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Abstract
We consider Walsh’s conformal map from the exterior of a compact set E ⊆ C onto a
lemniscatic domain. If E is simply connected, the lemniscatic domain is the exterior of
a circle, while if E has several components, the lemniscatic domain is the exterior of a
generalized lemniscate and is determined by the logarithmic capacity of E and by the
exponents and centers of the generalized lemniscate. For general E , we characterize
the exponents in terms of the Green’s function of Ec. Under additional symmetry
conditions on E , we also locate the centers of the lemniscatic domain. For polynomial
pre-images E = P−1(�) of a simply-connected infinite compact set �, we explicitly
determine the exponents in the lemniscatic domain and derive a set of equations to
determine the centers of the lemniscatic domain. Finally, we present several examples
where we explicitly obtain the exponents and centers of the lemniscatic domain, as
well as the conformal map.

Keywords Conformal map · Lemniscatic domain · Multiply connected domain ·
Polynomial pre-image · Green’s function · Logarithmic capacity

Mathematics Subject Classification 30C35 · 30C20

1 Introduction

The famous Riemann mapping theorem says that for any simply connected, compact
and infinite set E there exists a conformal map RE : Ec := ̂C\E → D

c
, where
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̂C = C ∪ {∞} denotes the extended complex plane, D the open unit disk and D

the closed unit disk. By imposing the normalization RE (z) = z/ cap(E) + O(1) as
z → ∞, where cap(E) denotes the logarithmic capacity of E , this map is unique. In
his 1956 article [13], Walsh found the following canonical generalization for multiply
connected domains.

Theorem 1.1 Let E1, . . . , E� ⊆ C be disjoint simply connected, infinite compact sets
and let

E =
�

⋃

j=1

E j . (1.1)

In particular, Ec = ̂C\E is an �-connected domain. Then there exists a unique compact
set of the form

L := {w ∈ C : |U (w)| ≤ cap(E)}, U (w) :=
�

∏

j=1

(w − a j )
m j , (1.2)

where a1, . . . , a� ∈ C are distinct and m1, . . . ,m� > 0 are real numbers with
∑�

j=1m j = 1, and a unique conformal map

� : Ec → Lc (1.3)

normalized by

�(z) = z + O
(

1

z

)

at ∞. (1.4)

If E is bounded by Jordan curves, then � extends to a homeomorphism from Ec to
Lc.

Remark 1.2 (i) By assumption, each E j satisfies cap(E j ) > 0 hence cap(E) > 0.
(ii) The points a1, . . . , a� (sometimes called ‘centers’ of L) and also m1, . . . ,m�

in Theorem 1.1 are uniquely determined. The function U is analytic in
C\{a1, . . . , a�} and in general not single-valued, but its absolute value is single-
valued. Note that the compact set L , defined in (1.2), consists of � disjoint
compact components L1, . . . , L�, with a j ∈ L j for j = 1, . . . , �. The compo-
nents L1, . . . , L� are labeled such that a Jordan curve surrounding E j is mapped
by � onto a Jordan curve surrounding L j .

(iii) If E is simply connected then the exterior Riemann map RE : Ec → D
c
with

RE (z) = d1z + d0 + O(1/z) at ∞ and d1 = R′
E (∞) > 0 and the Walsh map

� are related by RE (z) = d1�(z) + d0, which follows from [13, Thm. 4].
The corresponding lemniscatic domain is the disk L = {w ∈ C : |w − a1| ≤
cap(E)}, where a1 = −d0/d1 and cap(E) = 1/d1. This shows that Walsh’s map
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Walsh’s Conformal Map onto Lemniscatic... 491

onto lemniscatic domains is a canonical generalization of the Riemannmap from
simply to multiply connected domains.

(iv) The existence in Theorem 1.1 was first shown by Walsh; see [13, Thm. 3] and
the discussion below. Other existence proofs were given by Grunsky [2, 3], and
[4, Thm. 3.8.3], and also by Jenkins [5] and Landau [6]. However, these articles
do not contain any analytic or numerical examples. The first analytic examples
were constructed by Sète and Liesen in [12], and, subsequently, a numerical
method for computing the Walsh map was derived in [8] for sets bounded by
smooth Jordan curves.

(v) The domain Lc is usually called a lemniscatic domain. This term seems to orig-
inate in Grunsky [4, p. 106].

In this paper, we bring some light on the computation of the parameters m j and a j

appearing in Theorem 1.1.
In Sect. 2, as a first main result, we derive a general formula (Theorem 2.3) for

the exponents m j in terms of the Green’s function of Ec, denoted by gE . Of special
interest is of course the case where E is real or where E or some component E j are
symmetric with respect to the real line, i.e., E∗ = E or E∗

j = E j , where

K ∗ := {z ∈ ̂C : z ∈ K } (1.5)

denotes the complex conjugate of a set K ⊆ ̂C. We prove that E∗ = E and E∗
j = E j

implies that a j ∈ R (Theorem 2.7). In the case that all components are symmetric,
we give an interlacing property of the components E j and the critical points of gE
(Theorem 2.8).

In Sect. 3, we consider the case when E is a polynomial pre-image of a simply
connected compact infinite set �, that is, E = P−1

n (�). In this case, we prove in
Theorem 3.2 that the m j are always rational of the form m j = n j/n, where n is
the degree of the polynomial Pn and n j is the number of zeros of Pn(z) − ω in E j ,
where ω ∈ �. Moreover, the unknowns a1, . . . , a� are characterized by a system of
equations which in particular can be solved explicitly in the case � = 2. With the
help of these findings, we obtain an analytic expression for the map � if P−1

n (�) is
connected (Corrolary 3.7).

Finally, Sect. 4 contains several illustrative examples when E = P−1
n (�) and when

� = D, � = [−1, 1] or when � is a Chebyshev ellipse. In particular, we determine
the exponents and centers of the corresponding lemniscatic domain and visualize the
conformal map �.

2 Results for General Compact Sets

Let the notation be as in Theorem 1.1. The Green’s function (with pole at ∞) of Lc is

gL(w) = log |U (w)| − log(cap(E)) =
�

∑

j=1

m j log
∣

∣w − a j
∣

∣ − log(cap(E)) (2.1)

123



492 K. Schiefermayr, O. Sète

since gL is harmonic in C\{a1, . . . , a�}, is zero on ∂(Lc), and gL(w) − log |w| is
harmonic at ∞ with limw→∞(gL(w) − log |w|) = − log(cap(E)). Then the Green’s
function of Ec is

gE (z) = gL(�(z)), z ∈ Ec, (2.2)

since � : Ec → Lc is conformal with �(z) = z + O(1/z) at ∞. In particular,
cap(E) = cap(L). Denote for R > 1 the level curves of gE and gL by

�R = {z ∈ Ec : g(z) = log(R)}, �R = {w ∈ Lc : gL(w) = log(R)}.

Then�(�R) = �R and�maps the exterior of�R onto the exterior of�R . Let R∗ > 1
be the largest number, such that gE has no critical point interior to �R∗ (if � = 1, then
R∗ = ∞; see Theorem 2.5 below). Then � is the conformal map of ext(�R) onto the
lemniscatic domain ext(�R) for all 1 < R < R∗; see also [14, p. 31].

Here and in the following, we extensively use the Wirtinger derivatives

∂z = 1

2
(∂x − i∂y) and ∂z = 1

2
(∂x + i∂y),

where z = x+iy with x, y ∈ R.We relate the exponents and centers of the lemniscatic
domain to theWirtinger derivatives ∂zgE and ∂wgL of the Green’s functions. Note that
∂zg is analytic if g is a harmonic function, since then ∂z(∂zg) = 1

4	g = 0.

Lemma 2.1 The Green’s functions gL and gE from (2.1) and (2.2) satisfy

∂zgE (z) = ∂wgL(�(z)) · �′(z). (2.3)

Moreover, if γ : [a, b] → Ec is a smooth path, then

∫

γ

∂zgE (z) dz =
∫

�◦γ

∂wgL(w) dw. (2.4)

Proof Since � is analytic, we have ∂z� = �′ and ∂z� = 0. Moreover, ∂z� = ∂z� =
0. With the chain rule for the Wirtinger derivatives and (2.2), we find

∂gE
∂z

(z) = ∂gL
∂w

(�(z)) · ∂�

∂z
(z) + ∂gL

∂w
(�(z)) · ∂�

∂z
(z) = ∂wgL(�(z)) · �′(z),

(2.5)

which is (2.3). Integrating this expression over γ yields

∫

γ

∂wgL(�(z))�′(z) dz =
∫ b

a
∂wgL(�(γ (t)))�′(γ (t))γ ′(t) dt =

∫

�◦γ

∂wgL(w) dw.

(2.6)

In combination with (2.3), this yields (2.4). ��
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Remark 2.2 Formally, Eq. (2.3) yields the relation between differentials

∂zgE (z) dz = ∂wgL(�(z)) · �′(z) dz = ∂wgL(w) dw, (2.7)

which yields (2.4) upon integrating.

We are now ready to express the exponents m j through the Wirtinger derivatives
of the Green’s function. For j = 1, . . . , �, let γ j be a closed curve in C\E with
wind(γ j ; z) = δ jk for z ∈ Ek and k = 1, . . . , �, where wind(γ ; z0) denotes the
winding number of the curve γ about z0, and δ jk is the usual Kronecker delta. More
informally, the curve γ j contains E j but no Ek , k 
= j , in its interior.

Theorem 2.3 In the notation of Theorem 1.1, let gE and gL be the Green’s functions
of Ec and Lc, respectively. For each j ∈ {1, . . . , �}, let γ j be a closed curve in C\E
with wind(γ j ; z) = δ jk for z ∈ Ek and k = 1, . . . , �, and let λ j = � ◦ γ j . Then,

m j = 1

2π i

∫

λ j

2∂wgL(w) dw = 1

2π i

∫

γ j

2∂zgE (z) dz. (2.8)

Moreover, if the function f is analytic interior to λ j and continuous on trace(λ j ), then

m j f (a j ) = 1

2π i

∫

λ j

f (w)2∂wgL(w) dw = 1

2π i

∫

γ j

f (�(z))2∂zgE (z) dz. (2.9)

Proof Since 2∂w log |w| = ∂w log(ww) = 1/w, we obtain from (2.1) that

2∂wgL(w) =
�

∑

j=1

m j

w − a j
, (2.10)

which is a rational function. By construction, λ j is a closed curve in C\L with
wind(λ j ; ak) = δ jk . Integrating over λ j yields the first equality in (2.8). The sec-
ond equality follows by Lemma 2.1. Using (2.10) and the residue theorem, we obtain

1

2π i

∫

λ j

f (w)2∂wgL(w) dw = 1

2π i

∫

λ j

�
∑

s=1

ms f (w)

w − as
dw = m j f (a j ). (2.11)

This proves the first equality in (2.9). Multiplying (2.3) by f (�(z)) and integrating
yields the second equality in (2.9). ��
Remark 2.4 (i) By (2.8) in Theorem 2.3, the exponentm j of the lemniscatic domain

is the residue of 2∂wgL at a j . Moreover, m j is (up to the factor 1/(2π i)) the
module of periodicity (or period) of the differential 2∂zgE (z) dz; see [1, p. 147].
The latter can be rewritten as

∫

γ j

2∂zgE (z) dz =
∫

γ j

(

−∂gE
∂ y

dx + ∂gE
∂x

dy

)

=
∫

γ j

∂gE
∂n

(z) |dz| ,
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494 K. Schiefermayr, O. Sète

where the middle integral is over the conjugate differential of dgE , and where
∂GE/∂n is the derivative with respect to the normal pointing to the right of γ j ;
see [1, pp. 162–164] for a detailed discussion.

(ii) Since ∂zgE is analytic in Ec and ∂wgL is analytic in ̂C\{a1, . . . , a�} ⊇ Lc, the
integrals in (2.8) have the same value for all positively oriented closed curves
that contain only E j or a j in their interior.

The following well-known result due to Walsh [15] establishes a relationship
between the critical points of the Green’s function and the connectivity of Ec.

Theorem 2.5 [15, pp. 67–68] Let E ⊆ C be compact such thatK = Ec is connected
and such that K possesses a Green’s function gE with pole at infinity. If K is of finite
connectivity �, then gE has precisely � − 1 critical points in C\E, counted according
to their multiplicity. IfK is of infinite connectivity, gE has a countably infinite number
of critical points. Moreover, all critical points of gE lie in the convex hull of E.

As is typical for conformal maps with �(z) = z + O(1/z) at ∞, symmetry of E
(e.g., rotational symmetry or symmetry with respect to the real line) leads to the same
symmetry of L , and to “symmetry” in the map �:

Lemma 2.6 [12, Lem. 2.2] Let the notation be as in Theorem 1.1. Then the following
symmetry relations hold.

(i) If E = E∗, then L = L∗ and �(z) = �(z).
(ii) If E = eiθ E := {eiθ z : z ∈ E}, then L = eiθ L and �(z) = e−iθ�(eiθ z).
(iii) In particular: If E = −E = {−z : z ∈ E}, then L = −L and �(z) = −�(−z).

In the last two results of this section, we consider the case where E and one or all
of its components E j are symmetric with respect to the real line. This allows us to
locate the points a1, . . . , a� and the critical points of the Green’s function gE .

Theorem 2.7 In the notation of Theorem 1.1, suppose that E∗ = E. Let j ∈ {1, . . . , �}.
If E∗

j = E j then a j ∈ R.

Proof Since E∗ = E , we have �(z) = �(z) by Lemma 2.6 and ∂zgE (z) = ∂zgE (z)
by Lemma A.1. Next, if E∗

j = E j for some j ∈ {1, . . . , �} then there exists a smooth
Jordan curve γ j in C\E symmetric with respect to the real line which surrounds E j

in the positive sense, but no other component Ek , k 
= j , i.e., wind(γ j ; z) = δ jk for
z ∈ Ek and k = 1, . . . , �. By (2.9),

m ja j = 1

2π i

∫

γ j

�(z)2∂zgE (z) dz,

where �(z)2∂zgE (z) = �(z)2∂zgE (z) on γ j . By Lemma A.3, we obtain m ja j ∈ R,
hence a j ∈ R since m j > 0. ��

In Theorem 2.7, if a component E j is not symmetric with respect to the real line,
then the corresponding point a j is in general not real, as the example of the star in [12,
Cor. 3.3] shows.
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If E∗
j = E j for all components of E then we order the components “from left to

right”: By Lemma A.2, each E j ∩R is a point or an interval, and we label E1, . . . , E�

such that x ∈ E j ∩ R and y ∈ E j+1 ∩ R implies x < y for all j = 1, . . . , � − 1.

Theorem 2.8 Let E = E1 ∪ . . .∪ E� be as in Theorem 1.1 and suppose that E∗
j = E j

for all j = 1, . . . , �. Then the following hold.

(i) The � − 1 critical points of the Green’s function gE are real. Moreover, each E j

intersects R in a point or an interval, and the critical points of gE interlace the
sets E j ∩ R, j = 1, . . . , �.

(ii) If E1, . . . , E� are ordered “from left to right” then a1 < a2 < . . . < a�.

Proof (i) For each j = 1, . . . , �, the set E j ∩R is a point or an interval by LemmaA.2.
For j = 1, . . . , � − 1, denote the ‘gap’ on the real line between E j and E j+1 by

I j :=]max(E j ∩ R),min(E j+1 ∩ R)[, j = 1, . . . , � − 1.

The Green’s function gE is positive on I j and can be continuously extended to I j
with boundary values 0. Then gE has a maximum on I j at a point x j ∈ I j at which
∂x gE (x j ) = 0. By (A.1), we have ∂ygE (x j ) = −∂ygE (x j ), i.e., ∂ygE (x j ) = 0.
This shows that x j is a critical point of gE for j = 1, . . . , � − 1. These are the
� − 1 critical points of gE which are real and interlace the sets E j ∩ R.

(ii) Since E = E∗, we have �(z) = �(z) by Lemma 2.6. In particular, � maps R\E
ontoR\L . Since�(z) = z+O(1/z) at infinity,�maps I0 :=]−∞,min(E1∩R)[
onto J0 :=]−∞,min(L ∩R)[. Let γ1 be a Jordan curve in C\E which surrounds
E1 in the positive sense, but no other component Ek , k 
= 1. Then γ1 intersects
I0 and I1 (see (i)), hence the curve �(γ1) intersects the images J0 = �(I0) and
J1 := �(I1). This shows that L1 is the leftmost component of L and a1 is the
minimum of a1, . . . , a�. Proceeding in a similar way gives that the components
L1, . . . , L� are ordered from left to right, and therefore a1 < a2 < . . . < a�. ��

3 Results for Polynomial Pre-images

Let � ⊆ C be a compact infinite set such that �c is a simply connected domain in ̂C

and let R� be the exterior Riemann map of �, i.e., the conformal map

R� : �c → D
c

with R�(z) = d1z + d0 +
∞
∑

k=1

d−k

zk
for |z| > R, (3.1)

where

d1 = R′
�(∞) = 1

cap(�)
> 0, (3.2)
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R := maxz∈� |z|, andD = {z ∈ C : |z| < 1} is the open unit disk. By [9, Thm. 4.4.4],
the Green’s function of �c is

g�(z) = log |R�(z)| . (3.3)

Let Pn be a polynomial of degree n ≥ 1, more precisely,

Pn(z) =
n

∑

j=0

p j z
j with pn ∈ C\{0}, (3.4)

and consider the pre-image of � under Pn , that is

E = P−1
n (�) = {z ∈ C : Pn(z) ∈ �}. (3.5)

The set E is compact and, by Theorem A.4, the complement Ec is connected. There-
fore, the Green’s function of Ec is

gE (z) = 1

n
g�(Pn(z)) = 1

n
log |R�(Pn(z))| , (3.6)

see [9, p. 134]. Since 2∂z log | f | = f ′/ f for an analytic function f , we have

2∂zgE (z) = 1

n

R′
�(Pn(z))P ′

n(z)

R�(Pn(z))
. (3.7)

The logarithmic capacity of E is

cap(E) = cap(P−1
n (�)) =

(

cap(�)

|pn|
)1/n

= 1
n
√
d1 |pn| , (3.8)

see [9, Thm. 5.2.5].
By Theorem 2.5, the number of components of E can be characterized as follows.

For the case � = [−1, 1], see also [10, Thm. 4 and Thm. 5].

Theorem 3.1 The set E in (3.5) consists of � disjoint simply connected compact com-
ponents E1, . . . , E�, i.e.,

E = P−1
n (�) =

�
⋃

j=1

E j , (3.9)

if and only if Pn has exactly �−1 critical points z1, . . . , z�−1 (counting multiplicities)
for which Pn(zk) /∈ � for k = 1, . . . , �−1. Moreover, the number of zeros of Pn(z)−ω

in E j is the same for all ω ∈ �, and this number is denoted by n j .
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Proof By Theorem 2.5, E has � components if and only if gE has �− 1 critical points
(in C\E). Since gE is real-valued, z0 ∈ C\E is a critical point of gE if and only if
∂zgE (z0) = 0. By (3.7), the latter is equivalent to P ′

n(z0) = 0.
For j = 1, . . . , �, let γ j be a Jordan curve in C\E with wind(γ j ; z) = δ jk for

z ∈ Ek and k = 1, . . . , �. Let z0 ∈ E j and ω0 := Pn(z0) ∈ �, then, by the argument
principle,

n j := wind(Pn ◦ γ j ;ω0) = ∣

∣{z ∈ E j : Pn(z) = ω0}
∣

∣ ≥ 1. (3.10)

Since Pn ◦γ j is a closed curve inC\�, we have wind(Pn ◦γ j ;ω) = wind(Pn ◦γ j ;ω0)

for all ω ∈ �, i.e., every point in � has exactly n j pre-images under Pn in E j . ��
In the rest of this section, we assume that E has � components E1, . . . , E�, i.e., that

Pn has exactly � − 1 critical points with critical values in C\�.

Theorem 3.2 Let E = P−1
n (�) and the numbers n1, . . . , n� be defined as in Theo-

rem 3.1. Then the exponents m j in the lemniscatic domain in Theorem 1.1 are given
by

m j = n j

n
, j = 1, . . . , �. (3.11)

Proof For j = 1, . . . , �, let γ j be a positively oriented Jordan curve in C\E with
wind(γ j ; z) = δ jk for z ∈ Ek and k = 1, . . . , �. Using (2.8) and (3.7), we obtain

m j = 1

2π i

∫

γ j

2∂zgE (z) dz = 1

n

1

2π i

∫

γ j

R′
�(Pn(z))P ′

n(z)

R�(Pn(z))
dz. (3.12)

Substituting u = Pn(z) yields

m j = 1

n

1

2π i

∫

Pn◦γ j

R′
�(u)

R�(u)
du. (3.13)

Since wind(Pn ◦ γ j ; u0) = n j for u0 ∈ �, the integral in (3.13) can be replaced by
n j times an integral over a positively oriented Jordan curve � in C\�, i.e.,

m j = n j

n

1

2π i

∫

�

R′
�(u)

R�(u)
du. (3.14)

The integral is

1

2π i

∫

�

R′
�(u)

R�(u)
du = 1

2π i

∫

�

(u−u0)R′
�(u)

R�(u)

u − u0
du = lim

u→∞
(u − u0)R′

�(u)

R�(u)
= 1

(3.15)

by Cauchy’s integral formula for an infinite domain; see, e.g., [7, Problem 14.14]. ��
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Next, we derive a relationship between the Walsh map � and the Riemann map
R�. Let E = P−1

n (�) be as in (3.5). Liesen and the second author proved in [12,
Eqn. (3.2)] that the lemniscatic map � in Theorem 1.1 and the exterior Riemann map
R� are related by

|U (�(z))| = cap(E) |R�(Pn(z))|1/n , z ∈ Ec, (3.16)

with U from (1.2). This follows by considering the identity (2.2) between the corre-
sponding Green’s functions. In Theorem 3.3, we establish a stronger result.

By Theorem 3.2, the exponents of U satisfy m j = n j/n. Together with (3.8), we
see that

Q(w) := ei arg(pn)

cap(E)n
U (w)n = d1 pn

�
∏

j=1

(w − a j )
n j (3.17)

is a polynomial of degree n. Note that L = {w ∈ C : |Q(w)| ≤ 1}, and Q : Lc → D
c

is an n-to-1 map. Then, equation (3.16) is equivalent to

|Q(�(z))| = |R�(Pn(z))| , z ∈ Ec. (3.18)

Next, we show that equality is also valid without the absolute value. Moreover, we
derive a relationship between the points a j and the coefficients pn−1, pn of Pn for
n ≥ 2. The case n = 1 is discussed in Remark 3.4.

Theorem 3.3 Let E = P−1
n (�) be as in (3.5). We then have

Q(�(z)) = R�(Pn(z)), z ∈ Ec, (3.19)

that is,

� = Q−1 ◦ R� ◦Pn, (3.20)

with that branch of Q−1 such that �(z) = z + O(1/z) at ∞. Moreover, for n ≥ 2,

�
∑

j=1

n ja j = − pn−1

pn
. (3.21)

Proof Consider the Laurent series at infinity ofR� ◦Pn and Q◦�. By (3.1) and (3.4),

R�(Pn(z)) = d1Pn(z) + d0 +
∞
∑

k=1

d−k

Pn(z)k
= d1 pnz

n + d1 pn−1z
n−1 + O(zn−2).

(3.22)
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Fig. 1 Commutative diagram of
the maps in Theorem 3.3 z ∈ Ec Ωc

w ∈ Lc
D
c

Φ

Pn

Q

RΩ

Since �(z) = z + O(1/z) at infinity, we have

(�(z) − a j )
n j = (z − a j )

n j + O(zn j−2) = zn j − n ja j z
n j−1 + O(zn j−2)

and, by (3.17),

Q(�(z)) = d1 pn

�
∏

j=1

(�(z) − a j )
n j = d1 pnz

n − d1 pn

�
∑

j=1

n ja j z
n−1 + O(zn−2).

(3.23)

The function (Q ◦ �)/(R� ◦Pn) is analytic in C\E with constant modulus one,
see (3.18), therefore constant (maximum modulus principle) and

Q(�(z)) = cR�(Pn(z)), z ∈ Ec, (3.24)

where c ∈ C with |c| = 1. By comparing the coefficients of zn of the Laurent series
at ∞, we see that c = 1, which shows (3.19). Comparing the coefficients of zn−1 then
yields (3.21). ��

Figure 1 illustrates Theorem 3.3.

Remark 3.4 In the case n = 1, i.e., P1(z) = p1z + p0 is a linear transformation,
the conformal map and lemniscatic domain are given explicitly as follows. In this
case, E = P−1

1 (�) consists of a single component, i.e., � = 1 and m1 = 1, and
Q(w) = d1 p1(w − a1). Comparing the constant terms at infinity of R�(Pn(z)) =
d1 p1z + (d1 p0 + d0) + O(1/z) with Q(�(z)) from (3.23) yields

a1 = −d1 p0 + d0
d1 p1

. (3.25)

By Theorem 3.3, the conformal map � : Ec → Lc is

�(z) = (Q−1 ◦ R� ◦P1)(z) = 1

d1 p1
R�(p1z + p0) + a1, (3.26)

and

L =
{

w ∈ C : |w − a1| ≤ 1

d1 |p1|
}

. (3.27)
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Formula (3.19) does not lead to separate expressions for Q and �, even ifR� and
Pn are known. However, if the polynomial Q(w) = d1 pn

∏�
j=1(w − a j )

n j is known,
equation (3.20) yields an expression for �. Since the numbers n j are already known
(Theorem 3.1), our next aim is to determine a1, . . . , a�.

Lemma 3.5 Let E = P−1
n (�) be as in (3.5) and with � components.

(i) A point z∗ ∈ C\E is a critical point of Pn if and only if w∗ = �(z∗) is a critical
point of Q in C\L. Moreover, in that case

Q(w∗) = (R� ◦Pn)(z∗). (3.28)

(ii) The polynomial Q has � − 1 critical points in C\L and these are the zeros of

�
∑

k=1

nk

�
∏

j=1, j 
=k

(w − a j ). (3.29)

Proof (i) By Theorem 3.1, Pn has � − 1 critical points in C\E . The functions Pn
and R� ◦Pn have the same critical points in Ec since R� is conformal in �c and
(R� ◦Pn)′(z) = R′

�(Pn(z))P ′
n(z). By Theorem 3.3, we have Q ◦ � = R� ◦Pn in

Ec. Since (Q ◦ �)′(z) = Q′(�(z))�′(z) and � is conformal, we conclude that z∗
is a critical point of Q ◦ � if and only if w∗ = �(z∗) is a critical point of Q which
gives (3.28).

(ii) By (i), Q has exactly � − 1 critical points in Lc. By (3.17),

Q′(w) = d1 pn

�
∏

j=1

(w − a j )
n j−1 ·

( �
∑

k=1

nk

�
∏

j=1, j 
=k

(w − a j )

)

, (3.30)

hence a1, . . . , a� are critical points of Q with multiplicity
∑�

j=1(n j − 1) = n − �.
The remaining � − 1 critical points of Q are the zeros of the polynomial in (3.29). ��

In principle, the right hand side in (3.28) can be computed when Pn and R� are
given. If also Q(w∗) can be computed, (3.28) yields � − 1 equations for a1, . . . , a�.

With the results that we have established, we obtain the conformal map onto a
lemniscatic domain of polynomial pre-images under Pn(z) = α(z − β)n + γ , and of
pre-images with one component (� = 1) and arbitrary polynomial.

Proposition 3.6 Let � ⊆ C be a simply connected infinite compact set. Let Pn(z) =
α(z − β)n + γ with α, β, γ ∈ C, α 
= 0, and n ≥ 2.

(i) If γ /∈ � then E = P−1
n (�) has n components, m j = 1/n for j = 1, . . . , n, the

points a1, . . . , an are given by

a1,...,n = β + n

√

−R�(γ )

d1α
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with the n distinct values of the nth root and d1 = R′
�(∞) > 0,

L=
{

w ∈ C :
n

∏

j=1

∣

∣w − a j
∣

∣

1/n =
∣

∣

∣

∣

(w−β)n+R�(γ )

d1α

∣

∣

∣

∣

1/n

≤(d1 |α|)−1/n
}

, (3.31)

and the Walsh map is

� : Ec → Lc, �(z) = β + n

√

R�(Pn(z)) − R�(γ )

d1α
, (3.32)

with that branch of the nth root such that �(z) = z + O(1/z) at infinity.
(ii) If γ ∈ � then E = P−1

n (�) has one component, L is the disk

L = {w ∈ C : |w − β| ≤ cap(E) = (d1 |α|)−1/n}, (3.33)

and the conformal map of Ec onto a lemniscatic domain is

� : Ec → Lc, �(z) = β + n

√

R�(Pn(z))

d1α
, (3.34)

with that branch of the nth root such that �(z) = z + O(1/z) at infinity.

Proof (i) Since Pn(β) = γ , the assumption γ /∈ � is equivalent to β /∈ E . The only
critical point of Pn is z∗ = β with multiplicity n − 1, hence E has � = n components
by Theorem 3.1. The point β1 := �(β) ∈ C is then a critical point of Q of multiplicity
n − 1 by Lemma 3.5 (i). Therefore, Q′ is a constant multiple of (w − β1)

n−1 and

Q(w) = α1(w − β1)
n + γ1, α1, γ1 ∈ C.

Next, let us determine α1, β1, γ1 in terms of α, β, γ . We have

γ1 = Q(β1) = Q(�(β)) = R�(Pn(β)) = R�(γ ).

By (3.17), the leading coefficient of Q is α1 = d1α 
= 0. Since � = n, we have

Q(w) = α1(w − β1)
n + γ1 = α1

n
∏

j=1

(w − a j ) (3.35)

with distinct a1, . . . , an ∈ C. In particular, n j = 1 for j = 1, . . . , n. Equating the
coefficients of wn−1 in (3.35) and using Theorem 3.3, we obtain

nβ1 =
n

∑

j=1

a j =
n

∑

j=1

n ja j = − pn−1

pn
= −α(−nβ)

α
= nβ,
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i.e., β1 = β. By (3.35),

a1,...,n = β1 + n

√

− γ1

α1
= β + n

√

−R�(γ )

d1α

with the n distinct values of the nth root. By (3.17), we have L = {w ∈ C : |Q(w)| ≤
1}, which is equivalent to (3.31). Then (3.32) follows from (3.20).

(ii) The assumption γ ∈ � is equivalent to β ∈ E , thus Pn has no critical point in
C\E and E is connected, i.e., � = 1. Thenm1 = 1 and n1 = n. ByTheorem3.3, na1 =
−pn−1/pn = nβ, hence a1 = β. Together with (3.8), we obtain the expression (3.33)
for L . In contrast to case (i), we have Q(w) = d1α(w − β)n , which yields (3.34)
by (3.20). ��

In [12, Thm. 3.1], the lemniscatic domain and conformal map � were explicitly
constructed under the additional assumptions that � is symmetric with respect to R

(i.e.,�∗ = �), γ ∈ R is left of�, α > 0 and β = 0. A shift β 
= 0 can be incorporated
with [12, Lem. 2.3]. In Proposition 3.6 we can relax the assumptions on � and the
coefficients α, β, γ .

The proof of Proposition 3.6 (ii) generalizes to arbitrary polynomials Pn of degree
n ≥ 2, which yields the following result for a connected polynomial pre-image.

Corollary 3.7 Let � ⊆ C be a simply connected infinite compact set. Let Pn be a
polynomial of degree n ≥ 2 as in (3.4) such that E = P−1

n (�) is connected, i.e., � = 1.
Then L = {w ∈ C : |w − a1| ≤ (d1 |pn|)−1/n} with m1 = 1 and a1 = −pn−1/(npn),
and

� : Ec → Lc, �(z) = a1 + n

√

R�(Pn(z))

d1 pn
,

with that branch of the nth root such that �(z) = z + O(1/z) at infinity.

Proof The assumption � = 1 implies m1 = 1 and n1 = n. By Theorem 3.3, we have
a1 = −pn−1/(npn), which yields the expressions for L , Q(w) = d1 pn(w − a1)n and
�. ��

Let us consider the case � = 2 in more detail. In this case, Pn has exactly one
critical point outside E .

Theorem 3.8 Let E = P−1
n (�) in (3.9) consist of two components, and let z∗ be the

critical point of Pn in C\E. Then a1, a2 satisfy
(

a2 + pn−1

npn

)n

= (−1)n2nn21
d1 pnn

n2
2

(R� ◦Pn)(z∗), (3.36)

a1 = − 1

n1

(

pn−1

pn
+ n2a2

)

. (3.37)
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Proof By Theorem 3.3, the centers a1, a2 of L satisfy

n1a1 + n2a2 = − pn−1

pn
, (3.38)

or, equivalently,

a1 = − 1

n1

(

pn−1

pn
+ n2a2

)

, and a2 − a1 = n

n1

(

pn−1

npn
+ a2

)

. (3.39)

By Lemma 3.5 (ii), the only critical point w∗ of Q inC\L is the zero of n1(w −a2)+
n2(w − a1), i.e.,

w∗ = n2a1 + n1a2
n

.

The corresponding critical value is

Q(w∗) = d1 pn(w∗ − a1)
n1(w∗ − a2)

n2 = d1 pn
(n1
n

(a2 − a1)
)n1 (n2

n
(a1 − a2)

)n2

= d1 pn(−1)n2
nn11 nn22
nn

(a2 − a1)
n = d1 pn(−1)n2

nn22
nn21

(

a2 + pn−1

npn

)n

,

where we used (3.39) in the last step. Since (R� ◦Pn)(z∗) = Q(w∗) by Lemma 3.5 (i),
formula (3.36) is established. ��

In order to specify the branch of the nth root in (3.36), some additional information
is needed.We show this for a set�which is symmetric with respect to the real axis and
contains the origin, which covers the important examples � = D and � = [−1, 1].
Lemma 3.9 Suppose that �∗ = � and 0 ∈ �. Let Pn be a polynomial of degree n
as in (3.4) with real coefficients such that P−1

n (�) = ∪�
j=1E j with E∗

j = E j for
j = 1, . . . , �. Denote the critical points of Pn in C\E by z1, . . . , z�−1.

(i) Then z1, z2, . . . , z�−1 ∈ R and z j is between E j ∩ R and E j+1 ∩ R for each
j = 1, . . . , �− 1, where we label E1, . . . , E� from left to right along the real line.

(ii) For each j ∈ {1, . . . , � − 1} and each z ∈]max(E j ∩ R),min(E j+1 ∩ R)[, we
have

sgn(R�(Pn(z))) = sgn(Pn(z)) = (−1)n j+1+...+n� sgn(pn), (3.40)

which holds in particular for z = z j .

If � is additionally symmetric with respect to the imaginary axis, the assertions also
hold if Pn has purely imaginary coefficients.

Proof (i) Note that Pn and gE have the same critical points in Ec, compare the proof
of Theorem 3.1. Then, since E∗

j = E j , (i) is a special case of Theorem 2.8.
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(ii) Since �∗ = �, the Riemann map satisfies R�(z) = R�(z) for z ∈ �. In par-
ticular, if z ∈ R\�, also R�(z) ∈ R. Together with R′

�(z) > 0, we have that
R�(]max(�∩R),∞[) =]1,∞[ andR�(]−∞,min(�∩R)[) =]−∞, 1[. Since
0 ∈ �, we see that sgn(R�(z)) = sgn(z) for z ∈ R\�.
Similarly, if � is additionally symmetric with respect to the imaginary axis, R�

maps the imaginary axis onto itself and sgn(R�(z)) = sgn(z) for z ∈ (iR)\�.
We can treat the cases that the coefficients Pn are real or purely imaginary (provided
that � is also symmetric with respect to the imaginary axis) together. If z ∈
R\E , we have Pn(z) ∈ R\� (or Pn(z) ∈ (iR)\�) and hence sgn(R�(Pn(z))) =
sgn(Pn(z)). It remains to compute sgn(Pn(z)). Since 0 ∈ �, we have sgn(Pn(z)) =
sgn(pn) for z > max(E�∩R).Moreover, Pn hasn� zeros in E� which are either real
or appear in complex conjugate pairs. Therefore sgn(Pn(z)) = (−1)n� sgn(pn) for
z in the rightmost gap, i.e., z ∈]max(E�−1 ∩R),min(E� ∩R)[. Similarly, we get
the assertion for the next gap and so on. ��

Corollary 3.10 Suppose that �∗ = � and 0 ∈ �. Let Pn be a polynomial of degree
n as in (3.4) with real coefficients such that P−1

n (�) = E1 ∪ E2 with E∗
1 = E1 and

E∗
2 = E2. Let n1, n2 be the number of zeros of Pn in E1, E2, respectively, and let z∗

be the critical point of Pn in C\E. Then the points a1, a2 are real with a1 < a2 and
are given by

a1 = − pn−1

npn
−

((

n2
n1

)n1 (−1)n2

d1 pn
R�(Pn(z∗))

)1/n

, (3.41)

a2 = − pn−1

npn
+

((

n1
n2

)n2 (−1)n2

d1 pn
R�(Pn(z∗))

)1/n

, (3.42)

with the positive real nth root.
If � is additionally symmetric with respect to the imaginary axis, then Pn can also

have purely imaginary coefficients.

Proof By Theorem 2.7 and Theorem 2.8, the points a1, a2 are real and a1 < a2. By
Theorem 3.8, we have (3.36), which gives (3.42). Since

(−1)n2

pn
R�(Pn(z∗)) > 0

by Lemma 3.9 (ii) and d1 > 0, the right hand side in formula (3.36) is positive.
By (3.37), a1 < a2 is equivalent to a2 > −pn−1/(npn), which shows that we have to
take the positive real nth root in (3.42). Inserting (3.42) into (3.37) yields (3.41). ��

4 Examples

In this section, we consider six examples of polynomial pre-images E = P−1
n (�) for

the cases� = [−1, 1],� = D and� = ER := {(reit +r−1e−i t )/2 : t ∈ [0, 2π [, 1 ≤
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Fig. 2 Pre-image E = P−1([−1, 1]) with P(z) = z5 in Example 4.1. Left: Phase plot of �, middle: E
(black) and grid, right: ∂L (black) and image of the grid under �

r ≤ R} (Chebyshev ellipse), R > 1. We have the exterior Riemann maps

R[−1,1](z) = z +
√

z2 − 1, and RER (z) = 1

R

(

z +
√

z2 − 1
)

= 1

R
R[−1,1](z),

where the branch of the square root is chosen such that
∣

∣R[−1,1](z)
∣

∣ > 1. In particular,
the coefficients of z at infinity are R′[−1,1](∞) = 2 and R′

ER
(∞) = 2/R; see (3.1)

and (3.2). We begin with three examples for Proposition 3.6.

Example 4.1 Let � = [−1, 1] and Pn(z) = zn . Since the critical value of Pn is
0 ∈ �, the set L and Walsh map � of the connected star E = P−1

n ([−1, 1]) =
⋃n

k=1 e
k2π i/n[−1, 1] are given by Proposition 3.6 (ii) as L = {w ∈ C : |w| ≤ 2−1/n}

and

� : Ec → Lc, �(z) = n

√

zn + √
z2n − 1

2
= z

n

√

zn + √
z2n − 1

2zn
.

We take the branch of the square root with
∣

∣

∣zn + √
z2n − 1

∣

∣

∣ > 1. In the second

representation of�we take the principal branch of the nth root; see [12, Thm. 3.1]. In
particular, the logarithmic capacity of E is 2−1/n . Figure 2 illustrates the case n = 5.
The left panel shows a phase plot of�. In a phase plot, the domain is colored according
to the phase f (z)/ | f (z)| of the function f ; see [16] for an introduction to phase plots.
The middle and right panels show E and ∂L (in black) as well as a grid and its image
under �.

Example 4.2 Let � = E1.25 be the Chebyshev ellipse bounded by { 12 ( 54eit + 4
5e

−i t ) :
t ∈ [0, 2π [} and let E = P−1(E1.25) with P(z) = (z − 1)5 + γ for two different
values of γ . For γ = 0.3i /∈ �, the set E consists of n = 5 components, while for
γ = 0.75 ∈ �, the set E has only one component; see Proposition 3.6. Figure 3 shows
phase plots of� (left), the sets ∂E and ∂L in black and a grid and its image. The phase
plots show � and an analytic continuation to the interior of E . The discontinuities in
the phase (in the interior of E) are branch cuts of this analytic continuation.
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Fig. 3 Set E = P−1
n (�)with a Chebyshev ellipse� = E1.25 and Pn(z) = (z−1)5+γ , with γ = 0.3i /∈ �

(top row) and γ = 0.75 ∈ � (bottom row); see Example 4.2. Phase plot of � (left), original and image
domains with ∂E and ∂L in black (middle and right)

Fig. 4 The set E = P−1
n (D) with Pn(z) = 1

2 (z + 1)7 + 3
4 . Phase plot of � (left), original and image

domains with ∂E and ∂L in black (middle and right); see Example 4.3

Example 4.3 Let Pn(z) = α(z − β)n + γ and E = P−1
n (D).

(i) If γ /∈ D then �(z) = z by Proposition 3.6, hence L = E = {z ∈ C : |Pn(z)| ≤
1}, i.e., Ec is a lemniscatic domain; see also Example 4.5 for pre-images of D
under general polynomials.

(ii) If γ ∈ D then E has only one component. In this case �(z) = z if and only if
γ = 0. Figure 4 shows an example with γ ∈ D\{0}, where E is not a lemniscatic
domain and �(z) 
= z.

Next, we present an example for Corollary 3.7.
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Fig. 5 The set E = P−1
4 ([−1, 1]) with α = 5 in Example 4.4. Phase plot of � (left), original and image

domains with E and ∂L in black (middle and right)

Example 4.4 Consider the polynomial

P4(z) = 8z4 − 8z2 + α

α

withα ≥ 1 from [11, Ex. (iv)]. Then E = P−1
4 ([−1, 1]) is connected, since the critical

points of P4 are 0,±1/
√
2 with corresponding critical values P4(0) = 1 ∈ [−1, 1]

and P4(±1/
√
2) = 1 − 2

α
∈ [−1, 1]; see Theorem 3.1. By Corollary 3.7,

L =
{

w ∈ C : |w| ≤ cap(E) = α1/4

2

}

,

and the conformal map is

� : Ec → Lc, �(z) =
4
√

α

2
4
√

P4(z) +
√

P4(z)2 − 1,

seeFig. 5. Since E∗ = E , we have that�(z) = �(z) and, since�(z) = z+O(1/z), we
have in particular�(]1,∞[) =] cap(E),∞[ and�(]−∞,−1[) =]−∞,− cap(E)[.
Since E is also symmetric with respect to the imaginary axis, we similarly have
�(]0, i∞[) =]i cap(E), i∞[ and �(] − i∞, 0[) =] − i∞,−i cap(E)[. Hence, �

maps each quadrant to itself. We use this to determine the correct branch of the fourth
root.

Example 4.5 Let Pn(z) = pn
∏n

j=1(z − b j ) be a polynomial of degree n. If E =
P−1
n (D) consists of n components then Ec is a lemniscatic domain, i.e., L = E with

a j = b j , m j = 1/n, cap(E) = |pn|−1/n , and �(z) = z. Similarly, if Pn(z) =
pn

∏�
j=1(z − b j )

n j with distinct b1, . . . , b� ∈ C and if E has � components, then Ec

is a lemniscatic domain, L = E with a j = b j , m j = n j/n, and �(z) = z.

Finally, we consider an example for Theorem 3.8.

Example 4.6 For α, β ∈ C, consider the polynomial

P3(z) = (z − α)(z2 − β2) = z3 − αz2 − β2z + αβ2
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Fig. 6 Pre-image E = P−1
3 (D) in Example 4.6. Left: ∂E (black line), zeros of P3 (circles) and P ′

3 (crosses),
and a cartesian grid. Right: ∂L (black line), a1, a2 (circles) and the image of the grid under �

of degree n = 3. The critical points of P3 are

z± = α ± √

α2 + 3β2

3
.

In the case α = 2 and β = 1/2, we have P3(z−) ≈ 0.5076 ∈ D and P3(z+) ≈
1.9375 ∈ C\D, hence E = P−1

3 (D) has � = 2 components by Theorem 3.1; see Fig. 6
(left). Note that Ec is not a lemniscatic domain (in contrast to the case considered in
Example 4.5). Write E = E1 ∪ E2, where E1 is the component on the left (with
±β ∈ E1). Then m1 = 2/3 and m2 = 1/3 by Theorem 3.2. Moreover, E∗

1 = E1 and
E∗
2 = E2, since Pn is real and D is symmetric with respect to the real line, which

implies that a1, a2 ∈ R by Theorem 2.7. Then, by Theorem 3.8,

(

a2 − α

3

)3 = −2P3(z+) ∈ R.

Since a2 − α/3 is real, taking the real third root yields

a2 = α

3
+ 3

√−2P3(z+) ≈ 1.9375 and a1 = 1

3
α − 1

2
3
√−2P3(z+) ≈ 0.0313.

Moreover, cap(E) = 1 by (3.8), hence

L =
{

w ∈ C : |w − a1|2/3 |w − a2|1/3 ≤ 1
}

.

Here, Q(w) = (w − a1)2(w − a2)1, hence

�(z) = Q−1(P3(z)),

with a branch of Q−1 such that �(z) = z + O(1/z) at infinity. Here, we can obtain
the boundary values of � for z ∈ ∂E by solving Q(w) = P3(z) and identifying the
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boundary points in the correct way. Then, since �(z) − z is analytic in Ec and zero at
infinity, we have

�(z) = z + 1

2π i

∫

∂E

�(ζ) − ζ

ζ − z
dζ, z ∈ C\E, (4.1)

where ∂E is negatively oriented, such that Ec lies to the left of ∂E . Figure 6 also
shows a cartesian grid (left) and its image under � (right). For the computation, we
numerically approximate the integral in (4.1) with the trapezoidal rule.
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Appendix A

Lemma A.1 Let E ⊆ C be compact, such that Ec has a Green’s function gE . If
E∗ = E, then gE (z) = gE (z) and ∂zgE (z) = ∂zgE (z). Moreover, the critical points
of gE are real or appear in complex conjugate pairs.

Proof Since E∗ = E , the function z �→ gE (z) is also a Green’s function with pole at
infinity of Ec, hence gE (z) = gE (z) for all z ∈ Ec by the uniqueness of the Green’s
function. Write g(x, y) = gE (z), then g(x, y) = g(x,−y) and

∂g

∂x
(x, y) = ∂g

∂x
(x,−y),

∂g

∂ y
(x, y) = −∂g

∂ y
(x,−y), (A.1)

hence

2∂zgE (z) = ∂g

∂x
(x, y) − i

∂g

∂ y
(x, y) = ∂g

∂x
(x,−y) + i

∂g

∂ y
(x,−y) = 2(∂zgE )(z).

The critical points of gE are the zeros of the analytic function ∂zgE . Since ∂zgE (z) =
∂zgE (z), if z∗ is a zero of ∂zgE then also z∗ is a zero. ��
Lemma A.2 Let K ⊆ C be a non-empty compact, simply connected set with K ∗ = K,
then K ∩ R is either an interval or a single point.

Proof Since K ∗ = K and K is connected, K ∩R is not empty. Since Kc is connected,
K ∩ R must be connected (otherwise the symmetry and simply-connectedness of K
would imply that Kc is not connected). Thus, K ∩ R is a point or an interval. ��
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Lemma A.3 Let γ be a smooth Jordan curve symmetric with respect to the real line
and let f be integrable with f (z) = f (z) on γ . Then

1

2π i

∫

γ

f (z) dz ∈ R.

Proof Since γ is symmetric with respect to the real line, we can write γ = γ1 + γ2
with γ2 := −γ 1. Then

∫

γ

f (z) dz =
∫

γ1

f (z) dz −
∫

γ 1

f (z) dz =
∫ b

a
f (γ1(t)) · γ ′

1(t) dt

−
∫ b

a
f (γ1(t)) · γ ′

1(t) dt

= 2i
∫ b

a
Im( f (γ1(t)) · γ ′

1(t)) dt,

which yields the result. ��
Though the following theorem must be known, we did not find it in the literature.

For completeness, we include a proof.

Theorem A.4 Let P be a non-constant polynomial and � ⊆ C be a simply connected
compact set. Then ̂C\P−1(�) is open and connected, i.e., a region.

Proof Clearly, G := ̂C\P−1(�) = P−1(̂C\�) is open and contains ∞. Let G∞ ⊆
G be that component of G that contains ∞. Suppose that G is not connected, i.e.,
G 
= G∞. Then there exists another component G1 ⊆ G, and G1 is a bounded region.
Then P(G1) is a bounded region with P(G1) ⊆ ̂C\�.

Next, we show that ∂P(G1) ⊆ ∂�. Let w ∈ ∂P(G1). Then there exists wk ∈
P(G1) with wk → w. For each k, there exists zk ∈ G1 with P(zk) = wk . Since G1 is
bounded, the sequence (zk)k has a convergent subsequence (zk j ) j with zk j → z ∈ G1.
This implies that P(z) = w. Sincew ∈ ∂P(G1), we have z ∈ ∂G1 (otherwise, z ∈ G1
would imply P(z) ∈ P(G1) and, since P(G1) is open, w = P(z) /∈ ∂P(G1)). Since
G is open, this implies that z /∈ G and hence that z ∈ P−1(�) and w = P(z) ∈ �.
Since wk ∈ P(G1) ⊆ ̂C\� and wk → w, we obtain that w ∈ ∂�.

We have shown that P(G1) ⊆ ̂C\� is a region with ∂P(G1) ⊆ ∂� = ∂(̂C\�).
Since ̂C\� is connected, this implies that P(G1) = ̂C\�, which contradicts that
P(G1) is bounded. This shows that G = ̂C\P−1(�) is connected. ��
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