized in a scatter plot. In this scatter plot, it might be
possible to visually identify clusters. Thus, hyperparameter k of the k-Means algorithm
could be set according to the number of clusters that were identified in the scatter plot.
However, it cannot be guaranteed that this method works well in every case. It may
not always be easy to identify all clusters visually. Therefore, I use a different approach
to finding a good value for hyperparameter k. I simply test different values for k. We
know that the activations of the final layer should contain as many meaningful clusters
as we have classes. The activations of the remaining layers, on the other hand, may
contain a smaller or a larger number of clusters compared to the number of classes in C.
However, I expect this number to be only slightly different from the number of classes,
which was also shown by my experiment in Chapter 6.3.2. As a result, I consider values
between |C| − 5 and |C| + 5 for hyperparameter k. For each of these values for k, the
k-Means algorithm is applied to matrix rl(AlD). As a result, for each of these values, I
obtain a set of clusters hl ∈ hl1, .., hlk found by k-Means and evaluate each set of received
clusters with respect to their cluster quality. The value for k that results in the clusters
achieving the best overall cluster quality is chosen.
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I use the silhouette score [121] to evaluate the clusters. The silhouette score is a cluster
quality metric, which is calculated using the intra-cluster distance and the nearest-cluster
distance of each data sample of a set of clusters (for more details, see Chapter 3.3). In
our case, a data sample is the compressed activation vector rl(AlD)i,: = rl(al(xD)) of
a training image xD in a row i of matrix rl(AlD). Chen et. al. [19] reported that the
silhouette score is well suited for evaluating clusters identified in activation data from
Convolutional Neural Network-based models. The value of the silhouette score of an
obtained set of clusters ranges from −1 to 1. A silhouette score close to 1 means that
we have well-separated clusters. A silhouette score close to −1, however, means that a
majority of data samples should be located in the nearby cluster rather than in their
current cluster. Thus, a higher silhouette score for a set of clusters reflects a better
cluster quality and is therefore favorable. In general, the silhouette scores of the lower
layers are smaller than the silhouette scores of the higher layers because the potential
clusters in feature space of the lower layers are typically not as well separated as the
potential clusters in feature space of the higher layers, as shown in Figure 6.2. After
computing the silhouette score for the resulting clusters from each of the considered
values for k, I select the set of clusters corresponding to the value for k that achieved
the highest silhouette score.

As a result, the hl1, .., h
l
k clusters are obtained together with the clustering model gl.

The obtained clusters hl1, .., h
l
k are required for calculating the in-distribution statistics

for layer l in Chapter 6.2.2. Finally, the clustering model gl is needed along with the
projection model rl and the obtained in-distribution statistics for checking whether later
at inference an image xI is an out-of-distribution sample (Chapter 6.2.3 and Chapter
6.2.4). After obtaining a set of clusters, a projection model, and a clustering model from
layer l, this process is repeated with the remaining layers to receive clusters, a projection
model, and a clustering model from these layers as well.

6.2.2 Obtaining In-Distribution Statistics

To detect whether an image xI at inference is an out-of-distribution sample with respect
to a Convolutional Neural Network-based (CNN) image classification model, I measure
how closely image xI resembles the training images XD of the model. If image xI

does not resemble the training images, or resembles them only slightly, then xI is most
likely an out-of-distribution sample. To express whether image xI resembles the training
images, I propose two metrics, a binary similarity score simDet(xI) (Chapter 6.2.3) and
a credibility score credib(xI) (Chapter 6.2.4) of image xI . The calculation of these two
metrics is based on several in-distribution statistics that I obtain from each layer l of
the model (except for some of the lower layers that might have been omitted to further
decrease the runtime of my proposed method, as shown in my experiments in Chapter
6.3.4). My approach to obtaining the in-distribution statistics is illustrated in step
(2) in Figure 6.1. The in-distribution statistics of a layer l include the class-distribution
statistic Slcla, the layer weight wl of layer l computed from the class-distribution statistic,
and the cluster-distribution statistic Slclu. However, to calculate the binary similarity
score of an image at inference, only the class-distribution statistic from the model layers
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6 Exploiting Layer Activations to Detect Out-of-Distribution Samples

is needed. To calculate the credibility score of an image at inference, on the other
hand, my method also needs the layer weight and the cluster-distribution statistic in
addition to the class-distribution statistic from the model layers, as the calculation of
the credibility score is more complex. In the following, I use a specific model layer l as
an example in order to explain how to obtain the in-distribution statistics from a layer.
The same procedure must also be applied to the remaining layers.

The class-distribution statistic Slcla of layer l is obtained from the k clusters hl1, ..., h
l
k

that were found within the layer activations of the training images (for more details,
see Chapter 6.2.1). For each identified cluster hl at a layer l, I check the classes of
the training images XD

hl
that are located in that cluster (in feature space of layer l)

through their respective labels Y D
hl

. As a result, the set of classes Chl are obtained that

cluster hl contains. However, it is not only important to find out which classes occur in
a cluster but also what is the percentage phl(chl) of each of those classes chl ∈ Chl in
the cluster. Thus, for each class chl , my method determines the percentage of training
images (XD

hl
, Y D

hl,y==c
hl

) in cluster hl that belong to that class. However, as I assume

that the training dataset contains outliers, classes that rarely occur in the cluster are
not considered. Therefore, I only include those classes in the class-distribution statistic
whose percentage is greater than a given threshold pthresh (e.g., pthresh = 0.05). The
threshold pthresh is a hyperparameter of my method and must therefore be specified
beforehand. As a result, the distribution of the classes Slcla(h

l) in cluster hl is obtained
(Equation 6.1).

Slcla(h
l) =

{(
chl , phl(chl)

) ∣∣∣∣ chl ∈ Chl , phl(chl) > pthresh

}

phl(chl) =
|(XD

hl
, Y D

hl,y==c
hl

)|

|(XD
hl
, Y D

hl
)|

(6.1)

The class distribution Slcla(h
l) is collected from each cluster hl that was identified within

the activations from layer l. The set of all class distributions forms the class-distribution
statistic Slcla of that layer (Equation 6.2).

Slcla =
⋃
hl

Slcla(h
l); hl ∈ {hl1, ..., hlk} (6.2)

Finally, the same procedure is applied to the remaining layers. As a result, a class-
distribution statistic Slcla is obtained from all model layers. This class-distribution
statistic Slcla is used for calculating the binary similarity score simDet(xI) (Chapter
6.2.3) and the credibility score credib(xI) (Chapter 6.2.4) of image xI at inference.
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6.2 Layer-wise Activation Cluster Analysis

However, calculating the credibility score credib(xI) of image xI at inference not only
requires the class-distribution statistic Slcla from each layer l but also the type of the
class distributions Slcla(h

l) of the clusters hl in statistic Slcla. This type typically depends
on the layer l from which the clusters hl are obtained. The class distributions of the
clusters from the lower layers (i.e., the layers closer to the input layer) differ significantly
from the class distributions of the clusters from the higher layers (i.e., the layers closer
to the output layer). The class distributions of the clusters from the same layer, on
the other hand, tend to be similar. To reflect the type of the class distributions of the
clusters hl obtained from a layer l, a score wl ∈ [0, 1] is computed. As clusters from the
same layer tend to have similar class distributions, my method computes only one score
for all clusters from that layer. Therefore, hereinafter, I refer to the score wl as the layer
weight of layer l. As explained in Chapter 6.2.1, the clusters found within the activation
of the lower layers usually contain images (in feature space) of a high number of classes.
Moreover, these classes are usually uniformly distributed within those clusters. This
type of class distribution is reflected in a low layer weight. The clusters found within
the activation of the higher layers, on the other hand, usually contain images (in feature
space) of a low number of classes. Moreover, the distribution of these classes within
those clusters is usually highly imbalanced. The class distributions of the clusters from
the final model layer typically even contain a majority class with a frequency of at least
90%. This type of class distribution is reflected in a high layer weight. After obtaining
the layer weight wl from each model layer l, I use them to calculate the credibility score
credib(xI) of image xI at inference (for more details, see Chapter 6.2.4).

In order to calculate the layer weight wl of a layer l, I use a simple approach. From
each cluster hl in Slcla, I select the class with the highest frequency p′hl and the class with
the second-highest frequency p′′hl . Then, I take the difference between their frequencies.
As the result, I obtain the score whl for the cluster hl (Equation 6.3).

whl = |p′hl − p′′hl | (6.3)

To obtain the layer weight wlU for the layer l, I take the average over the scores whl of
all clusters hl. As a result, I receive the layer weight wlU for each layer l. These layer
weights wlU are non-normalized, i.e., they do not sum up to 1. However, the calculation
of the credibility score (Chapter 6.2.4) requires normalized layer weights. Therefore, the
non-normalized layer weights wlU are normalized in order to obtain the normalized layer
weights wl (Equation 6.4).

wl =
wlU∑
l w

l
U

(6.4)

The obtained normalized layer weights wl ∈ [0, 1] are each in the range between 0 and
1, and the sum of all layer weights wl is equal to 1:

∑
l w

l = 1. These layer weights wl

are used for calculating the credibility score credib(xI) of image xI at inference.
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6 Exploiting Layer Activations to Detect Out-of-Distribution Samples

In addition to the layer weight wl and the class-distribution statistic Slcla, my proposed
method also needs a cluster-distribution statistic Slclu from each model layer l in order
to calculate the credibility score credib(xI) of image xI at inference. However, for
calibration purposes, the cluster-distribution statistic is not obtained from the training
dataset but from a held-out calibration dataset (XCa, Y Ca). The calibration dataset
consists of the calibration images XCa and their respective labels Y Ca. The value of each
label of Y Ca corresponds to a specific class in the fixed set of classes C of the classification
problem. Furthermore, the calibration dataset is also an in-distribution dataset, but it
does not share any images with either the training dataset or the test dataset of the
model. Papernot and McDaniel [113, 114] use a similar calibration approach in order to
compute a credibility score based on their DkNN method (Deep k-Nearest Neighbors).

To be able to obtain the cluster-distribution statistic Slclu from a particular model
layer l, the clusters are needed that were obtained within the activations AlD of the
training images from that layer (for more details, see Chapter 6.2.1). The clusters from
layer l are needed because it is necessary to find out into which of these clusters each
calibration image xCa falls (in feature space of the layer). To be able to find the cluster
hl
xCa into which an image xCa falls, it is necessary to first obtain the activation vector

al(xCa) of the image from layer l. The activation vector al(xCa) is obtained in the same
way as the activation vectors al(xD) of the training images XD. First, image xCa is fed
into the model. The image must be of the same image size as the training images XD.
If it is not, xCa must be resized to the size of the training images XD before feeding
xCa into the model. Then, the activation vector of image xCa is fetched from layer l
(for more details, see Chapter 6.2.1). After receiving the activation vector, the cluster
hl
xCa into which this activation vector falls must be identified. To identify the cluster,

I use the projection model rl and the clustering model gl that was obtained from the
activations AlD of the training images XD from layer l (as described in Chapter 6.2.1).
First, the projection model rl is applied to the activation vector al(xCa) in order to
obtain the compressed activation vector rl(al(xCa)). Then, the clustering model gl is
applied to the compressed activation vector in order to obtain the cluster hl

xCa into which
the compressed activation vector falls. As the activation vector reflects the image xCa

in feature space of the layer, I assume for simplicity reasons hereinafter that image xCa

falls into that cluster hl
xCa (although in reality it is the activation vector of the image).

After receiving the cluster hl
xCa for each image xCa, I check for each class c in which

clusters hl of layer l the class occurs with respect to the calibration images (in feature
space of the layer). However, it is not only necessary to find out in which clusters a
particular class c occurs but also what percentage pc(h

l) of all images of class c oc-
curs in each cluster hl. Thus, for each cluster hl, the percentage of calibration images
(XCa

hl
, Y Ca

hl,y==c
) of class c that are located in that cluster is determined (in feature space

of the layer). As a result, the cluster distribution Slclu(c) of class c over the clusters hl

is obtained (Equation 6.5).
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Slclu(c) =

{(
hl, pc(h

l)

) ∣∣∣∣ hl ∈ {hl1, ..., hlk}}

pc(h
l) =

|(XCa
hl
, Y Ca

hl,y==c
)|

|(XCa, Y Ca
y==c)|

(6.5)

The cluster distribution Slclu(c) of each class c is collected from layer l. The set of all
cluster distributions forms the cluster-distribution statistic Slclu of l (Equation 6.6).

Slclu =
⋃
c

Slclu(c); c ∈ C (6.6)

Finally, the same procedure is applied to the remaining layers. As a result, a cluster-
distribution statistic Slclu is obtained from all model layers. These cluster-distribution
statistics Slclu are used for calculating the credibility score credib(xI) of image xI at
inference.

6.2.3 Naive Out-of-Distribution Detection

To detect whether an image xI at inference is an out-of-distribution sample with respect
to a Convolutional Neural Network-based (CNN) image classification model, it needs
to be checked if the image does or does not resemble the training images XD of the
model. If xI does resemble the training images, I conclude that xI is an in-distribution
sample. If xI does not resemble the training images, however, I conclude that xI is an
out-of-distribution sample. To check whether xI does or does not resemble the training
images of the model, I calculate a binary similarity score simDet(xI) ∈ {0, 1} of image
xI . A similarity score of 1 indicates that xI does resemble the training images and is
therefore an in-distribution sample. A similarity score of 0, on the other hand, indicates
that xI does not resemble the training images and is therefore an out-of-distribution
sample. To calculate the similarity score of image xI , xI and the training images XD

first need to be fed into the model (the training images were actually fed into the model
already, as described in Chapter 6.2.1). Image xI must be of the same image size as the
training images. If it is not, xI must be resized to the image size of the training images
before feeding xI into the model. Then, at each model layer l, it is examined which of the
training images are close to xI in feature space of the layer. If the training images that are
close to image xI belong to the same class as xI in feature space of each layer, I assume
that xI resembles the training images and is therefore an in-distribution sample. If the
training images that are close to image xI belong to a class that is different from the class
of xI in feature space of at least one layer, however, I assume that xI does not resemble
the training images and is therefore an out-of-distribution sample. Unfortunately, the
class cxI of image xI is not known at inference because its class label yI (yI = cxI ) is not
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available. The class label yI should be predicted by the model. Therefore, it is checked
instead whether image xI is always close to training images of the same class ccom in
feature space of each model layer l. If image xI is always close to training images of the
same class ccom in feature space of each model layer, I conclude that xI is most likely
also of class ccom (i.e., cxI = ccom). As a result, I further conclude that xI does resemble
the training images and is therefore an in-distribution sample. This conclusion is based
on my assumption: Each in-distribution sample is always close to other in-distribution
samples of the same class in activation space (i.e., image feature space) of each model
layer. In this case, the training images are the in-distribution samples. If the class of the
training images that are close to xI differs across the different model layers l, however,
then my assumption is violated. As a result, I conclude that image xI does not resemble
the training images and is therefore an out-of-distribution sample.

My approach to calculating the similarity score simDet(xI) of image xI requires the
class-distribution statistic Slcla from each model layer l, which was obtained beforehand
(for more details, see Chapter 6.2.2). The class-distribution statistic is needed in order
to find out which of the training images are close to image xI in feature space of each
model layer l. In particular, the classes of these training images are required by my
proposed method. I assume that a training image xD is close to image xI in feature
space of a layer l, if both images are located in the same cluster among the clusters hl

that were identified beforehand within the activations of the training images from that
layer (for more details, see Chapter 6.2.1). As a result, it is necessary to examine the
classes of the training images that are located in the same cluster as image xI . First
of all, however, the cluster into which image xI falls needs to be identified. To identify
the cluster into which image xI falls, it is first necessary to obtain the activation vector
al(xI) of image xI from layer l. The activation vector al(xI) is obtained in the same
way as the activation vectors al(xD) of the training images XD. First, the image xI is
fed into the model and then, the activation vector of image xI is fetched from layer l
(for more details, see Chapter 6.2.1). After receiving the activation vector al(xI), the
cluster hl

xI
into which this activation vector falls must be identified. To identify the

cluster, I use the projection model rl and the clustering model gl that were obtained
from the activations AlD of the training images XD from layer l (as described in Chapter
6.2.1). First, the projection model rl is applied to the activation vector al(xI) in order
to obtain the compressed activation vector rl(al(xI)). Then, the clustering model gl is
applied to the compressed activation vector in order to obtain the cluster hl

xI
into which

the compressed activation vector falls. As the activation vector reflects the image xI

in feature space of the layer, I assume for simplicity reasons hereinafter that image xI

falls into that cluster hl
xI

(although in reality it is the activation vector of the image).

After determining the cluster hl
xI

into which image xI falls, it is examined which of the
training images also occur in that cluster. However, it is not necessary to identify the
exact training images but the classes of these training images. To obtain the classes
of those training images, the class-distribution statistic Slcla can be used. Through
Slcla(h

l
xI

), it is possible to obtain the set of classes csetl
xI

from the training images that

are located in cluster hl
xI

. I assume that csetl
xI

contains the potential classes of image
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xI . If image xI is an in-distribution sample, then one of the classes in csetl
xI

must be the

class cxI of xI . However, csetl
xI

typically differs across the different model layers l. As
shown in Chapter 6.2.1, the clusters of the lower model layers (i.e., the layers closer to
the input layer) usually contain a high number of classes. Therefore, the class set csetl

xI

from a lower layer contains a high number of classes as well. The clusters of the higher
layers (i.e., the layers closer to the output layer), on the other hand, usually contain
a low number of classes. Therefore, the class set csetl

xI
from a higher layer contains a

low number of classes as well. Nevertheless, if image xI is an in-distribution sample,
then there must be at least one common class ccom across the different model layers
l. I assume that one of these common classes ccom is the class cxI of image xI . This
follows from my assumption that each in-distribution sample is always close to other
in-distribution samples of the same class in activation space (i.e., image feature space)
of each model layer. Therefore, I take the intersection of the class sets csetl

xI
that were

obtained from each model layer l in order to receive the set csetxI of common classes
ccom ∈ csetxI (Equation 6.7).

csetxI =
⋂
l

csetlxI (6.7)

If the resulting class set csetxI is non-empty, I conclude that image xI resembles the train-
ing images and is therefore an in-distribution sample. As a result, I set simDet(xI) = 1.
If the resulting class set csetxI is empty, however, then my assumption is violated. Image
xI is not always close to in-distribution samples (i.e., training data samples) in feature
space of each model layer. As a result, I conclude that image xI does not resemble
the training images and is therefore an out-of-distribution sample. As a result, I set
simDet(xI) = 0 (Equation 6.8).

simDet(xI) =

{
0 , if cset(xI) = ∅
1 , otherwise

(6.8)

6.2.4 Sample Credibility-based Out-of-Distribution Detection

To detect whether an image xI at inference is an out-of-distribution sample with respect
to a Convolutional Neural Network-based (CNN) image classification model, it needs
to be checked if image xI does or does not resemble the training images XD of the
model. If image xI does resemble the training images, I conclude that xI is an in-
distribution sample. If image xI does not resemble the training images, however, I
conclude that xI is an out-of-distribution sample. To check whether image xI does or
does not resemble the training images of the model, I have already proposed a binary
similarity score simDet(xI) of image xI in Chapter 6.2.3. The binary similarity score
is easy to calculate. However, the similarity score may not always achieve a sufficient
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Figure 6.4: The calculation of the credibility score of an image with respect to a model trained
on the MNIST [76] dataset to detect whether the image is (a) an out-of-distribution
(OOD) sample (e.g., a KMNIST [21] image) or (b) an in-distribution sample.

detection performance. Thus, I propose a second detection metric, the credibility score
credib(xI) ∈ [0, 1] of image xI . The credibility score is a float value between 0 and 1
reflecting how closely image xI resembles the training images. A credibility score close to
1 indicates that image xI closely resembles the training images and therefore, I conclude
that xI is most likely an in-distribution sample. A credibility score close to 0, on the
other hand, indicates that image xI does not resemble the training images and therefore,
I conclude that xI is most likely an out-of-distribution sample. The credibility score is
more complex to calculate than the binary similarity score. However, the credibility
score generally achieves a better detection performance than the similarity score. An
overview of the calculation of the credibility score is illustrated in Figure 6.4.

The calculation of the credibility score credib(xI) of image xI is based on the same
approach as the calculation of the binary similarity score simDet(xI) of image xI (for
more details, see Chapter 6.2.3). First, image xI and the training images XD need to
be fed into the model (the training images were actually fed into the model already, as
described in Chapter 6.2.1). Image xI must be of the same image size as the training
images. If it is not, xI must be resized to the image size of the training images before
feeding xI into the model. Then, at each model layer l, it is examined which of the
training images are close to xI in feature space of the layer. If the training images that
are close to xI belong to the same class as xI in feature space of each layer, I conclude
that xI resembles the training images and is therefore an in-distribution sample. If the
training images that are close to xI belong to a class that is different from the class of
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xI in feature space of at least one model layer, I conclude that xI does not resemble the
training images and is therefore an out-of-distribution sample. Unfortunately, the class
cxI of image xI is not known at inference because its class label yI (yI = cxI ) is not
available. The class label yI should be predicted by the model. Therefore, it is checked
instead whether image xI is always close to training images of the same class ccom in
feature space of each model layer l. If image xI is always close to training images of the
same class ccom in feature space of each model layer, I conclude that xI is most likely
also of class ccom (i.e., cxI = ccom). As a result, I further conclude that xI does resemble
the training images and is therefore an in-distribution sample. This conclusion is based
on my assumption: Each in-distribution sample is always close to other in-distribution
samples of the same class in activation space (i.e., image feature space) of each model
layer. In this case, the training images are the in-distribution samples. If the class of the
training images that are close to xI differs across the different model layers l, however,
then my assumption is violated. As a result, I conclude that image xI does not resemble
the training images and is therefore an out-of-distribution sample.

To find out which of the training images are close to image xI in feature space of a
model layer l, the cluster information is used that was obtained within the activations of
the training images from that layer (for more details, see Chapter 6.2.1). I assume that
a training image xD is close to image xI in feature space of layer l, if both images are
located in the same cluster among the identified clusters hl of this layer. As a result, it
is necessary to examine the classes of the training images that are located in the same
cluster as xI at layer l. The set of these classes csetl

xI
of layer l is obtained in the same

way as for calculating the binary similarity score simDet(xI) using the class-distribution
statistic Slcla of layer l (for more details, see Chapter 6.2.3). First of all, the cluster into
which xI falls needs to be identified. To identify the cluster into which xI falls, it is first
necessary to obtain the activation vector al(xI) of xI from layer l. The activation vector
al(xI) is obtained in the same way as the activation vectors al(xD) of the training images
XD. First, xI is fed into the model and then, the activation vector of xI is fetched from
layer l (for more details, see Chapter 6.2.1). After receiving the activation vector al(xI),
the cluster hl

xI
into which this activation vector falls must be identified. To identify the

cluster, I use the projection model rl and the clustering model gl that were obtained
from the activations AlD of the training images XD from layer l (as described in Chapter
6.2.1). First, the projection model rl is applied to the activation vector al(xI) in order
to obtain the compressed activation vector rl(al(xI)). Then, the clustering model gl is
applied to the compressed activation vector in order to obtain the cluster hl

xI
into which

the compressed activation vector falls. As the activation vector reflects the image xI in
feature space of the layer, I assume for simplicity reasons hereinafter that xI falls into
that cluster hl

xI
(although in reality it is the activation vector of xI). After determining

the cluster hl
xI

into which xI falls, it is examined which of the training images also occur
in that cluster. However, it is not necessary to identify the exact training images but
the classes of these training images. To obtain the classes of those training images, the
class-distribution statistic Slcla can be used. Through Slcla(h

l
xI

), it is possible to obtain

the set of classes csetl
xI

from the training images that are located in cluster hl
xI

.
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I assume that csetl
xI

contains the potential classes of image xI . If image xI is an
in-distribution sample, then there must be at least one class ccom that is present in
all class sets csetl

xI
across the different model layers l. I assume that one of these

common classes ccom is the class cxI of image xI . This follows from my assumption
that each in-distribution sample is always close to other in-distribution samples of the
same class in activation space (i.e., image feature space) of each model layer. In order
to obtain the set csetxI of common classes ccom ∈ csetxI , I use the same approach as
for calculating the binary similarity score simDet(xI). I simply take the intersection of
the class sets csetl

xI
that were obtained from each model layer l (for more details, see

Chapter 6.2.3). However, if the resulting class set csetxI is empty, then my assumption
regarding in-distribution samples is violated. In this case, image xI is not always close to
in-distribution samples (i.e., training images) of the same class in feature space of each
model layer. As a result, I conclude that image xI does not resemble the training images
XD and is therefore an out-of-distribution sample. As a result, I set credib(xI) = 0. If
the resulting class set csetxI is non-empty, on the other hand, I conclude that image xI

more or less resembles the training images. Thus, xI might be an in-distribution sample.
However, it still cannot be ensured that image xI is really an in-distribution sample.

This is especially the case if the classes ccom of csetxI occur in the cluster hl
xI

of at
least some model layers with a probability phl

xI
(ccom) (ccom ∈ csetxI ) that is greater

than the threshold pthresh but that is still relatively low (for more information about
the threshold pthresh, see Chapter 6.2.2). Furthermore, each of these classes may also
occur in another cluster with a significantly higher probability. This would suggest that
the training images of the classes ccom in cluster hl

xI
might be outliers. As a result,

image xI might be an outlier as well or an out-of-distribution sample. However, it is
also possible that the training images of class ccom are not outliers but simply have a
low probability of occurring in cluster hl

xI
because k-Means was unable to find good

clusters within the activations of the training images (for more information, see Chapter
3.2 and Chapter 6.2.1). Therefore, to find out if image xI is really an in-distribution
sample, a credibility score credib(xI , ccom) of image xI is calculated for each class ccom
of csetxI . This credibility score expresses how closely image xI resembles the training
images, assuming that xI is of class ccom (i.e., cxI = ccom). I expect that the class in
csetxI that achieves the highest credibility score is the true class cxI of image xI . The
highest credibility score is used as the final credibility credib(xI) of image xI .

In order to calculate the credibility score credib(xI , ccom), I use the probability
pccom(hl

xI
) that in-distribution samples of class ccom occur in cluster hl

xI
at each model

layer l. The probability reflects how likely it is that an in-distribution sample of class
ccom occurs in cluster hl

xI
at a layer l. A high probability indicates that in-distribution

samples of class ccom normally occur in this cluster. Therefore, I conclude that image
xI closely resembles the training images (i.e., the in-distribution samples) in feature
space of this layer, assuming that xI is of class ccom because a high number of train-
ing images of the same class occur in this cluster as well. In this case, the credibility
credib(xI , ccom) should be also high. A low probability, on the other hand, indicates that
in-distribution samples of class ccom do not normally occur in this cluster. Therefore, I
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conclude that image xI does not resemble the training images (i.e., the in-distribution
samples) in feature space of this layer, assuming that xI is of class ccom because only a
low number of training samples of the same class occur in this cluster as well. Image
xI might be an outlier or an out-of-distribution sample. In this case, the credibility
credib(xI , ccom) should be low as well. As a result, the probability pccom(hl

xI
) is used

as the credibility credibl(xI , ccom) of image xI at layer l. The probability could also
be obtained from the class-distribution statistic Slcla from layer l, which was obtained
from the cluster information of the training dataset (for more details, see Chapter 6.2.2).
However, for calibration purposes, the probability is not obtained from the cluster in-
formation of the training dataset but from the cluster information of the calibration
dataset. The probability is received from the cluster-distribution static Slclu from layer
l (pccom(hl

xI
) = Slclu(ccom)(hl

xI
)), which was obtained from the calibration dataset (for

more details, see Chapter 6.2.2).
However, the probability pccom(hl

xI
) should not be 0. A probability of 0 means that

class ccom does not occur in cluster hl
xI

with respect to the calibration dataset. Image

data samples from the training dataset occur in cluster hl
xI

but no image data samples
from the calibration dataset. As a result, image xI more or less resembles the training
images XD, but xI does not resemble the calibration images XCa. Therefore, I assume
that the training images of a class ccom in cluster hl

xI
might be outliers. I conclude

that image xI is either an outlier as well or an out-of-distribution sample. Hence, my
assumption is violated because image xI is not close to calibration images XCa (i.e.,
in-distribution samples) of the same class. As a result, I set credib(xI) = 0.

If the probability pccom(hl
xI

) is not 0, however, the probability is used as the credibility

score credibl(xI , ccom) of image xI at layer l, assuming that xI is of class ccom. However,
the credibility score only reflects the credibility of xI with respect to layer l. To obtain
the total credibility score credib(xI , ccom), the credibility scores credibl(xI , ccom) are
simply averaged over all model layers l. However, I do not use a standard average
but a weighted average over all credibility values. This weighted average is necessary
due to the characteristics of the class distributions in the clusters across the different
layers, as pointed out in Chapter 6.2.1. The clusters found within the activations of
the lower layers (i.e., the layers closer to the input layer) usually contain a high number
of classes that tend to be uniformly distributed. The clusters within the activations
of the higher layers (i.e., the layers closer to the output layer), on the other hand,
usually contain a low number of classes that have a highly imbalanced class distribution.
Therefore, the classes in the clusters of the lower layers normally have a significantly
lower probability pccom(hl

xI
) than the classes in the clusters of the higher layers. As a

result, if a standard average was used, then a low overall credibility score credib(xI , ccom)
would always be obtained. Therefore, when the credibility scores credibl(xI , ccom) of all
layers l are averaged, more weight is put on the credibility scores of the higher layers
than on the credibility scores of the lower layers. This makes sense because a class with
a low probability in a cluster of a lower layer might be normal, while a low probability
in a cluster of a higher layer is suspicious. The layer weights wl are used as the weights
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1 de f ca l cCred ib ( x i ) :
2 # get p o t e n t i a l c l a s s e s o f x i
3 c l a s s S e t = [ ]
4 f o r l in range (1 , numLayers ) :
5 a = ge tAc t i va t i on s ( x i , l )
6 h = ge tC lu s t e r ( r ( l ) , g ( l ) , a )
7 c l a s s S e t l = ge tC l a s s e s ( s d ( l , h ) )
8 i f l == 1 :
9 c l a s s S e t = c l a s s S e t l

10 e l s e :
11 c l a s s S e t = i n t e r s e c t ( c l a s sS e t , c l a s s S e t l )
12
13 # check i f c l a s s s e t i s empty
14 i f c l a s s S e t i s empty :
15 re turn 0 # x i i s out−of−d i s t r i b u t i o n !
16
17 # get c r e d i b i l i t y s co r e
18 c r e d i bL i s t = [ ]
19 f o r c in c l a s s S e t :
20 f o r l in range (1 , numLayers ) :
21 a = ge tAc t i va t i on s ( x i , l )
22 h = ge tC lu s t e r ( r ( l ) , g ( l ) , a )
23 prob = getProb ( s t ( l , c ) ( h ) )
24 i f prob == 0 :
25 return 0 # x i i s out−of−d i s t r i b u t i o n !
26 c r e d i bL i s t . append ( prob * w( l ) )
27
28 return max( c r e d i bL i s t )

Figure 6.5: Python code for calculating the credibility score of an image.

for the weighted average. As a result, the credibility score credib(xI , ccom) of image xI

is received for each class ccom (Equation 6.9).

credib(xI , ccom) =
∑
l

wl · credibl(xI , ccom)

credibl(xI , ccom) = pccom(hlxI ) = Slclu(ccom)(hlxI )

(6.9)

The highest of the obtained credibility scores credib(xI , ccom) is the final credibility score
credib(xI) of image xI (Equation 6.10).

credib(xI) = max
ccom

credib(xI , ccom) (6.10)

The algorithm for calculating the credibility score credib(xI) of image xI in Python is
shown in Figure 6.5.
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6.3 Experiments

To detect out-of-distribution samples with respect to a Convolutional Neural Network-
based (CNN) image classification model, I proposed my method, LACA (Layer-wise
Activation Cluster Analysis). I describe the details of LACA in Chapter 6.2. As pointed
out in Chapter 6.2.1, identifying well-separated clusters within the layer activations of the
model is crucial to my method. Therefore, I compared different clustering approaches on
layer activations. However, I did not only compare these clustering approaches applied to
the layer activations from one dataset but several datasets. The results of this comparison
are presented in Chapter 6.3.2. After identifying the best clustering approach, I evaluated
LACA with respect to various datasets in different experiments. The general setup of
these experiments is described in Chapter 6.3.1. In a first experiment, I tested LACA on
several simple datasets in order to find out if LACA is able to detect out-of-distribution
samples at all. Furthermore, I also compared LACA to the DkNN method (Deep k-
Nearest Neighbors) [113, 114] with respect to detection performance and runtime. The
results are presented in Chapter 6.3.3. To further decrease the runtime of LACA, I
tested in a second experiment whether the obtained cluster information from some of
the lower model layers (i.e., the layers closer to the input layer) can be omitted without
significantly decreasing the detection performance of LACA. The results are presented
in Chapter 6.3.4. Finally, I evaluated LACA in a third experiment on more complex
datasets in comparison to the DkNN method with respect to detection performance and
runtime. The results are presented in Chapter 6.3.5.

6.3.1 Experimental Setup

To test my proposed method LACA (Layer-wise Activation Cluster Analysis), I con-
ducted several experiments using different datasets. For each experiment, I used the
same experimental setup. In order to describe this setup, I use the MNIST [76] dataset
as an example below. I first trained a Convolutional Neural Network-based (CNN) image
classification model. To train the model, I used the official MNIST training dataset as
the training dataset (XD, Y D) for the model. After model training, I tested the model
on a test dataset. However, I did not use the whole official MNIST test dataset to test
the model. Instead, I split the official MNIST test dataset into a test dataset (XT , Y T )
and a calibration dataset (XCa, Y Ca). The calibration dataset is required by LACA (for
more details, see Chapter 6.2.2). For each experiment, I used a set of 750 calibration
images XCa, which I randomly selected once from the official MNIST test dataset and
then used for all of my tests. The remaining images of the official MNIST test dataset
were used as the test images XT . I tested the model on these test images XT in order to
ensure that the model achieves a sufficient classification performance. Then, I created
the in-distribution statistics using the training images XD and the calibration images
XCa, as described in Chapter 6.2.2. After obtaining the model and the in-distribution
statistics, I evaluated the detection performance and runtime of LACA with respect to
the obtained model.
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In order to evaluate LACA, I used different test datasets dstest. Each of these
test datasets dstest contained images of a specific type that potentially occur at in-
ference. I distinguished between three different types of these test datasets dstest: An
in-distribution dataset, a natural out-of-distribution dataset, and different adversarial
out-of-distribution datasets. As pointed out in Chapter 6.2, I assumed that the test
images XT had been drawn from the same data distribution as the training images
XD of the model, i.e., the test images XT are in-distribution samples. As a result,
I used the test dataset (XT , Y T ) as the in-distribution dataset for evaluating LACA.
To obtain the out-of-distribution datasets, however, I could not use any images from
the official MNIST training dataset or the official MNIST test dataset because these
are in-distribution samples. Therefore, I used the test dataset (XT ′

, Y T ′
) of a different

dataset such as the KMNIST dataset [21] as the natural out-of-distribution dataset.
The classification performance of the model on this natural out-of-distribution dataset
should be low because the KMNIST images are significantly different from the MNIST
images, which the model saw during model training. To obtain the adversarial out-of-
distribution datasets, on the other hand, I applied different adversarial attacks to the
test images XT . The resulting adversarial out-of-distribution samples (XT

adv, Y
T ) from

a certain attack were then used as an adversarial out-of-distribution dataset in order
to test LACA. Again, the classification performance of the model on each adversarial
out-of-distribution dataset should be low as this is the goal of the respective adversarial
attack. Furthermore, I evaluated three different values for the hyperparameter pthresh
of LACA (for more information about hyperparameter pthresh, see Chapter 6.2.2): 0.01,
0.05, and 0.1. After applying LACA to a test dataset dstest, I received a credibility score
crediblaca for each image of dstest. Alternatively, I could have also calculated the binary
similarity score simDet using LACA. However, in my experiments, I focused on the
credibility score due to its better detection performance and the possibility to compare
it to the credibility score credibdknn of the DkNN method (Deep k-Nearest Neighbors)
[113, 114]. To obtain a credibility score for the whole test dataset dstest, I simply took
the mean credibility score over the obtained credibility scores from all images of dstest.
As a result, I received the mean credibility score for the in-distribution dataset as well
as for each out-of-distribution dataset. The mean binary similarity score simDet would
need to be computed in the same way.

However, it is possible that LACA achieves a sufficient detection performance only on
either the in-distribution dataset or an out-of-distribution dataset but not on both at
the same time. For instance, LACA may achieve a high mean credibility score on the
in-distribution dataset and also a high mean credibility score on the out-of-distribution
dataset. A high mean credibility score on the in-distribution dataset is desired because
a high mean credibility score also suggests that the dataset is an in-distribution dataset.
A high mean credibility score on the out-of-distribution dataset, on the other hand, is
not desired because a high mean credibility score still suggests that the dataset is an
in-distribution dataset. However, this time the dataset is out-of-distribution and not
in-distribution. Therefore, if LACA achieves a high mean credibility score on the in-
distribution dataset and a high mean credibility score on the out-of-distribution dataset
as well, both datasets cannot be distinguished by their credibility scores. We have a simi-
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lar situation when LACA obtains a low mean credibility score on the out-of-distribution
dataset and also a low mean credibility score on the in-distribution dataset. In both
cases, it cannot be detected which of the datasets is the in-distribution dataset and
which is the out-of-distribution dataset. To be able to detect whether a dataset is in-
distribution or out-of-distribution, I aimed to achieve a difference between the mean
credibility score on the in-distribution dataset and the mean credibility score on the
out-of-distribution dataset that is as high as possible. This difference value is crucial
to properly evaluate LACA. Therefore, I additionally calculated the difference value
between the mean credibility score of the in-distribution dataset and the mean credi-
bility score of each out-of-distribution dataset in order to better evaluate the detection
performance of LACA.

Furthermore, I aimed to compare LACA to the DkNN method. Therefore, I evaluated
the DkNN method on each test dataset dstest as well. Similar to LACA, the DkNN
method also requires a calibration dataset. I used the same calibration dataset of 750
images that I already used for LACA. As pointed out above, I obtained this calibration
dataset from the official MNIST testing set. Papernot and McDaniel [113, 114] used the
same approach to obtaining 750 calibration images for their experiments. Finally, the
DkNN method also calculates a credibility score credibdknn for an image. This credibility
score has the same properties as the credibility score obtained by LACA. Both credibility
scores are float values ranging between 0 and 1. A value close to 0 indicates that the
image is an out-of-distribution sample, while a value close to 1 indicates that the image
is an in-distribution sample. As a result, it is possible to compare LACA with the
DkNN method by their obtained credibility scores. The binary similarity score simDet
computed by my method, on the other hand, cannot be used for this comparison as it
only provides a simple binary value. This binary value cannot easily be compared to
the credibility score calculated by the DkNN method, which is a float value between 0
and 1. After applying the DkNN method to a test dataset dstest, I received a credibility
score from DkNN for each image data sample of dstest. To obtain the credibility score
for the whole test dataset dstest, I used the same approach that I already used to obtain
the credibility score for a whole test dataset dstest using LACA. I simply took the
mean over the DkNN credibility scores from all images of dstest in order to obtain the
DkNN credibility score for the whole test dataset dstest. As a result, I received the
mean DkNN credibility score for the in-distribution dataset as well as the mean DkNN
credibility score for each out-of-distribution dataset. Furthermore, to better evaluate
the detection performance of the DkNN method, I also calculated the difference between
the mean DkNN credibility score of the in-distribution dataset and the mean DkNN
credibility score of each out-of-distribution dataset as I did for evaluating LACA. Finally,
to compare the detection performance of LACA and the DkNN method, I compared the
difference values of the credibility scores obtained by DkNN to the difference values of
the credibility scores obtained by LACA. However, I did not only compare LACA to the
DkNN method with respect to their detection performances but also their runtimes at
inference. I expected LACA to be significantly faster than the DkNN method.
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6.3.2 Comparing Alternative Clustering Approaches

Identifying well-separated clusters within the layer activations of a Convolutional Neural
Network-based (CNN) image classification model is crucial to LACA, as pointed out in
Chapter 6.2.1. Therefore, I compared different clustering approaches on layer activations.
I used the following three datasets for this comparison: The MNIST [76] dataset, the
SVHN [106] dataset, and the CIFAR-10 [70] dataset. The MNIST dataset contains
grayscale images of size 28 × 28 × 1 that are organized into 10 classes. Each MNIST
class represents a different bright handwritten digit in the center of the image on black
background (digits: 0-9). The SVHN dataset contains images showing digits that are
organized into 10 classes as well (digits: 0-9). However, these images are color images
of size 32 × 32 × 3. Furthermore, the SVHN images do not show handwritten digits
but digits from house numbers as they were extracted from photos taken from Google
Streetview2. The CIFAR-10 images, on the other hand, are color images of size 32×32×3
as well, but they do not show a simple object such as a digit. Instead, the images of the
CIFAR-10 dataset show a natural image object belonging to one of 10 classes (e.g., horse,
deer, ship) in front of a natural image background (e.g., meadow, forest, sea). However,
before I could search for clusters within the layer activations from each of these three
datasets, I needed to obtain these activations. To obtain the activations, I first had to
train a model for each dataset.

In order to train the MNIST model, I chose a simple Convolutional Neural Network-
based model architecture that consisted of 3 consecutive convolutional layers (Conv)
followed by the fully-connected linear output layer (FC). The ReLU function (Rectified
Linear Unit) [39] was used as the activation function for the pre-activation outputs of
the layers. The complete model architecture of the MNIST model is as follows: Conv1
(number of filters: 128, kernel size: 6, stride: 2) - Conv2 (number of filters: 128, kernel
size: 6, stride: 2) - Conv3 (number of filters: 128, kernel size: 5, stride: 1) - FC (layer
size: 10). I initialized the weights of each model layer using the Kaiming Uniform3

initialization method [45]. Then, I trained the model for 6 training epochs using the
Adam4 optimizer [65] and a learning rate of 0.001. I used the whole official MNIST
training dataset for model training (60,000 data samples). After model training, I tested
the resulting MNIST model on the test dataset (9,250 data samples), which consisted of
the images of the official MNIST test dataset (10,000 data samples) except for the 750
images that I used for the calibration dataset. The obtained MNIST model achieved an
accuracy of 99.05% on the test dataset.

In order to train the SVHN model, on the other hand, I used the same Convolutional
Neural Network-based model architecture that I already used for the MNIST model.
Furthermore, I also initialized the weights of each model layer using the Kaiming Uniform
initialization method. However, as SVHN is more complex than MNIST, I chose a
slightly different training setup in order to train the SVHN model. I also used the Adam
optimizer, but I needed to train the model for 18 training epochs to obtain a sufficient

2 https://www.google.com/streetview
3 https://pytorch.org/docs/stable/nn.init#torch.nn.init.kaiming_uniform_
4 https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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classification performance of the model. Furthermore, I did not use a fixed learning rate
value for model training. Instead, I trained the SVHN model with a multi-step5 learning
rate schedule. I set the initial learning rate to 0.001. Then, after epoch 10, 14 and 16,
I decreased the learning rate value by a factor γ of 0.1. I used the whole official SVHN
training dataset for model training (73,257 data samples). After model training, I tested
the resulting SVHN model on the test dataset (25,282 data samples), which consisted
of the images of the official SVHN test dataset (26,032 data samples) except for the 750
images that I used for the calibration dataset. The obtained SVHN model achieved an
accuracy of 89.94% on the test dataset.

Finally, in order to train the CIFAR-10 model, I chose the 20-layer ResNet (Residual
Network) model architecture [46] from Zhang et. al. [150]. I initialized the weights of
each model layer using the Fixup initialization method [150] instead of Kaiming Uni-
form, which allowed me to have a faster model training. However, as CIFAR-10 is more
complex than MNIST and SVHN, I needed to adjust my training setup again. To obtain
a model achieving a sufficient classification performance for CIFAR-10, I used a training
setup based on the training setup6 used by Zhang et. al. [150]. I trained the model
for 200 training epochs using the SGD7 optimizer (Stochastic Gradient Descent) [122].
Furthermore, I used a learning rate schedule instead of a fixed learning rate value again.
The best classification performance of the model was obtained by a cosine-annealing8

learning rate schedule [91] with an initial learning rate value of 0.1. I used the whole of-
ficial CIFAR-10 training dataset for model training (50,000 data samples). Additionally,
I also used variations of the training data samples that I obtained through different data
augmentation techniques [128]. These techniques included randomly flipping training
images horizontally, randomly cropping training images and applying the Mixup aug-
mentation technique [149] to the training images. After model training, I tested the
resulting CIFAR-10 model on the test dataset (9,250 data samples), which consisted of
the images of the official CIFAR-10 test dataset (10,000 data samples) except for the 750
images that I used for the calibration dataset. The obtained CIFAR-10 model achieved
an accuracy of 92.42% on the test dataset.

After obtaining the model for the respective dataset, I fed the training images into the
model again in order to create the activations of these images at the model layers. Then,
I fetched the activations from each model layer that I chose to use for detecting out-
of-distribution samples. Within the activations of the selected model layers, I aimed to
search for the clusters. From the MNIST and SVHN model, I fetched the activations from
all model layers, i.e., the activations from the convolutional layers and the activations
from the fully-connected linear output layer. From the CIFAR-10 model, however, I did
not fetch the activations from all model layers as the CIFAR-10 model had a high number
of layers. A high number of layers may lead to a long computation time when searching
for clusters within the activations from all of these model layers. Therefore, I chose a
subset of the layers from the CIFAR-10 model. Nevertheless, this subset contained both,

5 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR
6 https://github.com/hongyi-zhang/Fixup
7 https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
8 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR
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lower model layers (i.e., the layers closer to the input layer) and higher model layers (i.e.,
the layers closer to the output layer). I used the activations of the first convolutional
layer, the third, sixth and ninth ResNet block, the global average pooling layer [88], and
the output layer.

After obtaining the activations from a layer, I searched for clusters within these acti-
vations using my approach described in Chapter 6.2.1. My approach to finding clusters
within the layer activations includes three steps: (1) Transforming the activations of each
convolutional layer from cube form to vector form (for linear layers this step is omitted),
(2) projecting the resulting activation vectors from a high-dimensional space to a two-
dimensional space, and (3) searching for clusters within this resulting two-dimensional
space. The baseline configuration confb of my clustering approach (described in Chapter
6.2.1) simply flattens the three-dimensional activation tensor obtained from each con-
volutional layer in order to receive the activations in vector form. This approach9 was
also used by Papernot and McDaniel [113, 114]. The resulting activation vectors are
then projected to a two-dimensional space using my approach that combines the linear
projection technique PCA (Principal Component Analysis) [116] and the non-linear pro-
jection technique UMAP (Uniform Manifold Approximation and Projection) [98]. To
project the activations, I first use PCA to project the activations to 50 dimensions and
then, I use UMAP to further project the activations to 2 dimension. Finally, I search
for clusters within the projected activations using k-Means [95]. Therefore, my baseline
configuration confb is as follows: Flatten − PCA+UMAP − k-Means.

To test alternatives of my baseline configuration confb (Chapter 6.2.1), I simply ad-
justed that baseline configuration. For instance, exchanging the clustering method of
my baseline configuration confb would result in one alternative, while exchanging the
projection method (but not the clustering method at the same time) would result in
another alternative. Hereinafter, I simply refer to an alternative of my baseline con-
figuration confb as confa. To obtain a configuration confa, I can adjust the baseline
configuration confb either by changing the method that transforms an activation tensor
into an activation vector, by changing the projection method or by changing the cluster-
ing method. For transforming an activation tensor into an activation vector, I examined
one alternative method. This alternative method uses the pooling operation [110] that is
applied to each channel of the three-dimensional activation tensor of each convolutional
layer using a (2× 2) kernel (for more information about pooling, see Chapter 2.1). As a
result, the pooling operation downsamples the activation tensor with respect to its width
and height by a factor of 2. After pooling, I flatten the resulting downsampled activation
tensor in order to receive the activation vector. This activation vector is smaller com-
pared to the activation vector obtained by my baseline configuration confb due to the
pooling operation. I aimed to examine whether this slightly lower-dimensional activation
vector is a better representation of the data due to the potential translational invariance
capabilities of the pooling operation. By using pooling combined with flattening as an al-
ternative method to transform the activation tensor into an activation vector, I obtained

9 https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/cleverhans/

model_zoo/deep_k_nearest_neighbors

98

https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/cleverhans/model_zoo/deep_k_nearest_neighbors
https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/cleverhans/model_zoo/deep_k_nearest_neighbors


6.3 Experiments

the following alternative configuration confa of my clustering approach: Pool+Flatten
− PCA+UMAP − k-Means. For projecting the activations, on the other hand, I ex-
amined two different alternative projection methods. The first alternative projection
method consisted also of a combination of PCA and a non-linear dimensionality re-
duction technique. Instead of UMAP, however, I used the t-SNE projection technique
(t-Distributed Stochastic Neighbor Embedding) [138]. The t-SNE method was also used
by Nguyen et. al. [109]. In contrast to Nguyen et. al. [109], however, I could not use
the standard t-SNE method [139] as it does not provide a projection model. However,
I needed a projection model because I needed to apply it to the images at inference
(for more details, see Chapter 6.2.3 or Chapter 6.2.4). Therefore, I used a parametric
version [138] of the t-SNE method instead, which does provide a projection model. By
using t-SNE as an alternative projection method, I obtained the following alternative
configuration confa of my clustering approach: Flatten − PCA+t-SNE − k-Means. In
addition to t-SNE, I also examined using only PCA as my second alternative projec-
tion method. By using only PCA as an alternative projection method, I obtained the
following alternative configuration confa of my clustering approach: Flatten − PCA −
k-Means. Finally, for searching the clusters, I examined the DBScan clustering algo-
rithm [33] as an alternative clustering method. In contrast to k-Means, DBScan does
not require setting the number of clusters to search for as a hyperparameter beforehand.
By using DBScan as an alternative clustering method, I obtained the following alterna-
tive configuration confa of my clustering approach: Flatten − UMAP+PCA − DBScan.
Additionally, I also examined other alternative clustering methods such as OPTICS [8]
or Agglomerative Clustering [1], but they did not work at all on the activation data used
in my experiments.

After obtaining the alternative configurations confa of my clustering approach, I tested
each of those configurations to find out whether it achieves a better clustering result
than my baseline configuration confb. To test an alternative configuration confa, I
first searched for clusters within the activations of each model layer using confa. After
receiving the clusters, I computed the silhouette score [121] of the identified clusters of
each model layer in order to obtain an evaluation of the tested alternative configuration
confa. The silhouette score is a cluster quality metric, whose value ranges between −1
and 1 (for more details, see Chapter 3.3). A silhouette score of 1 represents a perfect
clustering result, while a silhouette score of −1 represents the worst possible clustering
result. According to Chen et. al. [19], the silhouette score works best for evaluating
clusters in activation data. Therefore, I already used the silhouette score to find a good
value for hyperparameter k of the k-Means algorithm (for more details, see Chapter
6.2.1). After computing the silhouette scores, I obtained one silhouette score from the
clusters of each model layer. As a result, I received multiple silhouette scores for the
tested alternative configuration confa (one for the clustering result of each model layer).
However, comparing different alternative configurations is difficult when using multiple
scores. Instead, I needed a total score for each alternative configuration confa. To obtain
a total silhouette score, I simply took the median of the silhouette scores over all model
layers. The results of my comparison are shown in Table 6.1. It turned out that my
baseline configuration confb obtained the best clustering approach.
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Table 6.1: Comparison of different configurations of my approach to finding clusters within the
layer activations with respect to the MNIST [76] dataset, the SVHN dataset [106],
and the CIFAR-10 [70] dataset. The obtained results are given as median of the
silhouette scores obtained from each selected model layer (a higher score is better).

Configurations MNIST SVHN CIFAR-10

Vector Transform Flatten 0.733 0.590 0.677
Pool+Flatten 0.721 0.561 0.657

Dimension. Reduct. PCA+UMAP 0.733 0.590 0.677
PCA+t-SNE 0.432 0.369 0.382
PCA 0.423 0.349 0.378

Clustering k-Means 0.733 0.590 0.677
DBScan 0.699 0.535 0.319

6.3.3 Testing on Simple Datasets

In my first experiment, I aimed to find out whether my proposed method LACA (Layer-
wise Activation Cluster Analysis) is able to detect out-of-distribution samples at all.
Furthermore, I also aimed to compare LACA to the DkNN method (Deep k-Nearest
Neighbors) [113, 114] with respect to detection performance and runtime. The setup
of my experiment is described in Chapter 6.3.1. For my experiment, I used the three
datasets that I already used for the comparison of different clustering approaches in
Chapter 6.3.2: The MNIST [76], SVHN [106], and CIFAR-10 [70] dataset. Further
information about these datasets can be found in Chapter 6.3.2.

In order to obtain the clusters required by LACA, I first needed to train a Convolu-
tional Neural Network-based (CNN) image classification model using the training images
of the respective dataset (e.g., MNIST). To train such a model for each dataset, I used
the same training setup that I already used for the comparison of the different clustering
approaches in Chapter 6.3.2. Thus, further information about the training setup for
each model can be found there. After model training, I fed the training dataset into
the resulting model again in order to create the activations at the model layers. Then,
I fetched the activations from each model layer that I aimed to use for detecting out-of-
distribution samples. In my experiment, I used the activations of the same model layers
that I already used to compare the different clustering approaches (Chapter 6.3.2). For
MNIST and SVHN, I selected all model layers. For CIFAR-10, on the other hand, I
only selected a subset of the model layers in order to decrease the computation time for
identifying the clusters. Nevertheless, this selected subset contains both, lower model
layers (i.e., the layers closer to the input layer) and higher model layers (i.e., the layers
closer to the output layer). Further information about the chosen layers can be found
in Chapter 6.3.2. Finally, I searched for clusters within the activations from each model
layer. To search for clusters, I used the approach described in Chapter 6.2.1, which
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turned out to generally obtain the best clustering result, according to my comparison
in Chapter 6.3.2 (configuration confb). I observed that my approach typically finds ap-
proximately as many clusters as there are classes within the activations of the higher
model layers, while it usually finds a lower number of clusters than there are classes
within the activations of the lower model layers. For instance, from the SVHN model
(10 classes), I obtained 7 clusters at the first layer and 5 clusters at the second layer,
while I obtained 12 clusters from the third layer and 10 clusters from the fourth layer.
I made a similar observation for CIFAR-10 (10 classes). Only for MNIST (10 classes),
I found approximately 10 clusters at every layer, which corresponds to the number of
MNIST classes. Furthermore, the clusters of the first layer of the MNIST model seemed
to be well-separated already, according to the obtained silhouette score. This might
indicate that MNIST is relatively easy to classify. Finally, after identifying the clus-
ters, I obtained different in-distribution statistics from these clusters. I needed these
in-distribution statistics together with the obtained clustering models in order to detect
out-of-distribution samples (for more details, see Chapter 6.2.2).

Table 6.2: Parameters of the adversarial attacks FGSM, BIM and PGD that I used for creating
the adversarial out-of-distribution datasets with respect to the MNIST [76] dataset,
the SVHN [106] dataset, and the CIFAR-10 [70] dataset. I applied each attack to
the test dataset of each respective dataset.

Attack Method MNIST SVHN CIFAR-10

FGSM ε = 0.25 ε = 0.05 ε = 0.1
BIM ε = 0.25, α = 0.01 ε = 0.05, α = 0.005 ε = 0.1, α = 0.05
PGD ε = 0.20, α = 2/255 ε = 0.04, α = 2/255 ε = 0.3, α = 2/255

After obtaining the required clustering models and in-distribution statistics from each
model layer, I applied LACA to the images of different test datasets dstest in order to
test LACA. Each of these test datasets dstest contains images of a specific type that
potentially occur at inference. I distinguished between three different types of these test
datasets dstest: An in-distribution dataset, a natural out-of-distribution dataset, and
different adversarial out-of-distribution datasets. As in-distribution dataset, I used the
respective test dataset XT of each dataset: The MNIST test dataset (9,250 data samples)
for the MNIST model, the SVHN test dataset (25,282 data samples) for the SVHN
model, and the CIFAR-10 test dataset (9,250 data samples) for the CIFAR-10 model.
As the natural out-of-distribution dataset, on the other hand, I used the test dataset
XT ′

of a different dataset (no data samples were removed for a calibration dataset): The
KMNIST test dataset (10,000 data samples) for the MNIST model, the CIFAR-10 test
dataset (10,000 data samples) for the SVHN model, and the SVHN test dataset (26,032
data samples) for the CIFAR-10 model. Furthermore, to obtain the adversarial out-of-
distribution datasets XT

adv for the MNIST model, the SVHN model and the CIFAR-10
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model, I applied the following adversarial attacks on the respective test datasets XT

of these models (MNIST: 9,250 data samples, SVHN: 25,282 data samples, CIFAR-10:
9,250 data samples): FGSM (Fast Gradient Sign Method) [41], BIM (Basic Iterative
Method) [73], and PGD (Projected Gradient Descent) [96]. The hyperparameters for
each attack method are shown in Table 6.2. All attacks were applied to each test image
xT using the Python library torchattacks [64]. The classification performances of the
models on each test dataset dstest are shown in Table 6.3.

Table 6.3: Classification accuracies of the MNIST [76] model, the SVHN [106] model and the
CIFAR-10 [70] model regarding the respective in-distribution dataset (InDist), nat-
ural out-of-distribution dataset (NaOOD) (MNIST: KMNIST [21], SVHN: CIFAR-
10, CIFAR-10: SVHN), and adversarial out-of-distribution datasets (FGSM, BIM,
PGD). A higher accuracy is better.

Model InDist NaOOD FGSM BIM PGD

MNIST 0.9905 0.0759 0.0805 0.0004 0.0246
SVHN 0.8994 0.0924 0.0272 0.0079 0.0242
CIFAR-10 0.9242 0.0935 0.1321 0.0084 0.0093

I applied LACA to each test dataset dstest using different values for hyperparameter
pthres (values: 0.01, 0.05 and 0.1). As a result, I obtained a credibility score crediblaca
(Chapter 6.2.4) for each image of the respective test dataset dstest. To obtain the
total credibility score for the whole test dataset dstest, I computed the average over
the obtained credibility scores of all images of dstest. Furthermore, I computed the
difference between the total credibility score of the respective in-distribution dataset and
the total credibility score of each out-of-distribution dataset to better evaluate the results
of LACA (for more information, see Chapter 6.3.1). A high difference value indicates
that LACA is able to confidently distinguish between the in-distribution samples and the
respective out-of-distribution samples, while a low difference value indicates that LACA
is not able to distinguish between the in-distribution samples and the respective out-of-
distribution samples. The resulting difference values are shown in Table 6.5, while the
total credibility scores of each test dataset dstest are shown in Table 6.4. Additionally,
I also measured the runtimes of LACA on each test dataset dstest, which are shown
in Table 6.6. Alternatively, LACA also allows to compute a binary similarity scores
simDet (Chapter 6.2.3) for an image. However, as already pointed out in Chapter 6.3.1,
I focused in my experiments on evaluating LACA using the credibility score instead of the
binary similarity score because the credibility score generally achieves a higher detection
performance than the similarity score. Furthermore, the credibility score calculated by
LACA is comparable to the credibility score calculated by DkNN, while the similarity
score is not comparable to the DkNN credibility score.
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Table 6.4: Mean credibility scores obtained by LACA and DkNN for the MNIST [76], SVHN
[106] and CIFAR-10 [70] model regarding the respective in-distribution dataset (In-
Dist), natural out-of-distribution dataset (NaOOD) (MNIST: KMNIST [21], SVHN:
CIFAR-10, CIFAR-10: SVHN), and adversarial out-of-distribution datasets (FGSM,
BIM, PGD). For an in-distribution dataset, a higher score is better, while for an
out-of-distribution dataset, a lower score is better.

Dataset Method InDist NaOOD FGSM BIM PGD

MNIST DkNN 0.799 0.081 0.136 0.085 0.087
LACA (t = 0.01) 0.888 0.164 0.237 0.209 0.153
LACA (t = 0.05) 0.881 0.125 0.178 0.166 0.123
LACA (t = 0.1) 0.880 0.124 0.173 0.166 0.121

SVHN DkNN 0.501 0.146 0.236 0.309 0.296
LACA (t = 0.01) 0.702 0.445 0.574 0.651 0.635
LACA (t = 0.05) 0.634 0.233 0.390 0.500 0.474
LACA (t = 0.1) 0.452 0.146 0.226 0.289 0.274

CIFAR-10 DkNN 0.522 0.229 0.168 0.179 0.221
LACA (t = 0.01) 0.848 0.565 0.297 0.521 0.571
LACA (t = 0.05) 0.751 0.453 0.176 0.445 0.461
LACA (t = 0.1) 0.358 0.149 0.042 0.025 0.031

Table 6.5: Difference values between the mean credibility scores of the respective in-distribution
dataset (InDist) and each out-of-distribution dataset obtained by LACA and DkNN
with respect to the MNIST [76], SVHN [106] and CIFAR-10 [70] model. I tested
a natural out-of-distribution dataset (NaOOD) (MNIST: KMNIST [21], SVHN:
CIFAR-10, CIFAR-10: SVHN) and three adversarial out-of-distribution datasets
(FGSM, BIM, PGD) for each model. A higher difference value is better.

Dataset Method NaOOD FGSM BIM PGD

MNIST DkNN 0.718 0.663 0.714 0.712
LACA (t = 0.01) 0.724 0.651 0.679 0.735
LACA (t = 0.05) 0.757 0.703 0.716 0.758
LACA (t = 0.1) 0.756 0.706 0.713 0.759

SVHN DkNN 0.355 0.265 0.192 0.205
LACA (t = 0.01) 0.257 0.128 0.051 0.067
LACA (t = 0.05) 0.401 0.245 0.134 0.161
LACA (t = 0.1) 0.307 0.227 0.163 0.178

CIFAR-10 DkNN 0.293 0.354 0.343 0.301
LACA (t = 0.01) 0.282 0.550 0.327 0.276
LACA (t = 0.05) 0.298 0.575 0.307 0.290
LACA (t = 0.1) 0.209 0.315 0.333 0.326
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Table 6.6: Runtimes (in seconds) of the credibility score calculation of LACA and DkNN
for the MNIST [76], SVHN [106] and CIFAR-10 [70] model regarding the respec-
tive in-distribution dataset (InDist), natural out-of-distribution dataset (NaOOD)
(MNIST: KMNIST [21], SVHN: CIFAR-10, CIFAR-10: SVHN), and adversarial out-
of-distribution datasets (FGSM, BIM, PGD). A lower runtime value is better.

Dataset Method InDist NaOOD FGSM BIM PGD

MNIST DkNN 314.7 267.2 308.0 303.0 321.6
LACA (t = 0.01) 16.5 17.9 18.7 21.4 20.6
LACA (t = 0.05) 16.2 17.2 17.7 17.8 17.5
LACA (t = 0.1) 16.0 17.5 20.0 18.6 18.5

SVHN DkNN 1171.7 340.9 1109.3 1168.7 1197.5
LACA (t = 0.01) 57.1 28.3 60.2 53.5 46.2
LACA (t = 0.05) 38.6 21.3 43.4 42.8 50.1
LACA (t = 0.1) 42.7 23.5 59.7 61.6 53.0

CIFAR-10 DkNN 684.1 1620.7 710.6 700.2 684.5
LACA (t = 0.01) 47.4 137.7 52.7 53.3 55.0
LACA (t = 0.05) 42.3 136.0 49.5 49.8 51.1
LACA (t = 0.1) 44.4 142.7 55.6 55.5 51.4

To be able to compare LACA to the DkNN method, I also applied DkNN to each test
dataset dstest. As a result, I obtained a credibility score credibdknn for each image of the
respective test dataset dstest. To obtain the total DkNN credibility score for the whole
test dataset dstest, I computed the average over the obtained DkNN credibility scores
of all images of dstest. Furthermore, I computed the difference between the total DkNN
credibility score of the respective in-distribution dataset and the total DkNN credibility
score of each out-of-distribution dataset again. The resulting difference values are shown
in Table 6.5, while the total DkNN credibility scores of each test dataset dstest are shown
in Table 6.4. As shown in Table 6.5, LACA slightly outperforms the DkNN method.
Additionally, I also measured the runtimes of the DkNN method on each test dataset
dstest, which are shown in Table 6.6. As shown in Table 6.6, LACA is significantly faster
than the DkNN method on all test datasets dstest.

6.3.4 Omitting Lower Network Layers

In my experiment in Chapter 6.3.3, I used lower model layers (i.e., the layers closer
to the input layer) as well as higher model layers (i.e., the layers closer to the output
layer) in order to compute the credibility scores using LACA. To compute the credibility
score crediblaca(x

I) of an image xI at inference using LACA, I need to find at each
model layer l the cluster hl

xI
into which this image falls in feature space of the layer (for

more information, see Chapter 6.2.4). The cluster hl
xI

at a certain model layer l can be

identified by first applying the projection model pl followed by applying the clustering
model gl to the feature representation al(xI) of image xI at model layer l. Both models,
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rl and gl, have been obtained from the activations of the training dataset at model layer
l (for more information, see Chapter 6.2.1). However, applying the projection model to
a lower layer usually requires a significantly higher runtime than applying the projection
model to a higher layer. This is caused by the different number of activations that are
obtained from a lower model layer compared to a higher model layer. The lower model
layers typically contain a significantly higher number of activations than the higher model
layers. From layer to layer, the amount of activations keeps decreasing. Therefore, the
feature representations of the lower model layers are significantly higher-dimensional
than the feature representations of the higher model layers. As a result, the projection
model of a lower model layer needs to project the activations from a significantly higher
number of dimensions down to 2 dimensions than the projection model of a higher layer.
Therefore, projecting activations of a lower layer requires significantly more time than
projecting activations of a higher layer.

As a result, I conducted another experiment to examine whether some of the lower
model layers can be omitted for computing the credibility score crediblaca in order to
further decrease the total runtime of LACA at inference without significantly reducing
its detection performance. To conduct this experiment, I used the same setup as in my
experiment in Chapter 6.3.3 except for the list of selected layers. For MNIST and SVHN,
I omitted the first layer from the list of selected layers, which is the first convolutional
layer of the model. For CIFAR-10, on the other hand, I omitted the first two layers
from the list of selected layers, which are the first convolutional layer and the third
ResNet (Residual Neural Network) block of the model. After reducing the list of selected
model layers, I computed all credibility scores of LACA and DkNN (Deep k-Nearest
Neighbors) [113, 114] again, using this reduced list of selected model layers. The total
credibility scores of LACA and DkNN are shown in Table 6.7. To be able to better
evaluate LACA and DkNN, I also computed the difference value of the total credibility
score of the respective in-distribution dataset and the total credibility score of each
corresponding out-of-distribution dataset for LACA and DkNN again. The resulting
difference values are shown in Table 6.8. Additionally, I also measured the runtimes
of LACA and DkNN, which are shown in Table 6.9. The column named Layers of all
three tables specifies whether I removed no layer, the first layer or the first two layers
from the layers that I used in my experiment in Chapter 6.3.3. As shown in Table
6.8, removing the first layer of the MNIST and SVHN model significantly reduced the
detection performance. Removing the first or the first two layers of the CIFAR-10 model,
however, slightly increased the detection performance at least on the adversarial out-of-
distribution datasets. At the same time, omitting these lower model layers significantly
decreased the runtimes, as shown in Table 6.9. I also examined to remove some of
the higher model layers only. Removing only higher model layers is not expected to
significantly decrease the runtime of LACA at inference because the higher model layers
do not contain a high number of activations. However, I aimed to test whether these
higher model layers are crucial for the out-of-distribution detection. It turned out that
removing higher model layers significantly decreased the detection performance of LACA
and also the detection performance of DkNN.
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Table 6.7: Mean credibility scores regarding a varying number of layers. Column Layers spec-
ifies the number of previously chosen layers to be omitted, starting from the lower
layers. For an in-distribution dataset (InDist), a higher score is better, while for the
out-of-distribution datasets (NaOOD, FGSM, BIM, PGD), a lower score is better.

Dataset Method Layers InDist NaOOD FGSM BIM PGD

MNIST DkNN 0 0.799 0.081 0.136 0.085 0.087
1 0.876 0.124 0.201 0.171 0.132

LACA 0 0.881 0.125 0.178 0.166 0.123
1 0.963 0.396 0.449 0.425 0.288

SVHN DkNN 0 0.501 0.146 0.236 0.309 0.296
1 0.535 0.155 0.245 0.349 0.325

LACA 0 0.634 0.233 0.390 0.500 0.474
1 0.705 0.280 0.462 0.607 0.568

CIFAR-10 DkNN 0 0.522 0.229 0.168 0.179 0.221
1 0.519 0.176 0.173 0.171 0.200
2 0.518 0.134 0.160 0.174 0.203

LACA 0 0.751 0.453 0.176 0.445 0.461
1 0.839 0.480 0.205 0.481 0.498
2 0.842 0.481 0.206 0.486 0.502

Table 6.8: Difference values between each in-distribution dataset (InDist) and its respective out-
of-distribution datasets (NaOOD, FGSM, BIM, PGD) regarding a varying number
of layers. Column Layers specifies the number of previously chosen layers to be
omitted, starting from the lower layers. A higher difference value is better.

Dataset Method Layers NaOOD FGSM BIM PGD

MNIST DkNN 0 0.718 0.663 0.714 0.712
1 0.752 0.675 0.705 0.744

LACA 0 0.757 0.703 0.716 0.758
1 0.567 0.514 0.538 0.675

SVHN DkNN 0 0.355 0.265 0.192 0.205
1 0.381 0.291 0.187 0.211

LACA 0 0.401 0.245 0.134 0.161
1 0.425 0.243 0.098 0.136

CIFAR-10 DkNN 0 0.293 0.354 0.343 0.301
1 0.343 0.346 0.348 0.319
2 0.384 0.358 0.345 0.315

LACA 0 0.298 0.575 0.307 0.290
1 0.359 0.634 0.358 0.341
2 0.361 0.636 0.356 0.340
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Table 6.9: Runtimes (in seconds) of the credibility score calculation with respect to the MNIST
[76], SVHN [106] and CIFAR-10 [70] model regarding a varying number of layers.
Column Layers specifies the number of previously chosen layers to be omitted, start-
ing from the lower layers. I tested for each model an in-distribution dataset, a natu-
ral out-of-distribution dataset (NaOOD) (MNIST: KMNIST [21], SVHN: CIFAR-10,
CIFAR-10: SVHN) and three adversarial out-of-distribution datasets (FGSM, BIM,
PGD). A lower runtime value is better.

Dataset Method Layers InDist NaOOD FGSM BIM PGD

MNIST DkNN 0 314.7 267.2 308.0 303.0 321.6
1 90.1 63.0 78.3 75.8 82.0

LACA 0 16.2 17.2 17.7 17.8 17.5
1 12.0 12.3 12.5 12.9 13.3

SVHN DkNN 0 1171.7 340.9 1109.3 1168.7 1197.5
1 348.7 116.2 319.7 344.2 334.8

LACA 0 38.6 21.3 43.4 42.8 50.1
1 26.8 16.6 28.0 28.1 28.5

CIFAR-10 DkNN 0 684.1 1620.7 710.6 700.2 684.5
1 398.9 1107.4 465.5 439.8 445.9
2 172.5 447.3 182.1 182.2 182.3

LACA 0 42.3 136.0 49.5 49.8 51.1
1 39.0 100.2 44.8 43.6 44.6

6.3.5 Testing on Complex Datasets

In my experiment in Chapter 6.3.3, I tested LACA in comparison to DkNN (Deep k-
Nearest Neighbors) [113, 114] only on three simple datasets (MNIST [76], SVHN [106],
CIFAR-10 [70]). Furthermore, Papernot and McDaniel [113, 114] also only used simple
datasets in their experiments in order to test DkNN (MNIST, SVHN, GTSRB [52]).
Therefore, I aimed to test LACA in comparison to DkNN on more complex datasets
in a third experiment. The general setup of my experiment is described in Chapter
6.3.1. For my experiment, I used the following two complex datasets: The Imagenette10

and the Imagewoof11 dataset. Both datasets contain color images of 10 classes, which
are taken from the ImageNet [25] dataset (1000 classes). The images of both datasets,
Imagenette and Imagewoof, show a natural image object of one of the 10 classes in front
of a natural image background. However, the classes of Imagenette are different from
the classes of Imagewoof. The 10 classes of Imagenette represent 10 different objects
such as cassette player, parachute, or golf ball. The 10 classes of Imagewoof, on the other
hand, represent 10 different dog breeds. Therefore, Imagewoof is more difficult to classify
than Imagenette because different dog breeds are significantly harder to distinguish than
general objects that are visually very different from each other, such as a parachute and

10 https://github.com/fastai/imagenette#imagenette-1
11 https://github.com/fastai/imagenette#imagewoof
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a golf ball. Furthermore, in contrast to the images of the simple datasets used in my
experiment in Chapter 6.3.3, the images of the Imagenette dataset and the Imagewoof
dataset are not of a unique image size. However, LACA and DkNN require all images of
a dataset to be of the same size (for more details, see Chapter 6.2). Therefore, I needed
to resize all images to a fixed image size before running any tests. I chose an image size
of 128 × 128 × 3. For each of those resized images, I aimed to compute the credibility
score crediblaca using LACA and the credibility score credibdknn using DkNN. However,
before computing any credibility scores for these two datasets, I first needed to train a
model for each dataset.

In order to train the Imagenette model and the Imagewoof model, I used a similar
training setup for both datasets. I chose a standard 18-layer ResNet (Residual Net-
work) model architecture [46]. Then, I initialized the weights of each model layer using
the Kaiming Uniform12 initialization method [45]. Finally, I trained each model using
the Adam optimizer [65] and a one-cycle learning rate schedule [132] with a maximum
learning rate of 0.006. However, as Imagewoof is more complex than Imagenette, I had
to train the Imagewoof model for more training epochs than the Imagenette model. In
order to obtain a sufficient classification performance of each model, I trained the Ima-
genette model for 40 training epochs and the Imagewoof model for 60 training epochs.
I used the whole official training dataset for the respective model training (Imagenette:
9,469 data samples, Imagewoof: 9,025 data samples). Additionally, I also used variations
of the training images that I obtained through different data augmentation techniques.
These techniques included randomly flipping training images horizontally and randomly
cropping training images. After model training, I tested the resulting model on the re-
spective test dataset (Imagenette: 3,175 data samples, Imagewoof: 3,179 data samples),
which consisted of the images of the official test dataset of the respective dataset (Ima-
genette: 3,925 data samples, Imagewoof: 3,929 data samples) except for the 750 images
that I used for the calibration dataset. The obtained Imagenette model achieved an
accuracy of 86.17% on its respective test dataset, while the obtained Imagewoof model
achieved an accuracy of 75.02% on its respective test dataset.

After model training, I fed the training images into the resulting model again in order
to create the activations at the model layers. Then, I fetched the activations from each
model layer that I chose to use for detecting out-of-distribution samples. Within the
activations of each selected model layer, I aimed to search for the clusters that are
required by LACA. From both models, Imagenette and Imagewoof, I did not fetch the
activations from all model layers as both models contained a high number of layers. A
high number of layers may lead to a long computation time when searching for clusters
within the activations from all of these model layers. Therefore, I chose a subset of the
layers from each model. Nevertheless, this subset contained both, lower model layers (i.e.,
the layers closer to the input layer) and higher model layers (i.e., the layers closer to the
output layer). From both models, I used the activations of the first convolutional layer,
the activations of the subsequent maxpooling layer, the activations from the 8 ResNet
blocks, and the activations of the global average pooling layer. Finally, I searched for

12 https://pytorch.org/docs/stable/nn.init#torch.nn.init.kaiming_uniform_
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clusters within the activations from each selected model layer. To search for clusters, I
used the same approach as in Chapter 6.3.3. As I already observed in my experiment in
Chapter 6.3.3, my approach typically finds approximately as many clusters as there are
classes within the activations of the higher model layers, while it usually finds a lower
number of clusters than there are classes within the activations of the lower model layers.
For both datasets, Imagenette and Imagewoof (both have 10 classes), I found between 5
and 6 clusters at the lower model layers, while I found around 10 clusters at the higher
model layers. Finally, after identifying the clusters, I obtained different in-distribution
statistics from these clusters. I needed these in-distribution statistics together with
the obtained clustering models in order to detect out-of-distribution samples (for more
details, see Chapter 6.2.2).

Table 6.10: Parameters of the adversarial attacks FGSM, BIM and PGD that I used for creating
the adversarial out-of-distribution datasets with respect to the Imagenette dataset
and the Imagewoof dataset. I applied each attack to the test dataset of each
respective dataset.

Attack Method Imagenette Imagewoof

FGSM ε = 0.25 ε = 0.3
BIM ε = 0.25, α = 0.01 ε = 0.1, α = 0.005
PGD ε = 0.10, α = 2/255 ε = 0.1, α = 2/255

After obtaining the required clustering models and in-distribution statistics from each
model layer, I applied LACA to the images of different test datasets dstest in order to
evaluate LACA. Each of these test datasets dstest contains images of a specific type that
potentially occur at inference. I distinguish between three different types of these test
datasets dstest: An in-distribution dataset, a natural out-of-distribution dataset, and
different adversarial out-of-distribution datasets. As in-distribution dataset, I used the
respective test images XT of both datasets: The Imagenette test images (3,175 data
samples) for the Imagenette model and the Imagewoof test images (3,179 data samples)
for the Imagewoof model. As the natural out-of-distribution dataset, on the other hand,
I used the test images XT ′

of the other dataset (no data samples were removed for
a calibration dataset): The Imagewoof test images (3,929 data samples) for the Ima-
genette model and the Imagenette test images (3,925 data samples) for the Imagewoof
model. Furthermore, to obtain the adversarial out-of-distribution samples XT

adv for the
Imagenette model and the Imagewoof model, I applied the following adversarial attacks
on the respective test dataset XT (Imagenette: 3,175 data samples, Imagewoof: 3,179
data samples): FGSM (Fast Gradient Sign Method) [41], BIM (Basic Iterative Method)
[73], and PGD (Projected Gradient Descent) [96]. The hyperparameters for each attack
method are shown in Table 6.10. All attacks were applied to each test image xT using
the Python library torchattacks [64]. The classification performances of the models on
each test dataset dstest are shown in Table 6.11.
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6 Exploiting Layer Activations to Detect Out-of-Distribution Samples

Table 6.11: Classification accuracies of the Imagenette and Imagewoof model regarding the
respective in-distribution dataset (InDist), natural out-of-distribution dataset
(NaOOD) (Imagenette: Imagewoof, Imagewoof: Imagenette), and adversarial out-
of-distribution datasets (FGSM, BIM, PGD). A higher accuracy is better.

Model InDist NaOOD FGSM BIM PGD

Imagenette 0.8617 0.0926 0.1231 0.0394 0.0545
Imagewoof 0.7502 0.1248 0.1217 0.0239 0.0009

I applied LACA to each test dataset dstest using different values for hyperparameter
pthres (values: 0.01, 0.05 and 0.1). As a result, I obtained a credibility score crediblaca
(Chapter 6.2.4) for each image of the respective test dataset dstest. To obtain the
total credibility score for the whole test dataset dstest, I computed the average over the
obtained credibility scores of all images of dstest. Furthermore, I computed the difference
between the total credibility score of the in-distribution dataset and the total credibility
score of each out-of-distribution dataset to better evaluate the results of LACA, as
I already did in my experiment using the simple datasets (for more information, see
Chapter 6.3.3). A high difference value indicates that LACA is able to confidently
distinguish between the in-distribution samples and the respective out-of-distribution
samples, while a low difference value indicates that LACA is not able to distinguish
between the in-distribution samples and the respective out-of-distribution samples. The
resulting difference values are shown in Table 6.13, while the total credibility scores
of each test dataset dstest are shown in Table 6.12. Additionally, I also measured the
runtimes of LACA on each test dataset dstest, which are shown in Table 6.14.

To be able to compare LACA to the DkNN method, I also applied DkNN to each test
dataset dstest. As a result, I obtained a credibility score credibdknn for each image of the
respective test dataset dstest. To obtain the total DkNN credibility score for the whole
test dataset dstest, I computed the average over the obtained DkNN credibility scores
of all images of dstest. Furthermore, I computed the difference between the total DkNN
credibility score of the in-distribution dataset and the total DkNN credibility score of
each out-of-distribution dataset again. The resulting difference values are shown in Table
6.13, while the total DkNN credibility scores of each test dataset dstest are shown in Table
6.11. As shown in Table 6.13, LACA is able to detect out-of-distribution samples also
on these two complex datasets, Imagenette and Imagewoof. However, the detection
performance is decreased compared to the detection performance on the simple datasets
in my experiment in Chapter 6.3.3. Moreover, a value of 0.1 for hyperparameter pthresh
was already too high for Imagewoof in order to obtain a useful credibility score. However,
DkNN is not able to detect out-of-distribution samples with respect to these two complex
datasets at all. The calculated credibility scores by DkNN for the in-distribution dataset
and the out-of-distribution datasets are approximately equally high. As a result, in
contrast to LACA, DkNN is not able to distinguish between in-distribution samples
and out-of-distribution samples. Furthermore, as shown in Table 6.14, LACA obtained
significantly lower runtimes than DkNN on all test datasets dstest.
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Table 6.12: Mean credibility scores obtained by LACA and DkNN for the Imagenette model
and the Imagewoof model regarding the respective in-distribution dataset (InDist),
natural out-of-distribution dataset (NaOOD) (Imagenette: Imagewoof, Imagewoof:
Imagenette), and adversarial out-of-distribution datasets (FGSM, BIM, PGD). For
an in-distribution dataset, a higher score is better, while for an out-of-distribution
dataset, a lower score is better.

Dataset Method InDist NaOOD FGSM BIM PGD

Imagenette DkNN 0.757 0.746 0.749 0.763 0.749
LACA (t = 0.01) 0.610 0.429 0.293 0.364 0.364
LACA (t = 0.05) 0.476 0.295 0.218 0.204 0.193
LACA (t = 0.1) 0.320 0.167 0.014 0.109 0.110

Imagewoof DkNN 0.901 0.905 0.924 0.912 0.911
LACA (t = 0.01) 0.676 0.415 0.353 0.586 0.582
LACA (t = 0.05) 0.578 0.235 0.134 0.435 0.477
LACA (t = 0.1) - - - - -

Table 6.13: Difference values between the mean credibility scores of the respective in-
distribution dataset (InDist) and each out-of-distribution dataset obtained by
LACA and DkNN with respect to the Imagenette and Imagewoof model. I tested a
natural out-of-distribution dataset (NaOOD) (Imagenette: Imagewoof, Imagewoof:
Imagenette) and three adversarial out-of-distribution datasets (FGSM, BIM, PGD)
for each model. A higher difference value is better.

Dataset Method NaOOD FGSM BIM PGD

Imagenette DkNN 0.011 0.007 -0.006 0.008
LACA (t = 0.01) 0.181 0.317 0.246 0.246
LACA (t = 0.05) 0.181 0.258 0.272 0.283
LACA (t = 0.1) 0.154 0.307 0.211 0.210

Imagewoof DkNN -0.004 -0.023 -0.011 -0.009
LACA (t = 0.01) 0.261 0.323 0.090 0.094
LACA (t = 0.05) 0.343 0.444 0.143 0.101
LACA (t = 0.1) - - - -
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Table 6.14: Runtimes (in seconds) of the credibility score calculation of LACA and DkNN
for the Imagenette model and the Imagewoof model regarding the respective
in-distribution dataset (InDist), natural out-of-distribution dataset (NaOOD)
(MNIST: KMNIST [21], SVHN: CIFAR-10, CIFAR-10: SVHN), and adversarial
out-of-distribution datasets (FGSM, BIM, PGD). A lower runtime value is better.

Dataset Method InDist NaOOD FGSM BIM PGD

Imagenette DkNN 2613.5 2902.8 2193.6 2336.7 2714.0
LACA (t = 0.01) 196.2 281.2 207.8 208.1 212.5
LACA (t = 0.05) 188.9 277.3 206.7 216.1 194.2
LACA (t = 0.1) 193.8 278.9 211.5 212.5 207.2

Imagewoof DkNN 1955.5 2368.2 1960.1 1989.7 1970.2
LACA (t = 0.01) 212.1 285.0 219.3 212.2 199.6
LACA (t = 0.05) 213.6 286.5 200.2 192.1 197.8
LACA (t = 0.1) - - - - -

6.4 Discussion

Papernot and McDaniel [113, 114] proposed a method named DkNN (Deep k-Nearest
Neighbors) to detect out-of-distribution samples at inference with respect to a Convolu-
tional Neural Network-based (CNN) image classification model. In order to check if an
image is an out-of-distribution sample, DkNN runs a k-nearest neighbor classification
at each model layer. By running the k-nearest neighbor classification, DkNN finds out
which training images of the model are close to the image in question in feature space of
a layer. If the nearby training images are of the same class at every model layer, DkNN
concludes that the image is an in-distribution sample. If the nearby training images are
not of the same class at every model layer, however, DkNN concludes that the image is
most likely an out-of-distribution sample.

However, due to the k-nearest neighbor classification, the DkNN method has a high
runtime and memory consumption at inference. To address these issues, I proposed
a method named LACA (Layer-wise Activation Cluster Analysis), which is based on
clustering rather than a k-nearest neighbor classification. By using clustering, I showed
that LACA has a lower memory consumption at inference than the DkNN method
(Chapter 6.2.2). To evaluate runtime and detection performance of LACA, I conducted
several experiments. My first research goal was to examine whether LACA is able to
detect out-of-distribution samples at all. In Chapter 6.3.3, I showed using different simple
datasets that LACA is indeed able to detect out-of-distribution samples. Therefore, my
second research goal was to examine how LACA performs in comparison to the DkNN
method. In Chapter 6.3.3, I also showed that LACA is able to achieve a similar detection
performance as the DkNN method on different simple datasets. This suggests that
clustering is suitable to find nearby training images of the image in question (in feature
space of a layer) in order to check if the image is an out-of-distribution sample. However,
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the clustering approach (Chapter 6.2.1) and the hyperparameter pthres (Chapter 6.2.2)
of LACA are crucial to its detection performance. In Chapter 6.3.2, I showed that a
combination of PCA and UMAP along with the k-Means clustering algorithm is best
suited to identify the clusters. A good value for the hyperparameter pthres, on the other
hand, seems to be 0.05 in most cases, as shown by my experiment in Chapter 6.3.3.
However, LACA not only achieves a similar detection performance as DkNN. LACA also
has a significantly lower runtime at inference compared to DkNN. A fast detection of out-
of-distribution samples is important in practice, especially for safety-critical applications
running in real-time, such as driving assistance systems.

To further reduce the runtime of LACA, I also examined whether it is possible to omit
some of the lower model layers (i.e., the layers closer to the input layer) for detecting
out-of-distribution samples without significantly reducing the detection performance of
LACA. The lower model layers are the most expensive ones for LACA to process in
terms of runtime. In my experiment in Chapter 6.3.4, I showed that it is indeed possible
to omit some of the lower model layers to further reduce the runtime of LACA without
significantly reducing its detection performance, at least for the detection of adversarial
out-of-distribution samples. However, lower model layers can only be omitted if the
model has a high number of layers in total. Higher model layers (i.e., the layers closer to
the output layer), on the other hand, cannot be omitted at all. I assume this is caused
by the typical behavior of an adversarial out-of-distribution sample when fed into a
Convolutional Neural Network-based image classification model. I have observed visually
that, in feature space of a lower model layer, an adversarial out-of-distribution sample
is still close to training images (i.e., in-distribution samples) of the same class as the
class of the in-distribution sample from which the adversarial out-of-distribution sample
was created. In feature space of higher model layers, on the other hand, adversarial
out-of-distribution samples are suddenly close to training images of a different class (to
visualize images in feature space I simply project them to 2 dimensions to be able to plot
them). Thus, if there are many layers, not all lower model layers might be needed for
detecting an adversarial out-of-distribution sample using LACA, as long as the model
layers are kept where the adversarial out-of-distribution sample changes its position in
feature space towards training images of a different class.

Finally, I also tested LACA in comparison to the DkNN method on more complex
datasets. I showed in my experiment in Chapter 6.3.5 that LACA again had a sig-
nificantly lower runtime than DkNN. Furthermore, LACA was also able to detect out-
of-distribution samples with respect to these more complex datasets, while the DkNN
method failed to detect any out-of-distribution samples at all. However, the detection
performance of LACA was lower compared to its detection performance on the simple
datasets (Chapter 6.3.3). Nevertheless, I have shown that layer activations of a Con-
volutional Neural Network-based image classification model can be exploited by finding
clusters within these layer activations in order to detect when a model fails at inference
due to the occurrence of out-of-distribution samples.
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7 Conclusion and Future Perspective

Convolutional Neural Network-based (CNN) image classification models are the current
state-of-the-art for solving image classification problems [46, 71]. However, training and
using such a model to solve a specific image classification problem presents several chal-
lenges. In order to train the model, we need to find good values for the hyperparameters
that need to be set for model training, such as the learning rate hyperparameter or the
initial model weights. Finding good values for these training hyperparameters, however,
is usually a non-trivial process, as discussed in Chapter 4. Furthermore, another issue
with respect to model training is that the datasets that should be used for the training
are often class-imbalanced in practice. A class-imbalanced dataset contains images that
belong to a specific set of classes, but the images are not uniformly distributed among
the classes. This class imbalance usually has a negative impact on model training, as
discussed in Chapter 5. However, not only is it challenging to train a Convolutional
Neural Network-based image classification model, but also to use the model after model
training. After training, the model might be applied to images that were drawn from
a data distribution that is different from the data distribution the training data was
drawn from. These images are typically referred to as out-of-distribution samples. Un-
fortunately, Convolutional Neural Network-based models typically fail to predict the
correct class for out-of-distribution samples without warning, as discussed in Chapter 6.
Thus, an out-of-distribution sample poses a serious threat when using such a model for
safety-critical applications (e.g., driving assistance systems, medical diagnosis systems).

The goal of my work was to examine whether the information from the layers of a Con-
volutional Neural Network-based image classification model (pixels and activations) can
be used to address the aforementioned challenges and thereby improve the classification
process, as pointed out in Chapter 1. As a result, I suggested a method for initializ-
ing the model weights based on image patches (Chapter 4.2), a method for balancing
a class-imbalanced dataset based on layer activations (Chapter 5.2), and a method for
detecting out-of-distribution samples, which is also based on layer activations (Chapter
6.2). All of these methods search for clusters within the information obtained from the
model layers (pixels and activations). The identified clusters are then exploited for the
proposed methods in order to improve the classification process. To test the proposed
methods, I conducted extensive experiments using different datasets. The experiments
have shown that the layer information (pixels and activations) can indeed be used to
address the aforementioned challenges and thereby improve the classification process
in various ways. In Chapter 4, it was shown that image patches extracted from the
training images (input layer information) can be used to initialize the model weights.
Moreover, using these image patches to initialize the model weights made the choice
of the learning rate hyperparameter for model training less critical in my experiments.
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When using a suboptimal learning rate value, the model initialized with my proposed
method achieved a superior classification performance compared to the models initial-
ized with a state-of-the-art weight initialization method. Suitable image patches for the
proposed patch-based weight initialization method are identified by using clustering in
image space of a set of candidate patches that are extracted from the training images
of the model. However, it has also been shown that not only the information obtained
from the input layer of the model (i.e., the image pixels) can be exploited to improve the
classification process but also the information from other model layers containing the
intermediate representations of the input images in the form of the activations (hidden
layer information). In Chapter 5, it was shown that the activations of a higher model
layer (i.e., a layer closer to the output layer) can be used to balance a class-imbalanced
dataset. To balance a dataset, my proposed method exploits cluster information within
the activations of such a layer. By balancing the dataset with my proposed method,
it was possible to improve the classification performance of the resulting model in my
experiments compared to a model that was trained using the original class-imbalanced
dataset and various models that were trained using a state-of-the-art method to address
the class imbalance problem. Furthermore, in Chapter 6, it was also shown that layer
activations can be used not only to improve model training but also model inference
by detecting out-of-distribution samples. To detect out-of-distribution samples, my pro-
posed method exploits cluster information within the activations from multiple layers.
Detecting out-of-distribution samples is especially important when using a Convolu-
tional Neural Network-based image classification model for safety-critical applications
(e.g., driving assistance systems, medical diagnosis systems). However, my proposed
method could not only detect out-of-distribution samples in my experiments but could
also detect them quickly, which is critical for applications running in real-time, such as
a driving assistance system.

In future work, my suggested methods based on layer information should be further
improved or even tested for other domains. It could be investigated, for instance, whether
it is possible to combine the image patch-based weight initialization method from Chap-
ter 4.2 with a state-of-the-art weight initialization method in order to improve model
training with an optimal learning rate value as well. The proposed method for balanc-
ing a class-imbalanced dataset from Chapter 5.2, on the other hand, can be applied to
other domains such as medical images. Medical image datasets are frequently imbal-
anced due to the gender-based imbalance of medical data [74] or the rare occurrence
of certain diseases [119]. Furthermore, it could be investigated whether the proposed
approach to balancing a dataset using cluster information within the activations of a
higher model layer can also be used for detecting noisy training data samples. Noisy
training data samples are training data samples that have been mislabeled during data
gathering. These mislabeled training data samples have a negative impact on model
training as well [4, 143]. Finally, the detection performance of the suggested out-of-
distribution detection method from Chapter 6.2 needs to be further improved for more
complex datasets.
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[37] Salvador Garćıa and Francisco Herrera. Evolutionary Undersampling for Classifi-
cation with Imbalanced Datasets: Proposals and Taxonomy. Evolutionary Com-
putation, 17(3):275–306, 2009.

[38] Xavier Glorot and Yoshua Bengio. Understanding the Difficulty of Training Deep
Feedforward Neural Networks. In Yee Whye Teh and Mike Titterington, editors,
The 13th International Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 9 of Proceedings of Machine Learning Research, pages 249–256,
Sardinia, Italy, 2010. PMLR.

120

https://arxiv.org/abs/1603.07285


BIBLIOGRAPHY

[39] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neu-
ral Networks. In Geoffrey Gordon, David Dunson, and Miroslav Dud́ık, editors,
The 14th International Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 15 of Proceedings of Machine Learning Research, pages 315–323,
Fort Lauderdale, FL, USA, 2011. PMLR.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[41] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harness-
ing Adversarial Examples. In Yoshua Bengio and Yann LeCun, editors, The 3rd
International Conference on Learning Representations (ICLR), San Diego, CA,
USA, 2015.

[42] Scott Gray, Alec Radford, and Diederik P. Kingma. GPU Kernels for Block-Sparse
Weights. https://openai.com/research/block-sparse-gpu-kernels, 2017.

[43] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick McDaniel. On the (Statistical) Detection of Adversarial Examples. arXiv
preprint arXiv:1702.06280, 2017.

[44] Jingyu Hao, Chengjia Wang, Heye Zhang, and Guang Yang. Annealing Genetic
GAN for Minority Oversampling. In 31st British Machine Vision Conference 2020,
BMVC 2020. BMVA Press, 2020.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In
2015 IEEE International Conference on Computer Vision (ICCV), pages 1026–
1034, Santiago, Chile, 2015. IEEE.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV, USA, 2016. IEEE.

[47] Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mo-
hammadreza Mostajabi, Jacob Steinhardt, and Dawn Song. Scaling Out-of-
Distribution Detection for Real-World Settings. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, The
39th International Conference on Machine Learning (ICML), volume 162 of Pro-
ceedings of Machine Learning Research, pages 8759–8773, Baltimore, MD, USA,
2022. PMLR.

[48] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Ja-
cob Steinhardt, and Justin Gilmer. The Many Faces of Robustness: A Critical
Analysis of Out-of-Distribution Generalization. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8320–8329, Montreal, Canada,
2021. IEEE.

121

http://www.deeplearningbook.org
https://openai.com/research/block-sparse-gpu-kernels
https://arxiv.org/abs/1702.06280


BIBLIOGRAPHY

[49] Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting Misclassified and Out-
of-Distribution Examples in Neural Networks. In The 5th International Conference
on Learning Representations (ICLR), Toulon, France, 2017. OpenReview.net.

[50] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using
Self-Supervised Learning Can Improve Model Robustness and Uncertainty. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc,
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Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25: Proceedings of the 2012 Conference, volume 25
of NIPS 2012, pages 1106–1114, Lake Tahoe, NV, USA, 2012. Curran Associates,
Inc.

[72] Miroslav Kubat and Stan Matwin. Addressing the Curse of Imbalanced Training
Sets: One-Sided Selection. In Douglas H. Fisher, editor, The 14th International
Conference on Machine Learning (ICML), volume 97, pages 179–186, Nashville,
TN, USA, 1997. Morgan Kaufmann.

[73] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial Examples in the
Physical World. In The 5th International Conference on Learning Representations
(ICLR), Toulon, France, 2017. OpenReview.net.

[74] Agostina J. Larrazabal, Nicolás Nieto, Victoria Peterson, Diego H. Milone, and
Enzo Ferrante. Gender Imbalance in Medical Imaging Datasets Produces Biased
Classifiers for Computer-aided Diagnosis. Proceedings of the National Academy of
Sciences (PNAS), 117(23):12592–12594, 2020.

[75] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning Repre-
sentations for Automatic Colorization. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling, editors, The 14th European Conference on Computer Vision
(ECCV), volume 9908 of Lecture Notes in Computer Science, pages 577–593,
Cham, Switzerland, 2016. Springer.

[76] Yann LeCun, Corinna Cortes, and Chris Burges. MNIST Handwritten Digit
Database. ATT Labs [Online], 2, 2010. http://yann.lecun.com/exdb/mnist.

[77] Hansang Lee, Minseok Park, and Junmo Kim. Plankton Classification on Im-
balanced Large Scale Database via Convolutional Neural Networks with Transfer
Learning. In 2016 IEEE International Conference on Image Processing (ICIP),
pages 3713–3717, Phoenix, AZ, USA, 2016. IEEE.

124

http://yann.lecun.com/exdb/mnist


BIBLIOGRAPHY

[78] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training Confidence-
calibrated Classifiers for Detecting Out-of-Distribution Samples. In The 6th In-
ternational Conference on Learning Representations (ICLR), Vancouver, Canada,
2018. OpenReview.net.

[79] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple Unified Frame-
work for Detecting Out-of-Distribution Samples and Adversarial Attacks. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
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