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Abstract
The renal renin-angiotensin system (RAS) is involved in the development of chronic kidney disease. Here, we investigated 
whether mice with reduced renal angiotensin I-converting enzyme  (ACE−/−) are protected against aristolochic acid nephropa-
thy (AAN). To further elucidate potential molecular mechanisms, we assessed the renal abundances of several major RAS 
components. AAN was induced using aristolochic acid I (AAI). Glomerular filtration rate (GFR) was determined using 
inulin clearance and renal protein abundances of renin, angiotensinogen, angiotensin I-converting enzyme (ACE) 2, and 
Mas receptor (Mas) were determined in  ACE−/− and C57BL/6J control mice by Western blot analyses. Renal ACE activity 
was determined using a colorimetric assay and renal angiotensin (Ang) (1–7) concentration was determined by ELISA. GFR 
was similar in vehicle-treated mice of both strains. AAI decreased GFR in controls but not in  ACE−/− mice. Furthermore, 
AAI decreased renal ACE activity in controls but not in  ACE−/− mice. Vehicle-treated  ACE−/− mice had significantly higher 
renal ACE2 and Mas protein abundances than controls. AAI decreased renal ACE2 protein abundance in both strains. 
Furthermore, AAI increased renal Mas protein abundance, although the latter effect did not reach statistical significance in 
the  ACE−/− mice. Renal Ang(1–7) concentration was similar in vehicle-treated mice of both strains. AAI increased renal 
Ang(1–7) concentration in the  ACE−/− mice but not in the controls. Mice with reduced renal ACE are protected against 
AAN. Our data suggest that in the face of renal ACE deficiency, AAI may activate the ACE2/Ang(1–7)/Mas axis, which in 
turn may deploy its reno-protective effects.

Keywords Aristolochic acid I · Angiotensin I-converting enzyme 2 · Angiotensin (1–7) · Chronic kidney disease · Renin-
angiotensin system

Introduction

In the second half of the twentieth century, regional out-
breaks of progressive interstitial nephritis were reported in 
several countries worldwide including China, the Balkan 
states, and Belgium; the etiology of which could later be 
identified as being associated with the ingestion of aris-
tolochic acid (AA) [17, 34]. The compound is contained 
in several plants or plant products. The AA-induced renal 
disease was initially named according to the source of the 
compound as Chinese herb nephropathy (CHN) or to the 
region of disease outbreak as Balkan-endemic nephropathy 
(BEN) and is now generally referred to as aristolochic acid 
nephropathy (AAN). Although AAN can be prevented by 
avoiding products containing AA, intoxications with this 
compound are still frequently reported worldwide [17, 34, 
70, 74].
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Plant-derived AA is a mixture of two similar components, 
AAI and AAII. Chemically, AAI differs from AAII by the 
presence of an O-methyl group in position 8 of the molecular 
tetracyclic structure. In an experimental study on mice [60], 
only AAI, but not AAII, was capable of inducing nephrotox-
icity. Upon oral ingestion, AAI is readily absorbed from the 
gastrointestinal tract. In blood plasma, albumin-bound AAI 
escapes glomerular filtration [21, 60] and reaches proximal 
tubular epithelial cells (PTEC) on their abluminal side. The 
compound is then taken up into the cytoplasm via organic 
anion transporters (OATs), where it may accumulate. Intra-
cellular AAI has been shown to form DNA adducts and to 
activate various signal transduction pathways [8, 28, 37–39] 
that may ultimately lead to cellular damage and cell death. 
Although there has been considerable progress in recent 
years toward a better understanding of these pathways [2, 
46, 53, 59, 69], the molecular mechanisms mediating the 
cytotoxic effects of AAI are currently not well understood.

There is ample clinical [19, 30, 40, 43, 50, 54] and experi-
mental [41, 45, 55] evidence that the renal renin-angiotensin 
system (RAS) plays a major role in several forms of renal 
insufficiency. Thus, the renal RAS mediates pro-inflamma-
tory, pro-fibrotic, and pro-atherosclerotic effects that may 
not only promote renal disease but may have pathophysi-
ological consequences beyond the kidney to affect systemic 
conditions such as arterial hypertension. In this regard, it has 
recently been shown that mice with renal angiotensin I-con-
verting enzyme (ACE) deficiency but normal plasma ACE 
activity were protected against angiotensin II-induced [26] 
as well as N(ω)-nitro-L-arginine methyl ester (L-NAME)-
induced hypertension [25].

According to the classical paradigm, angiotensin (Ang) II, 
acting mostly via the angiotensin II type 1 receptor  (AT1R), 
is the only effector peptide of the RAS. More recently, a sec-
ond effector peptide, Ang(1–7), acting via the Mas receptor 
(Mas), has been described that appears to counteract many 
of the classical AngII effects, including those mentioned 
above, thus conferring essentially beneficial effects on the 
kidney and other organs [57]. The heptapeptide Ang(1–7) 
is derived from the octapeptide AngII by the action of a 
monocarboxypeptidase named ACE2. Alternatively, ACE2 
may convert the decapeptide AngI [Ang(1–10)] to the nona-
peptide Ang(1–9), which in turn is converted to Ang(1–7) 
by classical ACE.

Given the well-known detrimental effects of the classi-
cal ACE/Ang II/AT1R axis on the kidney and the emerging 
reno-protective effects of the alternative ACE2/Ang(1–7)/
Mas axis, the present study was designed to investigate 
whether renal ACE deficiency may convey a protective 
effect against experimentally induced renal insufficiency. 
To address this question, we used the C57BL/6 J-tm(ACE3/3) 
mouse strain  (ACE−/− mice), which is a genetically engi-
neered strain with severe ACE deficiency in the kidney 

and most other organs. As ACE gene transcription was set 
under the control of the albumin promoter, these mice show 
high ACE expression in hepatic tissue and virtually normal 
serum ACE activity [9, 26]. Of note,  ACE−/− mice have been 
reported to have normal blood pressure and normal urinary 
concentrating ability [9].

As an experimental paradigm, we opted for AAN, since 
this form of renal insufficiency has only emerged quite 
recently and its pathophysiological mechanisms are not yet 
sufficiently understood. Furthermore, to elucidate potential 
molecular mechanisms, we assessed the renal abundances of 
major components of the two alternative RAS axes.

Materials and methods

Experimental animals

The renal ACE-deficient C57BL/6J-tm(ACE3/3) mouse strain 
 (ACE−/− mice) was kindly provided by Dr. R. A. Gonza-
lez-Villalobos (Los Angeles, CA, USA). The generation of 
 ACE−/− mice has been described elsewhere [9]. Briefly, ACE 
gene expression was set under the control of the albumin 
promoter, resulting in ACE gene expression being restricted 
mainly to the liver. Nevertheless, there was some minor renal 
ACE expression in the  ACE−/− mice (about 14% of that in 
wildtype controls) [47], which may be due to some residual 
activity of the albumin promoter cassette in the kidney. The 
 ACE−/− mice had been backcrossed to C57BL/6J (wildtype) 
mice that were used as controls. Experiments were con-
ducted on 10- to 12-week-old wildtype and  ACE−/− mice.

Induction of chronic kidney damage with AAI

Chronic kidney damage was induced using 3  mg AAI 
(Sigma Aldrich, Munich, Germany) per kg body weight 
(i.p.) every 3 days for 6 weeks followed by 6 weeks with-
out treatment [29] (Fig. 1). The mice were randomized to 
four groups. Groups 1 (wildtype mice) and 3  (ACE−/− mice) 
received vehicle (dimethyl sulfoxide) only, whereas groups 
2 (wildtype mice) and 4  (ACE−/− mice) received AAI as 
described above. At the end of the protocol, GFR was deter-
mined and kidneys were harvested for further analyses.

Glomerular filtration rate

For measurements of GFR using inulin clearance, the mice 
were anesthetized with a combination of ketamine and xyla-
zine (12.5 mg  mL−1 and 2.5 mg  mL−1, respectively, i.p.). 
During the protocol for GFR measurements, ketamine was 
supplemented as needed. After a median skin incision and 
separation of the subcutaneous fatty tissue of the ventral 
neck region, polyethylene catheters were implanted into 
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the trachea, carotid artery, and jugular vein. After a second 
small skin incision in the abdominal region, a catheter was 
implanted into the urinary bladder. The mice were mechani-
cally ventilated (tidal volume: 160 μL, breathing frequency: 
160  min−1) and continuously infused via the jugular vein 
catheter (infusion rate: 2.5 µL  min−1) [5] with an isotonic 
sodium chloride solution containing 1% bovine serum albu-
min and 0.5% inulin. Blood pressure and heart rate were 
monitored via the carotid artery catheter with a PowerLab™ 
data acquisition system (ADInstruments, Oxford, UK), and 
urine was collected via the bladder catheter. After a stabi-
lization period of at least 30 min, a 30-min urine collection 
was performed. At the end of the protocol, 500 µL of blood 
was collected from the carotid artery catheter for measur-
ing serum inulin concentration. Inulin clearance (Cinulin) was 
calculated according to the following formula:

where V̇ = urine flow given in µL  min−1, [inulin]urine = uri-
nary inulin concentration given in mmol L urinary  inulin−1, 
[inulin]serum = serum inulin concentration given in mmol  L−1 
and kidney weight was given in g.

Serum and urinary inulin concentrations

Serum and urinary inulin concentrations were measured 
photometrically. Samples of 150 µL of undiluted serum were 
mixed with the same amount of trichloroacetic acid for pro-
tein precipitation and centrifuged (8 min, 14,000 g, room 
temperature); 200 µL of the supernatant was mixed with the 
same amount of resorcinol, and 300 µL hydrochloric acid 
was added. After 25 min at 80 °C, the reaction was stopped 
by cooling the samples on ice. The samples were analyzed 
in triplicate. Optical density was detected at 492 nm using 
a microplate reader (FLUOstar OPTIMA; BMG Labtech, 
Ortenberg, Germany). Serum inulin concentration was deter-
mined by linear regression based on a standard curve. To 
determine urinary inulin concentration, the samples were 
heated (4 min, 60 °C) and diluted (1:10, 1:20, 1:40, or 1:50). 

Cinulin =
V̇ × [inulin]urine

[inulin]serum
× kidney weight−1

Otherwise, the assay procedure was the same as described 
above for serum inulin concentration.

Histology, immunohistochemistry, and quantitative 
image analysis

After completion of the GFR protocol, kidneys were per-
fused with phosphate-buffered saline (PBS) and removed 
for further investigation. One half from each horizontally 
sectioned kidney was fixed at room temperature in a Bouin 
solution for 24 h. The other half remained unfixed and 
was used for determination of specific protein species (see 
below). After fixation, the kidneys were washed three times 
for 1 h in 70% ethanol. The kidneys were dehydrated and 
embedded in paraffin according to standard protocols, and 
4-µm sections were cut on a microtome (SM 2000 R; Leica 
Microsystems, Nussloch, Germany), mounted on glass slides 
(SuperFrost; Menzel, Braunschweig, Germany), and depar-
affinized in xylene and descending ethanol series. The sec-
tions were stained either with hematoxylin and eosin (HE) or 
Masson’s trichrome. Light microscopy was performed using 
an Olympus BX 50 microscope equipped with a digital cam-
era, UC 30 (Olympus Europe GmbH, Hamburg, Germany).

For immunohistochemistry, the sections were sub-
jected to heat-induced epitope retrieval by boiling sec-
tions for 5 min in a 10-mM citric acid buffer (pH 6). 
Endogenous peroxidase was blocked using the BLOX-
ALL blocking solution (Vector Laboratories). The sec-
tions were blocked in 2.5% normal horse serum. Primary 
polyclonal rabbit anti KIM-1 [LSBio (LifeSpan) Cat# 
LS-B2103-50, RRID:AB_1508933] antibody diluted to 
5 µg   mL−1 was incubated at 4 °C overnight. The sec-
tions were extensively washed in 1 × PBS. Bound pri-
mary antibodies were visualized using Vectastain Elite 
ABC-HRP Kit, peroxidase (Vector Laboratories) with 
Vectastain DAB Substrate Kit, peroxidase (Vector Labo-
ratories). The sections were counterstained with hema-
toxylin, cleared in xylene, and mounted in Eukitt (Carl 
Roth, Karlsruhe, Germany).

Sirius red staining was performed according to Puchtler: 
5-µm sections were dehydrated as described above. The 

Fig. 1  Experimental proto-
col. AAI, aristolochic acid I; 
 ACE−/−, C57BL/6J-tm(ACE3/3) 
mice; GFR, glomerular filtration 
rate. Arrows mark the days mice 
received vehicle or AAI
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sections were incubated for 1 h in 0.1% Sirius red dis-
solved in a saturated picric acid solution. After two washes 
in 50% acetic acid, an ascending ethanol series, and clear-
ing in xylene, the sections were mounted in Eukitt (Carl 
Roth, Karlsruhe, Germany).

Whole-slide images of kidney cross-sections were 
acquired on a Leica SCN-400 slide scanner using the × 40 
objective and exported as.scn files. The whole-slide data 
was imported to QuPath (v.0.3.0). The respective chan-
nel of interest (DAB) was isolated using color deconvolu-
tion. Thresholding-based pixel classification was used to 
quantify the DAB positive and DAB negative areas. The 
percentage of decellularized tubular segments, meaning 
tubules with denuded basement membranes without cel-
lular coverage, was evaluated in Sirius red-stained sections 
and quantified for every kidney section in five individual 
high-power magnification fields of view.

Renal AGT, renin, ACE, ACE2, and Mas protein

To determine the abundance of specific proteins, renal 
tissue was homogenized in liquid nitrogen and lysed in 
a radioimmunoprecipitation assay buffer [containing 
0.05 mol  L−1 Tris–HCl, 0.3 mol  L−1 NaCl, 0.1% sodium 
dodecyl sulfate (SDS), 1% NP-40, 0.001 mol  L−1 phenyl-
methyl sulfonyl fluoride (PMSF), 1% sodium pyrophos-
phate decahydrate, and 10 μL  mL−1 protease inhibitor] 
or in a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES) buffer (containing 0.1 mol  L−1 HEPES, 
0.1 mol  L−1 NaF, 0.1 mol  L−1 ethylene diamine tetraacetate 
(EDTA), 0.01 mol  L−1 sodium metavanadate, 1% triton 
X-100, 0.002 mol  L−1 PMSF, 0.1 mol  L−1 sodium pyroph-
osphate decahydrate, 10 μL  mL−1 protease inhibitor). Pro-
tein concentration was determined by the bicinchoninic 
acid assay method (Pierce™ BCA Protein Assay Kit; 
Thermo Scientific™, Schwerte, Germany). For immunob-
lotting of AGT, renin, ACE, ACE2, or Mas, equal amounts 
of protein (40 µg) was denatured in a sample buffer (5 min, 
95 °C). Total protein was separated on 4–15% SDS poly-
acrylamide gel (Criterion TGX Stain-Free Precast Gels; 
Bio-Rad Laboratories GmbH, Munich, Germany). After 
separation, proteins were transferred to a nitrocellulose 
membrane, blocked with 5% bovine serum albumin or Roti 
Block (Roth, Karlsruhe, Germany), and incubated with 
antibodies against AGT (1:4000, R and D Systems Cat# 
AF6966, RRID:AB_10971952, Inc., Minneapolis, USA), 
renin (1:2000, ABIN301824, antibodies-online, Aachen, 
Germany), ACE (1:1000, orb216086; Biorbyt Ltd., Cam-
bridge, UK), ACE2 (1:1000, Abnova Cat# PAB13443, 
RRID:AB_10549736, Taipei City, Taiwan) and Mas 
(1:2000, Novus Cat# NBP1-78,444, RRID:AB_11039164, 
Wiesbaden-Nordenstadt, Germany), respectively, followed 
by a secondary horseradish peroxidase (HRP)-conjugated 

antibody (goat anti-rabbit HRP Conjugate, Bio-Rad Cat# 
170–6515, RRID:AB_11125142, Munich, Germany or 
rabbit anti-goat HRP Conjugate, Millipore Cat# AP106P, 
RRID:AB_9241, Darmstadt, Germany).

Immunoreactive bands were detected using an enhanced 
chemiluminescence kit (ECL Plus; Amersham Pharmacia 
Biotech, Buckinghamshire, UK) and quantified using an 
imaging system and software (ChemiDoc™ XRS + and 
Image Lab; Bio-Rad Laboratories GmbH, Munich, 
Germany). Abundances of specific protein species were 
determined relative to total protein abundance normalized 
to the relative protein abundance of vehicle-treated 
wildtype mice.

Renal and serum enzymatic ACE activities

Renal and serum enzymatic ACE activities were deter-
mined using a commercially available kit (ACE Color; 
Fujirebio, Hannover, Germany) according to the manu-
facturer’s instructions and adapted to 96-well plates. 
To determine the renal ACE activity, 10–36  mg of 
renal tissue was suspended in a lysis buffer [containing 
50 mmol L HEPES, 0.5% Triton X-100, 0.025 mmol L 
 ZnCl2, 150 mmol  L−1 NaCl, 1 mmol  L−1 PMSF, 1 tablet 
EDTA-free protease inhibitor cocktail (cOmplete Mini, 
Roche, Basel, Switzerland); 10 µL Lysis buffer/1 mg tis-
sue]. Samples were homogenized, incubated for 60 min at 
4 °C, and centrifuged (15 min, 8000 g, room temperature). 
The supernatant was removed and assayed undiluted. To 
determine the serum ACE activity, samples were diluted 
(1:3).

Renal Ang(1–7) concentration

Renal Ang(1–7) concentration was determined using 
a commercially available kit [Mouse Angiotensin 1–7 
(Ang1–7) ELISA Kit; Cusabio Technology Llc, Houston, 
TX, USA] according to the manufacturer’s instructions. 
To determine renal Ang(1–7) concentration, 30 mg of 
renal tissue was suspended in 300 µL of PBS and stored 
overnight at −20 °C. After two freeze–thaw cycles, the 
homogenates were centrifuged (5 min, 5000 g, 4  °C). 
The supernatant was removed, diluted (1:20 or 1:40), and 
assayed immediately.

Statistical analyses

The results are expressed as means ± SEM. The data were 
analyzed by two-way ANOVA with post-hoc Bonferroni 
test. A value of p < 0.05 was considered statistically sig-
nificant. Statistical analyses and graphs were performed 
with Prism 9.2.0 (®1992–2021; GraphPad Software Inc., 
La Jolla, CA, USA).
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Results

Renal ACE in  ACE−/− mice

As expected, renal ACE protein abundance in the 
 ACE−/− mice was only a fraction of that in the wildtype 
mice (Fig.  2a, white columns, 2b). Specifically, in the 
 ACE−/− mice, renal ACE protein abundance was down to 
about 15% of that in the wildtype mice. In accordance with 
the low renal ACE protein abundance in the  ACE−/− mice, 
renal ACE activity was also reduced to about 10% of that in 
the wildtype mice (Fig. 2c, white columns). In contrast to the 
local ACE activity in the renal tissue, serum ACE activity 
was similar in both strains (Fig. 2d, white columns).

Effects of AAI on renal morphology and function

Kidneys from the vehicle-treated wildtype and 
 ACE−/− mice were similar with respect to macroscopic 

and histological appearance (Fig. 3a–d) as well as renal 
weight (wildtype  0.39 ± 0.02  g,  ACE−/− 0.38 ± 0.02  g, 
n.s.). In contrast, kidneys from AAI-treated wildtype mice 
appeared paler on macroscopic inspection and showed more 
severe histological lesions than kidneys from AAI-treated 
 ACE−/− mice. Thus, kidneys from the AAI-treated wildtype 
mice exhibited profound tubular cell loss and luminal dila-
tion (Fig. 3e and 3f), whereas these structures appeared to be 
essentially intact except for some minor proliferation of con-
nective tissue in the AAI-treated  ACE−/− mice (Fig. 3g and 
3h). Specifically, the percentage of decellularized tubular 
segments, meaning tubules with denuded basement mem-
branes without cellular coverage, was 16.4 ± 1.8% in kidneys 
from the AAI-treated wildtype mice vs. only 4.7 ± 1.1% in 
kidneys from the AAI-treated  ACE−/− mice (p < 0.001).

In general, kidneys from the AAI-treated mice were 
significantly smaller than kidneys from the vehicle-treated 
mice (wildtype: 0.39 ± 0.02 g vs. 0.22 ± 0.01 g,  ACE−/−: 
0.38 ± 0.02  g vs. 0.23 ± 0.01  g; all p < 0.001), without 

Fig. 2  a Renal angiotensin 
I-converting enzyme (ACE) 
protein abundance normalized 
to total protein, b Western blot 
from kidney tissue using an 
antibody against ACE, c renal 
ACE activity, and d serum ACE 
activity in the wildtype and 
 ACE−/− mice treated with vehi-
cle or aristolochic acid I (AAI). 
 ACE−/−  = C57BL/6J-tm(ACE3/3) 
mice, n = 6–8 per group, 
two-way ANOVA: a treat-
ment p < 0.05; strain p < 0.001; 
interaction n.s.; c treatment 
p < 0.01; strain p < 0.0001; 
interaction p < 0.01; d treatment 
n.s.; strain p < 0.05; interaction 
n.s.; Bonferroni test: *p < 0.05, 
***p < 0.001 vs. vehicle; 
#p < 0.05 vs. wildtype
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statistically significant differences between the two strains 
(wildtype 0.22 ± 0.01 g,  ACE−/− 0.23 ± 0.01 g; n.s.).

Glomerular filtration rate (GFR), as measured by inulin 
clearance, was similar in the vehicle-treated wildtype and 
 ACE−/− mice (Fig. 4). AAI significantly decreased GFR 
by about 55% in the wildtype but not in the  ACE−/− mice, 
where it remained essentially unaltered.

In our model of chronic renal failure, the expression of 
the acute injury marker, kidney injury molecule (KIM)-1, 
was similar in kidneys from the vehicle-treated wildtype and 
 ACE−/− mice (Fig. 5a and 5b). AAI led to a statistically 
significant reduction of KIM-1 expression in the wildtype 
but not in the  ACE−/− mice (Fig.  5c  and 5d; wildtype: 
63.18 ± 1.08% vs. 33.68 ± 2.66% KIM-1-positive area, 
p < 0.05;  ACE−/−: 62.55 ± 1.25% vs. 34.45 ± 2.48% KIM-
1-positive area, n.s.).

Effects of AAI on renal angiotensinogen, renin, 
and ACE

Renal angiotensinogen (AGT) protein abundance was 
similar in kidneys from the vehicle-treated wildtype and 
 ACE−/− mice (Fig. 6a and 6c). AAI significantly increased 
renal AGT protein abundance in the  ACE−/− mice. There 
was also a slight increase in renal AGT protein abundance in 
the AAI-treated wildtype mice, but this effect did not reach 
statistical significance.

Renal renin protein abundance was similar in the vehicle-
treated wildtype and  ACE−/− mice (Fig. 6b and 6d). AAI 
significantly increased renal renin protein abundance in the 
 ACE−/− mice but not in the wildtype mice.

As intended and as mentioned above, the  ACE−/− mice 
showed only minor renal ACE protein abundance compared 

Fig. 3  Kidney paraffin sec-
tions stained with hematoxylin 
and eosin (HE) or Masson’s 
trichrome (magnification × 40). 
Kidneys were obtained from 
wildtype or  ACE−/− mice that 
had been treated with vehicle 
or aristolochic acid I (AAI). 
 ACE−/−, C57BL/6J-tm(ACE3/3) 
mice. Arrows mark tubular cell 
loss and asterisks mark luminal 
dilation
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to the wildtype mice (Fig. 2a and 2b). AAI strongly and 
significantly decreased renal ACE protein abundance in 
the wildtype mice, whereas it did not significantly affect 
the already very low renal ACE protein abundance in the 
 ACE−/− mice. In accordance with these results, AAI also 
significantly decreased renal ACE activity in the wildtype 

mice but did not significantly affect renal ACE activity in 
the  ACE−/− mice (Fig. 2c). Furthermore, AAI did not sig-
nificantly affect serum ACE activity in either strain (Fig. 2d).

Effects of AAI on the renal ACE2/Ang(1–7)/Mas axis

Renal ACE2 protein abundance was significantly higher in 
the vehicletreated  ACE−/− mice than in the vehicle-treated 
wildtype mice (Fig. 7a and 7b). AAI similarly and significantly 
decreased renal ACE2 protein abundance in both strains.

Renal Ang(1–7) concentration was similar in the vehi-
cle-treated wildtype and  ACE−/− mice (Fig. 7c). AAI sig-
nificantly increased renal Ang(1–7) concentration in the 
 ACE−/− mice but not in the wildtype mice.

Renal Mas protein abundance was significantly higher in 
the vehicle-treated  ACE−/− mice than in the vehicle-treated 
wildtype mice (Fig. 7d and 7e). AAI increased renal Mas 
protein abundance in the wildtype mice, roughly to that in 
the vehicle-treated  ACE−/− mice. AAI also slightly increased 
renal Mas protein abundance in the  ACE−/− mice, but this 
effect did not reach statistical significance.

Discussion

The present study shows that renal ACE deficiency pro-
tects against AAN, a new type of nephropathy that has 
recently evoked major research efforts due to its widespread 
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vehicle or aristolochic acid I 
(AAI).  ACE−/−, C57BL/6J-
tm(ACE3/3) mice
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occurrence and its often malignant course [11, 15, 17, 18, 
20, 33, 65, 66, 72, 73]. It is currently widely accepted that 
the renal RAS plays a major role in the pathophysiology 
of many types of kidney disease and of systemic arterial 
hypertension [19, 35, 40, 41, 43, 45, 50, 54, 55]. Thus, not 
only are ACE inhibitors indispensable drugs for the clinical 
treatment of kidney diseases [71], but the selective experi-
mental removal of components of the renal RAS, including 
renal ACE and renal  AT1R, was also shown to protect mice 
against experimentally induced arterial hypertension [26, 25, 
13,1 2]. Whether renal ACE deficiency also protects against 
nephropathy has not yet been investigated.

For our study, we used a strain of renal ACE-deficient 
mice, kindly provided by Dr. Romer Gonzalez-Villalobos, 
Dept. of Biomedical Sciences, Cedars-Sinai Medical Center, 
Los Angeles, CA, USA. In keeping with previous reports[9, 
26], these mice had essentially normal renal histology and 
function, while renal ACE abundance was reduced to only 
about 15% of that in the wildtype controls. Furthermore, 
reflecting the low renal ACE abundance, renal ACE activity 
was also dramatically reduced in the  ACE−/− mice to as low 
as about 10 percent of that in the wildtype mice. Neverthe-
less, due to liver-derived ACE as ACE gene transcription 
was set under the control of the albumin promoter, serum 
ACE activity in the  ACE−/− mice was normal, confirming 
previous reports from the literature [9, 10, 26].

When challenged with AAI at 3 mg   kg−1, i.p., every 
third day for 6 weeks, the wildtype mice developed severe 
nephropathy with profound tubular cell loss and luminal 
dilation as well as significantly reduced GFR. The dose 
regimen for AAI applied in the present study was deployed 
previously by another group [29] obtaining similar results 
with respect to the development of nephropathy. Apparently, 
the nephrotoxic effects of AAI on mice strongly depend on 
dosage and application regime and may range from minor 
alterations to end-stage renal insufficiency [29]. Whereas 
many studies investigating the effects of AAI on renal func-
tion in experimental animals relied on plasma creatinine 
concentration or proteinuria alone or in combination as a 
method to assess renal function [14, 67, 68], we chose to 
apply the more robust and meaningful technique of measur-
ing inulin clearances.

In contrast to the severe effects of AAI on renal morphol-
ogy and function seen in the wildtype mice, there were only 
limited signs of histological renal lesions, including minor 
proliferation of connective tissue, and there was no statis-
tically significant reduction in GFR in the  ACE−/− mice. 
Our immunohistochemical data on the kidney injury marker 
KIM-1 may appear counterintuitive on first sight as AAI-
induced renal damage was associated with a decrease rather 
than an increase in KIM-1 expression in both strains. It 
should be noted, however, that KIM-1 is a fast reacting 

Fig. 6  a Renal angiotensinogen 
(AGT) protein abundance, b 
renal renin protein abundance 
normalized to total protein, and 
c Western blot from kidney 
tissue using an antibody against 
AGT and d against renin in 
the wildtype and  ACE−/− mice 
treated with vehicle or aris-
tolochic acid I (AAI).  ACE−/−, 
C57BL/6J-tm(ACE3/3) mice, 
n = 6–10 per group, two-way 
ANOVA: a treatment p < 0.001; 
strain n.s.; interaction n.s.; 
b treatment p < 0.001; strain 
p < 0.001; interaction p < 0.05; 
Bonferroni test: ***p < 0.0001 
vs. vehicle; ##p < 0.01 vs. 
wildtype
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marker of acute rather than chronic renal damage, which 
can only be detected in renal tubular cells as long as they 
remain vital [31]. Thus, the decreased KIM-1 expression in 
our model of chronic renal failure may be explained by the 
AAI-induced loss of vital tubular cells. In keeping with our 
histological and functional results, the AAI-induced reduc-
tion of KIM-1 expression was statistically significant in the 
wildtype but not in the  ACE−/− mice, albeit the absolute 
differences between both strains were small.

Thus, it appears that renal ACE deficiency may convey 
protective effects against aristolochic acid-induced nephrop-
athy, triggering the question as to the underlying molecular 
mechanisms. In this respect, specific interventions with sev-
eral molecular signaling pathways outside the renal RAS 
have been identified that may convey reno-protective effects 
on AAN, including inhibition of p53 [73], blockade of the 
TGF-β-mediated signaling pathway [48, 72], and increase 
in NO bioavailability [18, 33].

On the other hand, in an experimental study on rats by 
Debelle et al. [16], pharmacological RAS blockade with the 
combination of an ACE inhibitor and an  AT1R antagonist 
failed to improve renal function in AAI-induced nephrop-
athy. Whereas this result appears to be in contrast to our 
present findings, there are several differences concerning 

experimental design and species between the two studies 
that may explain the discrepancy. Thus, in the study by 
Debelle et al. [16], the RAS blockers were administrated in 
drinking water during the course of the study, whereas in 
our study, there was genetically induced and therefore life-
long renal ACE deficiency. Furthermore, Debelle et al. [16] 
applied AAI at a single dose of 10 mg  kg−1 body weight, a 
dose regimen that in our hands resulted in acute and rapidly 
progressive nephropathy (data not shown) with high mortal-
ity in contrast to the more chronic type of kidney disease as 
elicited with repeated applications of AAI in smaller doses 
(3 mg  kg−1 body weight) in our study. Finally, species dif-
ferences between rats and mice, with rats being more sus-
ceptible to kidney disease than mice [24, 32, 36, 42, 44, 49], 
may have contributed to the divergent results between the 
two studies.

It is currently well accepted that in many tissues, includ-
ing the kidney, the classical ACE/AngII/AT1R axis is com-
plemented by the alternative ACE2/Ang(1–7)/Mas axis [3, 
56–58]. In contrast to the former, which tends to worsen 
ensuing renal damage, the latter axis may entail predomi-
nantly protective effects on the kidney [1, 22, 52, 61]. We 
therefore hypothesized that in the face of renal ACE defi-
ciency more of locally generated AngI may be converted 

Fig. 7  a Renal angiotensin 
I-converting enzyme 2 (ACE2) 
protein abundance normalized 
to total protein, b Western blot 
from kidney tissue using an 
antibody against ACE2, c renal 
angiotensin (Ang) (1–7) con-
centration, d renal Mas protein 
abundance normalized to total 
protein, and e Western blot from 
kidney tissue using an antibody 
against Mas in the wildtype and 
 ACE−/− mice treated with vehi-
cle or aristolochic acid I (AAI). 
 ACE−/−, C57BL/6 J-tm(ACE3/3) 
mice, n = 6–10 per group, 
two-way ANOVA: a treatment 
p < 0.0001; strain p < 0.001; 
interaction n.s.; c treatment 
p < 0.05; strain n.s.; interac-
tion n.s.; d treatment p < 0.01; 
strain p < 0.05; interaction n.s.; 
Bonferroni test: *p < 0.05, 
**p < 0.01 vs. vehicle; 
#p < 0.05, ##p < 0.01 vs. 
wildtype
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by renal ACE2 to Ang(1–7), thus shifting the balance away 
from the “detrimental” ACE/AngII/AT1R axis to the “ben-
eficial” ACE2/Ang(1–7)/Mas axis. Our finding that renal 
ACE2 and Mas abundances were significantly increased 
under baseline conditions in the  ACE−/− compared to the 
wildtype mice supports this hypothesis, although renal 
Ang(1–7) concentration was initially not significantly dif-
ferent between the two strains.

Further hints toward a possible shift of balance between 
the two RAS axes away from the renal disease-promoting 
toward the reno-protective pathway in the  ACE−/− mice were 
obtained after the induction of AAI-induced nephropathy. 
Under these conditions, the beginning of the local RAS cas-
cade was activated in the  ACE−/− but not in the wildtype 
mice as indicated by significantly increased renal AGT and 
renin abundances in the former strain. As renin cleaves 
AngI from AGT, and the  ACE−/− mice were, by design, 
deficient of renal ACE but not of renal ACE2, which was in 
fact elevated in the  ACE−/− compared to the wildtype mice, 
these effects ultimately resulted in a significantly increased 
renal Ang(1–7) concentration in the  ACE−/− compared to 
the wildtype mice. Since baseline renal Mas abundance 
was significantly higher in the  ACE−/− than in the wildtype 
mice, the increased renal Ang(1–7) concentration after AAI 
coincides with increased renal levels of its specific recep-
tor. While these findings support the hypothesis that the 
protection of renal ACE-deficient mice from AAI-induced 
nephropathy may have been partly due to the activation of 
the local ACE2/Ang(1–7)/Mas axis in the kidney, parts of 
our data are not equally suggestive in this respect. Thus, in 
agreement with a previous report also using C57BL/6J mice 
[63], renal ACE2 protein abundance was downregulated in 
response to AAI in both strains. Furthermore, renal Mas 
protein abundance was similar in the AAI-treated wildtype 
and  ACE−/− mice. Further studies, including those involv-
ing pharmacological Mas receptor antagonists, may help to 
clarify these issues.

The molecular mechanisms by which activation of the 
ACE2/Ang(1–7)/Mas pathway may protect the kidney from 
AAI-induced nephropathy are currently not completely 
understood. In this respect, Mas activation has been reported 
to inhibit signal transduction pathways that are known to 
promote AAI-induced detrimental effects on the kidney, 
such as apoptosis and fibrosis [2, 46, 53, 59, 69]. These path-
ways may include MAP kinases [53] such as ERK1/2, p38, 
and JNK, as well as the TGF-β/NFκB axis [69] and other 
mechanisms [2, 46, 59]. The inhibition of some of these 
pathways has been shown to provide reno-protective effects 
on AAI-induced nephropathy [46, 48].

While with AGT and renin the renal abundances of two 
major components of the local RAS increased in AAI-
induced nephropathy, matching similar experimental [23, 27, 
51, 62] and clinical observations [4, 23, 64] in other types 

of chronic nephropathy, renal ACE abundance, and activity 
in wildtype mice decreased to about half of their baseline 
values. Given the fact that PTECs are a major source of local 
ACE in the kidney [7], the latter effect agrees well with our 
histological findings showing substantial tubular cell loss 
after AAI in the wildtype mice.

The notion that the AAI-induced decrease in renal ACE 
abundance and activity is due to tubular cell loss is sup-
ported by the lack of a similar effect in the  ACE−/− mice, 
which showed only minor histological lesions and essen-
tially normal tubular structures, although it needs to be taken 
into account that in the  ACE−/− mice renal ACE abundance 
and activity were already very low to begin with.

In contrast to local ACE activity in the kidney, which 
was significantly reduced after AAI, serum ACE activity 
was not significantly affected by the nephrotoxic agent. In 
this respect, several studies [6, 29] showed that AAI pre-
dominantly affects the kidney and has minor toxic effects 
on hepatic functions, including the synthesis and release 
of ACE in the  ACE−/− mice.

Taken together, our data show that renal ACE defi-
ciency protects against AAI-induced nephropathy. While 
the molecular mechanisms underlying this effect are cur-
rently not completely understood, our data suggest that in the 
face of renal ACE deficiency, AAI may activate the ACE2/
Ang(1–7)/Mas pathway, which in turn may deploy its well-
known reno-protective effects.
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