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Abstract. The classical Buscher rules d escribe T-duality for metrics and
B-fields in a topologically trivial setting. On the other hand, topological
T-duality addresses aspects of non-trivial topology while neglecting met-
rics and B-fields. In this article, we develop a new unifying framework for
both aspects.
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1. Introduction

Mathematical models for string theory are based on geometric backgrounds
consisting of

• a smooth manifold E (spacetime),
• a Riemannian metric g on E (gravity field), and
• a bundle gerbe G with connection over E (Kalb–Ramond field).

A special class of Kalb–Ramond fields is given by B-fields, i.e., 2-forms B ∈
Ω2(E); these are precisely the connections on the trivial bundle gerbe. Geo-
metric backgrounds (are supposed to) determine 2-dimensional quantum field
theories, and an important question is when two geometric backgrounds de-
termine the same theory.

In the context of T-duality, one assumes that spacetimes E have a toroidal
symmetry: an action of the n-dimensional torus T

n on E, such that g is in-
variant and E is a principal T

n-bundle over the quotient X := E/Tn. We
will use the terminology geometric T-background for geometric backgrounds
with toroidal symmetry. When are two geometric T-backgrounds (E, g,G) and
(Ê, ĝ, Ĝ) T-dual, i.e., when do they determine the same quantum field theory?
To the best of my knowledge, no general conditions are known—unless the
data of a geometric T-background are simplified in one way or another. The
purpose of the present paper is to propose such general conditions, implying
those of all simplified situations.

Buscher provided conditions for T-duality [14] in a topologically trivial
situation, where E = X × T is the trivial circle bundle (i.e., n = 1) over an
open subset X ⊆ R

s, and the bundle gerbe G is just a B-field B ∈ Ω2(E).
These conditions are the by now classical Buscher rules:

ĝθθ =
1

gθθ
, ĝαθ =

Bαθ

gθθ
, ĝαβ = gαβ − 1

gθθ
(gαθgβθ − BαθBβθ)

B̂αθ =
gαθ

gθθ
, B̂αβ = Bαβ − 1

gθθ
(Bαθgβθ − gαθBβθ)
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Here, the indices label the coordinates of the direct product E = X ×T, with
α, β = 1, . . . , s coordinates of X and θ the single fiber coordinate. The Buscher
rules can be generalized to arbitrary torus dimension n, see [25].

A groundbreaking observation of Giveon et al. [22,23] and Alvarez et al.
[1] was that (even in the case n = 1) the Buscher rules require a topology
change as soon as X ⊆ R

s is replaced by a topologically non-trivial manifold.
The example studied in [23] is when E = S3 is the Hopf fibration over X = S2,
g is the round metric on S3, and B = 0. One can then cover S2 by open subsets
Ui ⊆ S2 over which E trivializes, and apply the Buscher rules on each patch to
obtain locally defined dual metrics ĝi and a dual B-fields B̂i. The observation is
then that these locally defined data do not glue to a new metric and B-field on
the Hopf fibration, but rather to a new metric and B-field on the trivial bundle
Ê := S2 ×T. In other words, spacetime changes its topology under T-duality!
A second important development, due to Hori [30], was a “Fourier–Mukai”
transformation for Ramond-Ramond charges on D-branes accompanying
T-duality, involving topological K-theory of spacetimes and the Poincaré bun-
dle over T

n × T
n.

The topology change and the relation to K-theory sparked the interest
of mathematicians in T-duality, and the question emerged for a formulation
of Buscher rules in (more) general topology. Basically at the same time, string
theorists and mathematicians explored topological aspects of B-fields. The
first account in this direction was Gawȩdzki’s work on topological effects in
2-dimensional sigma models using Deligne cohomology [20], and Alvarez’ work
on topological quantization [2]. A major step was the invention of bundle
gerbes by Murray [41] that unleashed a number of advances, e.g., a complete
classification of WZW models on compact simple Lie groups [27], a corre-
sponding classification of D-branes in these models [21,26], a discussion of
D-branes in terms of twisted K-theory [3] or a classification of WZW orien-
tifolds [29,44]. Bundle gerbes with connection have an underlying topological
part, measured by their Dixmier-Douady class in H3(E,Z), and a curvature,
a 3-form H ∈ Ω3(E) called H-flux. If the Dixmier-Douady class vanishes, then
they reduce—up to isomorphism—to a trivial bundle gerbe IB carrying the
former B-field B, such that H = dB. Despite these advances, the quite com-
plicated interplay between metric and B-field, which is characteristic for the
Buscher rules, did not have a straightforward generalization from B-fields to
bundle gerbes with connection.

Bouwknegt–Evslin–Mathai observed in [4,5] that the topology change can
also be observed by only looking at the H-flux, while discarding metrics and
the remaining data of the bundle gerbe and its connection. An important result
of the work of Bouwknegt–Evslin–Mathai was to establish the Fourier–Mukai
transformation in twisted de Rham cohomology, an isomorphism

H•
dR(E,H) ∼= H•+1

dR (Ê, Ĥ).

Another important observation in this context was the eventual non-existence
of T-duals in case of torus dimension n > 1. Mathai–Rosenberg explored these
missing T-duals by invoking non-commutative geometry [37–39].
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As the curvature H of a bundle gerbe with connection represents the
Dixmier-Douady class only in real cohomology, it neglects torsion. Bunke–
Rumpf–Schick invented a framework of topological T-duality that captures
the full information of the two Dixmier-Douady classes, but now completely
neglects connections and metrics [11,13]. Their framework introduced a new
and very enlightening aspect to T-duality. So far, T-duality was understood
as a transformation, a map, taking one T-background to another, T-dual one.
However, as mentioned above, some T-backgrounds do not have any T-duals.
Even worse, if n > 1, T-backgrounds have many different T-duals. Thus, T-
duality is by no means a map. Bunke–Rumpf–Schick implemented this insight
by describing T-duality as a relation on the space of topological T-backgrounds
(the latter consisting of a principal Tn-bundle E and a bundle gerbe G over E
without connection). It might be good to remark that this relation is not an
equivalence relation; it is only symmetric, but neither reflexive nor transitive.
The relation is established by the existence of an isomorphism

pr∗G ∼= p̂r∗Ĝ (1.1)

between the pullbacks of the two bundle gerbes to the so-called correspondence
space, the fiber product

E ×X Ê
p̂r

��
��

��
��

�
pr

����
��
��
�

E

���
��

��
��

Ê

����
��
��
�

X.

Moreover, the isomorphism (1.1) has to satisfy a certain Poincaré condition,
relating it to the Poincaré bundle over T

n × T
n. Bunke–Rumpf–Schick then

started to explore the space of topological T-duality correspondences, consisting
of two topological T-backgrounds (E,G) and (Ê, Ĝ), and an isomorphism (1.1),
in its dependence on X.

Bunke–Rumpf–Schick’s new perspective on topological T-duality was ac-
companied by a number of important results [11]: a precise criterion when a
topological T-background (E,G) admits a T-dual (the Dixmier-Douady class
of G has to lie in the second step of the standard filtration of H3(E,Z)) and a
parameterization of all possible T-duals (the group so(n,Z) of skew-symmetric
integral n×n-matrices acts freely and transitively on them). Moreover, Bunke–
Rumpf–Schick obtained a version of the Fourier–Mukai transformation in topo-
logical twisted K-theory,

K•(E, ξ) ∼= K•+1(Ê, ξ̂),

where the twists ξ, ξ̂ are the Dixmier-Douady classes of the bundle gerbes G
and Ĝ.

A further approach toward a unification of the topological data of a bun-
dle gerbe and the differential data of its connection was proposed by Kahle–
Valentino [35]. It can be understood as reducing the full information of a
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geometric T-background (E, g,G) to the information of E, the full bundle
gerbe with connection G, and of the connection ω on E obtained from the
metric g under Kaluza–Klein reduction. This approach remained rather un-
related to the previous approaches, in particular, to the Buscher rules, and
also is formulated in a rather uncommon language of “differential cohomol-
ogy groupoids”. Nonetheless, we will show here that the approach of Kahle–
Valentino is very close to the formalism we will present below as “geometric
T-duality”. Kahle–Valentino also propose a very interesting generalization of
Bunke–Rumpf–Schick’s Fourier–Mukai transformation from twisted K-theory
to twisted differential K-theory,

K̂•(E,G) ∼= K̂•+1(Ê,G).

Unfortunately, at that time, no general theory for twisted differential K-theory
was available, and so Kahle–Valentino proposed an axiomatic description un-
der which the isomorphism was deduced. However, it seems to be unclear if
these axioms are met by existing models, e.g., [19], or if they can be proved in
a modern framework of twisted differential cohomology, e.g., [9,28].

In this article, we propose a new formalism which we call geometric T-
duality. It is based on the full information of geometric T-backgrounds: a princi-
pal Tn-bundle E over an arbitrary smooth manifold X, an invariant Riemann-
ian metric g on E, and a bundle gerbe with connection G on E. The main point
of our new formalism is a notion of geometric T-duality correspondence as a
relation on the set of all such geometric T-backgrounds (Definition 4.9). The
main ingredient is that the isomorphism (1.1) on the correspondence space is
now a connection-preserving isomorphism

pr∗G ∼= p̂r∗Ĝ ⊗ Iρg,ĝ
, (1.2)

where ρg,ĝ is a certain 2-form produced from the metrics g and ĝ. The isomor-
phism (1.2) is then required to satisfy a differential version of Bunke–Rumpf–
Schick’s Poincaré condition. The most important result about our new geomet-
ric T-duality is that it indeed unifies all aspects investigated before separately.

Theorem 1.1. Suppose two string backgrounds (E, g,G) and (Ê, ĝ, Ĝ) are in
geometric T-duality correspondence. Then, the following statements are true:

(1) Locally, the Buscher rules are satisfied. More precisely, there exist local
trivializations ϕ : U × T

n → E and ϕ̂ : U × T
n → Ê and bundle gerbe

trivializations ϕ∗G ∼= IB and ϕ̂∗Ĝ ∼= IB̂ such that (g,B) and (ĝ, B̂) satisfy
the Buscher rules.

(2) Discarding metrics and bundle gerbe connections, (E,G) and (Ê, Ĝ) are
in topological T-duality correspondence in the sense of Bunke–Rumpf–
Schick.

(3) Discarding metrics, and replacing the bundle gerbes by their curvature
3-forms, (E,H) and (Ê, Ĥ) are T-dual as backgrounds with H-flux in the
sense of Bouwknegt–Evslin–Mathai.
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Geometric
T-duality

Buscher
rules

Differential T-duality
(Kahle-Valentino)

T-duality with H-flux
(Bouwknegt-Evslin-Mathai)

Topological T-duality
(Bunke-Rumpf-Schick)

look locally

forget metric, only
keep their Kaluza-
Klein connections

only remember bundle
gerbe curvature

forget all connections

Figure 1. A schematic overview about the various versions
of T-duality considered here, and how they imply each other

(4) Replacing the metrics g and ĝ by their Kaluza–Klein connections ω and
ω̂, respectively, (E,ω) and (Ê, ω̂) form a differential T-duality pair in the
sense of Kahle–Valentino.

The proof of (1) consists of some computations with differential forms,
metrics, and connections performed in Sect. 3; the statement is Proposition 4.14
in the main text. (2) and (3) follow directly from the definitions, see Proposi-
tion 4.18 and 4.25. The proof of (4) is rather involved due to the very different
settings. In order to prove (4), we introduce in Sect. 6 another formalism that
we call “differential T-duality”; we then show in Proposition 6.3 that it is a
consequence of geometric T-duality, and prove in Proposition 6.14 that it is
equivalent to Kahle–Valentino’s setting.

We remark that our terminology “geometric” does not refer to the ques-
tion whether or not dual T-backgrounds can be modeled on ordinary torus
bundles, as opposed to the non-commutative ones of Mathai–Rosenberg. In-
stead, it will be used here in order to distinguish our setting from “topological”
T-duality and “differential” T-duality. Figure 1 expresses the implications be-
tween the various notions of T-duality.

Theorem 1.1 says that geometric T-duality reduces to several known
forms of T-duality. We also consider the opposite question: can these other
formulations of T-duality be upgraded to full geometric T-duality?

Theorem 1.2. (a) Locally, geometric T-duality is equivalent to the Buscher
rules. More precisely, suppose (g,B) and (ĝ, B̂) satisfy the Buscher rules.
Then, the geometric T-backgrounds (X × T

n, g, IB) and (X × T
n, ĝ, IB̂)

are in geometric T-duality correspondence.
(b) Every topological T-duality correspondence can be lifted to a geometric

T-duality correspondence. More precisely, suppose (E,G) and (Ê, Ĝ) are
topological T-backgrounds, and suppose D is a topological T-duality cor-
respondence. Then, there exist Tn-equivariant metrics g and ĝ on E and
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inter-
sections

background
geometric T-duality
correspondence

dual background

1-fold 2-form Bi

metric gi
ordinary Buscher rules 2-form B̂i

metric ĝi

2-fold

R
n-valued functions aij

such that a∗
ijgj = gi

gauge potentials Aij

s.t. a∗
ijBj = Bi + dAij

New: second order Buscher rules

Âij + aij θ̂ = Aij + âijθ − aijdâij

R
n-valued functions âij

such that â∗
ij ĝj = ĝi

gauge potentials Âij

s.t. â∗
ijB̂j = B̂i + dÂij

3-fold

winding numbers
aik = mijk + aij + ajk

gauge transformations
cijk such that

Aik = a∗
ijAjk+Aij+c∗

ijkθ

New: third order Buscher rules

ĉijk(x, â) + mijk(âik(x) + â)
= cijk(x, a) + m̂ijka

−aij(x)âjk(x)

winding numbers
âik = m̂ijk + âij + âjk

gauge transformations
ĉijk such that

Âik = â∗
ijÂjk+Âij+ĉ∗

ijkθ

4-fold cocycle condition
a∗
ijcjkl · cijl = cijk · cikl

cocycle condition
â∗
ij ĉjkl · ĉijl = ĉijk · ĉikl

Figure 2. Local data for geometric T-backgrounds and geo-
metric T-duality correspondences. The first line is the well-
known local (topologically trivial) situation. The columns
“background” and “dual background” each lists separately
the local data from which one can glue a principal Tn-bundle,
an invariant metric, and a bundle gerbe with connection. The
transition functions aij and âij are taken to be R

n-valued,
revealing winding numbers mijk and m̂ijk, respectively. The
middle column shows how the (higher) Buscher rules mix
these local data from both sides

Ê, and connections on G and Ĝ such that D is a geometric T-duality
correspondence between (E, g,G) and (Ê, ĝ, Ĝ).

(c) Every differential T-duality pair can be lifted to a geometric T-duality
correspondence. The precise statement is in Proposition 6.4.

(d) Every topological T-duality correspondence can be lifted to a differential
T-duality pair. The precise statement is in Proposition 6.5.

The proof of (a) is rather straightforward, see Proposition 4.15. (b) fol-
lows from (c) and (d), see Proposition 4.20. (c) is a direct consequence of close
relationship between geometric and differential T-duality. The proof of (d) is
the hardest part, see Proposition 6.5. In order to prove it, we introduce in
Sect. 5 a local formalism for geometric T-duality, i.e., we introduce a complete
description in terms of functions and differential forms w.r.t. an open cover.
Locally, on an open set Ui this formalism gives precisely the Buscher rules.
Additionally, it contains data and conditions on double, triple, and quadru-
ple overlaps—higher order Buscher rules. To the best of my knowledge, these
higher order Buscher rules have not been described before. Figure 2 summa-
rizes our local description. For a more detailed explanation of these data and
conditions, we refer to Sect. 5.2.
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We summarize the local data described in Fig. 2 (up to a certain notion
of equivalence, and in the direct limit over refinements of open covers) in a set
Locgeo(X). We also look at slightly smaller versions:

• Locdiff(X), where the metrics are replaced by their Kaluza–Klein connec-
tions.

• Loctop(X), where all metrics and differential forms, and all conditions
involving them, are removed.

These slightly smaller versions are very illuminating and important, not only
for our proofs, but also because they can be related to another interesting
quantity, namely the non-abelian differential cohomology with values in the
T-duality 2-group TD, Ĥ1(X,TD). More precisely, it is its adjusted version
Ĥ1(X,TDκ) in the sense of Kim-Saemann [32,33] that becomes relevant here.
The 2-group TD has been introduced in [42], where we proved that the (non-
differential) non-abelian cohomology H1(X,TD) classifies topological T-duality
correspondences. The following result, in particular, extends this classifica-
tion to differential and geometric T-duality correspondences. We denote by
T-Corrgeo(X), T-Corrdiff(X), and T-Corrtop(X) the sets of equivalence classes
of geometric, differential, and topological T-duality correspondences, respec-
tively.

Theorem 1.3. There is a commutative diagram

T-Corrgeo(X)

∼=(b)

��

(a)
�� �� T-Corrdiff(X)

∼=(c)

��

�� �� T-Corrtop(X)

∼=(d)

��

(global level)

Locgeo(X) �� �� Locdiff(X)

∼=(e)

��

�� �� Loctop(X)

∼=(f)

��

(local level)

Ĥ1(X,TDκ)
(g)

�� �� H1(X,TD) (cohomology level)

in which all vertical arrows are bijections, and all horizontal arrows are sur-
jections.

The surjectivity of the map (a) follows from Theorem 1.2 (c). The most
laborious part in Theorem 1.3 is the construction of the map (b), establishing
the relation between the global geometric formalism and the local formalism,
and the proof that (b) is a bijection. This is undertaken in Sects. 5.3 to 5.5,
culminating in Proposition 5.17. That the map (c) is a bijection can then easily
be deduced from the bijectivity of (b), see Proposition 6.6. Construction and
a proof of bijectivity of the maps (e) and (f) are rather tedious calculations
with local data and TD-cocycles, and are performed in Lemma 5.19 and 6.9.
The bijectivity of (f) together with above-mentioned classification result of
[42] imply the bijectivity of (d), see Proposition 5.20. The final statement, the
surjectivity of the forgetful map (g) from differential to non-differential non-
abelian cohomology, is then a rather short—though important—calculation,
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performed in Proposition 6.10. Via the bijections (c) to (f), we obtain then
the proof of Theorem 1.2(b).

Apart from the results described above, we consider an interesting action
of the (abelian) differential cohomology Ĥ3(X) on the set T-Corrgeo(X) of
all geometric T-duality correspondences. This action has counterparts in the
setting of differential and topological T-duality correspondences and has also
been studied by Bunke–Rumpf–Schick [11], see Proposition 4.12 and 6.11.

Finally, we remark that Theorem 1.2(b) guarantees the existence of many
examples of geometric T-duality correspondences. In Sect. 7, we describe ex-
plicitly two full examples of geometric T-duality correspondences. The first
concerns a geometric T-background of the form (E, g, I0), i.e., an arbitrary
principal Tn-bundle E with an arbitrary metric g and trivial B-field. Reduc-
ing this to the case in which E = S3 → S2 is the Hopf fibration, and g is
the round metric on S3, we reproduce the example of Alvarez et al. [1] and
the observation of a topology change, now in the full setting of geometric T-
duality. The second example is again the Hopf fibration and the round metric,
but now equipped with the “basic” gerbe of S3 ∼= SU(2). It was known in
the setting of T-duality with H-flux that this T-background is self-dual. We
confirm that self-duality persists in the full setting of geometric T-duality, see
Proposition 7.4. In particular, it follows from Theorem 1.1 that self-duality
holds in pure topological T-duality, and that the Buscher rules are satisfied
locally.

2. Preliminaries

In this section, we recall structures, terminology, and conventions that will be
used throughout this article. To start with, we recall that a connection on a
principal H-bundle E over a smooth manifold M is a 1-form ω ∈ Ω1(E, g)
such that

R∗ω = Ad−1
h (p∗ω) + h∗θ

holds over E × H, where R denotes the principal action, p the projection to
E, h the projection to H, and θ is the left-invariant Maurer–Cartan form on
H. If H is abelian, we identify the curvature of ω with the unique 2-form
F ∈ Ω2(M, h) such that π∗F = dω, where π : E → M denotes the bundle
projection.

We denote by I := M × H the trivial principal H-bundle over a smooth
manifold M . We may identify connections ω on I with h-valued 1-forms A ∈
Ω1(M, h) in the usual way, i.e.,

ω = Ad−1
h (p∗A) + h∗θ (2.1)

where p : M × H → M and h : M × H → H are the projections. We write IA

for the trivial bundle equipped with the connection (2.1). If H is abelian, and
A1, A2 ∈ Ω1(M, h), there is a bijection
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⎧
⎨

⎩

Connection-preserving
bundle isomorphisms

ϕ : IA1 → IA2

⎫
⎬

⎭
∼=

{ Smooth maps
f : M → H such

that A1 = A2 + f∗θ

}

(2.2)

under which ϕ(x, h) = (x, h + f(x)).
If E is a principal H-bundle over M with connection ω, and si : Ui → E

are local sections, then τi : Is∗
i ω → E|Ui

: (x, a) �→ si(x) · a is a connection-
preserving bundle isomorphism.

On an overlap Ui ∩Uj , we consider the transition function gij : Ui ∩Uj →
H defined by si(x) = sj(x) · gij(x).

In particular, we have s∗
i ω = s∗

jω + g∗
ijθ.

2.1. Bundle Gerbes with Connection

We use the definitions and conventions of [48]. The reader familiar with bundle
gerbes can safely skip this subsection. We write T := U(1) = R/Z.

Definition 2.1. A bundle gerbe G with connection over a smooth manifold M
consists of the following structure:

1. A surjective submersion π : Y → M , and a 2-form B ∈ Ω2(Y ) called
“curving”.

2. A principal T-bundle P with connection over the double fiber product
Y [2] = Y ×M Y , whose curvature is FP = pr∗

2B − pr∗
1B.

3. A connection-preserving bundle isomorphism μ : pr∗
12P ⊗pr∗

23P → pr∗
13P

over Y [3], called “bundle gerbe product”.
It is required that over a point (y1, y2, y3, y4) ∈ Y [4] the following associativity
condition holds:

Py1,y2 ⊗ Py2,y3 ⊗ Py3,y4

μy1,y2,y3⊗id
��

id⊗μy2,y3,y4

��

Py1,y3 ⊗ Py3,y4

μy1,y3,y4

��

Py1,y2 ⊗ Py2,y4 μy1,y2,y4

�� Py1,y4

The curvature of G is the unique 3-form H ∈ Ω3(M) such that π∗H = dB.

If B ∈ Ω2(M) is a 2-form, then there is a “trivial” bundle gerbe with
connection IB , with surjective submersion π = idM , the trivial T-bundle with
connection P = I0, and the trivial bundle isomorphism I0 ⊗ I0 ∼= I0. Its
curvature is H = dB.

If {Ui}i∈I is an open cover of M admitting smooth local sections si : Ui →
Y , then we may define the 2-forms Bi := s∗

i B ∈ Ω2(Ui). If we further assume
that the non-empty double intersections Ui∩Uj are contractible, we may choose
sections sij : Ui∩Uj → (si, sj)∗P , inducing 1-forms Aij ∈ Ω1(Ui∩Uj) satisfying
Bj = Bi+dAij . Next, there exists a unique smooth map cijk : Ui∩Uj ∩Uk → T

such that
μ(sij(x) ⊗ sjk(x)) · cijk(x) = sik(x).

This implies an equality Aik = Aij + Ajk + c∗
ijkθ.
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Finally, the associativity condition for μ implies a Čech cocycle condition
cjkl · cijl = cijk · cikl. The “local data” (Bi, Aij , cijk) yield a degree-2-cocycle
in Deligne cohomology, and thus represent a class in degree three differential
cohomology Ĥ3(M) of M .

It will be important to consider the full bicategorical structure of bundle
gerbes with connection.

Definition 2.2. Suppose G and G′ are bundle gerbes with connection. A
connection-preserving isomorphism A : G → G′ consists of the following struc-
ture:

1. A surjective submersion ζ : Z → Y ×M Y ′, and a principal T-bundle Q
with connection over Z whose curvature is FQ = ζ∗pr∗

Y ′B′ − ζ∗pr∗
Y B.

2. A connection-preserving bundle isomorphism χ : (ξ[2])∗P ⊗ pr∗
2Q →

pr∗
1Q ⊗ (ξ′[2])∗P ′ over the double fiber product Z [2] = Z ×M Z, where

ξ := prY ◦ ζ : Z → Y and ξ′ := prY ′ ◦ ζ : Z → Y ′, and ξ[2] and ξ′[2]

denote the induced maps on double fiber products.

It is required that the following compatibility condition holds for all (z1, z2, z3)
∈ Z [3], for which we set ζ(zi) =: (yi, y

′
i):

Py1,y2 ⊗ Py2,y3 ⊗ Qz3

μy1,y2,y3⊗id
��

id⊗χz2,z3

��

Py1,y3 ⊗ Qz3

χz1,z3

��

Py1,y2 ⊗ Qz2 ⊗ P ′
y′
2,y′

3

χz1,z2⊗id

��

Qz1 ⊗ P ′
y′
1,y′

2
⊗ P ′

y′
2,y′

3 id⊗μ′
y′
1,y′

2,y′
3

�� Qz1 ⊗ P ′
y′
1,y′

3

We remark that the curvature of G and G′ coincide if there exists a
connection-preserving isomorphism. The set of isomorphism classes of bundle
gerbes with connections over M is denoted by Grb∇(M). This set is actually
a group, whose multiplication is given by the tensor product of bundle gerbes,
see [48].

Suppose we have chosen sections si and sij for G as above, and similar
sections s′

i and s′
ij for G′, with corresponding local data (Bi, Aij , cijk) and

(B′
i, A

′
ij , c

′
ijk). After a further refinement, we may assume that (si, s

′
i) : Ui →

Y ×M Y ′ lifts to Z, i.e., we may choose ti : Ui → Z such that ζ ◦ ti = (si, s
′
i).

We may then assume that t∗i Q admits a local section ui, with corresponding
1-forms Ci. Note that B′

i = Bi + dCi. There exists a unique smooth map
dij : Ui ∩ Uj → T such that

χ(sij(x) ⊗ uj(x)) · dij(x) = ui(x) ⊗ s′
ij(x).

This implies an equality

A′
ij = Aij + Cj − Ci + d∗

ijθ.
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Finally, the compatibility condition yields an equality

dik · cijk = dij · djk · c′
ijk.

The data (Ci, dij) constitute an equivalence between the Deligne 2-cocycles
(Bi, Aij , cijk) and (B′

i, A
′
ij , c

′
ijk).

This establishes an isomorphism Grb∇(M) ∼= Ĥ3(M) between the set
of isomorphism classes of bundle gerbes with connection and degree three
differential cohomology [40,45].

Definition 2.3. Suppose G and G′ are bundle gerbes with connection, and
suppose that A1,A2 : G → G′ are connection-preserving isomorphisms. A
connection-preserving 2-isomorphism η : A1 ⇒ A2 is an equivalence class of
triples (W,ω, η), where ω : W → Z1 ×ζ1 ζ2

Z2 is a surjective submersion, and
η : ω∗pr∗

Z1
Q1 → ω∗pr∗

Z2
Q2 is a connection-preserving bundle isomorphism. It

is required that for all (w,w′) ∈ W ×M W the following diagram is commuta-
tive:

Py1,y2 ⊗ Q1|z′
1

id⊗ηw′

��

χ1|z1,z′
1 �� Q1|z1 ⊗ P ′

y′
1,y′

2

ηw⊗id

��

Py1,y2 ⊗ Q2|z′
2 χ2|z2,z′

2

�� Q2|z2 ⊗ P ′
y′
1,y′

2
;

where ω(w) =: (z1, z2) and ω(w′) =: (z′
1, z

′
2), as well as ζi(zi) =: (y1, y

′
1)

and ζi(z′
i) =: (y2, y

′
2). Two triples are equivalent if their bundle isomorphisms

coincide when pulled back to a common refinement.

Concerning local data, we may assume that the sections t1,i : Ui → Z1

and t2,i : Ui → Z2 lift to W , i.e., that there are sections vi : Ui → W such
that ω ◦ vi = (t1,i, t2,i). Then, v∗

i η : t∗1,iQ1 → t∗2,iQ2 is a connection-preserving
bundle isomorphism, and there exists a unique smooth map zi : Ui → T such
that v∗

i η(u1,i(x)) · zi(x) = u2,i(x). This yields an equality C2,i = C1,i + z∗
i θ.

The diagram leads to d1,ij · zi = zj · d2,ij .
The (vertical) composition of connection-preserving 2-isomorphisms is

obtained by going to a common refinement and composing the bundle isomor-
phisms there. This way, we obtain a category Hom(G,G′). There is a (horizon-
tal) composition functor

Hom(G′′,G′) × Hom(G′,G) → Hom(G,G′′)

which turns bundle gerbes with connection into a bicategory. The following
statement about the morphism category between trivial bundle gerbes will be
very important later.

Proposition 2.4 [48, Prop. 4]. There is a canonical equivalence of categories

Hom(IB1 , IB2) ∼= Bun∇
T
(X)B2−B1 ,
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where the right hand side denotes the category of principal T-bundles with
connection of fixed curvature F = B2 −B1. Under this equivalence, the compo-
sition of connection-preserving isomorphisms corresponds to the tensor product
of bundles with connection.

2.2. Poincaré Bundles and Equivariance

We summarize some required facts about the Poincaré bundle, also see [42,
Appendix B]. We write T

n := R
n/Zn additively, and identify its Lie algebra

with R
n, and again T = T

1 = R/Z. The n-fold Poincaré bundle is the following
principal T-bundle P over T

2n = T
n × T

n. Its total space is

P := (Rn × R
n × T) / ∼

with (a, â, t) ∼ (a + m, â + m̂,mâ + t) for all m, m̂ ∈ Z
n and t ∈ T, and mâ

is the standard inner product. The bundle projection is (a, â, t) �→ (a, â), and
the T-action is (a, â, t) · s := (a, â, t + s).

For maps T
p → T

q between different tori we use a notation

m1+2,−3,5 : T5 → T
3, (a1, a2, a3, a4, a5) �→ (a1 + a2,−a3, a5).

For pullbacks, we then write (. . .)1+2,−3,5 instead of m∗
1+2,−3,5(. . .). The fol-

lowing structures and properties are straightforward to check.
(a) The following maps are well-defined bundle isomorphisms over T

3n:

ϕl : P1,3 ⊗ P2,3 → P1+2,3 : (a, c, t) ⊗ (b, c′, s) �→ (a + b, c, s + t)
ϕr : P1,2 ⊗ P1,3 → P1,2+3 : (a, b, t) ⊗ (a′, c, s) �→ (a, b + c, (a − a′)c + s + t)

They express that the Poincaré bundle is “bilinear” in the two factors
T

n × T
n. Using the given formulas, one can check that ϕl satisfies the

following associativity condition:

P1,4 ⊗ P2,4 ⊗ P3,4
id⊗ϕl ��

ϕl⊗id

��

P1,4 ⊗ P2+3,4

ϕl

��

P1+2,4 ⊗ P3,4 ϕl

�� P1+2+3,4.

(2.3)

An analogous condition holds for ϕr. Another compatibility condition
that one can easily check is the commutativity of the following pentagon
diagram:

P1,3 ⊗ P1,4 ⊗ P2,3 ⊗ P2,4

ϕr⊗ϕr

����
���

���
���

��
id⊗ braid ⊗id

		����
����

����
��

P1,3 ⊗ P2,3 ⊗ P1,4 ⊗ P2,4

ϕl⊗ϕl



��

��
��

�
P1,3+4 ⊗ P2,3+4

ϕl

��		
		
		
		

P1+2,3 ⊗ P1+2,4 ϕr

�� P1+2,3+4.

(2.4)

(b) The map
χl : Rn × T

n → P : (a, â) �→ (a, â, 0) (2.5)
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is a well-defined section along R
n × T

n → T
n × T

n, and the map

χr : Tn × R
n → P : (a, â) �→ (a, â, aâ)

is a well-defined section along T
n ×R

n → T
n ×T

n. These restrict further
to sections along the inclusion T

n → T
n × T

n into one of the factors.
The transition functions w.r.t. these sections are the following. Suppose
a, a′ ∈ R

n such that m := a′ − a ∈ Z
n and â ∈ T

n. Then,

χl(a, â) = χl(a′, â) · mâ. (2.6)

If a ∈ T
n and â, â′ ∈ R

n with m̂ := â′ − â ∈ Z
n, then we have

χr(a, â) = χr(a, â′) · am̂.

Over R
n × R

n the sections χl and χr do not coincide, but differ by the
T-valued function m : Rn × R

n → T, m(a, â) := aâ, i.e., χr = χl · m.
They do coincide when pulled back to Z

n × Z
n.

(c) We recall that the dual P∨ of a principal T-bundle P has the same total
space but T acting through inverses. The map

λ : P → P∨
2,1 : (a, â, t) �→ (â, a, aâ − t)

is a well-defined bundle isomorphism over the identity of T
n × T

n. It
expresses that the Poincaré bundle is “skew-symmetric”. We have λ2 =
id. Moreover, the isomorphism λ exchanges χl with χr.

(d) The Poincaré bundle P carries a canonical connection ω, which descends
from the 1-form ω̃ ∈ Ω1(Rn × R

n × T) defined by ω̃ := −adâ + dt. It is
straightforward to see that the isomorphisms ϕl and ϕr are connection-
preserving. Moreover, the sections χl and χr have covariant derivatives

χ∗
l ω = −adâ and χ∗

rω = −adâ + d(aâ) = âda. (2.7)

In other words, they establish trivializations χ∗
l P ∼= I−adâ over R

n × T
n

and χ∗
rP ∼= Iâda over T

n × R
n.

Remark 2.5. (i) The curvature of ω is

Ω := θ2∧̇θ1 ∈ Ω2(T2n),

where θ ∈ Ω1(Tn,Rn) is the Maurer–Cartan form, and ∧̇ denotes the
wedge product of Rn-valued forms using the standard inner product of
R

n on the values.
(ii) Note that Ω1,3 + Ω2,3 = Ω1+2,3 and Ω1,2 + Ω1,3 = Ω1,2+3, as well as

Ω1,−2 = −Ω1,2 = Ω−1,2.
(iii) An identity expressing the 2-form Ω in terms of the Maurer–Cartan form

on T is

Ω =
n∑

i=1

pr∗
i+nθ ∧ pr∗

i θ ∈ Ω2(T2n).

Since H∗(T2n,Z) is torsion free, this shows that the first Chern class of
P is

n∑

i=1

pri+n ∪ pri ∈ H2(T2n,Z)
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where pri : T
2n → T is regarded as a representative for [T2n,T] =

H1(T2n,Z).

The following discussion concerns the quite difficult equivariance prop-
erties of the Poincaré bundle and its connection. They will be used only in
Sect. 5, so that the reader may also continue with Sects. 3 and 4 first.

We remark that the curvature form Ω is T
2n-invariant. However, the

Poincaré bundle itself is not equivariant with respect to left or right multipli-
cation of T2n on itself. We construct a connection-preserving isomorphism

Rl : P1+3,2+4 → P3,4 ⊗ Iψl (2.8)

over R
2n × T

2n = R
n × R

n × T
n × T

n in the following way, where ψl ∈
Ω1(R2n × T

2n) is given at a point ((x, x̂), (a, â)) by

ψl := −xdx̂ − xdâ + x̂da. (2.9)

Indeed, we have, using ϕl and ϕr, an isomorphism

P1+3,2+4
∼= P1,2 ⊗ P1,4 ⊗ P3,2 ⊗ P3,4

and due to (2.4) it does not matter how in which order these are used. In the
next step we use the sections χl and χr, and now we see that for the tensor
factor P1,2 over R

2n it does matter how to trivialize it. Using χl, we obtain

Px,x̂ ⊗ Px,â ⊗ Pa,x̂ ⊗ Pa,â
∼= I−xdx̂−xdâ+x̂da ⊗ Pa,â = Iψl |(x,x̂),(a,â) ⊗ Pa,â,

all together resulting in the isomorphism (2.8). Explicitly,

Rl
(x,x̂),(a,â)(x + a, x̂ + â, t) = (a, â, t − ax̂). (2.10)

One might be tempted to assume that Rl establishes an action of R2n on P
covering the action of R2n on T

2n, but this is not true. Instead, “acting twice”
gives the formula

Rl
(x1,x̂1),(a,â) ◦ Rl

(x2,x̂2),(x1+a,x̂1+â) = Rl
(x2+x1,x̂2+x̂1),(a,â) · (x1x̂2)−1 (2.11)

exhibiting an error term which should not be present when Rl were an action.
If one uses χr instead of χl, one obtains an isomorphism

Rr : P1+3,2+4 → Iψr ⊗ P3,4 (2.12)

for
ψr := x̂dx − xdâ + x̂da = ψl + d(xx̂).

Remark 2.6. Restricting to Z
n ⊆ R

n, we have

ψl
(m,m̂),(a,â) = ψr

(m,m̂),(a,â) and Rl
(m,m̂),(a,â) = Rr

(m,m̂),(a,â)

the latter corresponding to the automorphism of P given by multiplication
with the map

fm,m̂ : T2n → T : (a, â) �→ mâ − m̂a.

In particular, we obtain from (2.11)

Rl
(x+m,x̂+m̂),(a,â) = Rl

(x,x̂),(m+a,m̂+â) · fm,m̂ · (mx̂). (2.13)
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2.3. Invariant Metrics on Principal Bundles

We review the mathematical basis of Kaluza–Klein theory, summarized in the
following Theorem 2.7. Its relevance for T-duality has been recognized already
in Buscher’s first paper [14] on the subject. General discussions can be found
in [7, §9.3], [17] or [16, §3.4]; the latter reference contains a complete proof.

Theorem 2.7. Suppose that E is a principal H-bundle over X. Then, there is
a bijection
⎧
⎨

⎩

H-invariant

Riemannian

metrics g on E

⎫
⎬

⎭
∼=

⎧
⎨

⎩

Triples (ω, g′, h) consisting of a connection ω on E, a

Riemannian metric g′ on X, and a smooth family hx of

Ad-invariant inner products on h parameterized by x ∈ X

⎫
⎬

⎭

under which g corresponds to (ω, g′, h) if and only if

ge =
(

g′
x 0
0 hx

)

, (2.14)

where e ∈ E sits in the fiber over x ∈ X, and the matrix on the right hand
side refers to the decomposition TeE ∼= TxM ⊕ h induced by the connection ω.

The connection ω that appears on the right hand side will be called the
Kaluza–Klein connection associated to the metric g.

Remark 2.8. Theorem 2.7 is compatible with bundle isomorphisms: for a bun-
dle isomorphism ϕ : E1 → E2 it is equivalent to be isometric for the metrics on
E1 and E2 or to be connection-preserving w.r.t. the Kaluza–Klein connections
ω1 and ω2.

Remark 2.9. If the principal H-bundle is trivial, E = I = X × H, we identify
connections ω on E with h-valued 1-forms A ∈ Ω1(X, h) as in (2.1). Under this
identification, a metric g corresponds to a triple (A, g′, h) under the bijection
of Theorem 2.7 if and only if

gx,h =

(
g′ + hx(Ad−1

h (Ax(−)),Ad−1
h (Ax(−))) hx(Ad−1

h (Ax(−)),−)

hx(−,Ad−1
h (Ax(−))) hx(−,−)

)

,

(2.15)
where now the decomposition on the right hand side refers to the equality
T(x,h)E = TxM ⊕ h induced by the direct product structure of E and the
identification ThH ∼= h via left multiplication, see [17, p. 101].

Remark 2.10. In later applications of Theorem 2.7, H will be a torus, H = T
n.

In particular, H is abelian. In this case, the Ad-invariance in Theorem 2.7 is
vacuous. Moreover, (2.15) reduces to

gx,h =

(
g′

x + hx(Ax(−), Ax(−)) hx(Ax(−),−)

hx(−, Ax(−)) hx(−,−)

)

.

In the literature, this is sometimes written as

g = g′ + A � A,

where, unfortunately, hx is suppressed or assumed to be constant.



Vol. 25 (2024) Geometric T-Duality: Buscher Rules in General Topology 1301

3. Buscher Rules Revisited

The Buscher rules formulate the local behavior of metrics and B-fields under
T-duality. A priori, they only apply to trivial torus bundles over Euclidean
space, for instance, over a coordinate patch. We first review the Buscher rules
for higher tori, give then a reformulation when the metrics are replaced by
their Kaluza–Klein connections, and finally produce a completely coordinate-
free reformulation. It is this latter formulation that we generalize in Sect. 4.

3.1. Buscher Rules for Toroidal Symmetries

We first recall the classical Buscher rules for a T
n-symmetry. The case n = 1

has been treated by Buscher in [14]. Rules for higher n are described, e.g., in
[25], also see [10] for a review.

The Buscher rules apply to a manifold E = R
s ×T

n. On E we consider a
Riemannian T

n-invariant metric g and a T
n-invariant 2-form B, the “B-field”.

With respect to the standard coordinates, we may identify g with a block
matrix

g =

(
gbas gmix

gtr
mix gfib

)

with symmetric matrices gbas ∈ C∞(Rs)s×s and gfib ∈ C∞(Rs)n×n, and an
arbitrary matrix gmix ∈ C∞(Rs)s×n. We also identity B with a block matrix

B =

(
Bbas Bmix

−Btr
mix Bfib

)

where Bbas ∈ C∞(Rs)s×s and Bfib ∈ C∞(Rs)n×n are skew-symmetric and
Bmix ∈ C∞(Rs)s×n is arbitrary. We make the assumption that Bfib = 0, so
that the B-field must not have components purely in fiber direction. Note that
for n = 1 this is automatic. Pairs (g,B) with the condition Bfib = 0 will be
called Buscher pairs.

To proceed, we form the “background” matrix

Q =

(
Qbas Qmix

Q′
mix Qfib

)

:= g + B.

The dualization process requires to form the “dual” matrix

Q̂ :=

(
Qbas − QmixQ−1

fibQ
′
mix QmixQ−1

fib

−Q−1
fibQ

′
mix Q−1

fib

)

.

Dual metric and B-field are now obtained by taking the symmetric and anti-
symmetric parts of Q̂, respectively, i.e.,

ĝ :=
1
2
(Q̂ + Q̂tr) and B̂ :=

1
2
(Q̂ − Q̂tr).

A standard calculation shows that (ĝ, B̂) is again a Buscher pair and that
the relation between the Buscher pairs (g,B) and (ĝ, B̂) is described by the
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following equations:

ĝbas = gbas − gmixg−1
fibg

tr
mix + Bmixg−1

fibB
tr
mix (3.1)

ĝmix = Bmixg−1
fib (3.2)

ĝfib = g−1
fib (3.3)

B̂bas = Bbas − Bmixg−1
fibg

tr
mix + gmixg−1

fibB
tr
mix (3.4)

B̂mix = gmixg−1
fib (3.5)

It is straightforward to see that these rules reduce in the case of n = 1 to the
usual Buscher rules. It is also straightforward to see that ˆ̂

Q = Q, implying
that the Buscher rules are symmetric in the data. For completeness, let us fix
the following definition.

Definition 3.1. Two Buscher pairs (g,B) and (ĝ, B̂) satisfy the Buscher rules
if (3.1) to (3.5) are satisfied.

3.2. Buscher Rules in Terms of Kaluza–Klein Connections

We consider again a metric g on E = R
s × T

n, and consider E as a principal
T

n-bundle over Rs. We apply Theorem 2.7 and Remark 2.9, to obtain a triple
(A, g′, h) consisting of a Riemannian metric g′ on R

s, a 1-form A ∈ Ω1(Rs,Rn),
and a family h of inner products on R

n parameterized by R
s. Now we consider

Buscher quadruples (A, g′, h,B) instead of Buscher pairs (g,B). By Theo-
rem 2.7 there is a bijection between Buscher quadruples and Buscher pairs.

The expression for the metric g given in Remark 2.10 now reads

g =
(

g′ + AtrhA Atrh
hA h

)

.

In other words, we have

gbas = g′ + AtrhA , gmix = Atrh and gfib = h.

We employ the same procedure on the dual side, getting

ĝbas = ĝ′ + ÂtrĥÂ , ĝmix = Âtrĥ and ĝfib = ĥ.

The Buscher rules now attain the following simple form:

ĝ′ = g′ (3.6)

Âtr = Bmix (3.7)

ĥ = h−1 (3.8)

B̂bas = Bbas − BmixA + (BmixA)tr (3.9)

B̂mix = Atr (3.10)

Again for completeness, we fix the following definition and result.

Definition 3.2. Two Buscher quadruples (A, g′, h,B) and (Â, ĝ′, ĥ, B̂) satisfy
the Buscher rules, if the (3.6) to (3.10) are satisfied.
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Lemma 3.3. Under the bijection between Buscher pairs and Buscher quadru-
ples, the Buscher rules of Definitions 3.1 and 3.2 are equivalent.

3.3. Buscher Rules in Terms of Poincaré Forms

Next we want to give a coordinate-independent description of the Buscher rules
of Definition 3.2, which will again make them simpler. Let ω, ω̂ ∈ Ω1(Rs ×
T

n,Rn) be the Kaluza–Klein connections on E = R
s × T

n corresponding to
A and Â, respectively, i.e., ω := A1 + θ2 and ω̂ := Â1 + θ2. Here, the indices
refer to the pullback along the projections to the two factors, as explained in
Sect. 2.2. We introduce the 2-form

ρ := p̂r∗ω̂∧̇pr∗ω ∈ Ω2(Rs × T
2n),

where the symbol ∧̇ means that the standard scalar product on R
n is used in

the values the forms.

Lemma 3.4. Buscher quadruples (g′, A, h,B) and (ĝ′, Â, ĥ, B̂) satisfy the
Buscher rules of Definition 3.2 if and only if the following conditions are sat-
isfied:
(a) ĝ′ = g′

(b) ĥ = h−1

(c) p̂r∗B̂ − pr∗B = pr∗
T2nΩ − ρ.

Proof. (a) and (b) are (3.6) and (3.8). We have

−ρx,t,t̂ = ωx,t∧̇ω̂x,t̂ = (Ax + θT
n

t )∧̇(Âx + θT
n

t̂
)

= Ax∧̇Âx + Ax∧̇θT
n

t̂
+ θT

n

t ∧̇Âx + θT
n

t ∧̇θT
n

t̂
.

We change to coordinates w.r.t. Rs × T
n × T

n, which we label by i, μ, and μ̂.
Then, we obtain

−ρ(ei, ej) = AiÂj − AjÂi,−ρ(ei, eμ) = −Âμi,

−ρ(ei, eμ̂) = Aμ̂i and − ρ(eμ, eν̂) = δμν̂

Note that

(Bbas)ij = (pr∗B)(ei, ej), (Bmix)iμ = (pr∗B)(ei, eμ) and
(Bfib)μν = (pr∗B)(eμ, eν)

and similarly

(B̂bas)ij = (p̂r∗B̂)(ei, ej), (B̂mix)iμ̂ = (p̂r∗B̂)(ei, eμ̂) and

(B̂fib)μ̂ν̂ = (p̂r∗B̂)(eμ̂, eν̂),

and all other components vanish. Further, we have

(pr∗
T2nΩ)(eμ, eν̂) = −δμν̂ ,

with again all other components vanishing. Thus, (c) is equivalent to the fol-
lowing set of equations:

(B̂bas)ij − (Bbas)ij = AiÂj − AjÂi

(Bmix)iμ = Âμi
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(B̂mix)iμ̂ = Aμ̂i

The second and third equation are (3.7) and (3.10). The first equation, using
second and third, is equivalent to

B̂bas − Bbas = (BmixA)tr − BmixA

and this is precisely (3.9).

A straightforward computation using Lemma 3.3.1 (c) shows the follow-
ing.

Lemma 3.5. Suppose (A, g′, h,B) and (Â, ĝ′, ĥ, B̂) are Buscher quadruples sat-
isfying the Buscher rules of Definition 3.2. Then, we have

B1,2+3 = B1,2 + Â1 ∧ θ3 (3.11)

B̂1,2+3 = B̂1,2 + A1 ∧ θ3 (3.12)

over R
s × T

n × T
n. In particular, B and B̂ are T

n-invariant.

4. Geometric T-Duality

In this section, we give the central definitions of this article: we introduce
geometric T-backgrounds (Definition 4.1) and geometric T-duality correspon-
dences between them (Definition 4.9). We deduce a number of first conse-
quences; in particular, we relate geometric T-duality to T-duality with H-flux
and to topological T-duality.

4.1. Basic Definitions

Definition 4.1. A geometric T-background over a smooth manifold X is a triple
(E, g,G) consisting of a principal T

n-bundle E over X, a T
n-invariant Rie-

mannian metric g on E, and a bundle gerbe G over E with connection. Two
geometric T-backgrounds (E1, g1,G1) and (E2, g2,G2) over X are equivalent, if
there exists a bundle isomorphism f : E1 → E2 that is isometric with respect
to the metrics g1 and g2, and a connection-preserving bundle gerbe isomor-
phism G1

∼= f∗G2. The set of equivalence classes of geometric T-backgrounds
over X is denoted by T − BGgeo(X).

As every bundle gerbe with connection has a curvature 3-form, every
geometric T-background carries a 3-form H ∈ Ω3(E), the H-flux. Note that
H is closed, but in general not exact. The H-fluxes of equivalent geometric
T-backgrounds satisfy H1 = f∗H2.

If (E, g,G) and (Ê, ĝ, Ĝ) are geometric T-backgrounds over the same man-
ifold X, then the principal T2n-bundle E ×X Ê is called the correspondence
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space. It fits into an important commutative diagram:

E ×X Ê

p̂r

��


















pr

����
��
��
��
��

E

p
���

��
��

��
��

� Ê

p̂
��





X

Let ω ∈ Ω1(E,Rn) and ω̂ ∈ Ω1(Ê,Rn) be the Kaluza–Klein connections of
the metrics g and ĝ, respectively, under Theorem 2.7. Then, we consider the
2-form

ρg,ĝ := p̂r∗ω̂∧̇pr∗ω ∈ Ω2(E ×X Ê), (4.1)
where ∧̇ denotes the wedge product of R

n-valued forms w.r.t. the standard
inner product. Since ω and ω̂ are T

n-invariant (they are connections on a
principal bundle with abelian structure group), the 2-form ρg,ĝ is T2n-invariant.
We remark that the 2-form ρg,ĝ also appeared in [5,30].

Definition 4.2. A geometric correspondence over X consists of two geometric
T-backgrounds (E, g,G) and (Ê, ĝ, Ĝ) over X, and a connection-preserving
bundle gerbe isomorphism

D : pr∗G → p̂r∗Ĝ ⊗ Iρg,ĝ
.

Remark 4.3. We shall explore some consequences of the isomorphism D in
a geometric correspondence. For this, we will denote by F, F̂ ∈ Ω2(X) the
curvatures of the connections ω and ω̂, respectively.
(a) Since the curvatures of isomorphic bundle gerbes with connection coin-

cide, we have
pr∗H − p̂r∗Ĥ = dρg,ĝ, (4.2)

which is a condition in the context of T-duality with H-flux, see [5, Eq.
1.12] and Definition 4.24. From (4.2) and the definition of ρg,ĝ, one can
deduce the equivariance rule

R∗H = e∗H + e∗p∗F̂ ∧̇ h∗θ (4.3)

on E ×T
n, where R is the principal action, e the projection to E, and h

the projection to T
n. Similarly, on the dual side we obtain

R∗Ĥ = ê∗Ĥ + ê∗p̂∗F ∧ h∗θ (4.4)

on Ê × T
n. In particular, these formulas show that H and Ĥ are T

n-
invariant.

(b) We consider the 3-forms

K̃ := ω∧̇ p∗F̂ − H ∈ Ω3(E) and K̂ := ω̂∧̇ p̂∗F − Ĥ ∈ Ω3(Ê)

Using (4.3) and (4.4), one can show that R∗K̃ = e∗K̃ and R∗K̂ = ê∗K̂,
so that these forms descend to X. In fact, K̃ and K̂ both descend to the
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same 3-form K ∈ Ω3(X), i.e., p∗K = K̃ and p̂∗K = K̂. To see this, it
suffices to note that the pullbacks of K̃ and K̂ to the correspondence space
coincide, which again can be checked using (4.2) and (4.1). Summarizing,
every geometric correspondence determines a 3-form K ∈ Ω3(X) such
that

p∗K = ω∧̇ p∗F̂ − H and p̂∗K = ω̂∧̇ p̂∗F − Ĥ.

Note that dK = F ∧̇F̂ .

Remark 4.4. Geometric correspondence is a symmetric relation on the set
T − BGgeo(X). If D is a correspondence from (E, g,G) to (Ê, ĝ, Ĝ), then we
construct a correspondence from (Ê, ĝ, Ĝ) to (E, g,G) as follows. Let s : Ê ×X

E → E ×X Ê denote the swap map. Then, we consider

p̂r∗Ĝ = p̂r∗Ĝ ⊗ Is∗ρg,ĝ
⊗ I−s∗ρg,ĝ

s∗D−1⊗id
�� pr∗G ⊗ I−s∗ρg,ĝ

.

Since −s∗ρg,ĝ = ρĝ,g, this is again a geometric correspondence.

Definition 4.5. Two geometric correspondences over X, ((E, g,G), (Ê, ĝ, Ĝ),D)
and ((E′, g′,G′), (Ê′, ĝ′, Ĝ′),D′), are considered to be equivalent, if there exist
isometric bundle isomorphisms f : E → E′ and f̂ : Ê → Ê′, connection-
preserving bundle gerbe isomorphisms A : G → f∗G′ and Â : Ĝ → f̂∗Ĝ′, and a
connection-preserving 2-isomorphism

pr∗G D ��

pr∗A
��

p̂r∗Ĝ ⊗ Iρg,ĝ

p̂r∗Â⊗id

��

ξ
��
��
��
��
��
�

��
��
��
��
��
�

�� ��
��
��
��
��
�

��
��
��
��
��
�pr∗f∗G′ p̂r∗f̂∗Ĝ′ ⊗ Iρg,ĝ

F ∗pr′∗G′
F ∗D′

�� F ∗p̂r′∗Ĝ′ ⊗ F ∗Iρg′,ĝ′

where F := f × f̂ : E ×X Ê → E′ ×X Ê′. The set of equivalence classes of
geometric correspondences over X is denoted by Corrgeo(X).

Remark 4.6. In above definition, we have implicitly used that F ∗ρg′,ĝ′ = ρg1,ĝ1 ,
which follows from the fact that f and f̂ are connection-preserving, which in
turn follows from the assumption that f and f̂ are isometric (Remark 2.8).

Remark 4.7. Let H be a bundle gerbe with connection over X. Then, we may
send

((E, g,G), (Ê, ĝ, Ĝ),D) �→ ((E, g,G ⊗ p∗H), (Ê, ĝ, Ĝ ⊗ p̂∗H),D ⊗ idH).

This gives a well-defined action of the group of isomorphism classes of bundle
gerbes with connection on the set of equivalence classes of geometric corre-
spondences,

Grb∇(X) × Corrgeo(X) → Corrgeo(X).
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Remark 4.8. It is straightforward to see that equivalent geometric correspon-
dences determine the same 3-form K. The action of Remark 4.7 shifts this
3-form by curv(H).

Definition 4.9. A geometric correspondence D between two geometric
T-backgrounds (E, g,G) and (Ê, ĝ, Ĝ) over X is called geometric T-duality
correspondence if the following conditions hold:
(T1) The Riemannian metrics g′ and ĝ′ on X determined by the metrics g and

ĝ, respectively, under Theorem 2.7 coincide, i.e., g′ = ĝ′.
(T2) The families of inner products h and ĥ on R

n determined by the metrics
g and ĝ, respectively, under Theorem 2.7, satisfy h−1 = ĥ under their
identification with (n × n)-matrices.

(T3) Every point x ∈ X has an open neighborhood U ⊆ M such that the
following structures exist:
(a) Trivializations ϕ : U ×T

n → E|U and ϕ̂ : U ×T
n → Ê|U of principal

T
n-bundles over U .

(b) Two 2-forms B, B̂ ∈ Ω2(U×T
n) together with connection-preserving

isomorphisms T : ϕ∗G → IB and T̂ : ϕ̂∗Ĝ → IB̂ over U × T
n.

(c) Consider U × T
2n with projection maps pr, p̂r to U × T

n. Further,
consider the map Φ : U × T

2n → E ×X Ê defined by Φ(x, a, â) :=
(ϕ(x, a), ϕ̂(x, â)). Let P denote the principal T-bundle with connec-
tion over U × T

2n that corresponds to the isomorphism

Ipr∗B = pr∗IB

pr∗T −1
�� pr∗ϕ∗G = Φ∗pr∗G

Φ∗D�����
�����

��

Φ∗(p̂r∗Ĝ ⊗ Iρ) = p̂r∗ϕ̂∗Ĝ ⊗ IΦ∗ρ

p̂r∗T̂ ⊗id
�� p̂r∗IB̂ ⊗ IΦ∗ρ=Ip̂r∗B̂+Φ∗ρ

under the equivalence of Proposition 2.4. We require a connection-
preserving isomorphism

P ∼= pr∗
T2nP,

where P is the n-fold Poincaré bundle with its canonical connection.
The set of equivalence classes of geometric T-duality correspondences over
X (with the equivalence relation just as in Definition 4.5) is denoted by
T-Corrgeo(X).

Remark 4.10. If D is a geometric T-duality correspondence, then the inverse
correspondence s∗D−1 of Remark 4.4 is also a geometric T-duality correspon-
dence. Indeed, conditions (T1) and (T2) are obviously symmetric, and in (T3)
it is straightforward to show that swapping s and inversion D−1 have both the
effect of dualizing the bundle P . Thus, geometric T-duality is a symmetric
relation on the set T-Corrgeo(X).

Remark 4.11. It is straightforward to see that the action of Remark 4.7 re-
stricts to an action of Ĥ3(X) on T-Corrgeo(X). The properties of this action
are best studied in the context of differential T-duality and carried out in dif-
ferential cohomology, see Proposition 6.11. The result of Proposition 6.11 is
the following.
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Proposition 4.12. Let

T-Corrgeo(X) → Bun∇
Tn(X) × Bun∇

Tn(X) (4.5)

be the projection to the isomorphism classes of the principal Tn-bundles E and
Ê and their Kaluza–Klein connections ω and ω̂ induced by the metric g and
ĝ, respectively. We denote by (F, F̂ ) ∈ Ω2(X) × Ω2(X) the well-defined pair of
curvature forms. Consider the subgroup

FF,F̂ := {IŷF+yF̂ | y, ŷ ∈ R} ⊆ Grb∇(X).

Then, the quotient Grb∇(X)/FF,F̂ acts free and transitively in the fiber of
(4.5) over an element with curvature pair (F, F̂ ).

Remark 4.13. The assignments X �→ T − BGgeo(X) and X �→ T-Corrgeo(X)
are presheaves on the category of smooth manifolds. In fact, it is straight-
forward and only omitted for brevity to enhance the sets T − BGgeo(X) and
T-Corrgeo(X) to bicategories, which then form sheaves of bicategories on the
site of smooth manifolds.

4.2. Relation to Buscher Rules

We will now make a deeper analysis of condition (T3) (c) and in particular
show that the Buscher rules are satisfied over U .

Proposition 4.14. Let ((E, g,G), (Ê, ĝ, Ĝ),D) be a geometric T-duality corre-
spondence. Consider an open set U ⊆ X together with the structure listed in
(T3) (b). Then, the Buscher pairs (g,B) and (ĝ, B̂) satisfy the Buscher rules.

Proof. Applying Proposition 2.4 to the bundle gerbe isomorphism in (T3) (c)
yields

p̂r∗B̂ − pr∗B = pr∗
T2nΩ − Φ∗ρg,ĝ.

In addition to (T1) and (T2), Lemmas 3.4 and 3.3 show that (g,B) and (ĝ, B̂)
satisfy the Buscher rules.

Conversely, geometric T-duality locally does not pose any more conditions
than the Buscher rules. To see this, we observe that any Buscher pair (g,B)
extends to a geometric T-duality background, with Es,n := R

s ×T
n, the given

metric g, and the trivial bundle gerbe IB . If Buscher pairs (g,B) and (ĝ, B̂)
satisfy the Buscher rules, then we have p̂r∗B̂ − pr∗B + ρg,ĝ = pr∗

T2nΩ by
Lemma 3.4. Thus, pr∗

T2nP corresponds under Proposition 2.4 to a connection-
preserving isomorphism

D : pr∗IB → p̂r∗IB̂ ⊗ Iρg,ĝ
(4.6)

over the correspondence space Es,n ×Rs Es,n.

Proposition 4.15. Suppose (g,B) and (ĝ, B̂) are Buscher pairs and satisfy the
Buscher rules. Then, the connection-preserving isomorphism (4.6) establishes
a geometric T-duality correspondence between (Es,n, g, IB) and (Es,n, ĝ, IB̂).

Proof. Conditions (T1) and (T2) of Definition 4.9 are Lemma 3.4 (a) and (b).
That condition (T3) is satisfied can be seen using the identity trivializations
ϕ, ϕ̂ and T , T̂ .
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4.3. Relation to Topological T-Duality

We shall first recall the definition of topological T-duality following [11,13,38].

Definition 4.16. A topological T-background over X is a principal Tn-bundle
E together with a bundle gerbe G over E. Two topological T-backgrounds
(E,G) and (E′,G′) over X are equivalent if there exists a bundle isomorphism
ϕ : E → E′ and a bundle gerbe isomorphism G ∼= ϕ∗G′. Equivalence classes of
topological T-backgrounds over X form a set T − BGtop(X).

Every geometric T-background (E, g,G) induces a topological
T-background (E,G) by forgetting the metric and forgetting the gerbe con-
nection. Conversely, if (E,G) is a topological T-background, one can choose
any T

n-invariant metric on E and use the fact that every bundle gerbe admits
a connection [41], to upgrade it to a geometric T-background. Thus, we have
a surjective map

T − BGgeo(X) → T − BGtop(X).

Definition 4.17. A topological correspondence between T-backgrounds (E,G)
and (Ê, Ĝ) is an isomorphism D : pr∗G → p̂r∗Ĝ over E ×X E. A topological
correspondence D is called topological T-duality correspondence, if each point
x ∈ X has an open neighborhood U ⊆ X such that the following structures
exist:
(a) Trivializations ϕ : U × T

n → E|U and ϕ̂ : U × T
n → Ê|U of principal

T
n-bundles over U .

(b) Bundle gerbe isomorphisms T : ϕ∗G → I and T̂ : ϕ̂∗Ĝ → I over U ×T
n.

(c) The bundle gerbe isomorphism

I pr∗T −1
�� pr∗ϕ∗G = Φ∗pr∗G Φ∗D �� Φ∗(p̂r∗Ĝ) = p̂r∗ϕ̂∗Ĝ p̂r∗T̂

�� I

over U × T
2n corresponds under the equivalence of Proposition 2.4 to

pr∗
T2nP.

Proposition 4.18. If D is a geometric T-duality correspondence between two
geometric T-backgrounds (E, g,G) and (Ê, ĝ, Ĝ) over X, then D is a topologi-
cal T-duality correspondence between the topological T-backgrounds (E,G) and
(Ê, Ĝ).

Proof. Discarding all metrics and connections from Definitions 4.2 and 4.9
results precisely in Definition 4.16.

Corollary 4.19. If two geometric T-backgrounds (E, g,G) and (Ê, ĝ, Ĝ) over X
are in geometric T-duality correspondence, then the homomorphism

KG(E)
pr∗

�� Kpr∗G(E ×X Ê) D �� K p̂r∗Ĝ(E ×X Ê)
p̂r∗ �� KĜ(Ê)

of twisted K-theory groups is an isomorphism.

There is also an interesting converse question. Suppose two topological
T-backgrounds are in topological T-duality correspondence. Can one lift them
to geometric T-backgrounds that are in geometric T-duality correspondence?
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Proposition 4.20. Every topological T-duality correspondence can be lifted to a
geometric T-duality correspondence. In more detail, suppose (E,G) and (Ê, Ĝ)
are topological T-backgrounds, and suppose D is a topological T-duality cor-
respondence. Then, there exist T

n-equivariant metrics g and ĝ on E and Ê,
connections on G and Ĝ and a connection on D such that D is a geometric
T-duality correspondence between (E, g,G) and (Ê, ĝ, Ĝ).

Proof. Combines Propositions 6.5 and 6.4, to be proved later using the local
formalism.

Remark 4.21. It is straightforward to see that Proposition 4.18 induces a map

T-Corrgeo(X) → T-Corrtop(X).

Proposition 4.20 implies that this map is surjective.

Remark 4.22. A purely topological version of the action of Remark 4.11,

H3(X) × T-Corrtop(X) → T-Corrtop(X)

exists, and it obviously acts in the fibers of the map T-Corrtop(X) → BunTn(X)
× BunTn(X). Bunke–Rumpf–Schick have investigated a similar action in [11,
§7.2].

4.4. Relation to T-Duality with H-Flux

In this section, we show that geometric T-duality implies T-duality with H-flux
in the sense developed by Bouwknegt–Evslin–Mathai in [5] and Bouwknegt–
Hannabuss–Mathai in [6]. In these papers, T-duality is not considered as a
relation between T-backgrounds, but rather as a transformation that takes a
T-background to another. A description of T-duality with H-flux as a relation
on a class of suitable backgrounds has been given by Gualtieri-Cavalcanti in
[15] based on [5,6], and we will use this here.

Definition 4.23. A T-background with H-flux over X is a principal Tn-bundle
E over X together with a closed 3-form H ∈ Ω3(E) with integral periods.

Every geometric T-background (E, g,G) induces one with H-flux where
the metric g is forgotten and H is the curvature of G. Conversely, every T-
background with H-flux (E,H) can be upgraded to a geometric T-background
by choosing some T

n-invariant metric and some bundle gerbe with connection
of curvature H.

For the following definition, we consider the correspondence space E ×X

Ê, and at each point (e, ê), projecting to some x ∈ X, the subspaces Ve, V̂ê ⊆
Te,ê(E ×X Ê) = TeE ×TxX TêÊ obtained as the image of the maps

i : Rn ∼=→ VeE ↪→ TeE ×TxX TêÊ, v �→ (T1Re(v), 0) Ve := Im(i)

î : Rn ∼=→ V̂êE ↪→ TeE ×TxX TêÊ, w �→ (0, T1Rê(w)) V̂ê := Im(̂i).

Definition 4.24. A T-duality correspondence with H-flux consists of two T-
backgrounds with H-flux (E,H) and (Ê, Ĥ) and a T

2n-invariant 2-form F ∈
Ω2(E ×X Ê) such that
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(a) pr∗H − p̂r∗Ĥ = dF .
(b) The restriction of Fe,ê to Ve×V̂ê is non-degenerate, for all (e, ê) ∈ E×X Ê.

Now we are in position to show that geometric T-duality reduces to T-
duality with H-flux. This is a result of Kunath’s PhD thesis [34, Thm. 5.10].

Proposition 4.25. Suppose (E, g,G) and (Ê, ĝ, Ĝ) are in geometric T-duality
correspondence D. Then, F := ρg,ĝ defined in (4.1) is a T-duality correspon-
dence with H-flux.

Proof. As remarked in Sect. 4.1, the 2-form ρg,ĝ is T
2n-invariant. The first

condition is proved in Remark 4.3. For the second condition, we have

Fe,ê((T1Re(v), 0), (0, T1Rê(w))) = ω̂ê(0) · ωe(0) − ω̂ê(T1Rê(w)) · ωe(T1Re(v))
= −w · v;

i.e., we obtain (minus) the standard scalar product of R
n, which is non-

degenerate.

Remark 4.26. For a general base manifold X, one cannot expect that every
given T-duality correspondence with H-flux can be upgraded to a geometric
(or only topological) T-duality correspondence. Indeed, a topological T-duality
correspondence implies the triviality of the class c1(E) ∪ c1(Ê) ∈ H4(X,Z),
while a T-duality correspondence with H-flux only implies the triviality of that
class in de Rham cohomology.

5. Local Perspective to Geometric T-Duality

We may see condition (T3) of Definition 4.9 as enforcing a geometric T-duality
correspondence to be locally trivial. Just as for locally trivial fiber bundles,
one may then extract “local data”, or “gluing data”. It is instructive to first
do this in an ad hoc manner, which is the content of Sect. 5.1. In Sect. 5.2
we organize local data in a more systematic way, establishing the table in
Fig. 2 of Sect. 1. Sections 5.3 to 5.5 are devoted to a full proof of a bijection
between the set T-Corrgeo(X) of equivalence classes of geometric T-duality
correspondences and a set Locgeo(X) of equivalence classes of local data. In
Sect. 5.6, we reduce the discussion of local data to topological T-duality and
show that this reduction becomes the non-abelian cohomology with values in
the T-duality 2-group.

5.1. Extraction of Local Data

We suppose that we have a geometric T-duality correspondence D as in Def-
inition 4.9, between geometric T-backgrounds (E, g,G) and (Ê, ĝ, Ĝ) over X.
We assume then that X is covered by open sets Ui over which condition (T3)
holds, and that corresponding bundle trivializations ϕi, ϕ̂i, bundle gerbe triv-
ializations Ti, T̂i and 2-isomorphisms ξi are chosen for all Ui, where ξi are the
connection-preserving 2-isomorphisms

ξi : T̂i ◦ Φ∗
i D ◦ T −1

i ⇒ pr∗
T2nP. (5.1)
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Let aij : Ui ∩ Uj → T
n be the transition functions of E, which are de-

termined by the trivializations ϕi and ϕj , i.e., ϕj(x, a) · aij(x) = ϕi(x, a). It
will soon become necessary to choose and fix lifts of these transition functions
along R

n → T
n, which is always possible after eventually passing to a refine-

ment of the open cover. The former cocycle condition then reveals “winding
numbers” mijk ∈ Z

n such that

aij + ajk + mijk = aik (5.2)

and these integers mijk themselves satisfy the usual Čech cocycle condition.
We will also denote by aij the corresponding map

(Ui ∩ Uj) × T
n → (Ui ∩ Uj) × T

n : (x, a) �→ (x, a + aij(x))

that multiplies by aij(x); note that this map satisfies ϕi = ϕj ◦ aij . Next, we
consider the composite

IBi

T −1
i �� ϕ∗

i G = a∗
ijϕ

∗
jG

a∗
ijTj

�� Ia∗
ijBj

of bundle gerbe isomorphisms over (Ui∩Uj)×T
n, which corresponds by Propo-

sition 2.4 to a principal T-bundle Lij over (Ui ∩ Uj) × T
n with connection of

curvature a∗
ijBj − Bi.

The same works on the dual side, resulting in transition functions âij :
Ui ∩ Uj → R

n, winding numbers m̂ijk ∈ Z
n satisfying

âij + âjk + m̂ijk = âik, (5.3)

and principal T-bundles L̂ij over (Ui ∩ Uj) × T
n with connection of curvature

â∗
ijB̂j − B̂i.

Before we proceed, we remark that the local trivializations ϕi, ϕ̂i also
define local Tn-invariant metrics gi := ϕ∗

i g and ĝi := ϕ̂∗
i ĝ on Ui × T

n. Due to
the T

n-invariance of g and ĝ, we have

a∗
ijgj = gi and â∗

ij ĝj = ĝi. (5.4)

As seen in Proposition 4.14, the pairs (gi, Bi) and (ĝi, B̂i) satisfy the Buscher
rules.

Lemma 5.1. The principal T-bundles Lij and L̂ij are trivializable. Thus, there
exist Aij , Âij ∈ Ω1((Ui ∩ Uj) × T

n) and connection-preserving isomorphisms

λij : Lij → IAij
and λ̂ij : L̂ij → IÂij

over (Ui ∩ Uj) × T
n. In particular, we have

a∗
ijBj − Bi = dAij and â∗

ijB̂j − B̂i = dÂij . (5.5)

Proof. We assume that all non-empty double intersections Ui ∩ Uj are con-
tractible; this can again be achieved by passing to a refinement. Then, the first
Chern classes of Lij and L̂ij must be pullbacks from T

n. We have H2(Tn,Z) ∼=
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so(n,Z), the group of skew-symmetric integral (n × n)-matrices, and this iso-
morphism can be realized explicitly using the Poincaré bundle P over T

2: we
send a matrix D ∈ so(n,Z) to the principal T-bundle

PD :=
⊗

1≤α<β≤n

pr∗
αβPDαβ ,

see [42, §B]. Thus, there exist unique matrices Dij , D̂ij ∈ so(n,Z) and (non-
unique) bundle isomorphisms Lij

∼= pr∗
TnPDij

and L̂ij
∼= pr∗

TnPD̂ij
. Taking

connections into account, there exist 1-forms Aij , Âij ∈ Ω1((Ui ∩ Uj) × T
n)

and connection-preserving isomorphisms

λij : Lij → pr∗
TnPDij

⊗ IAij
and λ̂ij : L̂ij → pr∗

TnPD̂ij
⊗ IÂij

over (Ui ∩ Uj) × T
n.

We show next that Dij = D̂ij = 0, implying the claim of the lemma.
This will be a consequence of the geometric T-duality correspondence, and so
we need to work over (Ui ∩ Uj) × T

2n. We consider the following maps:

pr : (Ui ∩ Uj) × T
2n → (Ui ∩ Uj) × T

n : (x, a, â) �→ (x, a)

p̂r : (Ui ∩ Uj) × T
2n → (Ui ∩ Uj) × T

n : (x, a, â) �→ (x, â)

ãij : (Ui ∩ Uj) × T
2n → (Ui ∩ Uj) × T

2n : (x, a, â) �→ (x, a + aij(x), â + âij(x))

Φi : Ui × T
2n → E ×X Ê : (x, a, â) �→ (ϕi(x, a), ϕ̂i(x, â)),

and construct with them the following diagram of bundle gerbes with connec-
tions and connection-preserving isomorphisms over (Ui ∩ Uj) × T

2n:

Ipr∗a∗
ijBj

Ipr∗Bi

pr∗pr∗
Tn PDij

⊗Ipr∗Aij
��

pr∗
T2n P

��

pr∗T −1
i �� pr∗ϕ∗

i G

Φ∗
i D

��

pr∗a∗
ijϕ∗

j G
��

���������������
���������������

ã∗
ijΦ∗

j D

��

pr∗a∗
ijTj

��

Ipr∗a∗
ijBj

pr∗a∗
ijT −1

j

��

ã∗
ijpr∗

T2n P

��
Ip̂r∗B̂i+Φ∗

j ρ p̂r∗ϕ̂∗
i Ĝ ⊗ IΦ∗

i ρ

�� �����
����������
�����

p̂r∗T̂i�� p̂r∗â∗
ij ϕ̂∗

j Ĝ ⊗ Iã∗
ijΦ∗

j ρ
p̂r∗â∗

ij T̂j

�� Ip̂r∗â∗
ijB̂j+ã∗

ijΦ∗
j ρ

Ip̂r∗B̂i+Φ∗
j ρ

p̂r∗T̂ −1
i

��

p̂r∗pr∗
Tn P

D̂ij
⊗Ip̂r∗Âij

��

ξi��

��

p̂r∗λ̂ij

���������

���������

ã∗
ijξ

−1
j

��

pr∗λ
−1
ij

�� �
��
��
��
�

��
��
��
��

(5.6)

The unlabeled double arrows are the canonical unit and counit 2-isomorphisms
of the adjunction between a 1-isomorphism and its inverse. The rectangular
subdiagram in the middle commutes on the nose. The outer shape of the
diagram is, via Proposition 2.4, a connection-preserving bundle isomorphism

ηij : ã∗
ijpr

∗
T2nP ⊗ pr∗pr∗

TnPDij
⊗ Ipr∗Aij

∼= p̂r∗pr∗
TnPD̂ij

⊗ Ip̂r∗Âij
⊗ pr∗

T2nP (5.7)

over (Ui ∩ Uj) × T
2n.
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We shall forget the connections (and thus all trivial bundles) for a mo-
ment. Due to the equivariance of the Poincaré bundle discussed in Sect. 2.2,
the lifts aij and âij determine an isomorphism ã∗

ijpr
T2nP ∼= pr∗

T2nP. Using
this in (5.7), we are in the situation that all bundles are pulled back along the
projection (Ui ∩ Uj) × T

2n → T
2n. Hence, these bundles must already have

been isomorphic before pullback, and we conclude that there exists a bundle
isomorphism

P ⊗ pr∗PDij
∼= p̂r∗PD̂ij

⊗ P.

over T
2n. Hence, there also exists a bundle isomorphism

pr∗PDij
∼= p̂r∗PD̂ij

,

and this shows that both bundles separately are trivializable. This implies
Dij = D̂ij = 0.

Remark 5.2. The principal T-bundle Lij and L̂ij can be regarded as part of
the gluing data for the bundle gerbes G and Ĝ, respectively. Their triviality
in case of geometric (or only topological) T-duality shows that T-backgrounds
that can be part of a T-duality correspondence are of a special kind. More
precisely, it means exactly that the Dixmier-Douady classes of G and Ĝ are in
the second step of the filtration of H3(E,Z) that comes from the Serre spectral
sequence, see [11] and [42, §2.1].

Next we will spend some time on finding trivializations λij and λ̂ij with
particular covariant derivatives Aij and Âij . We start with arbitrary choices as
they exist by Lemma 5.1 and will then perform three revisions of the isomor-
phisms λ and λ̂, and accordingly shift the 1-forms Aij and Âij , finally arriving
at (5.18).

We will only discuss Aij , the treatment of Âij is analogous. We remark
that due to Lemma 3.5, (3.11), the 2-form a∗

ijBj−Bi is Tn-invariant; moreover,
we have

(a∗
ijBj − Bi)1+2 = (a∗

ijBj − Bi)1 − â∗
ijθ∧̇θ2 (5.8)

over (Ui ∩ Uj) × T
2n. Here, we use the notation introduced in Sect. 2.2: an

index (..)α means a pullback from the α-th T
n-factor, and the index (..)1+2

means a pullback along the addition of two T
n-factors. (5.5) and (5.8) imply

d((Aij)2 − (Aij)1) = −d(âijθ2−1).

This shows that we have a closed 1-form

αij := (Aij)2 − (Aij)1 + âijθ2−1 ∈ Ω1
cl((Ui ∩ Uj) × T

2n). (5.9)

Since the de Rham cohomology class of αij can only have contributions from
the torus, and these contributions must be linear combinations of the genera-
tors [θ] ∈ H1(S1,R), there exists a smooth map βij : (Ui ∩ Uj) ×T

2n → R and
vectors pij , qij ∈ R

n such that

αij = dβij + pijθ1 + qijθ2. (5.10)
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Moreover, since the definition of αij is skew-symmetric with respect to the
exchange of the two T

n-factors, we have qij = −pij . We may now shift the
isomorphism λij by the smooth map

(Ui ∩ Uj) × T
n → T : (x, a) �→ −pija.

Its derivative is −pijθ; thus, Aij becomes replaced by Aij + pijθ, and (5.10) is
replaced by just

αij = dβij . (5.11)

In particular, we have shown that λij can be chosen such that αij is trivial in
de Rham cohomology. The left hand side is still skew-symmetric, and so we
have d(βij + s∗βij) = 0, where s is the map that swaps the T

n factors. This
means that cij := βij(x, a, b) + βij(x, b, a) is a constant function. Shifting βij

by − 1
2cij , we can achieve that cij = 0, i.e., achieve that βij is skew-symmetric

in a and b.
Over (Ui ∩ Uj) × T

3n one can deduce from (5.9) the cocycle condition

(dβij)1,3 = (dβij)1,2 + (dβij)2,3.

This shows that there exists a constant cij ∈ R such that

βij(x, a, c) = βij(x, b, c) + βij(x, a, b) + cij

for all a, b, c ∈ T
n. Putting a = b = c shows that cij = 0. Putting b = 0 implies

that
βij(x, a, c) = βij(x, 0, c) + βij(x, a, 0).

Thus, we may define β̃ij : (Ui ∩ Uj) × T
n → R by β̃ij(x, a) := βij(x, a, 0) and

obtain, using the skew-symmetry of βij ,

βij(x, a, b) = β̃ij(x, a) − β̃ij(x, b).

We are now in position to make a second revision of the choice of the isomor-
phism λij , and shift it by the smooth map (Ui ∩ Uj) × T

n → T : (x, a) �→
−β̃ij(x, a). This shifts Aij by dβ̃ij . Then, (5.11) is replaced by αij = 0, and
(5.9) results in

(Aij)2 − (Aij)1 = −âijθ2−1. (5.12)

On the dual side, we obtain analogously

(Âij)2 − (Âij)1 = −aijθ2−1. (5.13)

Next we have to bring Aij and Âij together, and consider for this purpose
the connection-preserving isomorphism ηij of (5.7). By Lemma 5.1, it simplifies
to a connection-preserving isomorphism

ηij : ã∗
ijpr∗

T2nP ⊗ Ipr∗Aij
→ Ip̂r∗Âij

⊗ pr∗
T2nP. (5.14)

As a result of the fixed lifts aij and âij , we obtain canonically a connection-
preserving isomorphism

Rij : ã∗
ijpr∗

T2nP → pr∗
T2nP ⊗ Iψij

(5.15)
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over (Ui ∩ Uj) × T
2n, see (2.8). Here, ψij ∈ Ω1((Ui ∩ Uj) × T

2n) with

ψij := −aijdâij − aij p̂r∗θ + âijpr∗θ, (5.16)

Under the isomorphism Rij of (5.15), we obtain from (5.14) a connection-
preserving bundle isomorphism

Iψij
⊗ Ipr∗Aij

∼= Ip̂r∗Âij
,

which in turn corresponds via the bijection (2.2) to a smooth map hij : (Ui ∩
Uj) × T

2n → T such that

p̂r∗Âij = pr∗Aij + ψij + h∗
ijθ. (5.17)

Lemma 5.3. The maps hij are independent of the T
2n-factor.

Proof. Considering (5.17) over (Ui ∩ Uj) × T
4n twice,

(Âij)4 = (Aij)2 + (ψij)2,4 + (h∗
ijθ)2,4

(Âij)3 = (Aij)1 + (ψij)1,3 + (h∗
ijθ)1,3,

taking their difference, and using (5.12) to (5.16) yields

(h∗
ijθ)2,4 = (h∗

ijθ)1,3.

This implies that

zij := hij(x, b, b̂)−1 · hij(x, a, â) ∈ T

is a constant. Putting a = b and â = b̂ shows that zij = 0. We obtain
hij(x, b, b̂) = hij(x, a, â). This shows the claim.

We now make one last revision of the choice of the isomorphism λ̂ij , and
shift it by hij . This changes Âij by h∗

ijθ, and hence turns (5.17) into

p̂r∗Âij = pr∗Aij + ψij . (5.18)

Note that (5.12) and (5.13) continue to hold, as a change by a 1-form that
does not depend on T

n cancels itself on both sides.
The definition of the principal T-bundle Lij induces a canonical connection-

preserving bundle isomorphism

Lij ⊗ a∗
ijLjk

∼= Lik

over (Ui ∩ Uj ∩ Uk) × T
n. Under the trivialization λij , it corresponds to a

smooth map
cijk : (Ui ∩ Uj ∩ Uk) × T

n → T

such that
Aik = Aij + a∗

ijAjk + c∗
ijkθ. (5.19)

Further, by going to a quadruple intersection, it is straightforward to see that
we obtain a cocycle condition

a∗
ijcjkl · cijl = cijk · cikl. (5.20)

The same holds on the dual side, leading to a smooth map ĉijk satisfying

Âik = Âij + â∗
ijÂjk + ĉ∗

ijkθ (5.21)
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and the cocycle condition

a∗
ij ĉjkl · ĉijl = ĉijk · ĉikl. (5.22)

Lemma 5.4. The following equation of maps (Ui ∩ Uj ∩ Uk) × T
2n → T holds:

p̂r∗ĉijk = pr∗cijk · fijk,

where fijk is defined by the expression

fijk : (Ui∩Uj∩Uk)×T
2n → T : (x, a, â) �→ m̂ijka−mijk(â+âik(x))−ajk(x)âij(x).

Proof. We put the diagrams (5.6) for ij and jk, respectively, next to each other.
In the middle, two occurrences of ã∗

jkξj cancel, and we obtain the following
equality of connection-preserving 2-isomorphisms:

Ipr∗Bk

Ipr∗Aik

��

pr∗c−1
ijk

�� ��
��
��
��
��
��
�

��
��
��
��
��
��
�

Ipr∗Ajk
��

pr∗
T2nP

��

Ipr∗a∗
jkBj

ηjk
������

		 ������
ã∗

jkpr∗
T2nP
��

Ipr∗a∗
jk

Aij
�� Ipr∗a∗

jka∗
ijBi

ã∗
jkηij

������



 ������
ã∗

jkã∗
ijpr∗

T2nP
��

Ipr∗a∗
ikBi

ã∗
ikpr∗

T2nP
��

Ip̂r∗B̂k+Φ∗
kρ

Ip̂r∗Âik

��Ip̂r∗Âjk

�� Ip̂r∗â∗
jkB̂j+ã∗

jkΦ∗
j ρIp̂r∗â∗

jk
Âij

�� Ip̂r∗â∗
jkâ∗

ijB̂i+ã∗
jkã∗

ijΦ
∗
i ρ

p̂r∗ĉijk�� 













Ip̂r∗â∗
ikB̂i+ã∗

ikΦ∗
i ρ

=

Ipr∗Bk

��

Ipr∗Aik �� Ipr∗a∗
ikBi

ηik
������

		 ������
ã∗

ikpr∗
T2nP

��

Ip̂r∗B̂k+Φ∗
kρIp̂r∗Âik

�� Ip̂r∗â∗
ikB̂i+ã∗

ikΦ∗
i ρ

(5.23)

Our choice of isomorphisms Lij
∼= IAij

and L̂ij
∼= IÂij

is such that we have an
equality

I
Ipr∗Aij

��

pr∗
T2nP

��

I
ηij

����

�� ����
ã∗

ijpr∗
T2nP

��

I
Ipr∗Âij

�� I
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=

I
Ipr∗Aij

��

pr∗
T2nP

��

I

���
���

���
���

���
���

�

���
���

���
���

���
���

�
ã∗

ijpr∗
T2nP

��

pr∗
T2nP⊗Iψij

��

I
Ipr∗Âij

�� I

Rij
������

�� ����

Substituting this in (5.23) we collect on the left hand side an isomorphism
Rjk ◦ ã∗

jkRij and on the right hand side an isomorphism Rik. We compute the
relation between these two isomorphisms:

Rjk ◦ ã∗
jkRij = Rajk,âjk

◦ ã∗
jkRaij ,âij

(2.2.9)
↓
= Raij+ajk,âij+âjk

· (ajkâij)−1

= Raik−mijk,âik−m̂ijk
· (ajkâij)−1

(2.2.11)
↓
= Raik,âik

· f−mijk,−m̂ijk
· (−mijkâik) · (ajkâij)−1

= Rik · fijk,

with fijk as defined above.

We will see in the following sections that the differential forms and func-
tions collected so far, and the conditions derived for them, are sufficient.

5.2. Geometric T-Duality Cocycles

In this section, we organize the local data extracted in the previous section.
For this purpose, we fix the following definition. A geometric T-duality cocycle
with respect to an open cover {Ui} of X consists of the following data:

1. Riemannian, Tn-invariant metrics gi and ĝi on Ui × T
n,

2. 2-forms Bi, B̂i ∈ Ω2(Ui × T
n),

3. 1-forms Aij , Âij ∈ Ω1((Ui ∩ Uj) × T
n),

4. smooth maps aij , âij : Ui ∩ Uj → R
n,

5. mijk, m̂ijk ∈ Z
n, and

6. smooth maps cijk, ĉijk : (Ui ∩ Uj ∩ Uk) × T
n → T.

These local data are subject to the following conditions (LD1) to (LD9).
(LD1) The pair (aij ,mijk) is local data for a principal Tn-bundle E over X,

i.e.,

aik = mijk + aij + ajk

mjkl + mijl = mikl + mijk.

We remark that the second line follows from the first; it is only listed
for convenience.

(LD2) The pair (âij , m̂ijk) is local data for a principal Tn-bundle Ê over X,
i.e.,

âik = m̂ijk + âij + âjk
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m̂jkl + m̂ijl = m̂ikl + m̂ijk.

(LD3) The metrics gi yield a metric on E, i.e.,

a∗
ijgj = gi.

(LD4) The metrics ĝi yield a metric on Ê, i.e.,

â∗
ij ĝj = ĝi.

(LD5) The triple (Bi, Aij , cijk) is local data for a bundle gerbe with connec-
tion over E, i.e.,

a∗
ijBj = Bi + dAij

Aik = Aij + a∗
ijAjk + c∗

ijkθ

a∗
ijcjkl · cijl = cijk · cikl

(LD6) The triple (B̂i, Âij , ĉijk) is local data for a bundle gerbe with connec-
tion over Ê, i.e.,

â∗
ijB̂j = B̂i + dÂij

Âik = Âij + â∗
ijÂjk + ĉ∗

ijkθ

â∗
ij ĉjkl · ĉijl = ĉijk · ĉikl

(LD7) The pairs (gi, Bi) and (ĝi, B̂i) satisfy the Buscher rules.
(LD8) The second order Buscher rules are satisfied:

p̂r∗Âij = pr∗Aij − aij p̂r∗θ + âijpr∗θ − aij â
∗
ijθ.

(LD9) The third order Buscher rules are satisfied:

ĉijk(x, â) + mijk(âik(x) + â) = cijk(x, a) + m̂ijka − aij(x)âjk(x).

The data of a geometric T-duality cocycle are highly redundant; some
of these redundancies are described in the following. A minimized version will
be obtained in the context of topological T-duality (Sect. 5.6) and differential
T-duality (Sect. 6.2). Despite of its lavish data content, a geometric T-duality
cocycle clearly reflects the situation of a geometric T-duality correspondence,
with data from both sides separated from each other, subject to the Buscher
rules (LD7) to (LD9) relating them.

Remark 5.5. Let ωi, ω̂i ∈ Ω1(Ui × T
n,Rn) be the connections on the trivial

bundle Ui × T
n that are induced by the metrics gi and ĝi, respectively, under

Theorem 2.7. We remark that by (LD3) and (LD4) the bundle isomorphisms
aij and âij are isometries, and hence connection-preserving by Remark 2.8.
Thus, by bijection (2.2), the connections transform under the transition func-
tions as

ωi = ωj + a∗
ijθ and ω̂i = ω̂j + â∗

ijθ.

The connections in turn correspond to 1-forms Ai, Âi ∈ Ω1(Ui,R
n), via ωi =

(Ai)1 + θ2 and ω̂i = (Âi)1 + θ2, which then transform as

Ai = Aj + a∗
ijθ and Âi = Âj + â∗

ijθ.
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By (LD7) and Lemma 3.4, the equivariance rules of Lemma 3.5 apply to Bi

and B̂i, i.e.

(Bi)1,2+3 = (Bi)1,2 + (Âi)1 ∧ θ3 (5.24)

(B̂i)1,2+3 = (B̂i)1,2 + (Ai)1 ∧ θ3 (5.25)

over Ui ×T
n ×T

n. In particular, B̂i and Bi are T
n-invariant. We may further

consider the 3-forms Ki := ωi∧̇F̂ − dBi and K̂i := ω̂i∧̇F − dB̂i on Ui × T
n,

where F and F̂ are the globally defined curvatures of the connections ω and
ω̂, respectively. Using (LD7) one can show that Ki = K̂i and that they are the
pullback of a globally defined 3-form K ∈ Ω3(X) along Ui × T

n → X.

Remark 5.6. Similarly as proved in Sect. 5.1, (LD8) implies

(Aij)2 − (Aij)1 = −âijθ2−1.

(Âij)2 − (Âij)1 = −aijθ2−1.

In particular, Aij and Âij are T
n-invariant.

Remark 5.7. We notice that in (LD9) the right hand side is independent of
â, and the left hand side is independent of a. In other words, the right hand
side is constant in a, and the left hand side is constant in â, and these two
constants are equal. Explicitly, if we define

tijk : Ui ∩ Uj ∩ Uk → T

to be this constant, then we get

− ĉijk(x, â) − mijk(âik(x) + â) = tijk(x) = −cijk(x, a) − m̂ijka + aij(x)âjk(x)
(5.26)

for all a, â ∈ T
n. We deduce from this the equivariance rules

cijk(x, a + a′) = cijk(x, a) − m̂ijka′ (5.27)

ĉijk(x, â + â′) = ĉijk(x, â) − mijkâ′ (5.28)

Remark 5.8. The Buscher rules (LD7) to (LD9) determine ĝi, B̂i, Âij , and ĉijk

uniquely. If ĝi, B̂i, Âij , and ĉijk exist and satisfy (LD7) to (LD9), one can in
fact show that ĝi is a T

n-invariant Riemannian metric satisfying (LD4), and
that (B̂i, Âij , ĉijk) satisfy (LD6). The same holds upon exchanging quantities
with hats and without. In other words, either (LD3) and (LD5), or (LD4) and
(LD6) can be omitted in the above list of conditions. Since there is no way to
decide which ones should be omitted, we kept both.

We will next describe the conditions under which two geometric T-duality
cocycles are considered to be equivalent. We suppose that we have two cocycles

(gi, ĝi, Bi, B̂i, Aij , Âij , aij , âij ,mijk, m̂ijk, cijk, ĉijk)

(g′
i, ĝ

′
i, B

′
i, B̂

′
i, A

′
ij , Â

′
ij , a

′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, c′
ijk, ĉ′

ijk)

with respect to the same open cover {Ui}. These are considered to be equiva-
lent, if there exist:
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1. 1-forms Ci, Ĉi ∈ Ω1(Ui × T
n),

2. smooth maps pi, p̂i : Ui → R
n,

3. numbers zij , ẑij ∈ Z
n, and

4. smooth maps dij , d̂ij : (Ui ∩ Uj) × T
n → T,

such that the following conditions (LD-E1) to (LD-E8) are satisfied. Abusing
notation, we consider in the following the functions pi, p̂i eventually as maps
pi, p̂i : Ui × T

n → Ui × T
n given by (x, a) �→ (x, a + pi(x)) and (x, â) �→

(x, â + p̂i(x)), respectively.
(LD-E1) The bundles E and E′ corresponding to (aij ,mijk) and (a′

ij ,m
′
ijk)

are isomorphic:

a′
ij + pi = zij + pj + aij

m′
ijk + zij + zjk = zik + mijk

We remark that the second line follows from the first and (LD1); it
is only listed for convenience.

(LD-E2) The bundles Ê and Ê′ corresponding to (âij , m̂ijk) and (â′
ij , m̂

′
ijk)

are isomorphic:

â′
ij + p̂i = ẑij + p̂j + âij

m̂′
ijk + ẑij + ẑjk = ẑik + m̂ijk

(LD-E3) Under the bundle isomorphism of (LD-E1), the metrics g and g′

corresponding to gi and g′
i are identified:

p∗
i g

′
i = gi

(LD-E4) Under the bundle isomorphism of (LD-E2), the metrics ĝ and ĝ′

corresponding to ĝ and ĝ′ are identified:

p̂∗
i ĝ

′
i = ĝi

(LD-E5) The pair (Ci, dij) is a connection-preserving 1-isomorphism between
the bundle gerbes corresponding to (Bi, Aij , cijk) and (B′

i, A
′
ij , c

′
ijk):

p∗
i B

′
i = Bi + dCi

p∗
i A

′
ij = Aij − Ci + a∗

ijCj + d∗
ijθ

p∗
i c

′
ijk = cijk + dik − dij − a∗

ijdjk

(LD-E6) The pair (Ĉi, d̂ij) is a connection-preserving 1-isomorphism between
the bundle gerbes corresponding to (B̂i, Âij , ĉijk) and (B̂′

i, Â
′
ij , ĉ

′
ijk):

p̂∗
i B̂

′
i = B̂i + dĈi

p̂∗
i Â

′
ij = Âij − Ĉi + â∗

ijĈj + d̂∗
ijθ

p̂∗
i ĉ

′
ijk = ĉijk + d̂ik − d̂ij − â∗

ij d̂jk

(LD-E7) The following equality of 1-forms on Ui × T
2n holds:

p̂r∗Ĉi − pr∗Ci = −pip̂r∗θ − pidp̂i + p̂ipr∗θ
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(LD-E8) The following equality holds for all (x, a, â) ∈ (Ui ∩ Uj) × T
2n:

dij(x, a) + ẑija − zij(p̂i(x) + â′
ij(x)) + â′

ij(x)pi(x)

= d̂ij(x, â) + zij â + p̂j(x)aij(x).

Remark 5.9. Let ωi, ω
′
i ∈ Ω1(Ui × T

n,Rn) be the connections on the trivial
bundle Ui × T

n that are induced by the metrics gi and g′
i, respectively, under

Theorem 2.7. We remark that the bundle isomorphism pi is an isometry, and
hence connection-preserving by Remark 2.8. Thus, the connections transform
under the functions pi as ωi = ω′

i + p∗
i θ. The connections in turn correspond

to 1-forms Ai, A
′
i ∈ Ω1(Ui,R

n), via ωi = (Ai)1 +θ2 and ω′
i = (A′

i)1 +θ2, which
then, according to (2.2), transform as

Ai = A′
i + p∗

i θ. (5.29)

Analogous formulas hold on the dual side, i.e.,

Âi = Â′
i + p̂∗

i θ. (5.30)

Remark 5.10. From (LD-E7) one can derive the following equivariance rules
over Ui × T

2n:

(Ci)2 − (Ci)1 = p̂iθ1−2

(Ĉi)2 − (Ĉi)1 = piθ1−2

Remark 5.11. We notice that in (LD-E8) the left hand side is independent of
â, and the right hand side is independent of a. In other words, the right hand
side is constant in â, and the left hand side is constant in a, and these two
constants are equal. If we define

eij : Ui ∩ Uj → T

to be this constant, then we get, for all a, â ∈ T
n, the equality

−dij(x, a) − ẑija + zij(p̂i(x) + â′
ij(x)) − â′

ij(x)pi(x) = eij(x)

= −d̂ij(x, â) − zij â − p̂j(x)aij(x).

From this, we can deduce the following equivariance properties:

dij(x, a + a′) = dij(x, a) − ẑija
′ (5.31)

d̂ij(x, â + â′) = d̂ij(x, â) − zij â
′ (5.32)

The set of equivalence classes of geometric T-duality cocycles with respect
to an open cover {Ui} is denoted by Locgeo({Ui}). A refinement {Vj} → {Ui} of
open covers evidently induces a restriction map Locgeo({Ui}) → Locgeo({Vj}),
turning Locgeo into a direct system w.r.t. to refinements.

Definition 5.12. The direct limit of Locgeo({Ui}) over refinements of open cov-
ers is denoted by Locgeo(X).

With this precise definition of local data at hand, we will prove in the
following two sections that Locgeo(X) indeed classifies geometric T-duality
correspondences over X.
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5.3. Reconstruction of a Geometric T-Duality Correspondence

In the following, we describe a procedure that constructs from a geometric
T-duality cocycle

(gi, ĝi, Bi, B̂i, Aij , Âij , aij , âij ,mijk, m̂ijk, cijk, ĉijk)

a geometric T-duality correspondence in the sense of Definition 4.9. First of
all, the maps aij and âij become (after exponentiation) T

n-valued transition
functions, and we let E and Ê be the corresponding principal T

n-bundles.
Note that these come with canonical trivializations ϕi and ϕ̂i over Ui, which
induce the given transition functions. Due to (LD3) and (LD4), the locally
defined metrics gi and ĝi yield metrics on E and Ê, respectively, which are
Riemannian and T

n-invariant.
Next we construct the bundle gerbe G over E. We define the surjective

submersion π : Y → E by putting

Y :=
∐

i∈I

Ui × T
n

and π|Ui×Tn := ϕi. Over Y we consider the 2-form B defined by B|Ui×Tn := Bi.
The fiber products over E can be identified in the following way:

Y [k] ∼=
∐

(i1,...,ik)∈Ik

Yi1,...,ik
with Yi1,...,ik

:= (Ui1 ∩ · · · ∩ Uik
) × T

n, (5.33)

where the projection maps prj : Y [k] → Y become, under this identification,

prj |Yi1,...,ik
(x, a) = (ij , x, a + ai1ij

(x)). (5.34)

We remark that the more general projections prj1,...,jl
: Y [k] → Y [l] can then

be described using (5.34) in each component of the range separately.
On Y [2] we define the 1-form A by A|Yij

:= Aij ; then, the first line of
(LD5) implies pr∗

2B − pr∗
1B = dA. We may interpret A as a connection on the

trivial principal T-bundle L over Y [2], so that dA is its curvature. Finally, we
define an isomorphism

μ : pr∗
12L ⊗ pr∗

23L → pr∗
13L

over Y [3] as multiplication by the smooth map −c : Y → T, i.e., −c|Yijk
:=

−cijk. The second line of (LD5) implies that μ is connection-preserving, and
the third line implies that it satisfies the cocycle condition. This finishes the
construction of the bundle gerbe G.

Note that the pullback ϕ∗
i G comes with a canonical trivialization Ti :

ϕ∗
i G → IBi

induced by the section

Y

π

��

Ui × T
n

���������

���������
ϕi

�� E.

On the dual side, the construction of Ĝ is completely analogous, using
(LD6). In particular, we use the same manifold Y , but with the projection
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π̂ : Y → Ê defined by π̂|Yi
:= ϕ̂i. In particular, ϕ̂∗

i Ĝ comes with a canonical
trivialization T̂i : ϕ̂∗

i Ĝ → IB̂i
.

It remains to construct the connection-preserving isomorphism D on cor-
respondence space. We may consider the commutative diagram

Z

ζ
��

pr′

��





p̂r′

���
��

��
��

��
�

Y

π

��

E ×X Ê

p̂r

��


















pr

����
��
��
��
��

Y

π̂
��

E

p
���

��
��

��
��

� Ê

p̂
��





X

where
Z :=

∐

i∈I

Zi with Zi := Ui × R
2n,

and the maps are defined by ζ(i, x, a, â) := (ϕi(x, a), ϕ̂i(x, â)) as well as
pr′(i, x, a, â) := (i, x, a) and p̂r′(i, x, a, â) := (i, x, â). The fiber products of
ζ : Z → E ×X Ê can be identified as

Z [k] ∼=
∐

i1,...,ik

Zi1,...,ik
with Zi1,...,ik

:= Ui1∩· · ·∩Uik
×R

2n×Z
2n × · · · × Z

2n

︸ ︷︷ ︸
(k−1) times

under a diffeomorphism

((i1, x, a1, â1), . . . , (ik, x, ak, âk)) �→ (i1, . . . , ik, x, a1, â1,m2, m̂2, . . . ,mk, m̂k),

where the integers are defined by ap = a1 + ai1ip
(x) + mp for 2 ≤ p ≤ k, and

similarly for the m̂p.
The bundle gerbes G and Ĝ pull back to correspondence space and be-

come bundle gerbes with surjective submersion ζ. Thus, we can construct
the isomorphism D working over Z. For this, we need to find a smooth map
z : Z [2] → T and a 1-form ω ∈ Ω1(Z) such that

p̂r′∗B̂ + ζ∗ρg,ĝ = pr′∗B + dω over Z = Ui × R
2n

(5.35)

(p̂r′[2])∗Â + pr∗
1ω = (pr′[2])∗A + pr∗

2ω + z∗θ over Z [2] (5.36)

(p̂r′[3])∗ĉ + pr∗
12z + pr∗

23z = pr∗
13z + (pr′[3])∗c over Z [3] (5.37)

hold. We define ωi ∈ Ω1(Ui × R
2n) by

ωi = −adâ (5.38)

where (a, â) are the coordinates of R2n, and define ω by ω|Zi
:= ωi. Moreover,

we define zij : Zij → T by

zij(x, a, â,m2, m̂2) := m2â + âij(x)m2 + âij(x)a, (5.39)
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and define z by z|Zij
:= zij .

Lemma 5.13. Our definitions (5.38) and (5.39) satisfy (5.35) to (5.37).

Proof. Equation (5.35) follows from (LD7), as dω = Ω. For the remaining
equations, it is now important to understand the various projections Z [k] →
Z [l], under above identifications. We have:

pr1(i, j, x, a, â) = (i, x, a, â)

pr2(i, j, x, a, â) = (j, x, a + aij(x) + m2, â + âij(x) + m̂2)

From this, we can calculate pr∗
1ω and pr∗

2ω; together with (LD8) this gives
(5.36).

Finally, we have:

pr12(i, j, k, x, a, â,m2, m̂2,m3, m̂3) = (i, j, x, a, â,m2, m̂2)

pr23(i, j, k, x, a, â,m2, m̂2,m3, m̂3) = (j, k, x, aij(x) + a + m2, âij(x) + â + m̂2,

mijk + m3 − m2, m̂ijk + m̂3 − m̂2)

pr13(i, j, k, x, a, â,m2, m̂2,m3, m̂3) = (i, k, x, a, â,m3, m̂3)

Then, a direct calculation shows that

(pr∗
12z + pr∗

23z − pr∗
13z)|Zijk

= mijk(âik(x) + â) + âjk(x)aij(x) − m̂ijka.

This is, via (LD9), the claimed equality (5.37).

So far we have provided the structure of a geometric T-duality correspon-
dence. It remains to prove the axioms. Conditions (T1) and (T2) of Defini-
tion 4.9 follow from (LD7) via Lemmas 3.3 and 3.4. For (T3), consider one of
the open sets Ui, over which we have the trivializations ϕi and ϕ̂i, and the
trivializations Ti : ϕ∗

i G → IBi
and T̂i : ϕ̂∗

i Ĝ → IB̂i
mentioned above.

Lemma 5.14. The principal T-bundle with connection over Ui × T
2n that cor-

responds to the connection-preserving bundle gerbe isomorphism

Ipr∗Bi
= pr∗IBi

pr∗T −1
i �� pr∗ϕ∗

i G = Φ∗
i pr∗G

Φ∗
i
D�����

�����
��

Φ∗
i (p̂r∗Ĝ ⊗ Iρg,ĝ

) = p̂r∗ϕ̂∗
i Ĝ ⊗ IΦ∗

i
ρg,ĝ

p̂r∗T̂i⊗id
�� p̂r∗IB̂i

⊗ IΦ∗
i
ρg,ĝ

= Ip̂r∗B̂i+Φ∗ρg,ĝ

is given w.r.t. the covering Zi → Ui×T
2n by the connection 1-form ωi ∈ Ω1(Zi)

and the transition function zii : Z
[2]
i → T.

Proof. All bundle gerbes and bundle gerbe isomorphisms that appear in the
composition above just involve trivial principal T-bundles. The composition
has to be computed over a common refinement of all involved surjective sub-
mersions; here, Zi → Ui×T

2n is sufficient. The trivializations contribute, since
we work over a single open set Ui, the trivial functions ciii = 1 and ĉiii = 1. It
remains the contribution of Φ∗

i D, which is zii. For the connections, it is similar:
the trivializations contribute Aii = 0 and Âii = 0, and Φ∗

i D contributes ωi.



1326 K. Waldorf Ann. Henri Poincaré

It remains to notice that zii(x, a, â,m, m̂) = âm. This function, as well as
the 1-form ωi, are obviously pulled back along the following map of coverings:

Zi
��

��

R
2n

��

Ui × T
2n �� T

2n

Comparing with (2.6) and (2.7), we see that zii and ωi are the local data of
the Poincaré bundle and its connection, w.r.t. the section χl : R

2n → T
2n.

This shows that (T3) is satisfied.

Remark 5.15. Under reconstruction, the 3-forms K ∈ Ω3(X) from Remarks 5.5
and 4.3(b) coincide.

5.4. Well-Definedness of Reconstruction under Equivalence

In this section we show that the reconstruction of a geometric T-duality corre-
spondence from a geometric T-duality cocycle described in Sect. 5.3 is compat-
ible with equivalences between correspondences (Definition 4.5) and cocycles
(Sect. 5.2). For this purpose, we consider two geometric T-duality cocycles

(gi, ĝi, Bi, B̂i, Aij , Âij , aij , âij ,mijk, m̂ijk, cijk, ĉijk)

(g′
i, ĝ

′
i, B

′
i, B̂

′
i, A

′
ij , Â

′
ij , a

′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, c′
ijk, ĉ′

ijk)

and an equivalence between them provided by a tuple (Ci, Ĉi, pi, p̂i, zij , ẑij , dij ,

d̂ij). Moreover, we let ((E, g,G), (Ê, ĝ, Ĝ),D) and ((E′, g′,G′), (Ê′, ĝ′, Ĝ′),D′)
be the geometric T-duality correspondences reconstructed from the two cocy-
cles.

The functions pi and p̂i define bundle isomorphisms p : E → E′ and
p̂ : Ê → Ê′ due to (LD-E1) and (LD-E2). It is straightforward to see using
(LD-E3) and (LD-E4) that p and p̂ are isometric. Concerning the bundle gerbe
G and G′, we have a commutative diagram

Y

π

��

p′
�� Y

π′

��

E
p

�� E′

with p′(i, x, a) := (i, x, a + pi(x)), i.e., p′|Yi
= pi. Thus, we may construct a

bundle gerbe isomorphism A : G → p∗G′ using the common refinement

Y p′

����
��
��
��

��
��
��
�� (π,p′)

��
��

��
��

��

Y

π

��

E ×p π′ Y
prY ��

prE

��

Y

π′

��

E E
p

�� E′
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of their surjective submersions. We define the 1-form C ∈ Ω1(Y ) by setting
C|Ui×Tn := Ci, and consider the trivial bundle Q := IC over Y . Then, the first
ingredient of the isomorphism A is the equation p′∗B′ = B + curv(Q), which
follows immediately from the first equation in (LD-E5). The next part is to
provide a connection-preserving bundle isomorphism

α : L ⊗ pr∗
2Q → pr∗

1Q ⊗ (p′[2])∗L′

over Y [2]. Since all bundles are trivial (L = IA and L′ = IA′), this is the same
as a smooth map d : Y [2] → T such that

pr∗
1C + (p′[2])∗A′ = A + pr∗

2C + d∗θ.

Over Yij = (Ui ∩Uj)×T
n, this is a smooth map dij : (Ui ∩Uj)×T

n → T such
that

Ci + p∗
i A

′
ij = Aij + a∗

ijCj + d∗
ijθ;

thus, we can take the given data dij according to the second equation in (LD-
E5). Finally, we have to show that the diagram

pr∗
12L ⊗ pr∗

23L ⊗ pr∗
3Q

μ⊗id
��

id⊗pr∗
23α

��

pr∗
13L ⊗ pr∗

3Q

pr∗
13α

��

pr∗
12L ⊗ pr∗

2Q ⊗ pr∗
23(p

′[2])∗L′

pr∗
12α⊗id

��

pr∗
1Q ⊗ pr∗

12(p
′[2])∗L′ ⊗ pr∗

23(p
′[2])∗L′

id⊗(p′[3])∗μ′
�� pr∗

1Q ⊗ pr∗
13(p

′[2])∗L′

of bundle isomorphisms over Y [3] is commutative. Restricting to Yijk, this
means that

dik + cijk = ρ∗
i c

′
ijk + dij + a∗

ijdjk,

which is the third equation in (LD-E5). The dual side works precisely in an
analogous way, using (LD-E6).

It remains to produce the connection-preserving 2-isomorphism ξ of Def-
inition 4.5. We consider a commutative diagram

Z
P ′

��

ζ
��

Z

ζ′

��

E ×X Ê
P

�� E′ ×X Ê′

where P := p × p′, and P ′ : Z → Z is defined by

P ′|Zi
:= p̃i(x, i, a, â) := (x, i, a + pi(x), â + p̂i(x)).

The 2-isomorphism ξ is given by a function w : Z → T satisfying:

pr∗C + P ′∗ω′ = ω + p̂r∗Ĉ + w∗θ (5.40)

pr∗d + (P ′[2])∗z′ = z + p̂r∗d̂ + pr∗
1w − pr∗

2w (5.41)
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Here, ω, ω′ are the 1-forms (5.38) from the reconstruction of D and D′, respec-
tively, and z, z′ are the corresponding T-valued functions (5.39).

Lemma 5.16. The function w(i, x, a, â) := −p̂i(x)a satisfies (5.40) and (5.41).

Proof. We set wi := w|Zi
. Employing definitions, we find

p̃∗
i ω

′
i − ωi = −pidâ − adp̂i − pidp̂i

w∗
i θ = −p̂ida − adp̂i,

under which (5.40) becomes (LD-E7). In order to treat (5.41) we need to
compute the induced map P ′[2] : Z [2] → Z [2], resulting in

(i, j, x, a, â,m2, m̂2) �→ (i, j, x, a + pi(x), â + p̂i(x),m2 − zij , m̂2 − ẑij).

Using this, (5.41) becomes equivalent to

dij(x, a) + z′
ij(x, a + pi(x), â + p̂i(x),m2 − zij , m̂2 − ẑij)

= zij(x, a, â,m2, m̂2) + d̂ij(x, â) + wi(x, a, â)
−wj(x, a + aij(x) + m2, â + âij(x) + m̂2).

Inserting the definitions of zij and wi, and once using (LD-E2), one can see
that the latter equation is equivalent to (LD-E8), hence satisfied.

Summarizing the work of Sects. 5.3 and 5.4, we have constructed a well-
defined map Locgeo({Ui}) → T-Corrgeo(X). It is straightforward to see that
this map is invariant under refinements of open covers, and hence induces a
map

Locgeo(X) → T-Corrgeo(X). (5.42)

In the next section we show that it is a bijection.

5.5. Local-to-Global Equivalence

In this section, we prove the following result.

Proposition 5.17. The map (5.42) is a bijection,

Locgeo(X) ∼= T-Corrgeo(X).

We begin with showing surjectivity. Given a geometric T-duality corre-
spondence ((E, g,G), (Ê, ĝ, Ĝ),D), we extract local data as explained in Sect. 5.1,
using trivializations ϕi, ϕ̂i of the Tn-bundles, trivializations Ti, T̂i of the bundle
gerbes, and 2-isomorphisms ξi as in (5.1). Let

(gi, ĝi, Bi, B̂i, Aij , Âij , aij , âij ,mijk, m̂ijk, cijk, ĉijk)

be the local data obtained by these choices. Under reconstruction we obtain a
new geometric T-duality correspondence ((E′, g′,G′), (Ê′, ĝ′, Ĝ′),D′).

Obviously, bundle isomorphisms ψ : E′ → E and ψ̂ : Ê′ → Ê are given
by ψ([i, x, a]) := ϕi(x, a) and ψ̂([i, x, a]) := ϕ̂i(x, a). Concerning the bundle
gerbes, our extraction procedure exhibits G as canonically isomorphic to a
bundle gerbe defined as follows:
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1. Its surjective submersion is π : Y → E, where Y =
∐

i∈I

Ui × T
n and

π(i, x, a) := ϕi(x, a).
2. Its curving B ∈ Ω2(Y ) defined by B|Ui×Tn := Bi.
3. Its principal T-bundle is Lij , which is in turn isomorphic to IAij

under
the isomorphisms λij , see Lemma 5.1.

4. Its bundle gerbe product IAij
⊗ a∗

ijIAjk
→ IAik

is induced by the map
cijk, see (5.19).

Since we have a commutative diagram

Y

π′

��

Y

π

��

E′
ψ

�� E

pulling back along the diffeomorphism ψ leaves this structure as it is, yielding
a bundle gerbe with connection G′ over E′. We observe that G′ is precisely
the bundle gerbe reconstructed from the data (Bi, Aij , cijk). This way, we
obtain a connection-preserving isomorphism A : G′ → ψ∗G. Analogously, we
treat the dual side, and obtain another connection-preserving isomorphism
Â : Ĝ′ → ψ̂∗Ĝ.

It remains to treat the correspondence isomorphism D. (5.1) says that it
becomes—under the isomorphisms A and Â—2-isomorphic to an isomorphism
D′ defined over Z :=

∐
Ui × T

2n, with bundle the Poincaré bundle pr∗
T2nP,

and over Zij the bundle isomorphism ηij of (5.14). In more detail, this is a
connection-preserving line bundle isomorphism

ηij : pr∗IAij
⊗ ã∗

ijpr∗
T2nP → pr∗

T2nP ⊗ p̂r∗IÂij

which was composed of the isomorphism

Rij : ãijpr∗
T2nP → pr∗

T2nP ⊗ ψij

from (5.15) and the equality p̂r∗Âij = pr∗Aij + ψij from (5.18). In order to
compare D′ with the reconstructed correspondence isomorphism, we change
the covering of D′ along

Z ′ :=
∐

i∈I

Ui × R
2n → Z.

One can then trivialize the Poincaré bundle using the section χl : R2n → P,
see Sect. 2.2. This results into a 2-isomorphic 1-morphism D′′. As the covariant
derivative of χl is the 1-form ω := −adâ on R

2n, the principal T-bundle of D′′

is Iω. Its isomorphism is the composite

pr∗IAij
⊗ pr∗

2Iω
id⊗χl �� pr∗IAij

⊗ ã∗
ijpr∗

T2nP

id⊗Rij

��

pr∗
T2nP ⊗ p̂r∗IÂij χ−1

l ⊗id

�� pr∗
1Iω ⊗ p̂r∗IÂij

,
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where the projections pr1,pr2 : Z ′[2] → Z ′ are as in the proof of Lemma 5.13.
Using the formulas (2.5) and (2.10) we can calculate this isomorphism explic-
itly:

(a + aij(x) + m, â + âij(x) + m̂, 0) ∼ (a + aij(x), â + âij(x), −mâ − mâij(x))

Rij |a,â

��

(a, â, −mâ − mâij(x) − aâij(x)) �→ (a, â) · −zij(x, a, â, m, m̂)

where zij was defined in (5.39). This shows that the bundle isomorphism of
D′′ is multiplication with zij . Hence, D′′ is precisely the reconstructed isomor-
phism, proving the surjectivity in Proposition 5.17.

It remains to prove injectivity of reconstruction. For this purpose, we
look at two geometric T-duality cocycles,

(gi, ĝi, Bi, B̂i, Aij , Âij , aij , âij ,mijk, m̂ijk, cijk, ĉijk)

(g′
i, ĝ

′
i, B

′
i, B̂

′
i, A

′
ij , Â

′
ij , a

′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, c′
ijk, ĉ′

ijk)

consider the corresponding reconstructed geometric T-duality correspondences
((E, g,G), (Ê, ĝ, Ĝ),D) and ((E′, g′,G′), (Ê′, ĝ′, Ĝ′),D′), and assume that these
are equivalent in the sense of Definition 4.5. Thus, there exist isometric bundle
isomorphisms p : E → E′ and p̂ : Ê → Ê′, connection-preserving bundle gerbe
isomorphisms A : G → p∗G′ and Â : Ĝ → p̂∗Ĝ′, and a connection-preserving
2-isomorphism

pr∗G D ��

pr∗A
��

p̂r∗Ĝ ⊗ Iρg1,ĝ1

p̂r∗Â⊗id

��

ξ














�� 











pr∗p∗G′ p̂r∗Ĝ′ ⊗ Iρg1,ĝ1

P ∗pr∗G′
P ∗D′

�� P ∗p̂r∗Ĝ′ ⊗ P ∗Iρg2,ĝ2

where P := p × p̂ : E ×X Ê → E′ ×X Ê′. It is straightforward to see that the
isomorphisms p and p̂ induce smooth maps pi, p̂i : Ui → R

n and zij , ẑij ∈ Z
n

satisfying (LD-E1) to (LD-E4). Note that the surjective submersions of all 4
bundle gerbes have the same domain Y =

∐
Yi, with Yi := Ui × T

n, and the
bundle isomorphisms p and p̂ lift to Y [k] as the component-wise defined maps

pi1 : (Ui1 ∩ · · · ∩ Uik
) × T

n → (Ui1 ∩ · · · ∩ Uik
) × T

n : (x, a) �→ (x, a + pi1(x)),

and the analogous p̂i. We may thus assume that the isomorphisms A and
Â consist of principal T-bundles Q and Q̂ with connections over Y . Their
restrictions to Yi will be denoted by Qi and Q̂i, respectively. The curvatures
are curv(Qi) = p∗

i B
′
i − Bi and curv(Q̂i) = p̂∗

i B̂
′
i − B′

i, and their connection-
preserving bundle isomorphisms over Y [2] ∼=

∐
Yij are component-wise

χij : IAij
⊗ pr∗

2Qj → pr∗
1Qi ⊗ Ip∗

i A′
ij
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and an analogous χ̂ij .
As explained in the proof of Lemma 5.1, there exist bundle isomorphisms

Qi
∼= pr∗

TnPFi
and Q̂i

∼= pr∗
TnPF̂i

, where F, F̂ ∈ so(n,Z). The isomorphism
χij shows that Fi = Fj and F̂i = F̂j , so that we can omit the indices. The
2-isomorphism ξ induces over (Ui ∩ Uj) × T

2n an isomorphism

pr∗
T2nP ⊗ pr∗

T2n p̂r∗PF̂
∼= pr∗

T2npr∗PF ⊗ pr∗
T2nP

which then implies F = F̂ = 0. Thus, there exist 1-forms Ci, Ĉi ∈ Ω1(Yi) and
connection-preserving bundle isomorphisms κi : Qi → ICi

and κ̂i : Q̂i → IĈi
.

The isomorphisms χij and χ̂ij then induce functions dij , d̂ij : (Ui ∩Uj)×T
n →

T such that (LD-E5) and (LD-E6) are satisfied.
Note that we have dCi = curv(Qi) = p∗

i B
′
i − Bi. From this, (5.24) to

(5.30) one can then derive

(dCi)1,3 − (dCi)1,2 = −d(p̂iθ3−2)

over Ui × T
n × T

n. Now we proceed similar as in Sect. 5.1. We have a closed
1-form αi ∈ Ω1

cl(Ui × T
2n) defined by αi := (Ci)1,3 − (Ci)1,2 + p̂iθ3−2. Since

the de Rham cohomology of Ui ×T
2n only has torus contributions, there exist

a smooth map βi : Ui × T
2n → R and vectors ri, si ∈ R

n such that

αi = dβi + riθ2 + siθ3.

Moreover, since the definition of αi is skew-symmetric with respect to the
exchange of a with b; this implies that ri = −si. We may now shift the iso-
morphism κi by the smooth map Ui × T

n → T : (x, a) �→ ria. This shifts Ci

by riθ and shows that

(Ci)1,3 − (Ci)1,2 + p̂iθ3−2 = dβi.

Again, the left hand side is skew-symmetric, so that

d(βi + s∗βi) = 0,

where s swaps the two T
n-factors. Thus, ci := βi + s∗βi ∈ R is a constant.

Shifting βi, we can achieve that this constant is zero, and that βi is skew-
symmetric; moreover, defining β̃i : Ui × T

n → R by β̃i(x, a) := βi(x, a, 0), we
obtain

βi(x, a, b) = β̃i(x, a) − β̃i(x, b).

We may now shift κi by the function (x, a) �→ β̃i(x, a), getting the formula

(Ci)1,3 = (Ci)1,2 − p̂iθ3−2. (5.43)

On the dual side, we obtain analogously

(Ĉi)1,3 = (Ĉi)1,2 − piθ3−2. (5.44)

We continue by looking at the local description of the 2-isomorphism ξ.
We pull back to the space Z =

∐
Ui × T

2n, where, as D and D′ are obtained
by reconstruction, they consist of the trivial bundles with connections ωi, ω

′
i

and of the bundle morphisms zij , z
′
ij defined in (5.38) and (5.39). Note that
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ω′
i = ωi, whereas zij and z′

ij are different. Thus, the 2-isomorphism ξ consists
of smooth maps wi : Ui × R

2n → T such that

p̃∗
i ω + pr∗Ci = pr∗

T2nω + p̂r∗Ĉi + w∗
i θ (5.45)

and
p̃∗

i z
′
ij + pr∗dij = p̂r∗d̂ij(x, â) + zij − wj + wi (5.46)

also see (5.40) and (5.41). We study now the dependence of wi on the first and
the second R

n-factor. From (5.45) and (5.43), one can show that

(w∗
i θ)1,3,4 − (w∗

i θ)1,2,4 = d(p̂i(a − a′))

over (x, a, a′, â) ∈ Ui ×R
n ×R

n ×R
n holds. Similarly, (5.45) and (5.44) imply

that
(w∗

i θ)1,2,4 − (w∗
i θ)1,2,3 = 0.

In particular, defining w̃i : Ui → T by w̃i(x) := wi(x, 0, 0), we have

w∗
i θ = w̃∗

i θ − d(ap̂i)

over (x, a, â) ∈ Ui × R
2n. Thus, there exists zi ∈ T such that

wi(x, a, â) = w̃i(x) − ap̂i(x) + zi.

Putting a = â = 0 shows that zi = 0. We make a final revision of the isomor-
phism κi by the function w̃i. This changes Ci to Ci + w̃∗

i θ, and changes wi to
just

wi(x, a, â) := −ap̂i(x). (5.47)
Now, (5.45) becomes exactly (LD-E7). Finally, we consider (5.46). Using the
definitions of zij and z′

ij from (5.39), and using (5.47), (5.46) becomes (LD-
E8); see the comments at the end of Sect. 5.4. This shows that the geometric
T-duality cocycles we started with are equivalence, and completes the proof
of injectivity of Proposition 5.17.

5.6. Local Perspective to Topological T-Duality

In this section, we deduce from the local perspective to geometric T-duality
obtained in Sects. 5.1 to 5.5 a corresponding local perspective to topological
T-duality, and relate that to the non-abelian cohomology with values in the
T-duality 2-group.

We define a topological T-duality cocycle as a geometric T-duality cocycle
with all metrics and differential forms stripped off. Thus, a topological T-
duality cocycle is a tuple

(aij , âij ,mijk, m̂ijk, cijk, ĉijk)

of data as in Sect. 5.2, subject to conditions (LD1) and (LD2), only the last
equations of (LD5) and (LD6), and the third order Buscher rule (LD9). Two
topological T-duality cocycles are considered to be equivalent if there exist
equivalence data (zij , ẑij , pi, p̂i, dij , d̂ij) as in Sect. 5.2, satisfying (LD-E1) and
(LD-E2), the last equations of (LD-E5) and (LD-E6), and (LD-E8). The direct
limit of equivalence classes over refinement of open covers will be denoted by
Loctop(X).
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Applying the reconstruction procedure of Sects. 5.3 and 5.4 to only the
topological data establishes a map

Loctop(X) → T-Corrtop(X). (5.48)

In principle, it could be argued similarly as in Sect. 5.5 that this map is a
bijection. However, we will prove this in a different way using the non-abelian
differential cohomology H1(X,TD) of the T-duality 2-group TD, and a result
of [42], see Proposition 5.20.

The T-duality 2-group TD has been introduced in [42, §3.2]. Its definition
and a general definition of non-abelian cohomology can be found there. Here,
we only recall the resulting definition of the set H1(X,TD), see [42, Rem. 3.7].
An element in H1(X,TD) is represented with respect to an open cover {Ui} by
a TD-cocycle, a tuple (aij , âij ,mijk, m̂ijk, tijk), where the first four quantities
are exactly as in geometric T-duality cocycles, and tijk : Ui ∩ Uj ∩ Uk → T are
smooth functions. The cocycle conditions are (LD1) and (LD2), and

tikl + tijk − mijkâkl = tijl + tjkl. (5.49)

Two TD-cocycles (aij , âij ,mijk, m̂ijk, tijk) and (a′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, t′ijk) are
equivalent if there exists a tuple (zij , ẑij , pi, p̂i, ẽij), with the first four quanti-
ties just as in the case of an equivalence between geometric T-duality cocycles,
and smooth functions ẽij : Ui ∩Uj ∩Uk → T, satisfying (LD-E1) and (LD-E2),
and

t′ijk + ẽij − â′
jkzij + ẽjk = ẽik + tijk − p̂kmijk. (5.50)

Then, H1(X,TD) is a direct limit of equivalence classes of TD-cocycles over
refinement of open covers. We recall the following result.

Proposition 5.18 [42, Prop. 3.9]. There is a bijection

T-Corrtop(X) ∼= H1(X,TD).

We will now describe a map

Loctop(X) → H1(X,TD) (5.51)

and prove that it is a bijection, see Lemma 5.19. Let (aij , âij ,mijk, m̂ijk, cijk, ĉijk)
be a topological T-duality cocycle, representing an element in Loctop(X). In
Remark 5.7, we have already defined the function

tijk(x) := −ĉijk(x, 0) − mijkâik(x). (5.52)

A straightforward calculation using (5.28) shows that tijk indeed satisfies
(5.49).

Given an equivalence between two topological T-duality cocycles

(aij , âij ,mijk, m̂ijk, cijk, ĉijk)

(a′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, c′
ijk, ĉ′

ijk),

established by a tuple (zij , ẑij , pi, p̂i, dij , d̂ij), we consider a slight modification
of the function eij defined in Remark 5.11, namely, we set

ẽij(x) := eij(x) − zij(âij(x) + p̂j(x)) + p̂j(x)aij(x)
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= −d̂ij(x, 0) − zij(âij(x) + p̂j(x)) (5.53)

Equivalently, using (LD-E8), we could write

ẽij(x) = −dij(x, 0) − â′
ij(x)pi(x) + p̂j(x)aij(x). (5.54)

One can then check (using (5.53) and the first equations of (LD-E1) and (LD-
E2)) that ẽij satisfies (5.50), i.e., it establishes an equivalence between the
TD-cocycles. This completes the construction of the map (5.51).

Lemma 5.19. The map (5.51) establishes a bijection,

Loctop(X) ∼= H1(X,TD).

Proof. We construct an inverse map. If (aij , âij ,mijk, m̂ijk, tijk) is a TD-cocycle,
then we may restore cijk and ĉijk from formula (5.26) in Remark 5.7, namely

cijk(x, a) := −tijk(x) − m̂ijka + aij(x)âjk(x) (5.55)

ĉijk(x, â) := −tijk(x) − mijk(âik(x) + â). (5.56)

This satisfies obviously (LD9); and it is straightforward to show using (5.49)
that the last equations of (LD5) and (LD6) are satisfied. Hence, we obtain a
topological T-duality cocycle. Moreover, this is strictly inverse to (5.52).

Next we consider an equivalence between TD-cocycles (aij , âij ,mijk, m̂ijk,
tijk) and (a′

ij , â
′
ij ,m

′
ijk, m̂′

ijk, t′ijk), established by a tuple (pi, p̂i, zij , ẑij , ẽij).
We will then define

eij(x) := ẽij(x) + zij(âij(x) + p̂j(x)) − p̂j(x)aij(x) (5.57)

and recover dij and d̂ij via Remark 5.11, namely,

dij(x, a) := −eij(x) − ẑija + zij(p̂i(x) + â′
ij(x)) − â′

ij(x)pi(x) (5.58)

d̂ij(x, â) := −eij(x) − zij â − p̂j(x)aij(x) − p̂j(x)pj(x). (5.59)

This satisfies (LD-E8) by definition, and the last equations of (LD-E5) and
(LD-E6) follow from a straightforward computation.

Proposition 5.20. The maps from (5.51) and (5.48) and Proposition 5.18 fit
into a commutative diagram

Loctop(X) ��

��
��

��
��

��
��

T-Corrtop(X)

H1(X,TD)

������������

in which all maps are bijections.

Proof. The commutativity of the diagram needs to be checked using the def-
inition of the map H1(X,TD) → T-Corrtop(X) from [42]; this can be done in
a straightforward way. Then, Proposition 5.18 and Lemma 5.19 show that all
maps are bijections.
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6. Differential T-Duality

In this section, we investigate the relation between geometric T-duality as
discussed in Sect. 4 and a closed related notion of “differential T-duality”. Dif-
ferential T-duality can be seen as a reformulation of Kahle–Valentino’s “differ-
ential T-duality pairs” [35]. It is an intermediate step between geometric and
topological T-duality, in which just the metrics are replaced by their Kaluza–
Klein connections. This intermediate step turns out to be useful for proving
our main Theorem 1.2.

6.1. Differential T-Duality Correspondences

We first give a definition of differential T-duality that fits into the setting of
geometric and topological T-duality. This definition is very natural, but has
not appeared anywhere else, as far as I know. The relation to the work of
Kahle–Valentino [35] will be described later in Sect. 6.3.

Definition 6.1. A differential T-background over X is a triple (E,ω,G) con-
sisting of a principal Tn-bundle E with connection ω over X and a bundle
gerbe G with connection over E. Two differential T-backgrounds (E,ω,G) and
(E′, ω′,G′) over X are equivalent if there exists a connection-preserving bundle
isomorphism p : E → E′ and a connection-preserving bundle gerbe isomor-
phism G ∼= p∗G′. The set of equivalence classes of differential T-backgrounds
is denoted by T − BGdiff(X).

Obviously, every geometric T-background (E, g,G) induces a differential
T-background (E,ω,G), where ω is the Kaluza–Klein connection of g. By The-
orem 2.7, this establishes in fact a bijection

T − BGgeo(X) ∼= T − BGdiff(X) × RieM(X) × C∞(X,PDS(Rn)),

where RieM(X) is the set of all Riemannian metrics on X, and PDS(Rn) is the
manifold of all positive-definite symmetric bilinear forms on R

n. We see that
differential T-backgrounds are almost as good as geometric T-backgrounds,
up to independent global information.

Given two differential T-backgrounds (E,ω,G) and (Ê, ω̂, Ĝ) over X, we
consider again the correspondence space E ×X Ê and the T

2n-invariant 2-form

ρω,ω̂ := p̂r∗ω̂∧̇pr∗ω ∈ Ω2(E ×X Ê).

Definition 6.2. A differential T-duality correspondence between two differen-
tial T-backgrounds (E,ω,G) and (Ê, ω̂, Ĝ) is a connection-preserving isomor-
phism

D : pr∗G → p̂r∗Ĝ ⊗ Iρω,ω̂

over E ×X Ê, such that every point x ∈ X has an open neighborhood U ⊆ X
over which condition (T3) of Definition 4.9 is satisfied.

Here, it is understood that the 2-form ρg,ĝ that appears in (T3) is replaced
by ρω,ω̂. We shall fix the following obvious observation.
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Proposition 6.3. Suppose D is a geometric T-duality correspondence between
geometric T-backgrounds (E, g,G) and (Ê, ĝ, Ĝ). Then, D is a differential T-
duality correspondence between the induced differential T-backgrounds (E,ω,G)
and (Ê, ω̂, Ĝ).

We also have the following converse result.

Proposition 6.4. Suppose D is a differential T-duality correspondence between
differential T-backgrounds (E,ω,G) and (Ê, ω̂, Ĝ). Then, there exist metrics g

on E and ĝ on Ê whose Kaluza–Klein connections are ω and ω̂, respectively,
such that D is a geometric T-duality correspondence between (E, g,G) and
(Ê, ĝ, Ĝ).

Proof. We choose a Riemannian metric g′ on X. Let h : Rn ×R
n → R denote

the standard inner product. We define g to be the T
n-invariant metric on E

corresponding to the triple (ω, g′, h) under Theorem 2.7, and we define ĝ to
be the metric on Ê corresponding to (ω̂, g′, h). We have ρω,ω̂ = ρg,ĝ, so that
D has the correct structure of a geometric T-duality correspondence. Finally,
we observe that it satisfies all three conditions, (T1) to (T3).

Equivalences between differential T-duality correspondences are defined
analogous to Definition 4.5. The set of equivalence classes of differential T-
duality correspondences is denoted by T-Corrdiff(X). Proposition 6.4 estab-
lishes a map

T-Corrgeo(X) → T-Corrdiff(X),
and Proposition 6.4 shows that this map is surjective. In fact, there is a bijec-
tion

T-Corrgeo(X) ∼= T-Corrdiff(X) × RieM(X) × C∞(X,PDS(Rn)),

under which a geometric T-duality correspondence ((E, g,G), (Ê, ĝ, Ĝ),D) cor-
responds to the triple (((E,ω,G), (Ê, ω̂, Ĝ),D), g′, h), where the metrics g and
ĝ correspond under Theorem 2.7 to the triples (ω, g′, h) and (ω̂, g′, h−1), re-
spectively.

The following result is more difficult to show, and its proof relies on
the local formalism developed in Sect. 5 and extended to differential T-duality
below in Sect. 6.2.

Proposition 6.5. Suppose (E,G) and (Ê, Ĝ) are topological T-backgrounds, and
D is a topological T-duality correspondence between them. Suppose further that
ω and ω̂ are connections on E and Ê, respectively. Then, there exist connec-
tions on G, Ĝ, and D, such that D becomes a differential T-duality correspon-
dence between (E,ω,G) and (Ê, ω̂, Ĝ).

Proof. Proposition 6.10 in combination with Lemmas 5.19 and 6.9.

The obvious composition of Proposition 6.4 and 6.5, about lifting topo-
logical T-duality correspondences to geometric ones, is stated as Proposi-
tion 4.20 in Sect. 4.3. On the level of equivalence classes, it is clear that the
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map T-Corrgeo(X) → T-Corrtop(X) from Sect. 4.3 factors as

T-Corrgeo(X) → T-Corrdiff(X) → T-Corrtop(X),

where both maps are surjective.

6.2. Local Perspective to Differential T-Duality

In this section, we develop a local description of differential T-duality. We
modify the geometric T-duality cocycles considered in Sect. 5.2 by replacing
the metrics gi and ĝi by 1-forms Ai, Âi ∈ Ω1(Ui,R

n), and replacing conditions
(LD3) and (LD4) by the following new conditions:
(LD1’) Aj = Ai − a∗

ijθ

(LD2’) Âj = Âi − â∗
ijθ.

Concerning equivalences between cocycles, we keep the structure of an equiv-
alence as it is, and replace conditions (LD-E3) and (LD-E4) by the new con-
ditions:

(LD-E1’) A′
i = Ai − p∗

i θ

(LD-E2’) Â′
i = Âi − p̂∗

i θ.
The corresponding set of equivalence classes, and its direct limit over refine-
ments of open covers will be denoted by Locdiff(X). Enforced by Theorem 2.7,
and using Remarks 5.5 and 5.9, there is a bijection

Locgeo(X) ∼= Locdiff(X) × RieM(X) × C∞(X,PDS(Rn)),

obtained by replacing the metrics gi and ĝi by the local connection 1-forms
Ai, Âi of their Kaluza–Klein connections.

The reconstruction procedure described in Sects. 5.3 and 5.4, together
with the proof of Proposition 5.17, goes through with obvious small modifica-
tions, so that we infer the following result.

Proposition 6.6. Reconstruction is a bijection,

Locdiff(X) ∼= T-Corrdiff(X).

Next we set differential T-duality in relation to the differential non-
abelian cohomology of the T-duality 2-group TD, whose investigation was
started recently by Kim-Saemann [32]. Differential non-abelian cohomology
in general has been studied by Breen-Messing [8] and further developed in
[43,46,47]. A common phenomenon in higher gauge theory is the appearance
of several versions of connection-data, which, in my review in [51, §2.2] are
categorized into fake-flat, regular, and generalized, with increasing generality.
Thus, there are (at least) 3 versions of non-abelian differential cohomology
with values in some Lie 2-group Γ, related by maps

Ĥ1(X,Γ)ff → Ĥ1(X,Γ)reg → Ĥ1(X,Γ)gen

that commute with the projections to the (non-differential) non-abelian coho-
mology H1(X,Γ).

Additionally, Kim-Saemann have invented a formalism of adjusted differ-
ential cohomology [32,33]. It requires to equip the Lie 2-group Γ with an addi-
tional structure, called an adjustment κ. Together with an adjustment, there
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is another version of non-abelian differential cohomology denoted Ĥ1(X,Γκ).
It comes equipped with a map Ĥ1(X,Γκ) → Ĥ1(X,Γ)gen, and the choice κ = 0
reproduces Ĥ1(X,Γ0) = Ĥ1(X,Γ)reg. Relevant for us will be the adjusted dif-
ferential cohomology Ĥ1(X,TDκ) of the Lie 2-group TD.

In order to explain it on the basis of [51, §2.2] and [32], we need to express
the Lie 2-group TD and its associated Lie 2-algebra as crossed modules (of Lie
groups and Lie algebras, respectively). The crossed module of TD consists of
the Lie group homomorphism

τ : H → G, H := T × Z
2n, G := R

2n, τ(t,m, m̂) := (m, m̂)

and the action α : G×H → H defined by α((a, â), (t,m, m̂)) := (t−âm,m, m̂),
see [42, §3.2]. The corresponding crossed module of Lie algebras is trivial: it
consists of the induced Lie algebra homomorphism, τ∗ = 0, and the induced
action of the Lie algebra g of G on the Lie algebra h of H, α∗ = 0. Of relevance
is further the differential of the action of a fixed element of G, αg : H → H,
which is here (αa,â)∗ = idR, and the differential of the map

α̃h : G → H : g �→ h−1α(g, h),

which is here (α̃t,m,m̂)∗(a, â) = −âm.
With these expressions at hand, we can recall the definition of Ĥ1

(X,TD)gen on the basis of [51, §2.2]. Thus, a generalized differential TD-cocycle
consists of a TD-cocycle (aij , âij ,mijk, m̂ijk, tijk) as in Sect. 5.6, and addition-
ally of 1-forms Ai, Âi ∈ Ω1(Ui,R

n), a 2-form Ri ∈ Ω2(Ui), and a 1-form
ϕij ∈ Ω1(Ui ∩ Uj) such that (LD1’) and (LD2’) and

ϕik − Âkmijk = ϕjk + ϕij − t∗ijkθ (6.1)

are satisfied. Indeed, for an equivalence between generalized differential TD-
cocycles

(Ai, Âi, Ri, aij , âij , ϕij ,mijk, m̂ijk, tijk)

(A′
i, Â

′
i, R

′
i, a

′
ij , â

′
ij , ϕ

′
ij ,m

′
ijk, m̂′

ijk, t′ijk)

we require a tuple (φi, pi, p̂i, zij , ẑij , ẽij), where φi ∈ Ω1(Ui), and (pi, p̂i, zij , ẑij ,
ẽij) is, as in Sect. 5.6, an equivalence between the TD-cocycles (a′

ij , â
′
ij ,m

′
ijk,

m̂′
ijk, t′ijk) and (aij , âij ,mijk, m̂ijk, tijk), i.e., it satisfies (LD-E1) and (LD-E2)

and (5.50). Additionally, we require (LD-E1’) and (LD-E2’) and

ϕ′
ij + φi − zijÂ

′
j = φj + ϕij − ẽ∗

ijθ. (6.2)

We remark that the 2-form Ri does not appear in any of the above con-
ditions. This will be fixed by considering an adjustment κ for TD. In general,
an adjustment is a map κ : G × g → h, and in case of TD Saemann-Kim [32]
use

κ((a, â), (b, b̂)) := ab̂.

Then, an adjusted differential TD-cocycle satisfies, in addition to the conditions
listed above, the condition

Rj + dϕij = Ri + aijF̂ , (6.3)
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where F̂ ∈ Ω2(X) is defined by F̂ |Ui
= dÂi. Moreover, for an equivalence be-

tween adjusted differential TD-cocycles, we additionally require the condition

R′
i + dφi = Ri + piF̂ . (6.4)

Remark 6.7. The 3-curvature of an adjusted differential TD-cocycle is, by def-
inition,

K := dRi + Ai ∧ F̂ ∈ Ω3(X). (6.5)

Having recalled the definition of the κ-adjusted differential cohomology
of TD, we are in position to construct a map

Locdiff(X) → Ĥ1(X,TDκ). (6.6)

Given a differential T-duality cocycle (Ai, Âi, Bi, B̂i, Aij , Âij , aij , âij ,mijk,
m̂ijk, cijk, ĉijk), we consider the underlying TD-cocycle (aij , âij ,mijk, m̂ijk, tijk),
where tijk was defined in Remark 5.7, namely,

tijk(x) := −cijk(x, 0) + aij(x)âjk(x).

This coincides with the expression given in (5.52), using (LD9). We add the
given 1-forms Ai and Âi, so that (LD1’) and (LD2’) are satisfied as before. Let
σ : Ui → Ui × T

n be the zero section, σ(x) := (x, 0). The 2-form Ri is then
defined by

Ri := −σ∗Bi, (6.7)
and the 1-form ϕij is defined by

ϕij := σ∗Aij + aijÂj . (6.8)

It remains to check condition (6.1) for generalized differential cocycles and the
additional condition (6.3) for adjusted differential cocycles. These are straight-
forward calculations; the first involving (LD4’) and (LD5) and Remark 5.6, the
second involving (LD5) and (3.11).

Let us now suppose that we have an equivalence between two differential
T-duality cocycles, established by a tuple (Ci, Ĉi, pi, p̂i, zij , ẑij , dij , d̂ij). We
recall from Sect. 5.6 that the functions pi, p̂i : Ui → R

2n and ẽij : Ui ∩Uj → T,
defined in (5.54) by

ẽij := −dij(x, 0) − â′
ij(x)pi(x) + p̂j(x)aij(x)

establish an equivalence between the underlying two TD-cocycles. Additionally,
conditions (LD-E1’) and (LD-E2’) remain valid. It remains to provide 1-forms
φi ∈ Ω1(Ui) satisfying (6.2) and (6.4). We set

φi := σ∗Ci + piÂ
′
i. (6.9)

Checking (6.4) is straightforward using (5.24)and (LD-E5). (6.2) is a bit more
difficult to verify; one can first derive from (LD-E5) and Remarks 5.6 and 5.10
the formula

σ∗A′
ij + σ∗Ci = σ∗Aij + σ∗Cj + â′

ijdpi − p̂jdaij + σ∗d∗
ijθ. (6.10)

This formula together with (LD-E1) and (LD4’) proves (6.2). This completes
the construction of the map (6.6).
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Remark 6.8. We recall from Remark 5.5 that every geometric T-duality co-
cycle comes equipped with a globally defined 3-form K ∈ Ω3(X), which
corresponds to the 3-form of a geometric T-duality correspondence, see Re-
marks 4.3(b) and 5.15. Under the map Locgeo(X) → Locdiff(X), the same
3-form can be obtained from a differential T-duality cocycle, namely

K|Ui
= Ai∧̇F̂ − σ∗dBi.

Under the map (6.6), Locdiff(X) → Ĥ1(X,TDκ), the 3-form K is precisely the
curvature of Remark 6.7.

Lemma 6.9. The map (6.6) is a bijection,

Locdiff(X) ∼= Ĥ1(X,TDκ).

Proof. We suppose that we have an adjusted differential TD-cocycle

(Ai, Âi, Ri, ϕij , aij , âij ,mijk, m̂ijk, tijk).

First, we reproduce, as in the proof of Lemma 5.19, the topological part of
a differential T-duality cocycle, i.e., we define cijk and ĉijk as in (5.55) and
(5.56).

We further revert the assignments made in the definition of (6.6) using
Lemma 3.5, and set

Bi := −(Ri)1 + (Âi)1 ∧ θ2

on Ui × T
n. Similarly, using Remark 5.6, we set

Aij := (ϕij)1 − aij(Âj)1 − âijθ2.

One can then check using (6.3) and (6.1) that the first and second lines of (LD5)
are satisfied (the third line is already checked in Lemma 5.19). Finally, we
define B̂i and Âij such that the Buscher rules (LD7) and (LD8) are satisfied. As
mentioned in Remark 5.8, it then follows automatically that (LD6) is satisfied.
This shows the surjectivity of our map.

For injectivity, we assume that two differential T-duality cocycles,

(Ai, Âi, Bi, B̂i, Aij , Âij , aij , âij ,mijk, m̂ijk, cijk, ĉijk)

(A′
i, Â

′
i, B

′
i, B̂

′
i, A

′
ij , Â

′
ij , a

′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, c′
ijk, ĉ′

ijk)

become equivalent after passing to Ĥ1(X,TDκ). That is, there exists a tuple
(φi, pi, p̂i, zij , ẑij , ẽij) satisfying (LD-E1’) and (LD-E2’) (6.2) and (6.4), as well
as the usual (non-differential) cocycle conditions (LD-E1) and (LD-E2) and
(5.50). We have seen in the proof of Lemma 5.19 how to obtain dij and d̂ij

such that the third lines of (LD-E5) and (LD-E6) and (LD-E8) are satisfied. It
remains to provide 1-forms Ci, Ĉi ∈ Ω1(Ui × R

n) such that the first two lines
of (LD-E5) and (LD-E6), and (LD-E7) hold. We set

Ci := (φi)1 − pi(Â′
i)1 − p̂iθ2

Ĉi := (φi)1 − pi(Âi)1 − piθ2

on Ui × T
n. The first line reverts (6.9), and the second is chosen such that

(LD-E7) holds. The first line of (LD-E5) con now be verified using (5.24) to
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(6.4), and the second line of (LD-E5) can be verified using Remark 5.6 and
(6.2) and (6.8). The two first lines of (LD-E6) can be checked analogously.
This shows that the given differential T-duality cocycles are equivalent.

The identification of differential T-duality correspondences with the ad-
justed differential cohomology of TD has the advantage that the presentation
with differential TD-cocycles is less redundant than the one with differential
T-duality cocycles: instead of two 2-forms Bi and B̂i there is only a single
2-form Ri, instead of Aij and Âij there is only ϕij , and instead of cijk and
ĉijk there is only tijk. Moreover, all data are defined on the open sets Ui and
intersections thereof, while the data of T-duality cocycles live on Ui ×T

n and
their intersections. The following two results show that (adjusted) differential
cohomology is very efficient for calculations. The first, Proposition 6.10, de-
livers the core ingredient to the proofs of our main results Theorems 1.2 and
1.3.

Proposition 6.10. Every TD-cocycle can be lifted to an adjusted differential
TD-cocycle, i.e., the map

Ĥ1(X,TDκ) → H1(X,TD)

is surjective.

Proof. Given a TD-cocycle (aij , âij ,mijk, m̂ijk, tijk), by the well-known exis-
tence of connections on principal bundles we find 1-forms Ai, Âi ∈ Ω1(Ui,R

n)
satisfying (LD1’) and (LD2’). We write (6.1) as

(δϕ)ijk = t∗ijkθ − Âkmijk,

where δ denotes the Čech coboundary operator. It is easy to check using (5.49)
that the right hand side is a Čech 2-cocycle; then, by the exactness of the Čech
complex with values in the sheaf Ω1 it follows that ϕij exist such that (6.1) is
satisfied. Finally, we write (6.3) as

(δR)ij = aijF̂ − dϕij

and check again that the right hand side is a Čech 1-cocycle. This shows that
Ri exists such that (6.3) is satisfied.

Our second result concerns the action (Remarks 4.7 and 4.11) of the group
of isomorphism classes of bundle gerbes with connection, Grb∇(X), on the set
of equivalence classes of geometric T-duality correspondences, T-Corrgeo(X).
We recall that this action was induced by

(H , ((E, g,G), (Ê, ĝ, Ĝ),D)) �→ ((E, g,G ⊗ p∗H), (Ê, ĝ, Ĝ ⊗ p̂∗H),D ⊗ id)).
(6.11)

Since the action does not concern the metrics, there is a corresponding
action on differential T-duality correspondences, which, under the bijections
of Proposition 5.17 and Lemma 6.9, becomes an action

Ĥ3(X) × Ĥ1(X,TDκ) → Ĥ1(X,TDκ). (6.12)
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It is straightforward to obtain a formula for (6.12): a Deligne 2-cocycle acts
on an adjusted differential TD-cocycle by

(Bi, Aij , cijk) · (Ai, Âi, Ri, ϕij , aij , âij ,mijk, m̂ijk, tijk)

:= (Ai, Âi, Ri + Bi, ϕij + Aij , aij , âij ,mijk, m̂ijk, tijk + cijk).

Next we consider the projection

T-Corrgeo(X) → Bun∇
Tn(X) × Bun∇

Tn(X)

from a geometric T-duality correspondence to the two principal Tn-bundles E
and Ê, which can be equipped with the Kaluza–Klein connections ω, ω̂ induced
from the metrics g and ĝ, respectively. This projection is obviously invariant
under the action (6.11). The same projection exists for differential T-duality
correspondences, and then in adjusted differential cohomology,

Ĥ1(X,TDκ) → Bun∇
Tn(X) × Bun∇

Tn(X).

There, it is induced by the formula

(Ai, Âi, Ri, ϕij , aij , âij ,mijk, m̂ijk, tijk) �→ ((Ai, aij), (Âi, âij)).

Summarizing, we have a commutative diagram

Grb∇(X) × T-Corrgeo(X)

��

�� T-Corrgeo(X)

��

�� Bun∇
Tn(X) × Bun∇

Tn(X)

Grb∇(X) × T-Corrdiff(X)

��

�� T-Corrdiff(X) ��

��

Bun∇
Tn(X) × Bun∇

Tn(X)

Ĥ3(X) × Ĥ1(X,TDκ) �� Ĥ1(X,TDκ) �� Bun∇
Tn(X) × Bun∇

Tn(X).

Finally, we note that a pair ((E,ω), (Ê, ω̂)) of isomorphism classes of
bundles with connection has a well-defined pair (F, F̂ ) ∈ Ω2(X) × Ω2(X) of
curvatures. We consider the subgroup

FF,F̂ := {IyF̂+ŷF | y, ŷ ∈ R} ⊆ Grb∇(X).

This is a non-trivial subgroup, as IB
∼= IC holds if and only if C − B is a

closed 2-form with integral periods. Now, F and F̂ are closed 2-forms with
integral periods, but allowing real multiplies spoils integrality.

Proposition 6.11. The action of (6.12),

Ĥ3(X) × Ĥ1(X,TDκ) → Ĥ1(X,TDκ),

has the following properties:

(i) It acts transitively in the fibers of the projection Ĥ1(X,TDκ) → Bun∇
Tn

(X) × Bun∇
Tn(X).

(ii) The stabilizer of each element in the fiber over (ξ, ξ̂) ∈ Bun∇
Tn(X) ×

Bun∇
Tn(X) with curvature pair (F, F̂ ) is the subgroup FF,F̂ .
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In particular, the quotient Ĥ3(X)/FF,F̂ acts freely and transitively on the fiber
over (ξ, ξ̂).

Proof. We first show that FF,F̂ stabilizes. For this, we have to provide an
equivalence

(Ai, Âi, Ri, ϕij , aij , âij ,mijk, m̂ijk, tijk)

∼ (Ai, Âi, Ri + yF̂ + ŷF, ϕij , aij , âij ,mijk, m̂ijk, tijk)

of adjusted differential cocycles. We set pi := y and p̂i := −ŷ, as well as
zij = ẑij = 0. Moreover, we put φi := −ŷAi, and ẽij := −ŷaij . Now, (LD-E1’)
and (LD-E2’) hold since pi and p̂i are constant. (6.2) and (6.4) follow directly
from the definitions. Finally, (5.50) becomes

ẽij + ẽjk = ẽik + ŷmijk

and thus follows from (LD1).
Next we show that no other group elements stabilize. For this, we sup-

pose that a Deligne 2-cocycle (Bi, Ai, cijk) acts trivially, i.e., that we have an
equivalence between adjusted differential TD-cocycles

(Ai, Âi, Ri, ϕij , aij , âij ,mijk, m̂ijk, tijk)

∼ (Ai, Âi, Ri + Bi, ϕij + Aij , aij , âij ,mijk, m̂ijk, tijk + cijk).

Let (φi, pi, p̂i, zij , ẑij , ẽij) be a tuple expressing this equivalence. We start by
looking at (LD-E1’) and (LD-E2’), which here result in dpi = dp̂i = 0; in other
words, these functions are constant. We further have zij = pi −pj . This means
that [zij ] ∈ H1(X,Zn) goes to zero under the map to H1(X,Rn). But this map
is injective, as the relevant part of the long exact sequence is

. . . → R
n → T

n → H1(X,Zn) → H1(X,Rn) → . . .

and the second arrow is surjective. Thus, there exist zi ∈ Z
n such that zij =

zi − zj . Observe that pi − zi = pj − zj , i.e., there is a real number y ∈ R such
that y = pi −zi. Analogously, we treat ẑij , getting ŷ ∈ R such that ŷ = p̂i − ẑi.
We consider now

fij(x) := ẽij(x) + ŷaij + âijzi;

then, one can show using (5.50) that fij trivializes cijk, i.e.,

fik − fij − fjk = cijk.

Next we define Hi ∈ Ω1(Ui) by Hi := −φi + ziÂi + ŷAi. Then we compute,
using (6.2) and the fact that p̂j is constant

Aij = Hi − Hj − f∗
ijθ.

Finally, we get from (6.4) that

Bi = dHi + yF̂ − ŷF.

Summarizing, the last three equations show that there exist y, ŷ ∈ R such that
(Bi, Aij , cijk) ∼ (yF̂ − ŷF, 0, 0), i.e., (Bi, Aij , cijk) ∈ FF,F̂ .
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It remains to prove the transitivity statement. For this, we suppose that
we have two differential cocycles

(Ai, Âi, Ri, φij , aij , âij ,mijk, m̂ijk, tijk)

(A′
i, Â

′
i, R

′
i, φ

′
ij , a

′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, t′ijk)

and given equivalences (pi, zij) and (p̂i, ẑij) between the cocycles of the pro-
jected principal Tn-bundles with connection, (Ai, aij ,mijk) and (A′

i, a
′
ij ,m

′
ijk),

and (Âi, âij , m̂ijk) and (Â′
i, â

′
ij , m̂

′
ijk), respectively. We have to find a Deligne

2-cocycle (Bi, Aij , cijk) such that

(Ai, Âi, Ri + Bi, ϕij + Aij , aij , âij ,mijk, m̂ijk, tijk + cijk)

∼ (A′
i, Â

′
i, R

′
i, ϕ

′
ij , a

′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, t′ijk). (6.13)

This is achieved by the definitions

Bi := R′
i − Ri − piF̂

Aij := −ϕij + ϕ′
ij − zijÂj

cijk := t′ijk − tijk + p̂km′
ijk − zij âjk

It is indeed straightforward to check using (LD-E1) and (LD-E2) and (6.1)
and (5.49) that (Bi, Aij , cijk) is a Deligne 2-cocycle. In order to establish the
equivalence (6.13), we set φi := 0. (6.4) is then obviously satisfied. The next
part of the equivalence is (6.2), which here reads

zijÂj − zijÂ
′
j = −ẽ∗

ijθ.

This is satisfied by putting ẽij := −zij p̂j . The last equivalence conditions is
now (5.50), which follows immediately from (LD-E1) and (LD-E2).

6.3. Kahle–Valentino’s T-Duality Pairs

In this section we discuss the relation between differential T-duality corre-
spondences as introduced in Definition 6.2 and differential T-duality pairs
considered by Kahle–Valentino [35].

The setting of Kahle–Valentino [35] is different as it does not explicitly
involve string backgrounds. Their discussion is also limited to the case of torus
dimension n = 1. At the basis of their formalism is a groupoid version of
differential cohomology, of which below we recall a slightly simplified version.
We consider differential cohomology groupoids Hp(X), so that the set of iso-
morphism classes of objects of Hn(X) is the ordinary differential cohomology
group Ĥn(X). Differential cohomology groupoids are supposed to be equipped
with cup product functors

∪ : Hp(X) × Hq(X) → Hp+q(X).

Moreover, they come equipped with a functor

I : Ωp−1(X)dis → Hp(X),

where the left hand side denotes groupoid whose objects are all (p − 1)-forms
on X, and which has only identity morphisms. A geometric trivialization of
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an object ξ ∈ Hp(X) is a differential form K ∈ Ωp−1(X) and an isomorphism
τ : ξ → IK in Hp(X). The set Ĥp−1(X) acts on the set of all geometric
trivializations of ξ, where [η] ∈ Ĥ2(X) sends τ to τ + η, and K gets shifted by
the “curvature” of η. This action is free and transitive.

A concrete realization of these groupoids can be obtained using Deligne
cocycles w.r.t. a fixed open cover with all finite non-empty intersections con-
tractible, see [35, §A.2]. The objects of Hp(X) are Deligne (p − 1)-cocycles ξ,
and the morphisms ξ1 → ξ2 are equivalence classes [η] of (p − 2)-cochains
η satisfying ξ2 = ξ1 + Dη, where D denotes the Deligne differential, and
η1 ∼ η2 if there exists a (p − 3)-cochain β with η2 = η1 + Dβ. Composi-
tion of morphisms is just addition. The cup product on the level of objects is
the usual cup product in Deligne cohomology, as recalled below. The functor
I is the usual inclusion ϕ �→ (ϕ, 0, ., , , 0) of a globally defined differential form
as a “topologically trivial” Deligne cocycle. For p = 2, the groupoid H2(X)
is equivalent to the groupoid of principal T-bundles with connections, and
connection-preserving bundle isomorphisms. Under this equivalence, a geo-
metric trivialization is a (not necessarily flat) section. The free and transitive
action by Ĥ1(X) = C∞(X,T) is the action of smooth T-valued functions on
sections.

Definition 6.12. A differential T-duality pair consists of two objects ξ, ξ̂ ∈
H2(X) and a geometric trivialization τ : ξ ∪ ξ̂ → IK .

Kahle–Valentino claim in [35, §2.5] that differential T-duality pairs induce
topological T-duality correspondences. We want to sharpen this relation and
show that differential T-duality pairs are the same as our differential T-duality
correspondences. Their relation to topological T-duality correspondences is
then a consequence thereof. In order to proceed, it is necessary to consider
an equivalence relation on the set of all differential T-duality pairs over X.
Unfortunately, Kahle–Valentino do not introduce such relation. Apparently,
the most natural definition is the following.

Definition 6.13. Two differential T-duality pairs (ξ, ξ̂,K, τ) and (ξ′, ξ̂′,K ′, τ ′)
over X are equivalent if K ′ = K and there exist isomorphisms p : ξ → ξ′ and
p̂ : ξ̂ → ξ̂′ in H2(X) such that the diagram

ξ ∪ ξ̂
p∪p̂

��

τ
���

��
��

��
� ξ′ ∪ ξ̂′

τ ′
����
��
��
��
�

IK

in H4(X) is commutative. The set of equivalence classes of differential T-
duality pairs is denoted by TDP(X).

Note that the projection to the objects ξ, ξ̂ gives a well-defined map

TDP(X) → Ĥ2(X) × Ĥ2(X).

Below, we will prove the following result.
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Proposition 6.14. There is a canonical bijection between equivalence classes of
differential T-duality correspondences and equivalence classes of differential
T-duality pairs,

T-Corrdiff(X) ∼= TDP(X),

such that the diagram

T-Corrdiff(X) ��

���
��

��
��

��
��

TDP(X)

����
��
��
��
��

Ĥ2(X) × Ĥ2(X)

is commutative.

Because of the cup product, it is necessary to work with extended Deligne
cohomology, i.e., in degree p with the sheaf complex

Z → R → Ω1 → Ω2 → · · · → Ωp, (6.14)

whereas before we worked with the quasi-isomorphic complex T → Ω1 → · · · →
Ωp. In order to be more precise, let us denote the complex (6.14) by Dq(p),
so that, for instance, D−1(p) = Z and D0(p) = R. The Deligne coboundary
operator on the corresponding Čech double complex Cr(Dq(p)) is defined to
be Dr,q := (−1)q+1δr +dq, where d−1 is the inclusion Z ↪→ R. The cup product
of extended Deligne cocycles

ξ = (Ap−1
i , Ap−2

i1i2
, . . . , A0

i1,...,ip
,mi1,...,ip+1) and

ξ̂ = (Âq−1
i , Âq−2

i1i2
, . . . , Â0

i1,...,iq
, m̂i1,...,iq+1)

is defined in the usual way [12, §1.5][24, Sec. 2.2] by

ξ ∪ ξ̂ := (Ap−1
i1

∧ dÂq−1
i1

, . . . , A0
i1,...,ip

∧ dÂq−1
ip+1

,

mi1,...,ip+1Â
q−1
ip+1

, . . . , mi1,...,ip+1Â
0
ip+1,...,ip+q

,

mi1,...,ip+1m̂ip+1,...,ip+q+1).
(6.15)

Of most importance for us is the cup product of two objects ξ, ξ̂ ∈ H2(X).
Namely, for ξ = (Ai, aij ,mijk) and ξ̂ = (Âi, âij , m̂ijk) we obtain

ξ ∪ ξ̂ = (Ai ∧ F̂ , aijF̂ , mijkÂk , mijkâkl , mijkm̂klp). (6.16)

Unfortunately, I have not been able to find a description for the cup product
of morphisms in Hp(X). Kahle–Valentino just claim in [35, §A.2] that the
cup product “extends” to morphism, but do not explain how, whereas the
obvious attempt, namely to apply formula (6.15) to cochains, does not work.
Concretely, we need the cup product of two morphisms [η] : ξ → ξ′ and that
[η̂] : ξ̂ → ξ̂′ in H2(X), i.e., ξ′ = ξ + Dη and ξ̂′ = ξ̂ + Dη̂. Suppose η = (pi, zij)
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and η̂ = (p̂i, ẑij). The only way that I was able to produce a 3-cochain η ∪ η̂

such that ξ′ ∪ ξ̂′ = ξ ∪ ξ̂ + D(η ∪ η̂) is

η ∪ η̂ = (piF̂ , zijÂj , zij âjk − m′
ijkp̂k , m′

ijkẑkl + zijm̂jkl). (6.17)

In the following, I assume that this is the correct cup product of morphisms
in H2(X).

Exploring the notion of a differential T-duality pair further, we spell out
in the following what a geometric trivialization of ξ∪ξ̂ from (6.16) is. It consists
of:
(a) a 3-form K ∈ Ω3(X)
(b) 2-forms Ri ∈ Ω2(Ui), such that

Ai ∧ F̂ = K + dRi. (6.18)

(c) 1-forms ϕij ∈ Ω1(Ui ∩ Uj) such that

aijF̂ = −Rj + Ri + dϕij . (6.19)

(d) functions bijk : Ui ∩ Uj ∩ Uk → R such that

mijkÂk = ϕij + ϕjk − ϕik + dbijk. (6.20)

(e) numbers qijkl ∈ Z satisfying

mijkâkl = qijkl + bijk + bikl − bijl − bjkl (6.21)

and
mijkm̂klp = qijkl − qijkp + qijlp − qiklp + qjklp. (6.22)

At this point, it makes sense to discuss the action of Ĥ3(X) on differential
T-duality pairs, which is induced by the above-mentioned action of Ĥ3(X) on
all geometric trivializations of ξ ∪ ξ̂. Here, this action takes the form

Ĥ3(X) × TDP(X) → TDP(X)

and is given, using the above description of geometric trivializations, by the
formula

((Bi, Aij , cijk, sijkl), (K,Ri, ϕij , bijk, qijkl))

�→ (K + dBi, Ri + Bi, ϕij + Aij , bijk + cijk, qijkl + sijkl).

Note that K is shifted by the globally defined 3-form H = dBi, the curvature.
It is clear that this action restricts to the fibers of the map TDP(X) → Ĥ2(X)×
Ĥ2(X) and is transitive in each fiber.

As in Sect. 6.2, see Proposition 6.11, we consider the pair (F, F̂ ) ∈ Ω2(X)×
Ω2(X) determined by an element of Ĥ2(X)×Ĥ2(X), and the subgroup FF,F̂ ⊆
Ĥ3(X).

Lemma 6.15. The subgroup FF,F̂ acts trivially, and the quotient Ĥ3(X)/FF,F̂

acts freely and transitively in the fiber over (ξ, ξ̂).
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Proof. We have to show that (K,Ri, ϕij , bijk, qijkl) and (K,Ri + ŷF +yF̂ , ϕij ,
bijk, qijkl) define the same morphism. We consider the automorphism of ξ =
(Ai, aij ,mijk) given by (y, 0), this works as D(y, 0) = (0, 0, 0), and similarly,
the automorphism of ξ̂ given by (ŷ, 0). According to (6.17), we have

(y, 0) ∪ (ŷ, 0) = (yF̂ , 0 , −mijkŷ, 0)

We can change this by the coboundary of (−ŷAi,−ŷaij , 0), which is (−ŷF, 0,
ŷmijk, 0). Thus,

[(y, 0) ∪ (ŷ, 0)] = [(yF̂ − ŷF, 0, 0, 0)].

This proves that F acts trivially. Conversely, if

(K, Ri, ϕij , bijk, qijkl) and (K +dBi, Ri +Bi, ϕij +Aij , bijk +cijk, qijkl +sijkl)

are equivalent, we have to show that (Bi, Aij , cijk, sijkl) ∼ (ŷF − yF̂ , 0, 0, 0).
The proof of this is very similar to the one given in Proposition 6.11, and
omitted for brevity.

Finally, we are in a position to give the proof of Proposition 6.14. Under
Proposition 5.17 and Lemma 6.9, it remains to provide a bijection

Ĥ1(X,TDκ) → TDP(X). (6.23)

Let (Ai, Âi, Ri, ϕij , aij , âij ,mijk, m̂ijk, tijk) be an adjusted differential TD-
cocycle. We set ξ = (Ai, aij ,−mijk) and ξ̂ = (Âi, âij ,−m̂ijk): this ensures
that the diagram in Proposition 6.14 will commute, while the signs accounts
for the different conventions used in non-abelian cohomology and Deligne co-
homology. We define

K := dRi + Ai ∧ F̂ ; (6.24)

this is the 3-curvature of Remark 6.7, and hence a globally defined 3-form.
Thus, passing to −Ri, we have (6.18). We may then use the given 1-form ϕij ,
and note that (6.3) results into (6.19). Next, we choose real-valued functions
bijk that represent the given T-valued functions −tijk; then, (6.1) results into
(6.20). Finally, we consider (5.49),

tikl + tijk − mijkâkl = tijl + tjkl,

which is an equation of T-valued functions. Substituting the lifts bijk reveals
qijkl ∈ Z such that

−bikl − bijk − mijkâkl = −bijl − bjkl + qijkl,

this is (6.21). Finally, (6.22) is a straightforward calculation. Summarizing,
(K,Ri, ϕij , bijk, qijkl) is a geometric trivialization of ξ ∪ ξ̂.

Next we consider an equivalence between adjusted differential cocycles

(Ai, Âi, Ri, ϕij , aij , âij ,mijk, m̂ijk, tijk) and

(A′
i, Â

′
i, R

′
i, ϕ

′
ij , a

′
ij , â

′
ij ,m

′
ijk, m̂′

ijk, t′ijk)
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established by a tuple (φi, pi, p̂i, zij , ẑij , ẽij). Then, η := (−pi, zij) and η̂ :=
(−p̂i, ẑij) are morphisms in H2(X) between ξ and ξ′ := (A′

i, a
′
ij ,−m′

ijk), and
ξ̂ and ξ̂′ = (Â′

i, â
′
ij ,−m̂′

ijk), respectively. We have to show that

(K,Ri, ϕij , bijk, qijkl) ∼ (K ′, R′
i, ϕ

′
ij , b

′
ijk, q′

ijkl) + η ∪ η̂.

We claim that both cochains differ in fact by the coboundary of (φi, zij p̂j +
fij ,−rijk + zij ẑjk), where fij is a real-valued lift of ẽij , and rijk ∈ Z are the
numbers that emerge from the T-valued cocycle condition (5.50) under this
lift. The claim is straightforward to check using (6.17).

By now we have constructed a well-defined map (6.23), such that it pre-
serves the fibers of the projections to Ĥ2(X)×Ĥ2(X). It is easy to see that our
map (6.23) is equivariant w.r.t. to the actions of Ĥ3(X)/FF,F̂ in each fiber.
Since these actions are free and transitive on both sides (Lemma 6.15 and
Proposition 6.11), it follows that (6.23) is a bijection. This proves Proposi-
tion 6.14.

7. Examples of Geometric T-Duality

We first consider in Sect. 7.1 the situation of a general principal Tn-bundle E,
a general metric, and trivial B-field, and present a construction of a T-dual
geometric T-background. In Sect. 7.2 we specialize to the case that E is the
Hopf fibration, in which we explicitly compute the dual metric and dual bundle
gerbe. In Sect. 7.3 we keep the Hopf fibration but consider a non-trivial B-field,
whose Dixmier-Douady class is a generator of H3(S3,Z). We prove that this
geometric T-background is self-dual.

7.1. A Torus Bundle with Trivial B-Field

We consider a geometric T-background (E, g,G) over a smooth manifold X,
whose bundle gerbe is the trivial one, i.e., G = I0. In this section, we explicitly
construct a geometric T-duality correspondence whose left leg is (E, g, I0).

We let (ω, g′, h) be the triple corresponding to g under Theorem 2.7, and
we let F ∈ Ω2(X) be the curvature of the connection ω. We consider the trivial
bundle Ê := X ×T

n, and equip it with the trivial connection, ω̂ := θ. We let ĝ
be the invariant metric on Ê that corresponds to the triple (ω̂, g′, h−1). Next
we construct the bundle gerbe Ĝ over Ê.

The surjective submersion is Y := E × T
n → X × T

n. The curving is

Ψ := pr∗
Eω ∧ pr∗

Tnθ ∈ Ω2(Y ).

The 2-fold fiber product is Y [2] = E[2] ×T
n. Note that we have a smooth map

g : E[2] → T
n, e2 = e1g(e1, e2), and pr∗

2ω = pr∗
1ω + g∗θ. Thus, we see that

pr∗
2Ψ − pr∗

1Ψ = g∗θ∧̇pr∗
Tnθ

on Y [2]. Comparing with Remark 2.5, the right hand side is the curvature of
the pullback of the Poincaré bundle P along the map g̃ : E[2] × T

n → T
2n :
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(e1, e2, a) �→ (a, g(e1, e2)). Thus, we readily define

P := g̃∗P

as the principal T-bundle with connection of Ĝ. Over Y [3] = E[3] ×T
n, we have

an isomorphism

(pr∗
23P ⊗ pr∗

12P )(e1,e2,e3,a) = Pa,g(e2,e3) ⊗ Pa,g(e1,e2)

ϕr−→ Pa,g(e2,e3)g(e1,e2) = Pa,g(e1,e3) = (pr∗
13P )(e1,e2,e3,a),

where ϕr was defined in Sect. 2.2. This isomorphism satisfies the associativity
condition over Y [4] due to the commutativity of the analog of (2.3) for ϕr.

Remark 7.1. If n = 1, then Ĝ is precisely the cup product bundle gerbe pr∗
XE∪

pr
T
, where prX : Ê → X and pr

T
: Ê → T

1 are the projections; explicitly,
pr∗

XE is a principal T-bundle over Ê with connection, and pr
T

is a T-valued
function on Ê. A description of the cup product of such structures, resulting
in a bundle gerbe with connection, has been given by Johnson in [31]. Our
construction above (for n = 1) reproduced exactly that description. Johnson
also proved that the cup product of a principal T-bundle with connection and
a T-valued function coincides with the cup product in Deligne cohomology
[31].

We will now construct a geometric T-duality correspondence between
the geometric T-backgrounds (E, g,G) and (Ê, ĝ, Ĝ). On correspondence space
E ×X Ê we need to find a connection-preserving isomorphism D : pr∗G →
p̂r∗Ĝ ⊗ Iρg,ĝ

, where
ρg,ĝ = p̂r∗ω̂∧̇pr∗ω = −Ψ.

We note that p̂r∗Ĝ is trivializable since its surjective submersion has a section
σ along p̂r, namely, the identity, σ = idE×Tn :

E × T
n = Y

��

E ×X Ê = E × T
n

������������

������������
�� X × T

n = Ê.

It induces a trivialization S : p̂r∗Ĝ → IΨ, and D may be defined as

pr∗G = I0 = IΨ ⊗ I−Ψ
S−1⊗id

�� p̂r∗Ĝ ⊗ Iρg,ĝ
.

Thus, D is a geometric correspondence. It remains to check that it is a geo-
metric T-duality correspondence.

Conditions (T1) and (T2) of Definition 4.9 hold by construction of the
metric ĝ. In order to check condition (T3), we consider an open subset U ⊆ X
that admits a trivialization ϕ : U ×T

n → E|U . On the dual side, we choose the
identity trivialization, ϕ̂ = id. We put B := 0 and T := id, as a trivialization
of I0 = ϕ∗G → IB. Note that ϕ̂∗Ĝ = Ĝ|U×Tn . Thus, the surjective submersion
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of ϕ̂∗Ĝ has a global section, τ := (ϕ,pr
Tn) : U × T

n → E × T
n. It induces a

trivialization T̂ : ϕ̂∗Ĝ → Iτ∗Ψ. We put

B̂ := τ∗Ψ = ϕ∗ω∧̇pr∗
Tnθ.

Now we work over U × T
2n, where we find the diagram

E × T
n

��

U × T
2n

p̂r
����

���
���

���
Φ �� E ×X Ê

σ

��

p̂r
���

��
��

��
��

��

U × T
n

τ

��

ϕ̂
�� Ê

whose rectangular part is commutative, but the sections differ. This means
that the induced trivializations Φ∗S and p̂r∗T̂ differ by the T-bundle with
connection

(σ ◦ Φ, τ ◦ p̂r)∗P ;

a discussion of this fact can be found in [50, Lem. 3.2.3]. We readily compute
the map

k := g̃ ◦ (σ ◦ Φ, τ ◦ p̂r) : U × T
2n → T

2n : (x, a, â) �→ (â, â − a).

We note that k∗P ∼= P3,3−2
∼= P3,3⊗P3,−2

∼= P2,3, using the results of Sect. 2.2.
The 2-isomorphism p̂r∗T̂ ∼= Φ∗S ⊗ k∗P implies that the relevant isomorphism
of (T3),

Ipr∗B
pr∗T −1

�� pr∗ϕ∗G Φ∗D �� p̂r∗ϕ̂∗Ĝ ⊗ IΦ∗ρ
p̂r∗T̂ ⊗id

�� Ip̂r∗B̂+Φ∗ρ

corresponds to the principal T-bundle k∗P ∼= pr∗
T2nP. This completes the

proof the we have a geometric T-duality correspondence. In particular, by
Proposition 4.14, the Buscher rules hold locally.

7.2. The Hopf Fibration with a Trivial B-Field

In this section, we apply the construction of the previous Sect. 7.1 to the ex-
ample where the torus bundle E is the Hopf fibration E := S3 → S2. This
reproduces a result from the PhD thesis of Kunath [34, §3.4, §4.4], where that
case has been discussed separately.

We denote the round metric on the n-sphere by gn; the metric on E is
g = g3, which is indeed T-invariant. Then, the dual torus bundle is Ê := S2×T.
This was probably the first observation of a topology change, and made in [1].
There, the following result has been proved, by applying locally the Buscher
rules. Here, we re-derive it by applying the general procedure of Sect. 7.1.

Lemma 7.2. The dual metric is ĝ = 1
4g2 ⊕ g1.
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Proof. We claim that g′ = 1
4g2 and h = g1. Then, Remark 2.9 applied to Ê

and the trivial connection A = 0 yields the lemma. The claim can be proved
in an explicit model for the Hopf fibration. We model p : S3 → S2 as the
restriction to unit vectors of the map

R
4 → R

3 : (x0, x1, x2, x3) �→ (2(x0x2+x1x3), 2(x1x2−x0x3), x2
0+x2

1−x2
2−x2

3).

The action of z ∈ T sends (x0, x1, x2, x3) to (x′
0, x

′
1, x

′
2, x

′
3), where

x′
0 + ix′

1 := z · (x0 + ix1) and x′
2 + ix′

3 := z · (x2 + ix3).

The tangent space TxS3 at x ∈ S3 ⊆ R
4 is x⊥ ⊆ R

4. The round metric g3 is
given by the standard inner product on R

4, i.e., g3(v, w) := v ·w. (One can see
now directly that it is T-invariant.) The differential of the bundle projection p
at x = (x0, x1, x2, x3) is

Txp = 2

⎛

⎝
x2 x3 x0 x1

−x3 x2 x1 −x0

x0 x1 −x2 −x3

⎞

⎠ .

One computes
Vx = Kern(Txp) = 〈(−x1, x0,−x3, x2)〉

and thus,

hp(x)(r, s) := g3((−rx1, rx0,−rx3, rx2), (−sx1, sx0,−sx3, sx2)) = rs.

In particular, this metric does not depend on the base point p(x). We observe
that Txp · Txptr = 4E4, where E4 denotes the unit matrix. We know that
Txp|Hx

: Hx → Tp(x)X is an isomorphism, and so 1
4Txptr is a right inverse.

Thus,
g(v, w) := g3( 1

4Txptr(v), 1
4Txptr(w)) = 1

4vw = 1
4g2(v, w).

This proves the claim.

By Remark 7.1, the dual bundle gerbe Ĝ is the cup product Ĝ = pr∗
S2E ∪

prS1 of the principal T-bundle pr∗
S2E and the T-valued function prS1 . Sum-

marizing, we have the following result.

Proposition 7.3. Let E := S3 → S2 be the Hopf fibration, g := g3 be the round
metric, and G = I0 be the trivial bundle gerbe. Then, there exists a geometric
T-duality correspondence between (E, g,G) and the geometric T-background
(S2 ×S1, 1

4g2 ⊕g1, Ĝ), where Ĝ = pr∗
S2E ∪prS1 is the cup product bundle gerbe.

In particular, the Dixmier-Douady class of Ĝ is a cup product in singular
cohomology,

DD(Ĝ) = pr∗
S2c1 ∪ pr∗

S1θ,

where c1 is the first Chern class of the Hopf fibration, a generator of ∈ H2(S2,Z),
and θ ∈ H1(S1,Z) is a generator. Thus, DD(Ĝ) is a generator of H3(S2 ×
S1,Z) ∼= Z. Moreover, the H-flux of Ĝ is

Ĥ = pr∗
S2F ∧ pr∗

S1θ,

where F ∈ Ω2(S2) is the curvature of the Kaluza–Klein connection correspond-
ing to the metric g = g3.
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As remarked above, the dual metric has been computed in [1]. The for-
mula for the dual H-flux has been proved in the setting of T-duality with H-flux
by Bouwknegt–Evslin–Mathai [5]. Our unifying setting of geometric T-duality
correspondences implies both results.

7.3. The Hopf Fibration with the Basic Gerbe

The Hopf fibration E := S3 → S2 carries a canonical non-trivial bundle gerbe
with connection, namely, the basic gerbe Gbas over SU(2), under the canonical
diffeomorphism S3 ∼= SU(2). In this section, we consider this bundle gerbe,
while we keep E equipped with the round metric g3 as in Sect. 7.2.

Proposition 7.4. The geometric T-background (S3, g3,Gbas) is self-dual under
geometric T-duality.

In the setting of T-duality with H-flux, the self-duality of (S3, g3,H),
where H ∈ Ω3(S3) is the curvature of the basic gerbe, i.e., the canonical 3-
form, was known before; Proposition 7.4 upgrades this to geometric T-duality.

In the remainder of this section, we prove Proposition 7.4. We recall that
the diffeomorphism between SU(2) and S3 is

SU(2) → S3 :
(

a −b̄
b ā

)

�→ (a, b);

here, the resulting element (a, b) ∈ C
2 is identified with (Re(a), Im(a),Re(b),

Im(b)) ∈ S3 ⊆ R
4. It is well-known that the round metric g3 on S3 corresponds

to the Killing form B(Y1, Y2) = 4tr(Y1Y2) on the Lie algebra su(2). More
precisely, we have under above diffeomorphism

g3 = −1
8
B.

Under the diffeomorphism with SU(2), the principal T-action of the Hopf
fibration is a map τ : SU(2) × T → SU(2), and it is given by matrix multipli-
cation along the group homomorphism

ζ : T → SU(2) : z �→
(

z 0
0 z̄

)

In other words, we have τ = m ◦ (id × ζ), where m denotes the multiplication
map of SU(2). We also remark that ζ(T) is a maximal torus. Now we consider
the basic bundle gerbe Gbas over SU(2) [26,36]. Its canonical connection has
the curvature H = 1

6 〈θ ∧ [θ ∧ θ]〉, where 〈−,−〉 is the basic inner product,
which, in case of SU(2), is 〈−,−〉 = −tr(− · −) = − 1

4B. We recall that Gbas

also has a canonical multiplicative structure [18,49], consisting of a connection-
preserving isomorphism

M : pr∗
1G ⊗ pr∗

2G → m∗G ⊗ Iρ

over SU(2)×SU(2), where ρ = 1
2

〈
pr∗

1θ ∧ pr∗
2θ̄

〉
∈ Ω2(SU(2)×SU(2)); here θ̄ is

the right-invariant Maurer–Cartan form. Additionally, there is an “associator”,
a connection-preserving 2-isomorphism

α : M1+2,3 ◦ (M1,2 ⊗ id) ⇒ M1,2+3 ◦ (id ⊗ M2,3)



1354 K. Waldorf Ann. Henri Poincaré

over SU(2)3, which in turn satisfies a pentagon axiom over SU(2)4.
We consider another multiplicative bundle gerbe, but over the Lie group

T. The underlying bundle gerbe with connection is the trivial one, I0. It is
equipped with a multiplicative structure using the method of [49, Ex. 1.4 (b)].
Its multiplication isomorphism

P : pr∗
1I0 ⊗ pr∗

2I0 → m∗I0 ⊗ IΩ

over T
2 is given by the Poincaré bundle P over T

2, under the equivalence of
Proposition 2.4. Its associator is

P1+2,3 ⊗ P1,2
ϕ−1

l
⊗id
�� P1,3 ⊗ P2,3 ⊗ P1,2

flip
�� P1,2 ⊗ P1,3 ⊗ P2,3

ϕr⊗id
�� P1,2+3 ⊗ P2,3,

and one can easily check that the pentagon condition over T4 is satisfied. The
bundle gerbe I0 together with the multiplicative structure will be denoted by
IP

0 .

Lemma 7.5. We have ζ∗Gbas
∼= IP

0 as multiplicative bundle gerbes with con-
nection.

Proof. One considers for multiplicative bundle gerbes with connection the pair
(H, ρ) consisting of the curvature H of the bundle gerbe and the 2-form ρ
of their multiplicative structure. One can check that ζ∗(H, ρ) = (0,Ω). By
[49, Prop. 2.4], the pair (H, ρ) characterizes the multiplicative bundle gerbe
uniquely up to isomorphism provided that H4(BG,Z) is torsion-free. This is
the case when G = T, as the cohomology of T is a polynomial ring.

In the following, we choose an isomorphism T : ζ∗Gbas → IP
0 of multi-

plicative bundle gerbes with connection (it is unique up to unique 2-
isomorphism). The multiplicative structure M of Gbas then induces an iso-
morphism M′

τ∗Gbas = (id × ζ)∗m∗Gbas

M∼= (id × ζ)∗(pr∗
1Gbas ⊗ pr∗

2Gbas ⊗ I−ρ)

= pr∗
1Gbas ⊗ pr∗

2ζ
∗Gbas ⊗ I−(id×ζ)∗ρ

T∼= pr∗
1Gbas ⊗ I−(id×ζ)∗ρ.

over SU(2) × T. Next we infer that SU(2) × T is canonically diffeomorphic to
the correspondence space for the self-dual situation: the diffeomorphism is

Ψ : SU(2) × T → S3 ×S2 S3 : (X, z) �→ (X,Xζ(z)).

Note that pr ◦ Ψ = pr1 and p̂r ◦ Ψ = τ . Thus, pulling back the isomorphism
M′ along Ψ−1, we obtain a candidate for the isomorphism D. We first verify
that the 2-form is correct, i.e.,

Ψ∗ρg3,g3 = (id × ζ)∗ρ.

This can be checked explicitly using the given definitions. By this, we have a
geometric correspondence.

Conditions (T1) and (T2) of Definition 4.9 are obviously satisfied, since
we have the same bundle and metric on both sides. It remains to verify
condition (T3). Consider an open set U ⊆ S2 with a local trivialization
ϕ : U × S1 → S3|U . We denote by s : U → S3 ∼= SU(2) : x �→ ϕ(x, 1)
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the corresponding section. For dimensional reasons, there exists a trivializa-
tion S : s∗Gbas → Iλ, where λ ∈ Ω2(S2). Note that ϕ(x, z) = s(x)ζ(z), or,
ϕ = m ◦ (s × ζ). Hence, we may produce a trivialization

U : ϕ∗Gbas = (s × ζ)∗m∗Gbas
∼= pr∗

1s∗Gbas ⊗ pr∗
2ζ∗Gbas ⊗ I−(s×ζ)∗ρ

∼= Ipr∗
1λ−(s×ζ)∗ρ

with B := pr∗
1λ − (s × ζ)∗ρ. We choose the same trivializations ϕ and U on

both sides.
We observe that there is a commutative diagram

U × T
2

Φ

����
���

���
��

ψ

�����
���

���
��

SU(2) × T
Ψ

�� S3 ×S2 S3,

where ψ(x, z1, z2) := (s(x)ζ(z1), z2 −z1), and Φ = (ϕ,ϕ). Over U ×T
2 we then

have to consider the isomorphism

(U1,3 ⊗ id) ◦ ψ∗Ψ∗D ◦ U−1
1,2

Substituting the definitions of U and D, it turns out that all occurrences of
M, and both occurrences of S cancel. Remaining are the contributions of T ,
which are T1, T −1

2 and T2−1. By Lemma 7.5, this gives the Poincaré bundle.
This proves (T3) and completes the proof of Proposition 7.4.
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