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Abstract
Neutron scattering is a very high-performance method for studying the structure and dynamics of condensed matter with 
similar approaches in wide ranges of space and time, matching dimensions in space from single atoms to macromolecules 
and in time from atomic vibrations over crystal phonons to low-lying transitions in the microwave range, and to motions 
of large molecular units. Concerning the number and depth of physical concepts, neutron scattering may be compared to 
modern nuclear magnetic resonance. Neutrons have contributed essential results to the understanding of atomic and molecu-
lar processes and are, in this respect, complementary to other materials science probes. Among others, three properties of 
thermal neutrons make them especially appropriate for such work: the neutron mass is similar to atomic masses, and both 
neutron energies and the wavelengths of the neutron material wave match typical values for condensed matter. A further 
important feature of neutron scattering, making it especially valuable in biochemistry and polymer sciences, is that hydro-
gen and deuterium atoms very significantly and specifically contribute to the signal in both diffraction and spectroscopy. 
Additionally, neutrons are scattered at the nuclei and directly reflect the nuclear structure and motions. Results from neutron 
scattering are of great general interest. This paper aims to provide an introduction for chemists on a level understandable 
also to students and researchers who are not going to become part of the neutron community and will not be involved in the 
experiments, but shall be able to understand the basic concepts of the method and its relevance to modern chemistry. The 
paper focuses on basic theory, typical experiments, and some examples demonstrating the applications. As for many modern 
experimental techniques, the interpretation of the results of neutron scattering is based on theoretical models and requires 
a significant mathematical overhead. Most results are only meaningful when compared with computer simulations. For 
understanding this, in this paper, the theory of scattering is developed, starting with intuitive models and presenting typical 
concepts such as the scattering triangle, energy and momentum transfer, and the relation of inelastic and elastic scattering to 
space- and time-dependent information. The interaction of neutrons with matter, scattering cross sections, beam attenuation, 
and coherent versus incoherent scattering are explained in detail. Two further typical concepts that are not generally familiar 
to scientists outside the community are the use of wave and particle equivalence, and of handling results as a scattering 
function that depends simultaneously on momentum and energy transfers. The possibility of obtaining neutron beams for 
scattering experiments at a few research centers around high-performance sources is explained, and experimentally relevant 
features of research reactors and spallation sources are mentioned. As neutron experiments always have to deal with small 
flux and extended beams and shielding, experimental conditions are very far away from laboratory methods where handling 
of samples and instruments is concerned. Experimental details are given for making experiments more understandable and 
familiarizing the reader with the method. Related to this are extended possibilities for handling samples in a large variety 
of different environments. In a further part of the manuscript, a variety of techniques and typical instruments are presented, 
together with some characteristic applications bringing alive the theory developed so far. This covers powder diffraction and 
structure of liquid water, triple-axis spectrometers and lattice phonons, backscattering spectrometry and rotational tunneling, 
time-of-flight spectrometry, and simultaneously probing the energy and shape of low lying vibrations and diffusion, filter 
spectrometer and vibrational spectroscopy without selection rules, small-angle neutron scattering and protein unfolding, as 
well as micelles, neutron spin echo spectroscopy, and polymer dynamics.
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Introduction

Importance of neutron scattering

Neutron scattering is an established method for obtain-
ing detailed information on the structure and dynamics of 
condensed matter, aiming to visualize the positions and 
motion of atoms. A very wide range of condensed phases 
with different structural organization and dynamics are 
studied. Other approaches either reveal structures (X-ray 
diffraction and atomic force microscopy) or dynamics 
(microwave and far infrared spectroscopies), and this clear 
distinction is not to be made for neutron scattering.

The scope of physics treated with one single method 
is enormous, and concerning the variety of information 
obtained, neutron scattering is probably comparable to 
nuclear magnetic resonance (NMR). In spite of the merits 
of the scattering method, it often is not appropriately taken 
into consideration outside its community. The interpreta-
tion of results often has significant computational costs to 
provide answers to simple questions.

Neutron scattering is not discussed in physical chemis-
try textbooks, rather in solid-state textbooks [1], but chem-
ists should have some understanding for interpreting the 
results. Books on neutron scattering often only contain 
very brief and specialized introductions before present-
ing a choice of detailed results [2]. So far, most chemists 
only look to diffraction and small-angle neutron scattering 
(SANS), where the appropriate approaches and software 
for data treatment are available from X-ray scattering.

What is a neutron?

Neutrons are elementary particles with zero electrical 
charge, which build up the nuclei of atoms together with 
protons. The mass mN of a neutron is close to that of a 
proton, and the nuclear spins of both particles are equal to 
I = 1/2. Neutrons rarely leave nuclei by natural radioactiv-
ity, and the main source of free neutrons is the collision of 
nuclei with nucleons. Once released from a nucleus, a free 
neutron has a life time of only about 880 s. This sounds 
short for a radioactive decay, but is largely sufficient for 
scattering experiments. Even a very slow neutron with a 
wavelength of 20 Å has a velocity of about 200 m/s and 
needs only about half a second to travel from the source 
to the end of an experimental hall with a length of 100 m. 
Each of the few neutrons still decaying yields a proton, 
an electron, and a neutrino. The proton and electron will 
hardly transmit shielding and housings before reaching a 
detector, and the neutrino will not be detected at all.

Why neutrons?

As various physical phenomena have been studied by neu-
tron scattering, there are several reasons to use this technique 
and to be familiar with its results, e.g.:

 (i) The intensities in the respective neutron scattering 
data, e.g., from vibrational spectroscopy, directly vis-
ualize the nuclear dynamics. The scattering experi-
ment thus becomes meaningful for the analysis of 
the physics in a system, and the observed scattering 
function can be quantitatively interpreted by models 
for nuclear motion. In a classical picture, the scatter-
ing function reflects the van Hove correlation func-
tion of the nuclei.

 (ii) In contrast to X-ray experiments, the H-atoms in 
polymer and biomolecules significantly contribute 
to the signal. By sophisticated variation of contrast 
and polarization experiments, different parts of large 
biomolecules become “visible.”

 (iii) A further advantage of thermal or cold neutrons, 
with respect to other probes of matter such as 
photons or electrons, is that the energy matches 
internal modes and the wavelength is of the order 
of interatomic distances. At 50  °C, we obtain 
R ⋅ T = 8.314

J

mol⋅K
⋅ 323K = 2.69

kJ

mol
= 28meV , and 

the average energy 3∕2R ⋅ T  of the corresponding 
Maxwell distribution is about 42 meV or 340  cm−1. 
The material wave corresponding to this kinetic 
energy has a wavelength of λ = 1.39 Å, which is 
close to the typical wavelength of λ = 1.5 Å for X-ray 
diffraction experiments. Thereby, one can measure 
structure and dynamics in the same experiment.

In contrast, the wavelengths of infrared (IR) radiation 
with appropriate photon energies �̃ = 400 − 4000cm−1 
o r  E = 50 − 500meV  a r e  i n  t h e  r a n g e  o f 
� = 2.5 ⋅ 10

4 − 2.5 ⋅ 10
5  Å, far beyond anything useful 

for structure determination. Attempts have been made to 
study structure and dynamics in the same experiment by pho-
tons, but this cannot be done in the home lab but affords syn-
chrotron X-ray radiation and will be as costly as a neutron 
experiment [3].

This paper makes use of the fact that the interaction of 
slow neutrons with atoms in the sample can be described 
in a particle and in a material wave picture, which are both 
equivalent. It is convenient if we talk about neutron scatter-
ing and have the particle model in mind or if we consider 
material waves and talk about neutron diffraction. The fre-
quently applied distinction between elastic diffraction and 
inelastic scattering is artificial.
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The momentum, velocity, wavelength, and energy are 
connected to each other (Table 1). By determining one of 
these quantities, the others are also known. The deBroglie 
relation between the modulus p of the momentum of the 
neutron particle and the wavelength � of its material wave, 
� = h

p
 , is used without derivation [4]. The particle–wave 

equivalence may often seem to be something very theoreti-
cal, irrelevant to students, but it is essential to make use of 
it for understanding neutron scattering (here, the modulus of 
a vector is denoted by omitting the arrow).

The elementary constants used here are listed in 
Table 2. The non-SI unit (Système international d’unités) 
1Å = 10

−10m is used for lengths including wavelengths, 
since this is convenient for molecular dimensions. As, e.g., 
the structures of biomolecules are of increasing importance, 
we must remain compatible with the standard database for 
protein structures [6], which exclusively applies this length 
unit. Another important non-SI unit is 1cm = 10

−2m , since 
the inverse wavelengths of optical radiation, being propor-
tional to the photon energies, are usually quoted in cm−1.

Neutron scattering as a sophisticated method

Neutron scattering requires expensive sources and instrumen-
tation; therefore, it is only accessible at a few large research 
centers. Other than the chemical analysis methods men-
tioned above, neutrons cannot be used for the routine analy-
sis of a large number of samples. Consequently, neutrons are 

inadequate for the standard analysis of sample quality or reac-
tions and only benefits if deeper physical insight is obtained. 
Neutron studies are mostly conducted on selected examples 
and give ideas on the general physical background. The out-
come of many neutron studies can only be understood with a 
significant background in condensed matter physics. This may 
keep chemists from using neutron scattering results or even 
performing experiments on their own.

Focusing on a few research centers is a disadvantage as 
compared with other physical and chemical methods such as 
calorimetry, mass spectroscopy, X-ray, IR absorption, and 
even NMR. On the other hand, specialized computational 
methods were developed very early by a small community 
of enthusiasts. Now, time is in favor of running such sophis-
ticated methods with a large overhead of theoretical and 
computational interpretation since more and more methods 
now yield data, which afford a fundamental understanding 
of molecular models, provided by performant computational 
approaches such as molecular dynamics simulations and 
others.

An example of this is a phase transition, which is traced in 
the laboratory with not very expensive differential scanning 
calorimetry (DSC) equipment [7]. The output reveals tem-
perature and enthalpy of phase transitions at one glance, and 
the method is applied as routine quality control in produc-
tion. A more sophisticated approach is X-ray diffraction [8], 
which allows understanding the structural implications of a 
phase transition, but affords some data treatment and is too 
complicated for continuous quality control. Neutron scat-
tering now combines the structural information from X-ray 
diffraction with dynamic information on shift and softening 
of vibrations close to the melting point and yields a complete 
picture of mechanisms and driving forces [9].

Introductions into neutron scattering were usually writ-
ten for experienced physicists [10–12]. These papers are 
primers for new members of the community and are pre-
pared to handle the physics, but do not address students and 
chemists who just want to look at the results. This report 
shall review some elementary concepts and specific fun-
damental aspects of neutron scattering. The intention is to 
present examples and the obtained physical data; to explain 
some terms, which are prohibitive for understanding neutron 
results; and to demonstrate the technical effort required to 
obtain neutron scattering data. Some technical details are 
mentioned when this demonstrates the particularities of the 
method and clarifies it.

The paper is organized as follows: after this introduction, 
an explanation of the general neutron scattering process in 
particle and material wave models is given, and the concepts 
of energy and momentum transfer are explained. Fundamen-
tals such as cross section, coherent and incoherent scatter-
ing, and scattering function are introduced. Some typical 
applications and the related instruments types are presented, 

Table 1  Conversion relations between energy and wavelength for 
electromagnetic radiation

Optics/photons:
� = 1THz = 10

12Hz corresponds to 
�̃ = 1

�
= �

c
= 10

12s−1

3⋅10
10cm∕s

= 33.3cm−1

λ = 100 Å ⇒ � = 3⋅108 m/s

100⋅10−10m
= 3 ⋅ 1016s−1 = 3 ⋅ 104 THz

� = h⋅c

E
= h⋅c

e
⋅

1

E∕e
;�̃ = 1

�
= E

h⋅c
= e

h⋅c
⋅
E

e
= 8.065544

cm−1

meV
⋅ E

e

h⋅c
⋅
1

e
= 8.065544

cm−1

meV
;
h⋅c

e
⋅ e = 1meV

8.065544cm−1
= 12.398keV Å

E = h ⋅ � = h⋅c

�
=
(

h⋅c

e
e
)

1

�
= 12.398 keV⋅A

�
= p ⋅ c

Table 2  Relevant elementary constants [5]

Planck constant h 6.62607015 ×  10–34 Js
Velocity of light c 29 979 245 800 cm/s
Elementary charge e 1.602176634 ×  10–19 As
Boltzmann constant kB 1.380649 ×  10–23 J/K
Neutron mass mN 1.67492749804 ×  10–27 kg
Avogadro constant NA 6.02214076 ×  1023 mol−1

Relative neutron mass mN,rel 1.00866491595 u
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differentiating by crystal and time-of-flight (TOF) mono-
chromatizing and by the range of momentum and energy 
transfers, such as elastic wide or small-angle scattering, and 
inelastic scattering for spectroscopy of dynamics on various 
time scales.

Scattering process

General scattering process, energy and momentum 
transfers

General scattering experiment

By counting neutrons and determining their energies before 
and after the scattering, the probability is determined that 
a neutron with incident energy Ei is scattered into a steric 
angle dΩ around an average scattering angle 2Θ . This prob-
ability P

(

Ei,Ef ,Θ
)

 is expressed using a double differential 
cross section:

A simple picture of this is that the neutron sees the atom 
as a disc with a total area � , but that the surface of this disc 
is somewhat irregular, e.g., hard or soft and curved. Small 
parts d� of the disc area will thus scatter the neutron into 
different directions and with different outgoing energy.

It is equivalent to determine the energy, velocity, momen-
tum, or wavevector of a neutron with a known direction of 
flight. For calculating the kinetic energy E of the neutrons in 
scattering experiments, the nonrelativistic relation is used. E 
is a few meV up to 2 eV, which is many orders of magnitude 
smaller than the neutron rest energy of mN ⋅ c2 = 931MeV . 
Accordingly, the kinetic energy of the neutron may be cal-
culated in the nonrelativistic approximation. The energy E 
of the neutron particle with velocity �⃗v and the wavelength � 
of the related material wave are related by

and a low energy corresponds to a long wavelength and vice 
versa. The wavelength is more relevant for elastic scatter-
ing, and thus diffraction, whereas the corresponding energy 
is essential for inelastic scattering. This classic relation 
between energy and wavelength is in contrast to that for 

(1)P
(

Ei,Ef ,Θ
)

=
d�

dΩdEf

(

Ei,Θ
)

(2)

E =
mN

2
v2 =

p2

2mN
=

(ℏk)2

2mN
=
(

h

𝜆

)2
1

2mN

=
81.80meV
(

𝜆∕1Å
)2

= kB ⋅
949K

(

𝜆∕1Å
)2

=
h ⋅ c ⋅ 660cm−1

(

𝜆∕1Å
)2

∝
1

𝜆2

photons with zero rest mass, for which the relativistic rela-
tion between momentum and kinetic energy, ∝ 1

�
 , holds.

Neutron scatterers usually use the wavevector �⃗k = 2𝜋

𝜆
⋅ ��⃗er 

with the corresponding unit Å−1 instead of the vector 
s⃗ = 1

𝜆
⋅ ��⃗er  known from X-ray diffraction. Here, ��⃗er  is the unit 

vector in beam direction.
The momentum �⃗p of a neutron with velocity �⃗v is the prod-

uct of this wave vector �⃗k and ℏ:

In the particle picture, neutron scattering is a collision 
of hard spheres, similar to a moving billiard ball hitting one 
at rest. Most of the neutrons in a beam with given direc-
tion and velocity go straight through the sample, but some 
pass sufficiently close to atomic nuclei for interacting and 
changing their direction and velocity of flight (Fig. 1). This 
is equivalent to changes ����⃗Δp and ΔE of the initial momentum 
��⃗pi and the initial kinetic energy Ei , respectively, of the scat-
tered neutron. In more physical terms, these neutrons have 
transferred momentum and energy to the scattering sample. 

(3)
�⃗p = p ⋅ ��⃗er = ℏ ⋅ �⃗k = mN ⋅ v ⋅ ��⃗er= mN ⋅ �⃗v =

(

2mN ⋅ E
)1∕2

⋅ ��⃗er

Fig. 1  (Top) Schematic view of a diffraction experiment. It is conven-
tion to use the half scattering angle Θ rather than the full scattering 
angle 2Θ . This definition is compatible to a (Bragg) reflection on a 
plane (cf. Fig.  6). The differential steric angle dΩ is indicated as a 
blue disc. Usually, it is given by the opening of the detector. (Bottom) 
General set up for a neutron scattering experiment. In the incident 
beam, one has to define velocity, direction of flight, and flux, which 
is the number of neutrons per area and time. The device for doing this 
is called a primary spectrometer. Neutrons from a large source pass 
a device filtering a small range of incident wavevectors ki or, equiva-
lently, energies Ei . This flux is monitored by a transparent detector 
with low efficiencies, which gives an estimate of the number of neu-
trons reaching the sample. Neutrons scattered into a steric angle dΩ 
around the average scattering angle 2Θ may again be filtered for their 
energy Ef  in the secondary spectrometer and are finally counted in an 
efficient detector
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In such a scattering event, momentum and energy conserva-
tion laws have to be fulfilled simultaneously: The sample has 
to yield or take up the energy, which the neutron has gained 
or lost, respectively, and the momentum transferred to the 
sample is oppositely equal to the difference between incident 
and final momentum of the neutron.

Determination of momentum transfer

The momentum transfer to the neutron Δ �⃗p is calculated from 
the difference ��⃗Q between incident and final wavevectors �⃗ki 
and �⃗kf  as

Knowing the incident and final neutron velocities or 
wavelengths is sufficient to determine the scattering angle 
2Θ for calculating ��⃗Q . In the general case of inelastic scat-
tering, the cosine law is applied to the vector diagram of the 
scattering (Fig. 2):

As wavevector and momentum are linked by a constant 
factor, �⃗k and ��⃗Q are often called “momenta” and “momentum 
transfer.” This ignores the fact that the momentum is a par-
ticle property, and a wave vector refers to a material wave. 
In the elastic case with kf = ki and ΔE = 0 , this reduces to 

(4)Δ �⃗p = mN ⋅ �⃗vf − mN ⋅ �⃗vi = ℏ ⋅

(

�⃗kf − �⃗ki

)

= ℏ ⋅ ��⃗Q

(5)

��⃗Q = �⃗kf − �⃗ki ⇒
(

��⃗Q
)2

=
(

�⃗kf − �⃗ki

)2

⇒ Q2 = k2
f
+ k2

i
− 2 ⋅ kf ⋅ ki ⋅ cos(2Θ)

In a single crystal, we must consider the orientation of ��⃗Q 
relative to the axes. Many sample preparation methods do 
not yield single crystals. In isotropic samples such as liq-
uids, amorphous samples, and powders composed of small 
crystallites, e.g., from vapor deposition [13], the signal only 
depends on the modulus Q.

Energy transfer

Table 3 gives examples for typical neutron energies in vari-
ous units. The energy transfer E is obtained by calculating 
the incident and final energies Ei and Ef before and after the 
scattering event, respectively. Following the typical denomi-
nation in neutron scattering, we obtain

It is thus sufficient to determine either the velocity of a 
neutron particle or the wavelength of its material wave for 
obtaining its kinetic energy. The symbol � is related to E by 
a factor of ℏ and is often referred to as “energy transfer” 
instead of E . The last equation says that a sample, which 
takes up the momentum Q and the energy E , behaves like a 
particle with an effective mass meff . The limiting cases for 
it are the mass of a single freely recoiling atom and infinity 
for an atom rigidly bound to a large system. In a realistic 
condensed sample, the truth will be somewhere in between. 
By multiplying Eq. (5) with ℏ2

2⋅mN
 , one obtains

Energy loss and gain

During scattering, the neutron may lose energy (energy loss 
spectrum), maintain its kinetic energy (elastic scattering) 
and only change its direction of flight, or gain energy from 
the sample (energy gain). These three cases are visualized 
by the respective scattering triangles in Fig. 3. By energy 

(5’)Q2 = 2 ⋅ k2
i
⋅ (1 − cos(2Θ)) = 2 ⋅ k2

i
⋅

(

2 ⋅ sin2(Θ)
)

Q = 2 ⋅ ki ⋅ sin(Θ) =
4�

�i
⋅ sin(Θ)

(6)

E = ℏ ⋅ 𝜔 = Ef − Ei =
mN

2
⋅

(

�⃗vf
)2

−
mN

2
⋅

(

�⃗vi
)2

=

(

ℏ ⋅ �⃗kf

)2

2 ⋅ mN
−

(

ℏ ⋅ �⃗ki

)2

2 ⋅ mN
=

ℏ2

2⋅meff
Q

2

(7)

ℏ2

2⋅mN
Q

2

=
ℏ2

2⋅mN

k

2

f

+
ℏ2

2⋅mN
k2
i
− 2 ⋅

ℏ2

2⋅mN
⋅ kf ⋅ ki ⋅ cos(2Θ)

(8)E ⋅

meff

mN
= Ef + Ei − 2 ⋅

(

Ef ⋅ Ei

)1∕2
⋅ cos(2Θ)

Fig. 2  Vector diagram of the wavevectors for scattering of a neutron 
with a single nucleus. Bold letters: initial and final wavevectors �⃗ki and 
�⃗kf  as in Fig. 1, normal letters: shifted wavevectors. The diagonal ��⃗Q of 
the parallelogram is the difference between �⃗ki and �⃗kf  . −��⃗Q indicates 
the momentum transfer to the sample (see text). The hatched area is 
called scattering triangle and yields ��⃗Q
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conservation, the sample will gain the energy that the neu-
tron loses, and vice versa. The practical aspect of this is 
that comparison of neutron spectra with those from other 
methods may be confusing. Usually, spectroscopic data are 
plotted with the energy gain of the sample in a positive x 
direction. Neutron data are often plotted with neutron energy 
gain in a positive x direction, thus the neutron energy loss, 
and the corresponding sample energy gain, is found on the 
negative x axis.

Independent of the mechanism of energy transfer between 
neutron and sample, the intensity ratio between energy gain 
and loss spectra is always given by the Boltzmann factor 
B(ΔE) = exp

(

− ΔE

R⋅T

)

 at the sample temperature. If the 
motion of the nucleus is periodic, such as vibrations or rota-
tions, next to the elastic line we obtain two separate side 
bands at higher and lower neutron energies, similar to the 
Stokes and anti-Stokes lines in the Raman spectrum. By 
thermal neutrons, both lines are observed for very low-lying 
vibrations and rotations in solids, but energy transfers 
ΔE ≫ R ⋅ T  , e.g., for most vibrational transitions at room 
temperature or below, can in general only be measured in the 
energy loss regime (Fig. 4). This is analogous to the anti-
Stokes line, which only appears at high temperature. Small 
transfers of rotations or diffusion motion (see below) are 
often measured simultaneously in energy loss and gain, 
which may be helpful for detecting the exact line shape and 
removing artifacts.

Table 3  Some typical neutron energies and wavelengths and corresponding applications

“Thermal” neutrons have a Maxwell velocity distribution, with temperatures in the order of 300  K. For “cold” neutrons, this distribution is 
slowed down to lower temperatures by scattering in a cold source, often filled with liquid  D2. “Epithermal” neutrons have energies higher than 
thermal neutrons and are applied in many fields, also beyond scattering. Here, this terms only means neutrons with energies afforded to see high 
vibrational and rotational [14] transitions in energy loss scattering, which limits the energy range to about 0.4–2 eV.

Neutrons λ (Å) ki (Å−1) Elastic scattering E/kB (K) E (meV) E (THz) �̃   (cm−1) Inelastic scattering

Epithermal
Short wavelength tail from 

hot source or spallation 
source with incomplete 
moderation

0.40 15.7 Structure of liquids 
and amorphous 
materials on atomic 
scale

5933 511 124 4124 High intramolecular modes 
(O–H, C–H...)

Single-particle recoil
Cf. mid- (MIR) and near-

infrared ranges
Hot source in a reactor 0.63 10.0 2399 207 50.0 1668 Substance-specific low-intra-

molecular modes (“finger-
print range”), cf. MIR

Thermal energy at room 
temperature

1.8 3.5 Lattice parameter of 
crystals, diffraction 
(powder and single 
crystal)

293 25 6.1 204 Rotation, low-intramolecular 
modes, and intermolecular 
vibrations (phonons), cf. 
far-infrared range

Cold 5.0 1.3 38 3.3 0.79 26
From cold source 6.2 1.0 25 2.2 0.52 17 Diffusion, tunneling
Long wavelength tail of cold 

spectrum
10.0 0.63 SANS, reflectometry 9 0.82 0.20 6.6 Neutron spin echo slow 

dynamics in polymers
20.0 0.31 2 0.20 0.049 1.6

Fig. 3  a Scattering is called elastic if the neutron only changes its 
direction, but not measurably its energy. In most cases, this is the 
most efficient process, and the elastic line contains the largest part 
of the observed intensity and is much stronger than other features 
in the spectrum: � = 0 ⇒ ki = kf  , but Q = 2 ⋅ ki ⋅ sin(Θ) ≠ 0 . This 
elastic line corresponds to the Rayleighline in the Raman spectrum. 
b 𝜔 > 0 ⇒ ki > kf . In this inelastic case, the neutron transfers energy 
to the sample, and we obtain a neutron energy loss spectrum but 
an energy gain of the scattering sample. Both cold and hot samples 
show this effect, similarly to the Stokes line in the Raman spectrum. 
c 𝜔 < 0 ⇒ ki < kf . If the neutron takes away energy from the sample, 
which loses energy, we obtain the energy gain of the inelastic spec-
trum
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Example information from momentum and energy transfer

Elastic Bragg scattering in  the  particle model The scatter-
ing probabilities depend on momentum transfers, and this 
yields  information  on the structure of the scatterer. At a 
given incident wavelength, the momentum transfer increases 
with increasing scattering angle.

An important example is a translational symmetric crys-
tal with fixed atomic positions. Related to this symmetry in 
space, the crystal can only take up well-defined momenta. 
The distribution of particles for a simple ideal crystal with a 
lattice constant of dz in z direction is given (Fig. 5 (left)) as

These well-defined z positions of the lattice Fourier trans-
form into a momentum distribution with well-defined peaks 
again, with a distance of h/d and the corresponding momen-
tum distribution for this crystal is obtained in z only (Fig. 5 
(right)) as Fourier transform of �(z) with respect to z:

(9)�(z) =
∞
∑

n=0

δ
(

z − n ⋅ dz
)

The integral in (10) will only diverge from zero, if 
z = n ⋅ dz and exp

(

−i ⋅ 2π ⋅
pz

h
⋅ z
)

= 1 , otherwise the expo-
nentials will cancel in the sum. This means that pz

h
= m

dz
 . In 

this case, however, we obtain

In the particle model, Bragg law and Laue relations say 
that a perfect crystal with translational symmetry in space 
has a comb-like momentum distribution. Momentum trans-
fers to this crystal only occur with discrete values of Qz , 
corresponding to differences between the teeth of the comb.

This means that the crystal can only change its momen-
tum in z direction during the scattering process by multi-
ples of h

dz
 , and we obtain

with Δn = 0..∞ . For a Bragg “reflection” on a crystal sur-
face (Fig. 6), the incident and final angles of the neutron 
beam with respect to the surface are both equal to Θ , and 

(10)

Ψ
(

pz
)

=
∫

∞

−∞

∞
∑

n=0

δ
(

z − n ⋅ dz
)

⋅ exp
(

−i ⋅ 2π ⋅
pz

h
⋅ z
)

dz

=
∞
∑

n=0

δ

(

pz

h
−

m

dz

)

=
∞
∑

n=0

δ

(

Qz − m
2π
dz

)

withn,m

= 0, 1, 2, 3,…

(11)

∫

∞

−∞

∞
∑

n=0

δ
(

z − n ⋅ dz
)

⋅ exp
(

−i ⋅ 2π ⋅
pz

h
⋅ z
)

dz

=
∞
∑

n=0
∫

∞

−∞
δ
(

z − n ⋅ dz
)

⋅ 1 ⋅ dz =
∞
∑

n=0

1 ⋅ 1 → ∞

(12)ℏ ⋅ Q = −Δpz = Δn ⋅
h

dz

Fig. 4  Detailed balance for excitations in energy gain and loss spec-
tra. In case of two well-defined energy levels, neutron energy loss 
and gain will excite and quench the upper state, respectively. If the 
upper state has a small Boltzmann factor and is poorly occupied, the 
intensity of the neutron energy gain transition (green) will be much 
smaller than of the loss transition (magenta)

Fig. 5  Projection of (left) position and (right) momentum spaces of 
an ideal crystal in z direction with lattice constant dz . The arrows 
indicate infinitely high peaks. The distance between adjacent peaks 
is the (arbitrary) lattice constant of dz = 5Å . A larger lattice constant 
results in an increase of the distances in position space and a decrease 

in the momentum space. If the atoms oscillate around their positions 
in a real crystal at finite temperature, the peaks in space (left) become 
wider and are no more infinitely high. In momentum space, peaks at 
higher Q lose intensity. This is commonly described by the Debye–
Waller factor
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momentum transfer only occurs vertically to the surface. We 
combine this with the expression for the momentum transfer 
derived above (5’)

and obtain

 , which is Bragg’s law. We obtain the diffraction pattern, 
where the neutrons are not uniformly scattered but are in 
well-defined directions yielding the Bragg reflections It is 
noted that the smallest nonzero momentum transfer is 
Δpz,min =

h

dz,max
 with a maximum lattice constant dz,max . Slow 

neutrons with a momentum smaller than that cannot transfer 
momentum to the lattice and the incident beam passes with-
out attenuation by Bragg scattering (cf. “Filter 
spectrometer”).

In general, the Bragg relation is ascribed to the interfer-
ence of waves but here it is obtained from the particle model. 
Diffraction processes are described by the fact that the neu-
tron particle can only transfer well-defined discrete momenta 
to the crystal lattice, which are proportional to the refraction 
order Δn , and by applying the de Broglie relation to these 

(13)ℏ ⋅ Q = ℏ ⋅ 2 ⋅ ki ⋅ sin(Θ) = 2 ⋅
h

𝜆i
⋅ sin(Θ)

(14)Δn ⋅
h

dz
= 2 ⋅

h

�
⋅ sin(Θ) ⇒ Δn ⋅ � = 2 ⋅ dz ⋅ sin(Θ)

differences. This probably is a very uncommon access to 
Bragg’s law (and to Laue conditions), being too complicated 
for textbooks and no student may want to bother with such 
quantum mechanical relations, but is an obvious example for 
the wave particle equivalence.

We still have to explain why we consider this Bragg reflec-
tion as an elastic process for the particle. If the whole crystal 
takes up the momentum rather than a single lattice point, 
there is almost no energy transferred, since the crystal has 
a huge mass M as compared with the neutron, and we have 

 if M >> mN taking into account that 

Atom form factor X-rays are scattered at electrons. As the 
size of the atom is of the same order of magnitude as the bond 
lengths and wavelengths, interference of scattered radiation 
from different parts of the electron shell results in an atom 
form factor, which tends to suppress the intensity of higher 
diffraction orders. This form factor is determined by the size 
of the electron shells and must not be confused with a second 
form factor due to the dynamics of atoms around their lattice 
point, which is described by a DWF (Debye–Waller factor).

(15)ΔE =
(ℏQ)2

2M
≪ Ei =

(

ℏ ⋅ ki
)2

2mN

(16)Q = 2 ⋅ ki ⋅ sin(Θ) ≤ 2 ⋅ ki

Fig. 6  Bragg’s law for the first two orders of diffraction in the particle 
and wave model on a crystal surface (full green line). The atoms are 
plotted as green dots: (left) Bragg scattering as discrete momentum 
transfer to a crystal vertically to the surface. The inclined full lines 
indicate the wavevectors of incident (i) and final (f) neutron beam. 
The dashed lines are added for generating the scattering triangles for 
first (dark blue) and second diffraction orders (light blue). As Bragg 
scattering is elastic, the lengths of all wavevectors are identical. The 
angles Θ1, 2 are the reflection angles. Obviously, the incoming and 
outgoing beams form angles of 2Θ1, 2, which are the respective scat-

tering angles. As was laid out in the text, only discrete values of Q1 
and Q2 are possible with Q2 = 2Q1. The arrows pointing down indi-
cate the momentum transfer to the crystal vertically to its surface, and 
thus are −Q1,2. (right) The common way of introducing Bragg’s law 
is that interference between sphere waves from a column of atoms 
vertically to the surface (open circles) occurs, if the path difference 
(red lines) between adjacent atoms is a multiple of the wavelength λ. 
For the first (full line) and second order (dashed), the differences are 
1 × λ and 2 × λ, respectively
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Due to the atom form factor, the X-ray pattern can, in 
principle, not be recorded at very high momentum trans-
fers. The signal from a large structure in the space domain 
is intense only in a small range of momentum transfers. 
The atom form factor only reduces the intensity of X-ray 
diffraction from C-atoms at a typical wavelength of 1.5 Å 
and an angle of 2Θ = 90◦ to 8.5% of that at small angles 
[15].

On the other hand, it is a property of Fourier transform 
that to obtain a high resolution in real space, data at higher 
diffraction orders, and thus at high Q , values have to be 
recorded. There, the atom form factor is small and sam-
ples have to be irradiated with photons from synchrotron 
radiation sources. Photon fluxes from there exceed those of 
thermal neutrons by many orders of magnitude, and diffrac-
tion signals can be detected even at high angles, where the 
atom form factors are very low. However, these large num-
bers of high-energy photons often rapidly destroy samples 
such as biomolecules by the photo effect. For obtaining 
information on the DWF and the underlying amplitude of 
motion, the signal has to be deconvoluted from the atom 
form factor.

In contrast, thermal neutrons have energies and fluxes 
orders of magnitude lower than those that induce chemical 
effects, such as bond break in samples. For neutron scat-
tering at the atom core, as discussed below, the size of the 
scattering center is infinitely small, and the atom form factor 
is equal to one in the full range of momentum transfers. Any 
intensity decrease with increasing Q is due to the spatial 
extension of nuclear dynamics.

Inelastic neutron scattering By inelastic neutron scattering, 
energy transfer between neutron and sample is measured. 
In these experiments, the number of scattered neutrons at a 
well-defined energy is counted and related to the incoming 
flux. This shows, if there are, e.g., some energies transferred 
preferentially, because some energy levels such as vibrations 
or rotations in the sample are excited or quenched. A typi-
cal example is vibrations of the atoms around their lattice 
positions in a crystal, being no longer fixed on lattice points. 
These vibrations are, as many inelastic processes, excita-
tions between well-defined quantum states. Such processes 
are straightforward to understand by a particle model, where 
the scattered neutron changes its energy by the amount nec-
essary for the transition. The energy transfers have to match 
the energy differences between internal levels. Between the 
levels of a quantum mechanical oscillator with energies

only energy transfers with ΔE = Δv ⋅ h� with integer Δv 
may occur, i.e., the neutron loses or gains energy by exciting 

(17)Ev =
(

v +
1

2

)

⋅ h𝜈 =
(

v +
1

2

)

⋅ ℏ ⋅ 𝜔;v = 0, 1, 2, ..

or de-exciting the upper state. As is known from quantum 
mechanics, one can directly convert the transition energy 
into the oscillation frequency �.

A further analysis of vibrational spectroscopies (Fou-
rier-transform infrared absorption or Raman scatter-
ing) beyond frequencies proceeds via the line intensities 
derived from transition dipole moments spectra. Neutron 
scattering has an additional parameter, the momentum 
transfer, which gives access to the extension of vibrational 
modes in space. This is well known from X-ray scatter-
ing, where the amplitudes of motions of atoms are derived 
from the decreasing intensities of higher-order reflections. 
In contrast to infrared spectroscopies and X-ray diffrac-
tion, neutron spectroscopy yields information on energies 
and amplitudes. This is because thermal and epithermal 
neutrons have both energies in the range of molecular tran-
sitions and momenta in the range of inverse vibrational 
amplitudes. This is an example that momentum transfer 
yields additional spatial information on the extension and 
shape of modes.

The basic quantity is the Q-dependent DWF , which sim-
plifies for isotropic samples to 

 with an average squared amplitude u2 , reducing the inten-
sity of higher-order reflections. The factor 3 may be attrib-
uted to the fact that only a motion in one-dimension parallel 
��⃗Q is seen. The equation means that the scattering intensity 
at high Q or momentum transfers ℏQ is reduced by motions 
with significant amplitudes.

The average amplitude of a harmonic quantum oscilla-
tor is related to the frequency � and the average potential 
energy Epot being half of its total energy Evib. This is given 
for a quantum mechanical harmonic oscillator with the 
oscillating mass mosc as 

 w i t h  t h e  l i m i t s  Epot (T = 0) = 1

2
⋅
ℏ𝜔

2
 a n d 

Epot (T → ∞) = 1

2
⋅ kB ⋅ T .

These vibrations are usually thermally excited, and u2 
is temperature dependent, and at high temperatures even 
proportional to T. For this reason, the Debye–Waller factor 
is often addressed as a temperature factor. At low tempera-
tures, u2  does not disappear, however, but is determined 
by the zero point energy. In the ground state, an atom or 
molecule vibrating around its lattice point in the x 

(18)DWF
(

Q2
)

= exp

[

−
Q2

⋅ u2

3

]

(19)

Epot =
mosc

2
u2 ⋅ 𝜔2 =

E

2
=

kBT

2
⋅

(

ℏ𝜔

2kBT

)

⋅ coth

(

ℏ𝜔

2kBT

)
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direction has a probability distribution �(x) given by a 
Gaussian �(x) ∝ exp

[

− 1

2

(

x2

u2

)]

 with an average squared 

amplitude u2 given as 

Obviously, at a given frequency, the squared amplitude 
is inversely proportional to the oscillating mass, which will 
be small, if protons oscillate. Further, the squared ampli-
tude is inversely proportional to the vibration frequency, 
and thus to the energy transfer. Low-lying vibrations of 
these light atoms [16] have the largest amplitude and dom-
inate the spectrum, as the incoherent cross section of H 
is very high.

A single quantum mechanical oscillator in its ground 
state has a Gaussian shape wavefunction in momentum 
space 

and the momentum distribution �(p) is given as 

It is obvious that �(p) decreases with increasing p , and 
that small momentum transfers will be preferred. Thus, the 
elastic transition of an oscillating particle in the ground state 
preferably occurs at low momentum transfers and will be 
weaker at higher momentum transfers, which is consistent 
with the behavior of the DWF . Without detailed explanation, 
it is noted that this is consistent with Fig. 5. The vibrations 
result in a broadening of the peaks in real space according 
to �(x) . This convolution of the comb pattern in space (left) 
corresponds to a multiplication of the pattern in momen-
tum space by �(p) (right side of Fig. 5). Thus, peaks of the 
momentum distribution at higher p are suppressed, and 
higher momentum transfers are less likely.

Scattering at the atoms

Core scattering and scattering length

Interactions Three interactions between neutron and atom 
are considered:

 (i) Nuclear interaction between neutron and the core of 
the atom, which is an infinitely small point center for 
the scattered wave.

(20)u2 =
ℏ

2mosc ⋅ 𝜔

(21)

Ψ(p) = Ψ(ℏ ⋅ k) =

(

𝜋1∕2
⋅ ℏ

mosc ⋅ 𝜔

)1∕2

⋅ exp

(

−
1

2
⋅

p2

ℏ ⋅ mosc ⋅ 𝜔

)

(21’)𝜌(p) ∝ exp

(

−
1

2
⋅

( p

ℏ

)2

⋅ 2u2

)

 (ii) Interaction between the magnetic momenta of the 
neutron and of an atomic core, which has a nonzero 
spin and thus a magnetic dipole moment.

 (iii) Interaction between the magnetic momenta of the 
neutron and the spins of the electrons of the atom. 
The last point is often referred to as magnetic scat-
tering since it is relevant for ferromagnetic and anti-
ferromagnetic metallic samples [17, 18]. Magnetic 
scattering of neutrons at electrons plays an important 
role in solid state and material physics. Examples are 
high temperature super conductors and heavy Fermi-
ons. For chemical applications, mainly scattering of 
the neutron with atomic nuclei is relevant, and the 
forces between neutron and atom are central forces. I 
will thus exclude magnetic scattering here and focus 
on the first two interactions.

Interaction potential between  neutron and  core and  scat‑
tering length From the billiard game, we know a hard 
sphere potential. If one ball comes as close to another one 
as the sum of the two radii, the two balls fly apart, obeying 
the laws of momentum and energy conservation. If the two 
spheres are really hard, such as billiard rather than tennis 
balls, the interaction takes place only within an infinitely 
small range, where the two balls just touch. We now con-
sider the scattering nuclei as billiard spheres with a radius 
of 2b, which are exposed to neutron particles with infinitely 
small radii. If the neutron hits the core within a distance 
smaller from its center than its radius, the particle is scat-
tered with equal probability into any direction. A neutron 
passing the core at a larger distance will not change its direc-
tion or velocity at all.

The interaction between a neutron and a nucleus obvi-
ously is more complicated than a hard sphere potential 
between two billiard balls. Neutron scattering is a nuclear 
effect, and the size of the nucleus is negligible with respect 
to the dimension of an atom in a molecule or the wavelength 
of a thermal neutron.

Theoretical approaches to a calculation of neutron cross 
sections employ Yukawa potentials with an extremely short 
range in the order of 1–2 fm [19]. The extension of the inter-
action potential between neutron and nucleus is infinitely 
small as compared with the neutron wavelength, and the 
potentials for each single atom are approximated by Fermi 
pseudopotentials [20], providing a δ-function around the 
scattering atom at �⃗Ratom with the scattering length b as a 
factor: 

(22)V
(

r⃗
)

=
2𝜋 ⋅ ℏ2

⋅ b

mN
⋅ δ

(

r⃗ − �⃗Ratom

)
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The strength of the interaction is described by the only 
parameter b , which has some analogy to the sum of the radii 
of the two scattering billiard balls. This scattering length is a 
property of the respective nucleus and permits characterizing 
the strength of the potential. Typical values are in the order 
of b ≈ 10

−5 − 10
−4 Å or 1 − 10fm for most atoms. Born’s 

first approximation is used, and no interference between the 
scattered and the incident beams is taken into account.

This may lead to confusion that the scattering length 
describes the depth of this potential and characterizes its 
strength rather than its extension but is treated as the size of 
the scattering particle. Here, the wave picture is more intui-
tive. It describes the neutron scattering by a superposition of 
sphere waves, which are centered at the nuclei of the scatter-
ing atoms. The amplitudes of these waves are proportional 
to the scattering lengths b of the respective atoms. Waves 
from different nuclei interfere with each other, similarly to 
the refracted X-rays from electrons.

Definition of  the  cross  section The total integrated cross 
section � is the area of a circle with radius 2b around the 
nucleus (scattering length): � = 4�b2 and has the unit barn, 
1barn = 10

−24cm2 = 10
−28m2 . In principle, it is the result 

of integrating the double differential cross section as intro-

duced in Eq. (1) with respect to the full steric angle and the 
final energy. The use of the cross section is demonstrated in 
Sects. 2.3.2 and 2.3.3, especially in Eqs. (31)–(35). Cross sec-
tions may be added, if interference between diffracted waves 
is neglected, which is analogous to adding intensities from 
different light sources. As soon as interference phenomena 
are considered, the scattering length is the relevant param-
eter, similar to the amplitude of interfering light beams.

Even though the unit barn looks to be very small, the 
name was derived from the large entrance port of a farm 
barn, since it was a surprise that material efficiently scatters 
thermal neutrons. In the wave picture, � yields the squared 
amplitude of the scattered material wave, and this is propor-
tional to probability of scattering of neutrons, as the squared 
wave functions reproduce probability densities. Examples 
are given in Table 4.

Coherent and incoherent scattering

Chemically equivalent atoms have different scattering 
lengths There are two reasons why atoms of the same ele-
ment may have different scattering lengths and show the so-
called incoherent scattering: Some elements contain differ-

Table 4  Neutron scattering cross sections, in barn, for selected elements [22], available from [23]

For all species except D, He  and Cl, only data for the natural isotope composition are shown. Typical cross sections are in the order of 
� = 1 − 10barn per nucleus. All cross sections have been measured with high precision (with small uncertainties in the last digit given in brack-
ets). The total cross section is the sum of the coherent and incoherent values

Element Coherent cross section Incoherent 
cross sec-
tion

Total cross section Absorption cross section Application

H 1.7568 (10) 80.26 (6) 82.02 (6) 0.3326 (7) Spectroscopy, e.g.,  H2O: strongly incoherent
D 5.592 (7) 2.05 (3) 7.64 (3) 0.000519 (7) Diffraction of “light” atoms: coherent
C 5.550 (2) 0.001 (4) 5.551 (3) 0.00350 (7) Graphite monochromator crystals: coherent 

scatterer
N 11.01 (5) 0.50 (12) 11.51 (11) 1.90 (3) D, C, N, O, main constituents of biochemical 

and organic molecules: mainly coherent
O 4.232 (6) 0.000 (8) 4.232 (6) 0.00019 (2) Mainly coherent
V 0.01838 (12) 5.08 (6) 5.10 (6) 5.08 (4) Calibration of detectors: nearly only isotropic 

incoherent scattering, sample containers with-
out coherent background

35Cl 17.06 4.7 21.8 44.1 Two stable chlorine isotopes occur in similar 
quantity, have different scattering cross sec-
tions

37Cl 1.19 0.001 1.19 0.433

Al 1.495 (4) 0.0082 (6) 1.503 (4) 0.231 (3) Sample containers: coherent scattering, small 
absorption

Cu 7.485 (8) 0.55 (3) 8.03 (3) 3.78 (2) Good heat conductor, but activation in the beam
Cd 3.04 (6) 3.46 (13) 6.50 (12) 2520 (50) Shielding: strong absorption,
Gd 29.3 (8) 151 (2) 180 (2.) 49,700 (125) Choppers: absorption of thin layers
3He 4.42 (10) 1.6 (4) 6.0 (4) 5333 (7) Counter tubes: high absorption, neutron capture 

and decay into proton and tritium atom polari-
zation analysis [21]
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ent isotopes in significant fractions, and many nuclei have 
a nonzero magnetic moment. Both effects have no direct 
analogy in X-ray scattering, where the intensity from each 
atom is only determined by the number of electrons, differ-
ent isotopes of the same element having identical electron 
shells. As X-ray scattering takes place in the electron shell, 
the nuclear magnetic moment and spin orientation are irrel-
evant.

Isotopes First, a Bragg reflection from a NaCl crystal in 
X-ray scattering is considered. Sphere waves from all atoms 
of the same element with identical chemical environment 
and number of electrons, for example,  Cl− ions with 18 e−, 
have the same amplitude.

Now we consider neutron scattering at this crystal. There 
are two chlorine isotopes present, 35Cl and 37Cl in a ratio of 
roughly 3:1. Their neutron scattering lengths b depend on 
the numbers of protons and neutrons in the nucleus and are 
different, as for any different isotopes of the same element 
(see Table 4). Isotope atoms yield sphere waves with differ-
ent amplitudes, even though they are built into chemically 
equivalent positions. Chlorine is a rare example with two 
isotopes of similar occurrence. Many elements in organic 
molecules including hydrogen, carbon, nitrogen, and oxy-
gen have a few stable isotopes, but only one in a dominant 
quantity.

An X-ray analogy to incoherent neutron scattering by 
isotope mixing would be a crystal with different elements 
on equivalent sites, K and Na, e.g., which have different 
refraction intensities due to a different number of electrons. 
This results in diffuse scattering, which is a broad intensity 
due to the incomplete interference of scattered waves from 
Na and K. As, in this example, Na and K do not only dif-
fer in the electron number but also in ion size, this crystal 
would also contain distortions, and it would be difficult to 
distinguish between scattering background from them and 
from the proper incoherence of spherical waves from Na 
and K ions only.

Nuclear magnetic moment Single isotopes with a nonzero 
nuclear spin I have two different scattering lengths. In our 
example, this holds for the only stable sodium isotope 23Na 
with I = 3/2. Such nuclei have a magnetic field, which inter-
acts with the magnetic moment of the incident neutron. This 
interaction depends on the orientation of the neutron spin 
relative to the nucleus. As the neutron has a spin of ½, there 
are two configurations, + and −, possible with the scatterer 
with total spins of I + 1/2 and I −1/2, respectively. The scat-
tering lengths b+ and b− for both configurations are usually 
different. The beam hitting a sample, in general, contains 
neutron with spins up and down, and also the nuclei in the 
sample have random orientation. In standard experiments, 
the orientation of the neutron spin then is arbitrary, rela-
tive to the nuclear spin of the scattering nucleus, and both 

combinations, L = I + 1/2 and L = I −1/2 occur. We follow 
the treatment given in [10]. As the degeneracy of a system 
with angular momentum L in general is 2(L + 1), we obtain 
probabilities p+ and p−:

The averages of scattering lengths and squared scattering 
lengths are then 

(In the following, averages are denoted by the top bar, 
and angle brackets are used for quantum mechanical matrix 
elements).

Incomplete interference generating incoherent scatter‑
ing Consider the consequence for Bragg scattering at a 
crystal of this fluctuation of scattering lengths: as long as 
equivalent atoms in different unit cells have equal scatter-
ing lengths, the sphere waves fully interfere and all inten-
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Fig. 7  Coherent and incoherent scattering demonstrated using the 
interference of sphere waves. The small green dots are atoms with 
equal scattering lengths; their sphere waves fully interfere (blue line) 
and yield directed coherent scattering. One atom of the same element 
(large green dot) has a higher scattering length and its sphere wave 
yields incoherent scattering (thick circle). More precisely, the coher-
ent scattering is determined by the average scattering length and the 
incoherent intensity by its fluctuation
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sity is concentrated in a few sharp Bragg reflections. We 
now replace one particle by a core with a higher scatter-
ing length, and the interference will no longer be complete 
(Fig. 7). Only a part of the sphere wave starting from this 
particle interferes with the others, and the remaining part 
is a sphere wave representing scattering without angular 
dependence. The interfering part of sphere waves from dif-
ferent atoms is given by the average scattering length.

Compare this with light reflection from a blazed optical 
grating, which may be familiar to many readers. As long as 
all grooves have identical reflectivity, the light from differ-
ent grooves fully interferes. The grating then has high qual-
ity and no stray light is produced, but all intensity is found 
in its diffraction orders. As soon as the cut is not perfect, 
and the reflectivity of the grooves fluctuates, the diffraction 
intensity into well-defined directions is only given by the 
average reflectivity of grooves. In addition to that, stray light 
is observed with an intensity given by the fluctuation of the 
groove reflectivity.

Coherent and  incoherent cross  sections Students may 
remember the textbook definition that isotopes are physi-
cally different but chemically equivalent; however, this is a 
crude simplification. Already, different carbon isotopes are 
not really chemically equivalent, consider C3 and C4 plants 
[24]. Chemical equivalence definitely does not hold for the 
two stable hydrogen isotopes H and D. They often have to 
be considered almost as different elements, since substitu-
tion of H by D significantly modifies the chemical proper-
ties such as hydrogen bonding (do not drink  C2D5OD just 
for fun !). In IR absorption, H/D substitution only results 
in the shift of some lines from vibrations with hydrogen 
participating, and in typical X-ray pattern, both isotopes are 
just invisible. Both neutron diffraction and spectroscopy are 
applied differently and yield completely different results for 
molecules with a natural hydrogen composition or after iso-
tope substitution with deuterium. The total scattering cross 
section of the deuterium atom (about 8 barn) is smaller by 
about a factor of 10 than that of H (about 80 barn), and no 
simple isotope substitution is possible in neutron spectros-
copy as in IR.

A practically important feature is the highly negative 
scattering length b− of the proton, being at the origin of 
its unexpectedly high incoherent cross section, and of the 
specific visibility of hydrogen in scattering experiments (see 
below). Without going into details of nuclear physics, one 
may understand that a proton and the incoming neutron have 
a bound state (which is actually the core of the deuterium 
atom). Such bound states of the neutron and the scattering 
particle may lead to negative scattering lengths. In a wave 
picture, a negative b corresponds to a phase shift by 180° of 
the scattered, with respect to the incoming, material wave.

The bound H-atom has the highest incoherent cross sec-
tion known for thermal neutrons, of about �inc = 80 barn and 
a poor coherent cross section of only about �coh = 1.8 barn , 
and H is mainly an incoherent scatterer (cf. Table 5). Natural 
substances contain a very small amount of D replacing H on 
random positions and further contributing to the incoherent 
scattering, but this effect is very small as compared with 
the incoherence due to the nuclear spin of the proton. The 
very high incoherent cross section of hydrogen is crucial 
for many applications of inelastic neutron scattering (INS) 
(see below).

In diffraction studies on hydrogen containing condensed 
matter, the coherent scattering from the protons has a similar 
intensity than from heavy atoms. The coherent cross sec-
tion of H is at the lower end of relevant cross sections (cf. 
Table 4), but the number of protons in organic molecules is 
usually very high. The signal-to-noise (S/N) ratio is reduced 
by the high incoherent cross section yielding a broad back-
ground. It is largely suppressed by replacing H with D since 
the incoherent cross section drops to 2.0 barns. The coher-
ent cross section increases to 5.6 barns, and D is mainly a 
coherent scatterer. This value is in the range of cross sections 
for elements such as C, N, and O (5–10 barns), which are 
of crucial importance for organic and biochemical systems. 
In deuterated samples, coherent scattering from D is simi-
larly intense as that from the “heavy” elements. In contrast 
to X-ray diffraction patterns, the D atoms contribute sig-
nificantly to the neutron diffraction from isotope-substituted 
organic and biochemical molecules. As the light atoms 
become visible, neutron diffractometry of deuterated sub-
stances is complementary to X-ray diffraction [25].

Table 5  Scattering lengths and cross sections for the stable hydrogen 
isotopes H and D

The different scattering properties result mainly from the difference 
between the values of b− . The strongly negative value of b− in H is 
essential for its strongly incoherent scattering

H D

b+/fm 10.4 9.5
b−/fm −47.4 1.0
I 1/2 1
I+1

2⋅I+1
3/4 2/3

I

2⋅I+1
1/4 1/3

b∕fm −3.8 6.7

b2∕barn 6.49 0.61

� = 4� ⋅

(

b2
)

∕barn 81.7 7.6

�c = 4� ⋅

(

b
)2

∕barn
1.8 5.6

�i = � − �c = 4� ⋅

(

b2 −
(

b
)2

)

∕barn
79.9 2.0



 ChemTexts (2023) 9:12

1 3

12 Page 14 of 55

From source to sample

Beam tube into reactor vessel and neutron guide

Neutrons usually leave the source in beam tubes with a cross 
section of typically 2 × 5cm2 up to 4 × 4cm2 . For obtaining 
sufficient flux, these beams are much larger than light or 
X-ray beams in the corresponding devices [26, 27]. Due to 
these large beams and to protective shielding, the experi-
mental setups need large areas.

A neutron beam rapidly loses intensity with increasing 
distance from the source, similar to the light of a lamp. 
Instruments using hot and thermal neutrons have to be 
directly connected to the reactor source or spallation target 
(see below). For cold neutrons, guides were designed, which 
consist of glass or metal tubes with an inner cross section of, 
e.g., 2 × 5cm2 covered with thin metallic layers. Neutrons are 
totally reflected at its surface, and the intensity decays much 
slower with increasing distance from the source than accord-
ing to a simple 1/r2 dependence. In these guides, neutrons 
are transferred over distances of 10–100 m from the source 
to the sample, and the halls around a neutron source have 
extensions of several 100 or 1000  m2. As the operation of 
a neutron source is very expensive, it is of great interest 
to connect as many as possible instruments to it. Neutron 
guides are crucial for using numerous instruments at a single 
cold source.

The theory behind these guides is another striking appli-
cation of the particle and material wave models, and trans-
fers the concept of a refraction index from light to neutrons. 
A material, which has a nonzero scattering length density 
Nb , has an index of refraction for neutron material waves 
different from one. The scattering length density is the 
weighted average of the scattering lengths per volume, and 
is easily calculated as the sum of scattering lengths bj mul-
tiplied by number density Nj:

We first note that, in a condensed phase, the neutron sees 
an average position-independent potential energy due to the 
interaction with the atoms by the Fermi potential (Eq. 22) as 

Averaging over the �-function and b yield a factor of 
one and Nb , respectively. Energy conservation says that the 
kinetic energy Em , and thus the velocity and wavevector, ���⃗km 
of the neutron in matter are different from the values in the 
incident beam: 

(25)Nb =
∑

j

bj ⋅ Nj

(22’)V = 4𝜋 ⋅

ℏ2

2mN

∑

j

bj ⋅ Nj ⋅ 1 = 4𝜋 ⋅

ℏ2

2mN
⋅ Nb

and the resulting index of refraction is

[28]. Equation (26) holds for classical particles, whereas 
the relation of refraction index to wave vectors is taken from 
wave optics. The second part of (26’) assumes a refraction 
index close to one. Very similarly to optics, total reflection 
is observed for neutrons with small divergence (grazing inci-
dence), and the maximum Bragg angle for total reflection is 

 with the refraction index nvac = 1 inside the evacuated neu-
tron guides. If the scattering length of an element is positive, 
the resulting index of refraction is slightly smaller than 1 and 
Θt > 0 . Neutrons with small divergence are totally reflected 
at the outer surface.

A simple example for a material with a refraction index 
significantly different from 1 is the nickel isotope 58Ni. It 
has a very high positive scattering length density and small 
losses by incoherent scattering (b = 14.4 fm [22], ρ = 8.908 g/
cm3). From Eq. (27), we obtain Θt = 1.18 ⋅ (0.1◦ ⋅ �

1Å
) , and 

the maximum angle of total reflection is slightly more than 
0.1° per Angstrom wavelength .Θt increases from 0.12° for 
hot neutrons with � = 1Å to 2.3° for cold neutrons with 
� = 20Å . Long neutron guides, of some 10 m in length, are 
thus mainly useful for cold neutrons. The prefactor depends 
on the material used for the reflecting layer. In the mean-
time, so-called supermirrors have been developed, which 
are based on a similar concept as dielectric mirrors in opti-
cal devices, and the numerical value of 1.18 for 58Ni was 
enhanced to 3–5.

Beam attenuation

The incident neutron beam in matter is attenuated simi-
larly to a light beam in optical spectroscopy, even though 
the mechanism is different. In optical spectroscopy, light 
scattering is often a parasite, and the useful information is 
obtained from absorption, but here it is vice versa. The cross 
sections for three relevant processes, coherent and incoher-
ent scattering as well as absorption (cf. Table 4) sum up to 
the total cross section for attenuation of the incident beam.

The Beer–Lambert law for light reads

(26)

Ei = Em + V ⇒

(

ℏ ⋅ ��⃗ki

)2

2 ⋅ mN
=

(

ℏ ⋅ ���⃗km

)2

2 ⋅ mN
+ 4𝜋 ⋅

ℏ2

2mN
⋅ Nb

(26’)nguide
2 =

k2
m

k2
i

= 1 −
4π ⋅ Nb

k2
i

⇒ nguide ≈ 1 −
2π ⋅ Nb

k2
i

(27)

Θt = arccos

(

nguide

nvac

)

≈
(

1 − nguide
2
)0.5

=

(

Nb

π

)0.5

⋅ �i
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Here, the particle concentration c is given by the number 
N of particles in the sample volume V divided by NA, and V 
is the product of sample area A and thickness d:

For small attenuations, the Lambert law holds: 

The expression � N

A
 is the ration of the summed-up cross 

sections in the sample to the sample area, and replaces the 
optical density as known from light attenuation in media. 

The penetration depth d0 =
(

�
N

V

)−1
 denotes the thickness, 

(28)

I

I
0

= 10
−�⋅c⋅d = exp

(

−ln(10) ⋅ � ⋅
N

NA⋅ ⋅ A ⋅ d
⋅ d

)

= exp

(

−
� ⋅ ln(10)

NA
⋅

N

A

)

(28’)c =
N

NA ⋅ V
=

N

NA ⋅ A ⋅ d

(29)
I

I0
= exp

(

−�
N

A

)

= exp
(

−�
N

V
⋅ d

)

= exp

(

−
d

d0

)

reducing the intensity to 1/e of its initial value and is a meas-
ure of the interaction strength of radiation with matter 
(Fig. 8). By comparing Eq. (28) with (29), one obtains

Thus,  H2O with a typical cross section of about 
�H2O ≈ 168 barns per molecule attenuates neutrons simi-
larly to a substance with a decadic logarithmic absorption 
coefficient of

The interaction of neutrons with material is weak, and, 
at least for inelastic measurements, samples are larger than 
for studies with many other methods. On the other hand, the 
results are often not very sensitive to impurities. The attenu-
ation of the neutron beam by scattering is thus fairly small as 
compared with optical or X-ray radiation, and gaseous samples 

(30)� =
� ⋅ ln(10)

NA⋅

(31)

� =
� ⋅ NA

ln(10)
=

168 ⋅ 10
−28m2

⋅ 6.022 ⋅ 10
23

ln(10) ⋅mol
≈

0.04l
mol ⋅ cm

Fig. 8  Attenuation of thermal neutrons (red dots, � = 1.4Å ) in con-
densed samples of chemical elements [11] as compared with X-rays 
(blue) and electrons (yellow). The penetration depth of neutrons is 
in the order of cm and orders of magnitude higher than for X-rays 
or electron beams. Neutrons permit bulk materials to be studied, 
whereas X-rays and especially electrons are often applied to thin 
films or surfaces, respectively. The scattering lengths and cross sec-

tions and the corresponding penetration depths of neutrons do not 
have similar systematic dependencies on the atomic number as does 
the X-ray cross section. Reprinted by permission from Pynn R. Chap-
ter  2, neutron scattering—a non-destructive microscope for see-
ing inside matter. In Liang L, editor. Neutron applications in earth, 
energy and environmental sciences, Neutron scattering applications 
and techniques. Springer; 2009
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are, in general, not studied. In neutron scattering, samples are 
usually characterized by their scattering probability Psc in per-
cent rather than by the attenuation. Both are related by 

Sample size

The sample size is chosen according to the instrument avail-
able and experiment planned, and may differ widely. Impor-
tant parameters are the total scattering and absorption cross 
sections and the resulting beam attenuation. In most cases, 
no real-time dependent development of the sample is stud-
ied, but rather time correlation functions are derived from 
the scattering function (see below). As a consequence, rather 
long measuring times for a given sample are acceptable, 
reaching from less than minutes to hours. The measuring 
time is determined by the condition that the statistical error 
in the counted data is sufficiently small for enabling numeri-
cal modeling with sufficient certainty. By a current increase 
in flux at spallation sources, both measuring times may be 
reduced and the resolution of data in E and Q improved.

Usually, samples that fully fill the large cross section 
of the neutron beams are desirable. However, especially if 
single crystals are studied, this will not always be possible. 
Protein crystals are often very small and, as is mentioned 
below, they have cross sections of only a few  mm2. Such 
small samples with low scattering probabilities may be 
studied in a diffraction experiment on highly performant 
instruments, especially for coherent elastic scattering 
into few strong Bragg peaks. Also, small-angle scatter-
ing (SANS) only needs little neutron exposition. Typical 
experiments in solution may use big samples and may even 
be performed at smaller neutron sources. Somewhat more 
demanding are experiments with liquid or amorphous 
samples, where the elastic intensity is no more focused 
into some sharp peaks, but yields a broad feature, which 
can only be interpreted after careful separation from the 
instrument background.

The elastic intensity is, under standard conditions, one 
to two orders of magnitude higher than the inelastic signal, 
and the detection limit for inelastic scattering is orders of 
magnitude higher than for elastic experiments. Here, scat-
tering probabilities of 1% or even more may be necessary for 
obtaining a sufficiently strong signal beyond statistical scat-
ter within a few minutes or hours. As the resolution width in 
inelastic spectra is rather wide as compared with IR absorp-
tion, one may, in many cases, want to improve the resolution 
on performant sources rather than to reduce sample size.

(29’)Psc = 1 −
I

I0

While signal statistics put a lower limit to the sample 
size, an upper limit is given by multiple scattering. A scat-
tered neutron may be scattered a second time in the sample. 
The second scattering process will change the direction once 
more but respective to the direction after the first scattering 
event, not to the incoming beam. In case of a diffraction 
experiment, this leads to a broad background. The direction 
relative to the incident beam will be arbitrary and the angu-
lar dependence of the scattering signal is scrambled by this 
so-called multiple scattering. Due to this, the probability of 
scattering of an incident neutron in the sample should not 
exceed 5–10%, better 1%, and the sum of the scattering cross 
sections in the sample should be well below 1  cm2, keep-
ing multiple scattering contributions below 1%, preferably 
0.01%.

From the known scattering cross sections, the optimum 
sample sizes are estimated. An instructive example is a water 
layer. We saw before that the intensity I of the outgoing 
beam is related to the total scattering and absorption cross 
sections of the sample. A layer with a thickness of just a 
tenth of a millimeter, 

(

dH2O = 100μm
)

 , e.g., in a thin leaf of 
a plant, attenuates thermal neutrons by about 6%:

This attenuation is already at the upper limit for inelas-
tic scattering experiments. This estimate also has another 
practical aspect: extremely efficient shielding against neu-
tron radiation are provided by water and other hydrogen-
containing substances such as concrete. Moreover, neutron 
scattering can reveal hydrogen dynamics in highly diluted 
systems, e.g., in matrices [13], and samples with 0.5–1 mol% 
of hydrogenous additives in 0.3–0.5 mol of a matrix yielded 
a good signal.

Sample environment

Very sophisticated experiments at extremely low or high 
pressures and temperatures are possible with neutron scat-
tering. Aluminum has a small cross section and high heat 
conductivity, and is a favorite material for sample contain-
ers in the low temperature range. Even large shielding does 
not significantly attenuate the neutron beam. Repeating 
the previous calculation (Eq. 32) for Al with a density and 
molar mass of 2.70 g/cm3 and 27.0 g/mol, respectively, one 
obtains:

(32)

I

I
0

= exp

(

−�H2O
NH2O

Abeam

)

= exp

(

−�H2O ⋅

dH2O ⋅ �H2O ⋅ NA

MH2O

)

≈ 1 − �H2O ⋅

dH2O ⋅ �H2O ⋅ NA

MH2O

⇒ PSC = �H2O ⋅

dH2O ⋅ �H2O ⋅ NA

MH2O

= 168barn ⋅
100μm ⋅ 1.0g ⋅mol ⋅ 6.022 ⋅ 1023

cm3
⋅ 18.0g ⋅mol

= 0.056
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In a 1 mm aluminum foil, the neutron beam thus is attenu-
ated by only about 1%. This makes it possible to design 
complicated sample environments and to scan very low tem-
peratures, making use of aluminum heat shieldings.

(33)

PSC =�Al ⋅
dAl ⋅ �Al ⋅ NA

MAl
= (1.495 + 0.0082 + 0.231)barn

⋅

1mm ⋅ 2.70g ⋅mol ⋅ 6.022 ⋅ 1023

cm3
⋅ 27.0g ⋅mol

= 0.0105

In practice, aluminum shows coherent scattering (cf. 
Table 4) and the sample container yields nearly no continu-
ous background but some spurious elastic Bragg reflections. 
In inelastic experiments, these contributions to the elastic 
line are usually less important. The situation is different for 
neutron powder diffraction, where the significant data come 
from elastic scattering. Here, vanadium sample containers 
are preferred, which essentially only contribute direction 
independent incoherent intensity (cf. Table 4). The resulting 

Fig. 9  a A typical equipment for a sample environment for neutron 
scattering is the “orange cryostat” from ILL [29]. The device obtains 
its high cooling power by the evaporation of liquid helium. Public 
domain image reprinted from https:// www. nist. gov/ sites/ defau lt/ files/ 
images/ 2020/ 03/ 23/ OC70mm_ 1. jpg. b Schematic cut through the cir-
cular symmetric cryostat. The insulation vacuum (gray) reduces heat 
transfer to the inside. The circular liquid nitrogen tank at 77 K dra-
matically reduces the heat radiation to which the inner liquid helium 
container (light blue) is exposed. Wrapping special aluminum foil 
around the liquid nitrogen and helium containers further reduces radi-
ation losses, and gives an autonomy of days before the next helium 
refill. The helium evaporation, and thus the cooling power, is regu-
lated by a cold valve (1) at the bottom of the helium tank. The evapo-
rated helium is fully recycled. The sample is introduced from the top 
into a vertical tube, which ends in an aluminum cylinder at the bot-

tom. The neutron beam passes horizontally through this cylinder and 
the sample. This permits rapid sample changes without warming up 
the cryostat and breaking its insulation vacuum. Even in the stand-
ard version, the cryostat attains temperatures down to 4.2 K in a large 
sample volume. The public domain figure was reprinted from https:// 
www. nist. gov/ image/ oc70m minne rsche matic. c Specialized inserts 
have been designed, permitting, e.g., the sample preparation in  situ 
[12] by quench condensation of up to 12  l of gases: (1) aluminum 
sample container, 25 mm in diameter, (2) and (11) thermocouples, (3) 
Cu tubes decouple the inlet tube thermally from the cold sample, (4) 
gas inlet line to (5) the pump for the isolation vacuum, (6) inlet for 
deposited gas, (7) plug for heaters and thermocouples, (8) thermocou-
ple for the sample volume, (9) cryostat chamber with helium filling 
(12) for heat transfer to the sample, (10) heat screens, and (13) gauge 
for isolation vacuum

https://www.nist.gov/sites/default/files/images/2020/03/23/OC70mm_1.jpg
https://www.nist.gov/sites/default/files/images/2020/03/23/OC70mm_1.jpg
https://www.nist.gov/image/oc70mminnerschematic
https://www.nist.gov/image/oc70mminnerschematic
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smooth background can more easily be subtracted off than 
single sharp peaks.

Typically, closed cycle or liquid helium cryostats are 
used (Fig. 9) for cooling down to 5–20 K. Closed cycle 
cryostats are cheaper in operation, but have less cooling 
power and need longer sample change times than liquid 
helium cryostats. The latter may be equipped with special 
inserts for temperatures of, e.g., 10 mK [30]. In special-
ized devices, the possibility of experiments at tempera-
tures down to 20 nK has been demonstrated [31]. Working 
at such low temperatures is possible since the thermal 
charge on the sample by the neutron beam is less than 
10 nW. Optical spectroscopies such as IR experiments 
are not possible at these low temperatures since the sam-
ple would heat up in any beam with sufficient power for 
absorption measurements.

The large sample volume of the orange cryostat makes it 
possible to use sophisticated devices for sample handling and 
control. In Fig. 9c, an inlet line for quench condensation is 
shown, which was used for matrix isolation and preparation 
of amorphous samples. Similarly, a huge pressure range from 
ultra-high vacuum to 10 kbar is accessible in containers, which 
do not shade off too much the neutron beam. Standard equip-
ment further contains furnaces up to 2000 K, often with Nb 
shielding, and magnetic fields up to 40 T (unit tesla of mag-
netic field) [32]. An example for the extreme possibilities of 
sample environments for neutron scattering is an experiment 
on the diffraction and pair correlation of extremely corrosive 
liquid fluorine at a research reactor in Italy in the 1980s [33].

For some elements, neutron absorption rather than scatter-
ing is the dominant process, e.g., for Li, Cu, Cd, and Gd, with 
extremely high absorption cross sections. If such elements are 
exposed to thermal neutrons, nuclear reactions take place hav-
ing a much higher cross section than scattering, and radioactiv-
ity with γ radiation results. Some typical construction mate-
rials such as iron should not be exposed to neutrons for this 
reason. Similarly, copper would serve as good heat conductor, 
but the high absorption cross section indicates activation by 
nuclear reactions in the neutron beam, and thus aluminum is 
preferred for sample containers.

The S/N ratio from the samples is significantly improved 
by reducing the background scattering from sample containers. 
One method to do that is to shade off parts of the sample and 
containers by Cd foils of a thickness of, e.g., 1 mm, which may 
be bent by hand into a stable mechanical form. The blade has 
10

21 − 10
22 atoms per  cm2:

(34)

N

A
=

V ⋅ � ⋅ NA

A ⋅M
=

d ⋅ � ⋅ NA

M

=
0.1cm ⋅ 8.65g ⋅ 6.022 ⋅ 1023mol

cm3
⋅mol ⋅ 112.41g

= 4.7 ⋅ 10
21cm−2

and � N

A
 is calculated from the Cd absorption cross section in 

the same way as for a scatterer given by

Even if this is well beyond the range of validity of the 
Lambert law, we have I

I0
≈ 0 , and the beam is shaded off. 

The absorption cross section of Gd is about a factor of 20 
higher, and thus layers of a few micron are already sufficient 
for shielding against neutrons. Gd may be used in neutron 
collimators.

Scattering function S(Q,E)

Relating cross section to the atomic dynamics 
by an experiment‑independent function

In a scattering experiment, the incident flux of neutrons with 
well-defined direction and velocity and the outgoing flux at 
a given velocity and direction into a given steric angle �Ω 
are measured by appropriate detectors. The ratio of these two 
fluxes is the double differential cross section of each nucleus 
in the sample per steric angle and energy interval of the scat-
tered neutrons, �

2�(Ei)
�Ω�Ei

 , cf. Eq. (1), the subscript i denotes the 
initial neutron energy.

The scattering process is completely described by a scat-
tering function S

(

��⃗Q,E
)

 , which only depends on energy and 

momentum transfers ��⃗Q and E , respectively, and is only a 
property of the sample, not of the experimental parameters. 
S
(

��⃗Q,E
)

 reflects the probability with which energies and 
momenta are simultaneously transferred to the sample, and 
thus is the ratio of densities of neutron states after ρ

(

Ef ,kf
)

 
(f or final) and ρ

(

Ei,
��⃗ki

)

 , (i or initial) before the sample.

The meaning of the ratio is obvious, twice as many incident 
neutrons will result in twice as many scattered ones, e.g., 
S
(

��⃗Q,E
)

 is straightforward, calculated from the measured dou-
ble differential scattering cross section by multiplying with the 
factor vi

vf
= ki

kf
 . A hand-waving explanation for this factor is that 

the detectors measure the neutron fluxes Φi

(

Ei

)

 and Φf

(

Ef ,�
)

 
in the incident and outgoing beams, respectively, rather than 
densities of neutron states. In general, a flux Φ is related to 
density � and velocity v as 

(35)�
N

A
= 2520 ⋅ 10

−24cm2
⋅ 4.7 ⋅ 10

21cm−2 = 11.8

(36)S
(

��⃗Q,E
)

=
ρ
(

Ef ,kf
)

ρ
(

Ei, ki
)
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We thus have 

A thorough derivation for the scattering function and 
related issues from scattering theory is found in [20]. The fac-
tor � contains the effective scattering cross section.

Derivation of S(Q,E) from models of structure 
and dynamics

Each scattering event of a neutron with the change of energy 
and momentum E and Q corresponds to the uptake of −E and 
−Q by the sample. Well-defined combinations of energy and 
momentum are related to the properties of the sample, i.e., to 
molecular quantities. Thus S

(

��⃗Q,E
)

 can only depend on the 
sample properties and must be independent of the incident 
energy Ei . Results from different experiments on the same 
sample are, in principal, identical, differing in practice only by 
the instrumental resolution function. For a given sample, 
S(Q,E) may be calculated by models for the nuclear motion 
and is a natural interface between theory and experiment.

Quantum mechanical expression

The scattering function is written in a quantum mechanical 
formulation with the wave functions, �i and �f  of the initial 
and final states of the scattering sample as (cf. [20]):

This formulation makes clear that the scattering function 
is the sum of interfering spherical waves with vectors ��⃗ki, ��⃗kf  
around the nuclei m, n at ���⃗rm , ��⃗rn with the amplitudes of these 
waves given by the scattering lengths bm, bn , respectively. 
The initial states �i are multiplied by a temperature-depend-
ent weight factor Pi =

Bi

Z
 with the Boltzmann factor 

Bi = exp
(

− Ei

R⋅T

)

 and the partition function of the system 
Z =

∑

j Bi.
According to the second part of Eq. (39), S

(

��⃗Q,E
)

 only 

depends on the momentum transfers ��⃗Q , not on the incoming 

(37)Φ = � ⋅ v

(38)

𝜕2𝜎
(

Ei

)

𝜕Ω𝜕Ei

=
Φf

(

Ef ,
��⃗kf

)

Φi

(

Ei,
��⃗ki

) = 𝜎 ⋅

ρ
(

Ef ,
��⃗kf

)

⋅ vf

ρ
(

Ei,
��⃗ki

)

⋅ vi

= 𝜎 ⋅

vf

vi
⋅ S

(

��⃗Q,E
)

(39)

S
�

��⃗Q,E
�

=
�

i,f
Pi ⋅ 𝛿

�

E + Ei − Ef

�
�

m,n
⟨𝜓i ⋅ exp

�

i��⃗ki ⋅ ���⃗rm
�

�bm�𝜓f ⋅ exp
�

i ��⃗kf ⋅ ���⃗rm
�

⟩ ⋅ ⟨𝜓i ⋅ exp
�

i��⃗ki ⋅ ��⃗rn
�

�bn�𝜓f ⋅ exp
�

i ��⃗kf ⋅ ��⃗rn
�

⟩

=
�

i,f
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⋅
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or final wavevectors �⃗ki, �⃗kf  themselves. If the energy transfer 
E of the neutrons is analyzed in a setup for inelastic scatter-
ing, only combinations of initial and final states with the 
appropriate differences of their initial and final energies Ei , 
Ef  contribute to the observed scattering. This energy conser-
vation is imposed by the δ function.

The quantum states �i,�f  are composed of translational, 
rotational, and vibrational modes. Electronic transitions as 
observed in visible and ultraviolet absorption (VIS/UV), are 
not considered here. In condensed phases, as usually studied 
by neutrons, translations of the free atoms are replaced by col-
lective excitations (phonons) and local modes in pure crystals 
and inhomogeneous systems, respectively. The free rotations 
of molecules in the gas phase are, in most cases, hindered by 
the adjacent atoms and transferred into librations, which are 
rotational vibrations. It is a rare exception that some mol-
ecules such as  H2O and  CH4 rotate nearly freely in inert cages 
at low temperatures [34–36]. Internal vibrations are seen in 
the condensed phases as in the gas phase, but the environmen-
tal influence may be strong. This is well known, e.g., for the 
OH vibration, which is largely shifted as soon as hydrogen 
bonding to neighboring acceptors is possible [37].

Neutron scattering intensities from such rotational and 
vibrational modes are subject to completely different rules than 
optical methods such as infrared absorption (IR) and Raman 
spectroscopy. These methods reflect the electron dynamics, 
and in IR, e.g., the transition probability is given by the 
squared matrix element ��

�

⟨𝜓i�e ⋅ r⃗�𝜓f ⟩
�

�

�

2

 . The dipole transition 
moment e ⋅ r⃗ is a vector and is responsible for symmetry selec-
tion rules. Accordingly, some transitions with unfavorable 
symmetries of initial and final states do not affect the dipole 

moment and are not seen in the spectrum. A textbook example 
is the breathing vibration of the benzene molecule.

The last part of Eq. (39) shows that such symmetry selec-
tion rules do not apply here. By mathematics, which are not 
explained here, we obtain an equation for S

(

��⃗Q,E
)

 , which 
no longer contains �f  and thus cannot depend on symmetry 
relations between final and initial states. The neutron scat-
tering contains, however, the time dependence of the atomic 
positions ���⃗rm(t) . The signal is modulated by the nuclear 
motion, and in spite of the lower resolution, neutron 
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spectroscopy yields data that may be more directly quanti-
tatively modeled than IR results [38].

Separation of S(Q, E) into coherent and incoherent scatter‑
ing functions The total scattering function for one species 
of interfering atoms, say the O atoms in liquid water or ice, 
is split into coherent and incoherent parts (cf. Fig. 7) 

.
The coherent part contains the interference between the 

spherical waves from different scattering centers, which are 
the nuclei m, n of different atoms, and its intensity is pro-
portional to the squared average scattering length b

2 [20]:

Principally, coherent scattering yields information on 
the relative particle positions for different atoms n ≠ m . 
This may be structural information from elastic scattering 
or a time-dependent pair correlation function (PCF) from 
inelastic scattering. For n = m , the same information is 
obtained as from incoherent scattering, which does not 
contain interference from different atoms, but only the 
sphere waves from one single particle at different times 
interfere.

The incoherent part accounts for the remaining intensity, 
which is a sphere wave with an intensity proportional to the 
averaged squared difference of each individual scattering 
length bi and the average b , being equal to the fluctuation 
(cf. Table 5):

Inelastic scattering in the wave picture: classical scattering 
function dependence on momentum and energy transfer, 
structure, and dynamics

It was shown in “Elastic Bragg scattering in the particle 
model” that elastic scattering, which is usually described 
in the wave picture, may also be consistently derived from 
the particle model. In turn, the particle model is typi-
cally applied to energy transfer to vibrations, but inelastic 

(40)S(Q,E) = Scoh(Q,E) + Sinc(Q,E)
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⋅

�

m,n
⟨𝜓i�exp

�

i��⃗Q ⋅

�

�������⃗rn(0) − �������⃗rm(t)
��

�𝜓i⟩

(42)
−

(

bi −
(

b
))2

=

(

b2
i
−
(

b
)2

)

(41’)

Sinc(Q,E) =
�

i
Pi ⋅

�

b2
i
−
�

b
�2

�

∫

dt
2𝜋 ⋅ ℏ

exp(−i(E + Ei − Ef ) ⋅ t∕ℏ)

⋅

�

m
⟨𝜓i�exp

�

i��⃗Q ⋅

�

��������⃗rm(0) − �������⃗rm(t)
��

�𝜓i⟩

scattering may also be understood in terms of a shift in 
wavelength of material waves. Positions and motions of 
atoms are described by classical physics. Instead of the prob-
ability density of single particles, the particle density is used 
as a function of time and position.

As mentioned before, a sample with completely rigid 
atom positions would only show elastic scattering. As long 
as the particle is at rest and the nucleus has a fixed position 
relative to the detector, just a continuous sphere wave with 
a constant wavelength is emitted, which is identical to that 
of the incident neutrons in the coordinate system of detec-
tor (thin gray circle in Fig. 10). As soon as the scattering 
particles start to move from the green starting position in 
the direction of the scattering vector ��⃗Q , the spherical waves 
are emitted from different positions as a function of time 
and the time interval between consecutive peaks fluctuates. 

Fig. 10  Inelastic scattering in the wave picture. Top: geometry 
for scattering at a single atom. Bottom: the process is shown in the 
wave picture. The incident wave hits the atom at its original position 
(green) and incites first the large sphere wave (thick gray line). If the 
atom remains in its position, the next sphere is concentric to the first 
one and the radius is smaller by �f = �i (thin gray line). The detec-
tor will see a scattered wave with the wavelength of the incident one, 
which is elastic scattering. If the atom moves away from its original 
position, the center of the sphere generated by the next plane wave 
maximum is shifted. If the atom moves, as shown to the left, the 
next incident plane wave will hit it earlier and the sphere wave thus 
has a larger diameter. The important point is, what wavelength will 
be seen by the detector: If the atom moves in the direction parallel 
to ��⃗Q (full blue circle), the wavelength is different from the incident 
one, and one sees inelastic scattering. In the example shown, 𝜆f < 𝜆i 
(blue double arrow). If the atom moves in a direction vertically to ��⃗Q 
(magenta full circle), the sphere wave emitted will still have another 
center and diameter than for the atom in rest, but the detector sees 
the same wavelength (magenta double arrow). Motions parallel to the 
scattering vector are seen as inelastic due to the shift in wavelength
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This is equivalent to a fluctuation of the frequency of the 
detected wave.

Correlation functions The atom auto- and pair-correlation 
functions are deduced from the incoherent and coherent 
scattering functions, respectively, using the van Hove deri-
vations [20]. The first step is to link the scattering function S 
to the intermediate scattering function I , which depends on 
��⃗Q and t instead of E , by Fourier transform:

By one more Fourier transform, one gets rid of ��⃗Q and 
obtains correlation functions in time and real space:

Neutron data can be expressed by the two correlation 
functions Gcoh

(

r⃗, t
)

 and Ginc

(

r⃗, t
)

 depending on three space 
and one time coordinate each. Gcoh

(

r⃗, t
)

 results from coher-
ent scattering and is a cross-correlation function for the scat-
tering nuclei. This includes a correlation of several particle 
positions with respect to each other, but also with respect to 
time, reflecting the structure and the dynamics of the system, 
respectively. The incoherent data yield the autocorrelation 
function Ginc

(

r⃗, t
)

 for each particle. Following the particle 
over some time, one sees it oscillating or even moving away.

The concept of correlation functions depending on time 
and simultaneously on several space coordinates may be 
quite uncommon to many readers. I try to explain it with 
a daily life example, which has nothing to do with neutron 
scattering, but which is familiar to students. This is the 
weather on the surface of the earth, depending on two space 
and one time coordinate. Correlation here means that the 
weather at a given time may be quite similar within a few 
kilometers around a given point, thus rather strongly cor-
related. If you know the weather in the center of a town, 
you assume it being as bad or good in its outskirts. Over 
distances of a few hundred kilometers, correlation is lost. 
That means that even knowing the weather in the south of 
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Germany at a given time, no reasonable prediction can be 
made for the north at the same time.

Time correlation means that one takes out one point of 
the map and records the weather only there. First, this func-
tion will fluctuate with different periods (12 h: nights are 
cold, days are warm; 180 days: summer is warm, winter 
is cold). Beyond that, one expects some correlation with 
a decay time of a few days: if the weather is warm today, 
it will probably be similarly warm tomorrow and with less 
certainty also the day after tomorrow, but in 14 days it may 
be cold or warm, any correlation to today will be lost.

Scattering without energy resolution of outgoing neutrons

Pair distribution function (PDF) without time resolution In 
a diffraction experiment, scattering is recorded without 
energy resolution, and one obtains a signal corresponding to 
the integration over all final neutron energies:

Strictly speaking, elastic scattering, as introduced above, 
is described by S(Q,E = 0) , which is not identical to this 
S(Q) . As most of the neutrons are usually scattered elasti-
cally at condensed matter, the signal without energy resolu-
tion is largely dominated by scattering with small energy 
transfers. Data recorded without energy analysis are usually 
called “elastic.”

Different to X-rays, the scattering has to be split into a 
sum of incoherent and coherent intensities

The total cross section � then is given as the sum of both. 
Only in the limiting case for single atoms with very high 
mass do we obtain

 and with the respective cross sections �coh and �inc

, which is the total cross section of one atom. The integration 
of an angular-independent scattering function over the steric 
angle yields a factor of 4π.
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As long as the scattering function is energy dependent, 
the Fourier transform yields the intermediate scattering 
func t ion  Icoh

(

��⃗Q, t
)

= ∫ Scoh

(

��⃗Q,E
)

⋅ exp
(

iE
ℏ
t
)

d
E

ℏ
 c f , 

Eq. (43). If we put in t = 0 , we obtain

This intensity can be interpreted as a diffraction pattern 
in analogy to X-ray diffraction.

On the other hand, one obtains from Eq. (44):

It is noted here without proof (cf [20]) that the coher-
ent part of S(Q) yields the no-longer-time-dependent pair 
distribution function g(r):

If the angular-dependent cross section is measured 
without energy resolution of scattered neutrons, only 
space-dependent information is obtained. This function 
yields the average probability to find other particles at a 
distance r from a given particle. The delta function says 
that trivially within a distance of zero from each particle, 
it is found itself. The normalization factor N  is the aver-
age number density of the particles. The important term 
is g(r) , from which the diffraction pattern is directly cal-
culated. In the formulation given here, g(r) only depends 
on the scalar r and thus already contains a powder average 
over all directions in space. This function is directly used 
for amorphous and liquid substances. For powder patterns 
from crystals, one usually considers directly the regular 
crystal structure, but in principal, it is also possible to cal-
culate the respective diffraction pattern directly from g(r).

The coherent scattering function is the interference of 
the scattering from N atoms n at their positions ���⃗Rn  . As 
long as the motion of atoms around their lattice points is 
neglected, this is:

The sum contains information on the relative position 
of the scattering atoms by interference between them. The 
coherent scattering is used for recording powder diffrac-
tion or single crystal data pattern. The wavelength has 
to be in the order of the interatomic distances or bond 
lengths, i.e.,
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≈ 1 for neighboring atoms n, n−1.
The incoherent scattering function is given by a sum con-

taining no interference between different atoms, but adding 
up the intensities of sphere waves from single particles only:

 and thus a value of 1 for each summand, as long as the 
atoms are fixed at their positions. This incoherent elastic 
scattering results in a broad background with weak angu-
lar dependence. A common example is vanadium, which 
scatters mainly incoherently and thus is nearly isotropic; its 
direction-independent scattering is often used for detector 
calibration.

Inelastic scattering: energy resolution yields time 
dependence

The scattering function S(Q,E) as measured with energy 
analysis of the scattered neutrons, yields the time-dependent 
cross and auto pair correlation functions of moving particles.

Periodic motions: spectroscopy Excitations, such as vibra-
tions, are periodic in time with tosc , and the particle returns 
after constant time intervals to its starting point. In case of 
such periodic motions, the emitted wave is modulated with 
the vibrational frequency and contains contributions with 
smaller and higher frequencies than the incident beam, 
yielding the energy gain and loss spectra, respectively. This 
is similar to Raman scattering, where the excitation and de-
excitation of vibrations is often visualized in a classical pic-
ture providing the modulation of the scattered wave by the 
polarizability of the molecule, oscillating with the frequency 
of a molecular vibration. It is thus intuitively clear that the 
scattering function yields the spectrum of the sample.

Consequently, G
(

r⃗, t
)

 also contains periodicity in time, 
and the Fourier transform with respect to E (Eqs. (43) and 
(44)) yields S(Q,E) with sharp peaks at E = h

tosc
 . The transi-

tion energy of a vibration is directly linked to its frequency, 
and thus to time. This illustrates that time-dependent pro-
cesses yield inelastic contributions to the scattering, and vice 
versa, the energy dependence of spectra gives information 
on the time dependence of motions.

Aperiodic excitation: diffusion An important aspect of INS is 
that not only periodic excitations with well-defined frequen-
cies are seen. The correlation functions can be generalized 
to the time dependence and spatial extension of aperiodic 
motions. Here, the scattering function of self-diffusion is 
discussed as a typical example. Atoms and molecules move 
freely in the gas phase. Translational diffusion results from 
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this free translation by increasing the density and the number 
of collisions between particles. It is important to distinguish it 
from “rotational” diffusion (see below). In liquids and other 
dense systems, the translational motion results in self-diffu-
sion, which occurs in any, even homogeneous liquids, in vari-
ance to the standard concept of diffusion as the balancing of 
concentration.

The main difference from the dominant dynamics in the 
solid is that particles, in general, are no longer trapped oscil-
lating around a lattice point to which they return periodically. 
This diffusion does not result in well-defined transitions as 
known, e.g., from Raman scattering on solids, but in a broad-
ening of the elastic line itself (Fig. 11), which is called “quasie-
lastic scattering.” In some cases, even a gradual transition from 
periodic low frequency modes to overdamped diffusion is seen 
in the same experiment [40].

The example of diffusion shows how information is 
obtained from the scattering function S(Q,E) , which depends 
on two parameters: the transfer of energy E and the modulus of 
the momentum Q . Such scattering functions may be visualized 
as a three-dimensional plot as a function of the two parameters. 
Inelastic contributions have some typical Q dependence, and 
the combination of Q and E dependencies gives information on 
the shape of motions in space and their time dependence. It is 
often instructive to plot the spectra S(Q = const,E) measured 
at constant momentum transfers (Fig. 11).

Translational continuous motion Quasielastic scattering is 
simply described in a wave picture. The second Fick’s law 
from textbooks [41] describes the time and space distribu-
tion of a number of particles diffusing into a different envi-
ronment. Best known is the solution for the concentration 
c(r, t) as a function of the distance r from the starting point 
and the elapsed time t when starting with N particles at one 
position (0,0,0)

, which may be a small ink droplet spreading out into clean 
water neither shaken nor stirred. A typical feature of dif-
fusion is that the average squared displacement r2 of the 
particles from the starting point is proportional to time, 
r2 = 6 ⋅ D ⋅ t . From the factor of proportionality 6 ⋅ D the 
diffusion coefficient D is taken, usually in  cm2/s. Other than 
ink, water molecules in water are not seen, but still each 
single molecules undergoes a diffusional motion, which 
is described by an autocorrelation function Gs(r, t) . For 
this, mathematical equivalent equations and solutions are 
obtained as for the ink droplet [20]:

At a given time, this is a Gaussian with a width pro-
portional to 

√

t . The intermediate scattering function, 

(51)c(r, t) =
N

(4�Dt)3∕2
⋅ exp

(

−
r2

4�Dt

)

(51’)Gs(r, t) =
1

(4πDt)3∕2
⋅ exp

(

−
r2

4πDt

)

Fig. 11  3D-plot of the scattering function S(Q,E) for diffusion 
in super-cooled water recorded with an incident wavelength of 
3.14 meV [39]. The dashed lines indicate the energy resolution width 
of the time-of-flight instrument in the respective configuration (IN6 at 
the ILL in Grenoble). Vertically to the E = 0 line, one finds “constant 
Q-scans” at the indicated Q values. The raw data are recast, yielding 
spectra with constant momentum but variable energy transfer. Figure 
reprinted with permission from Teixeira J, Bellissent-Funel M, Chen 
S, Dianoux A., Phys. Rev. A., 31, 1913, 1985. Copyright 1985 by the 
American Physical Society

Fig. 12  Calculated intermediate scattering function for  H2O dynam-
ics in confined systems from a molecular dynamics calculation 
on 216 molecules for different values of Q . The function is plot-
ted over the logarithm of t in a time range from 1 fs to 1 ns. Figure 
reprinted from Faraone A, Liu L, CY M, Shih P. (2003) J Chem Phys 
119:3963–3971 with the permission of AIP publishing
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as obtained by Fourier transform with respect to Q , is a 
Gaussian again, but with a width proportional to 

√

1∕t and 
Q as variable:

With respect to time, Is(Q, t) is a single exponential with 
negative exponent. By plotting lnIs(Q = const, t) over t  , 
one obtains straight lines with a slope of −D⋅Q2 in time 
ranges for a given diffusion mechanism with constant D 
Fourier transform of Eq. (51’) yields a Lorentzian as a 
function of energy transfer for S(Q,E) , [42]:

This is a quasielastic scattering function consisting of 
a line centered at E = 0 with width

The width of the elastic line increases with Q and yields 
D when plotted over Q2 (cf. Fig. 11).

(52)Is(Q, t) = exp
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−Dt⋅Q2
)
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1

π
⋅

D ⋅ Q2

(E∕ℏ)2 + D ⋅ Q2
=

1

π
⋅

D ⋅ Q2

𝜔2 + D ⋅ Q2

(54)
ΔE
ℏ

= Δ𝜔 = D ⋅ Q2

Only under simplified conditions, such as diffusion in 
free water in the limit of long times, does the intermediate 
scattering function have such a simple form, and it might 
be sufficient to analyze the width of the quasielastic line 
only. In complex environments, such as water molecules 
in the pores of silicates [43], the intermediate scattering 
function is a sensitive tool for describing the dynamics 
and one may distinguish between several rotational and 
translational processes over a time scale of several dec-
ades (cf. Fig. 12). Papers like this are an example of how 
the neutron data as in Fig. 5 in [43] on their own do not 
look very impressive to the spectroscopist. Only by com-
bining them with extensive simulations and models is a 
wealth of information deduced. Without going into details 
of this theory, the good news is that water structure has a 
memory, the bad news is that the memory only lasts a few 
picoseconds, which does not help you very much, since 
drinking a glass takes much longer.

Translational jump diffusion On a coarse length scale, 
translational diffusion is smooth, but on a small scale in 
the order of molecular dimensions, translational diffu-
sion in condensed phases does not consist of a continuous 
motion but of jumps between different adjacent sites, on 
which the particle rests till the next jump (Fig. 13). This 
is very obvious, e.g., for the diffusion of H atoms in solid 
metals but also applies to diffusion in disordered systems 
such as polymers and liquids. A simple picture is that the 
diffusing particle is trapped in a cage of other particles 
and oscillates around its center with a given frequency � . 
For escaping from this cage, the particle has to cross an 
energy barrier, succeeding only after a large number of 
oscillations against the wall. The average time � between 
two jumps of a particle out of the cage thus is large with 
respect to the oscillation period inside, i.e., 𝜏 ≫

1

𝜈
 . The 

diffusion coefficient and the mean square displacement are 
then obtained as

The scattering function is sensitive to the geometry of 
such jumps. Under the assumption of jumps occurring in 
all directions always over a constant distance r0 [42], the 
width of the Lorentzian in the homogeneous system does 
not increase continuously but has to be rewritten using a 
Bessel function:

for the interference between initial and final cages 
(Fig. 13).

(55)r2

t
=

r2
0

�
= 6 ⋅ D

(56)D ⋅ Q2
→ Δ�(Q) =

1

�
⋅

(

1 − j0
(

Q ⋅ r0
))

Fig. 13  Schematic drawing of jump diffusion. Top: in a condensed 
phase, a molecule (full red) is trapped in a cage of adjacent parti-
cles (light blue in thick circle). The particle oscillates inside (dou-
ble arrow, black) until a path (thin arrow) and a neighboring cage 
(hatched circle) open due to the thermal fluctuation. The trapped mol-
ecule may then jump over the barrier into the neighboring cage. Bot-
tom: the path from one cage to the next passes over an energy barrier 
and has a length of about r0



ChemTexts (2023) 9:12 

1 3

Page 25 of 55 12

According to the properties of Fourier transform, small 
values of Q correspond to high distances r ≫ r0 , where the 
motion may be considered as being nearly continuous. In 
this limit, one obtains the linear dependence of Δ�(Q) on 
Q2 :

In the other limiting case of large Q , where only the 
jump dynamic is seen, a width of Δ�(Q) ≈ 1

�
 is obtained. 

As long as the assumption on the jumps holds, one can 
obtain D and τ from the limiting cases of the elastic line 
broadening for small and large Q , and thus also the average 
jump distance r0 . A more detailed analysis of jump diffu-
sion is given in [44].

Rotational diffusion The rotation of molecules trapped in 
dense phases such as solids or liquids is usually perturbed, 
often by an arbitrary sequence of collisions with neigh-
boring particles dephasing the free rotation. In a solid, the 
particle may be fixed in space, on a lattice point, e.g., and 
return with some probability to its original orientation. 
This aperiodic motion without center-of-gravity displace-
ment is called rotational diffusion. The spectrum again 
consists of a quasielastic broadening rather than well-
defined transitions, but a sharp elastic line remains [45]. 
In practice, it may be tricky to distinguish if an elastic line 
from the rotational diffusion in the sample itself remains 
on top of the quasielastic broadening or not, as for transla-
tional diffusion. The sample environment, container, and 
shielding usually generate some elastic intensity, and a 
very thorough background subtraction is afforded.

Neutron sources

Even in highly performant modern sources, the attain-
able resolution and sensitivity are limited by the neutron 
flux. The flux in the core of a dedicated research reac-
tor is about  1014–1015 n/cm2/s. The neutrons come from a 
source with a broad spectrum of energies corresponding 
to a thermal distribution at the temperature of the modera-
tor. The directed flux in a beam tube is  109–1010 n/cm2/s. 
In general, only a small part of this spectral distribution 
is taken out and admitted to the sample. The resulting 
flux depends on the desired energy resolution. Typically, 
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the energy spread of the incident beam is in a wide range 
nearly proportional to the incident energy, amounting to 
about 1–5% of it. The remaining “monochrome” flux then 
is of the order of  106–108 n/cm2/s and the total flux in a 
beam with, e.g., an area 10  cm2 will be  107–109 neutrons/s 
at the sample.

These neutron fluxes are small as compared with 
the number of quanta available in an optical spectros-
copy experiment. The difference may be appreciated by 
comparing the above-mentioned values with the photon 
flux Nphoton from a laser. A typical midIR-laser running 
with 0.1 mW cw power at � = 10μm , corresponding to 
1000  cm−1 or a photon energy of 125 meV emits

in a beam with a much smaller cross section and wavelength 
spread than the neutron beam.

Here, research reactors and spallation sources are dis-
cussed as neutron sources.

Reactors as continuous sources

Sites

Historically, small reactors were first used for neutron scat-
tering, such as Harewell in England [46]. Later, dedicated 
high-flux reactors for neutron scattering were built, e.g., at 
the Institut Laue-Langevin (ILL) in Grenoble, France [47]; 
in Dubna [48], former USSR; at the former Brookhaven 
site, USA [49]; or in Munich, Germany [50]. Apart from 
Dubna, reactors provide a continuous neutron flux, which is 
their important performance parameter. Flux is optimized 
by employing a very compact core. The total thermal power 
(usually in the order of 5–60 MW) and the content of nuclear 
material are small as compared with typical power reactors 
for heat generation with up to 1000 MW electrical and corre-
sponding 4000 MW thermal power. Still, safety and security 
issues are complicated, and only on a few sites may nuclear 
material be handled.

In typical reactor sources such as ILL and FRM II, fast 
neutrons are produced from nuclear chain reactions in a sin-
gle fuel element with a diameter of only 40 cm (Fig. 14) in 
a heavy water tank. The element is cooled by  D2O to about 
50 °C, and the chain reaction is moderated by this water. The 
fast neutrons lose their energy after nuclear fission by col-
lisions with the  D2O molecules in the bath and their kinetic 
energy is thermalized, similar to a hot gas diluting in a cold 
gas. Biological shielding is a “light water” tank  (H2O) with 
a thickness of a few meters. The heavy concrete shielding 
around the reactor is so thick that the radiation level in the 

(58)
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reactor hall outside from it is low and permanent work is 
possible.

Available spectrum

The thermalization process in the reactor vessel not only 
enables the nuclear chain reaction but also determines the 
velocity distribution of the neutrons (Fig. 15, “thermal”). 
The neutrons then leave the bath with an energy distribu-
tion corresponding to a gas at the moderator temperature. 
This spectrum is fixed by the design of the reactor and the 
temperature of the cooling water.

A shift of the available neutron spectra may only be 
obtained by thermalization in cold or hot sources inserted 
into the reactor vessel. Such devices are small containers 
with a higher or lower temperature than the reactor vessel, 
shifting the velocity distribution of the neutrons toward 
the respective temperature, producing “cold” or “hot” 
neutrons beyond the thermal spectrum. Very common are 
cold sources with liquid deuterium at 25 K (Figs. 14, 16). 

The corresponding Maxwell distribution now has an aver-
age energy of 3.2 meV, corresponding to 5 Å and a long 
wavelength tail. In reactors, the neutron absorption of liq-
uid hydrogen (Table 4) perturbs the neutron flux, and liquid 
deuterium is preferred in spite of its lower cross section. The 
ILL reactor hosts a hot source in its reactor vessel, where a 
block of graphite is heated up to 2400 K by the radiation in 
the reactor and generates neutrons with higher energies and 
a energy distribution shifted to a few hundred meV (Fig. 15). 
The use of hot sources at reactors is largely superseded now 
by the availability of “epithermal” hot neutrons after incom-
plete moderation at spallation sources.

Spallation source

In spallation sources, pulses of charged particles attain 
high energies in an accelerator and in the large storage ring. 
Then, they are extracted and shot on a target where they 
trigger nuclear reactions releasing strong short pulses of fast 
neutrons (Fig. 17) [55]. Technically, these sources are very 
demanding in construction and operation, but in practice, an 

Fig. 14  Cut through of the reactor FRM II in Munich. Neutrons 
are produced by nuclear fission in the central single fuel element 
immersed into a heavy water tank (dark blue). Light water and con-
crete shielding reduce the level of radiation penetrating to the outside 
(gray). Neutrons are extracted by beam tubes marked SR-..(“Strahl-
rohr”). A few tubes, such as SR-5 and SR-10, point into the heavy 
water and “see” a thermal neutron spectrum with a maximum of near 
50 meV. SR-1, SR-2, and SR-4 point to the cold source and supply 

slow neutrons, which are needed for several experiments (see below) 
and can be transported over 10–100 m in neutron guides. As is indi-
cated in the figure, SR-1 feeds several of such guide tubes. SR-9 is 
directed towards the hot source, which yields a spectrum shifted to 
higher energies as needed, e.g., for vibrational spectroscopy (see 
below) [51]. Copyright Forschungsreaktor FRM II/Technische Uni-
versität München, reprinted with permission
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important advantage with respect to research reactors is that 
less nuclear material must be handled and that no nuclear 
chain reaction is started for the operation. Consequently, 
safety and security issues are reduced, and the site and inner 
parts are more easily accessible than nuclear reactors.

Historically, some of the spallation sources made use 
of earlier high-energy physics accelerators that had ceased 
operation [26]. Presently, several dedicated high-flux spalla-
tion sources are in operation or constructed (Table 6). A new 
neutron source containing accelerator, target, and moderator, 

and the experimental halls is a major project even before sci-
entific instrumentation is installed. Views from the websites 
of these sources give an idea on the impressive dimensions 
of the experimental facilities.

Neutron generation by fission in a reactor such as ILL 
will only work if the fuel element is embedded in heavy 
water. It is thus inherent to the function that the neutrons 
are moderated to thermal energies. This is different for the 
spallation source, which generates fast neutrons without 
a moderator. The moderators can thus fully be adapted 
to the needs of the connected instruments. Intense beams 
of “epithermal” neutrons with energies up to 2.5 eV [14] 
are obtained without employing an extra hot source, as 
needed in a reactor. This is sufficient for vibrational spec-
troscopy and even comes close to quantum energies in the 
visible range. As experiments with slow neutrons are very 
important, most spallation sources also contain moderators 
with liquid  H2 and  CH4, yielding a high flux between 0.1 
and 100 meV, with a maximum at a few mV [62]. Several 
moderator materials are discussed in [63]. Plans for the 
future ESS [64] show a design where a liquid hydrogen 
and a water moderator are arranged close to the target.

For long time, the average flux of spallation sources 
was significantly lower than of high flux reactors such as 
ILL, and they could only be competitive to reactors if their 
instrumentation could make use of the pulsed beam and 
benefit from the very high instantaneous intensity. The 
background counted by the detectors of the instruments at 
a spallation source is much lower than in reactors, since 
the source is off between the pulses, i.e., most of time. 
This helped even smaller spallation sources to compete 
successfully with reactors.

Only recently did the SNS in Oak Ridge supersede the 
ILL reactor (from 1972) in average flux [65]. A further 
step forward will be made with the ESS, which will have a 
greater pulse length and achieve an average flux far beyond 
ILL.

Instrumentation

Neutron flux and detectors

An optimized high neutron flux is especially important for 
short time measurement of evolving diffraction pattern or for 
inelastic experiments, where only a small part of the scat-
tered neutrons contributes to the signal, and only in major 
high flux sources, a sufficient neutrons flux is available. At 
smaller reactors with significantly lower fluxes, one will 
focus, e.g., on small-angle scattering (SANS) experiments 
without time resolution.

Fig. 15  Energy distributions of neutrons from the reactor of the ILL. 
On the y axis, the neutron flux per area, time, and steric angle is plot-
ted. The data from [52, 53] were replotted to reflect the flux at a typi-
cal relative energy resolution of 5% in the whole energy range. Num-
bers will differ for different neutron facilities and beam tubes, but the 
typical occurrence of broad energy distributions and their tempera-
ture dependence is readily seen. The beam tubes H15, H12, and H3 
“look” into the cold, thermal, and hot sources (cf. Fig. 14), and thus 
withdraw neutrons with different energy distributions from the reac-
tor vessel. The peak energies of the distributions pass from 7 to 46 to 
120 meV. A thermal distribution at the reactor temperature of 320 K 
would peak at 27 meV. The curve for thermal neutrons has a small 
tail at high energies, which is typical for epithermal nonmoderated 
neutrons in a reactor [54]

Fig. 16  Cold source vessel at the reactor FRM-II in Munich sur-
rounded by three beam tubes [51]. In operation, the metal sphere 
in the middle contains 12  l of liquid deuterium at 18  K. Copy-
right Forschungsreaktor FRM II/Technische Universität München, 
reprinted with permission
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A consequence of the low neutron flux is that, espe-
cially for inelastic experiments, wider resolution widths 
have to be tolerated than in optical spectroscopies such 
as IR. Due to the low relative resolution, the neutron inci-
dent energy Ei has to be adapted to the experiment. The 
resolution width of inelastic data is not only a function 
of Ei , but also of the energy transfer E , being worse in 
energy gain than in energy loss. In energy gain, the scat-
tered neutrons have a higher velocity, which is measured 
with less absolute precision. In [66], the intrinsically much 
sharper lowest ortho–para transition in solid hydrogen at 
14.7 meV had a fwhm of 0.83 meV in energy loss (J = 0 
to > 1), but of 1.5 meV in energy gain (J = 1 to > 0) (IN4, 
incident energy 31 meV).

The number of scattered neutrons is proportional to the 
incident flux, which is measured by a calibrated detector 
with small efficiency and high transmission for the quan-
titative determination of scattering probabilities. Such a 
detector is called a monitor and gives an estimate of the 
total number of neutrons having reached the sample during 
one measurement.

In optical experiments, the intensity is often measured, 
and only sophisticated detectors for very low intensities 
apply photon-counting techniques. For the small numbers 
of scattered neutrons, counting techniques always have to 
be applied in the secondary spectrometer. Geiger tubes for 
radioactive β and γ radiation count single current pulses 
generated by gas ionization. Thermal neutrons have ener-
gies of a few meV, which is not sufficient for directly pro-
ducing photons (1–2 eV) for a CCD-camera or generating 
a current pulse of ionized gas atoms (some 100 eV). High-
energy particles have to be generated by capture of slow 
neutrons triggering a nuclear reaction. A standard method 
is to fill counter tubes with a few bars of 3He. These atoms 
capture neutrons with a high cross section (cf. Table 5), 
forming an intermediate 4He nucleus that releases ionizing 
particles (tritium atom and proton) with a total kinetic 
energy of 740 keV [21]. In contrast to the millielectron-
volt neutron energies, this is largely enough to produce a 
detectable number of ionized particles. 3He is usually pre-
ferred to boron trifluoride (11BF3) gas, because helium has 
preferable chemical properties and counters have a higher 

efficiency. Nearly every neutron entering such a tube of, 
e.g., 25 mm in diameter, undergoes a nuclear reaction. 
This yields ionizing radiation and triggers a discharge, 
which is measured as in a classical proportional counter.

Since a few years, scintillator detectors started to 
replace gas tube devices. In this case, neutrons generate 
high-energy α-particles by nuclear reactions. The issue is 
to distinguish between neutron-induced signals and noise 
as produced by γ radiation. In a recent paper [67], the 
complex processes for obtaining efficient scintillators are 
laid out in detail: the traditional scintillator ZnS, which is 
known from many other applications, is used again, but is 
doped with Ag for the detection of α radiation. By produc-
ing nanoparticles and doping them with 6LiF, a material 
is obtained, in which first thermal neutrons are converted 
into high-energetic α-particles by the lithium. These parti-
cles are then generating light pulses in the ZnS:Ag, which 
are in turn transferred via appropriate light guides to pho-
tomultipliers, CCD-cameras and other photosensors, and 
finally converted into electrical signals.

Instrument design: measure the wavelength 
by Bragg diffraction or the velocity by time of flight

Neutrons are used for a variety of elastic and inelastic 
experiments in a large wavelength range. As neutrons with 
similar energies and wavelengths are used both for diffrac-
tion and for spectroscopy, the techniques used for diffrac-
tometers and spectrometers are similar, but very different 
from laboratory spectroscopy. It is characteristic that the 
Nobel Prize in Physics 1994 was awarded “for pioneer-
ing contributions to the development of neutron scattering 
techniques for studies of condensed matter” jointly with 
one half to Bertram N. Brockhouse “for the development 
of neutron spectroscopy” and with one half to Clifford 
G. Shull “for the development of the neutron diffraction 
technique” [68].

A number of spectrometer types have been developed 
for different wavelength ranges of the incident beam and 
different precision, with which the scattered neutrons are 
measured. Instruments for neutron scattering may contain 
several tons of material including heavy shielding, choppers, 
detectors, and cryostats. These setups are firmly connected 
to the source via beam tubes and neutron guides, and thus 
are optimized for the spectral distribution of neutrons at the 
respective beam. Here, some of the characteristics of the 
instrumental techniques are presented for making the respec-
tive results understandable. Technical realizations differ con-
siderably from one neutron source to another. For a profound 
understanding, the reader should refer to the documentation 
of the respective instruments [26, 47, 69].

Nearly all instruments determine the neutron wavelength 
at some stage, usually at least in the incident beam, which is 

Fig. 17  Plan of the spallation source ISIS at the Rutherford Apple-
ton Laboratory in Great Britain [26]: for technical reasons, first  H− 
atoms are produced (protons with two electrons each) and attain an 
energy of 70 MeV in a linear accelerator (Linac). After stripping off 
their electrons, the protons are accelerated to 800 MeV in a synchro-
tron storage ring. The current is 10–100 µA, which characterizes the 
performance of the source. Proton pulses are extracted from this ring, 
converted to H- and finally shot to a target consisting of a block of an 
appropriate material such as uranium or tantalum. Here, neutrons are 
formed by collision with the large cores. Reprinted from [26] by kind 
permission of Dr. John Thomason, copyright ISIS Neutron and Myon 
Source, Rutherford Appleton Laboratory, Didcot, Great Britain

◂
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called “direct geometry.” For elastic scattering, the scattered 
neutrons are counted only as a function of their direction. 
For inelastic scattering, the velocities or wavelengths in the 
scattered beam and the scattering angle are measured simul-
taneously. There are two important methods for determining 
the wavelengths or velocities of neutrons, either by diffrac-
tion at a crystal and taking out one Bragg reflection, which 
corresponds to a well-defined wavelength, or by measuring 
the time of flight (TOF) over a given distance and determin-
ing the velocity.

Monochromators using Bragg reflection at large 
crystals

The wavelength of the neutrons in the incident beam may be 
defined by Bragg scattering at a large single crystal of pyro-
lytic graphite, copper, silica a.o. A problem is that Bragg 
reflections of neutrons in crystals are often contaminated 
by higher order contributions. If a monochromator crystal is 
e.g. adjusted to admit in first order (n = 1) neutrons with 3  Å 
or 9.1 meV, neutrons with 1.5, 1.0, ..Å or 36.4, 81.8,.. meV 
also fulfill the Bragg conditon for n = 2,3,.. These “higher 
order contaminations” may have significant intensities. In 

diffraction patterns, higher order contributions may scram-
ble the relative line intensities, which are important for the 
analysis of the structure. In inelastic scattering spectra as, 
e.g., from triple axis spectrometers (see below), higher-order 
reflections at the monochromator result in parasitic inten-
sities. Previsions have to be taken to filter out the desired 
order, which may reduce the ranges of useful energy and 
momentum transfers.

Diffraction

Neutron powder diffraction (NPD) Crystals For crystalline 
samples, the treatment of neutron data is largely compara-
ble to X-ray diffraction. In the case of crystalline powders, 
Bragg scattering at the sample is observed. For each peak, 
a lattice constant d is obtained from the Bragg relation dis-
cussed above, where p is the momentum of the incident neu-
trons:

The well-known Rietveld analysis [70] was first devel-
oped for neutron diffraction, since sufficient computing 
facilities were early available in the neutron research cent-
ers [71], and later on transferred to X-ray data. The method 
consists of fitting the measured data by a pattern calculated 
from a structure model and adjusting the corresponding 
structure parameters.

Amorphous solids and liquids Most textbooks focus on 
crystals with a long-range order, which can be described 
simply by intuitive concepts. In reality, systems with a short-
range order such as liquids and amorphous solids play a 
huge role. Liquids are ubiquitous in daily life, especially 

(59)p =
h ⋅ n

2 ⋅ d ⋅ sinΘ
;d =

h ⋅ n

2 ⋅ p ⋅ sinΘ

Table 6  Some spallation sources

ISIS, Chilton, UK In operation [26]
SNS, Oak Ridge, Tennessee, USA In operation [56]
Lansce, Los Alamos, USA In operation [57]
JSNS, Tokai, Japan In operation [58]
CSNS, Dongguan, China In operation [59]
PSI, Villingen, Schweiz In operation [60]
ESS, Lund, Sweden In construction [61]

Fig. 18  Structure factor S(Q) (left) and pair distribution function 
(PDF) g(r) (right) for liquid Rubidium. Both graphs may easily be 
confused: S(Q) is an experimentally determined scattering function 
and thus plotted as a function of Q or the scattering angle. Whereas 
crystalline samples would show sharp Bragg peaks in this experiment 
from long regular columns of atoms, liquids yield a broad-intensity 
distribution, the maxima reflecting only the interference between few 
atoms. g(r) is calculated from S(Q) by Fourier transform and is plot-

ted over the particle–particle distance r. The first sharp maximum in 
g(r) yields the distance between each particle and those surround-
ing it in a first shell (cf. Fig. 13). The corresponding value of r (here 
4.9  Å) thus roughly reflects the particle diameter. Due to a lack of 
long-range order, further shells are strongly broadened [72, 73]. Fig-
ures were taken from Ref. [74] with kind permission of Wolf-Chris-
tian Pilgrim
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water and oils. It is less obvious how important amorphous 
systems are. Most biomolecules such as fats, collagens, and 
proteins are amorphous, just think of butter, chocolate, and 
boiled eggs. These substances are in a soft, rubber-like state, 
in contrast to hard and brittle glasses for window panes or 
for drinking a beer.

Figure 18 (left) shows a typical elastic coherent scattering 
function for systems without long-range order, such as disor-
dered glassy systems and liquids. Obviously the Q-depend-
ence is much more smeared out than for a crystalline sam-
ple with sharp Bragg reflections. This broad intensity from 
coherent scattering still reflects interatomic interferences and 
must not be confused with incoherent contributions. Amor-
phous and liquid samples do not have a long-range order 
and cannot be described by crystallographic approaches. The 
short-range order around each particle is described by g(r) 
(Fig. 18 (right)), which is simply calculated from S(Q) by a 
sine Fourier transform 

The meaning of g(r) may be rationalized in two ways: if 
the volume element dV is large as compared with the volume 
of a single particle, the dimensionless quantity g(r) simply 
describes the ratio of the density inside the volume element 
to the average density. For describing the short-range order 
of a liquid or amorphous solid, dV  (e.g., in  nm3) has to be 
small and may only contain one or even zero particle centers. 

Then, the expression N ⋅ g(r) ⋅ dV with the particle density N 
(in particles per  nm−3) is the average number of other parti-
cles found in a small volume dV  at a distance r around any 
given atom. In the limit of long distances r , this is just given 
by N ⋅ dV  , and g(r) is normalized to g(r → ∞) = 1 . At very 
short distances below the sum r12 = r1 + r2 of the radii of 
the two particles, g(r) is close to zero, since particles cannot 
permeate. At r = r12 we find a number of particles forming 
a shell around the center particle, and g(r) has a pronounced 
maximum. Further, usually much smaller maxima indicate 
second and third shells, which are less pronounced. A simple 
shell model for g(r) and the corresponding scattering func-
tion has been introduced in [75].

A spectacular example of the merits of neutron scattering 
in this field is the short-range order of liquid water. Good 
water models have a huge importance for the understanding 
for processes in aqueous solution, including nearly all bio-
chemical reactions. The intermolecular interactions includ-
ing hydrogen bonding are difficult to describe and are the 
key issue for a consistent model of this liquid. X-ray scat-
tering from water yields a significant signal only from oxy-
gen. Neutrons see strong scattering from H and D [77]. By 
isotope substitution and varying the ratios of H and D, the 
coherent contribution from hydrogen atoms was separated 
off, and the radial distribution functions for the H–H, O–O, 
and O–H distances were deduced and compared with simu-
lations (Fig. 19) [78].

Setup A simple setup for neutron powder diffractometers 
has Debye–Scherrer geometry, similar to X-rays. At continu-
ous sources, the incident wavelength � is typically defined 
by Bragg scattering at a large monochromator single crystal 
from graphite, silicon, or copper. At a spallation source, the 
incident neutron velocity v is usually controlled by chop-
pers. In both cases, the momentum of the incident neutrons 
is obtained: 

Then, the scattering probability is measured as a func-
tion of the scattering angle at the sample, usually employing 
1D-position sensitive detectors, and short measuring times 
below minutes are attained for high-quality diffraction pat-
terns. The high intensity of elastic scattering permits attain-
ing very high resolution. An example for that is the powder 
diffractometer HRPD at the ISIS spallation source [79, 80], 
where an extremely precise definition of the incident velocity 
is obtained by measuring the neutron flight time over a path 
of 100 m, and the resolution for measured lattice constants 
attains Δd

d
= 5 ⋅ 10

−4 . By collimators before and after the sam-
ple, perturbation of the line shapes are reduced and, in spite of 
using large samples, peak quality may be at least comparable 
to X-ray data. By rotating the sample, texture effects are traced.

(60)p =
h

�
= mn ⋅ v = mn ⋅

s

t

Fig. 19  Measured pair distribution functions of water atoms (open 
circles) and comparison with force field simulations. Especially, the 
first peaks at about 1.8 Å (O–H), 2.5 Å (H–H), and 3 Å (O–O) reflect 
the hydrogen bonding and are sensitive to the modeling. Even results 
from simulations with a widely used sophisticated standard water 
force field (TIP4P/2005) (dashed line) differed significantly from 
the experimental data. Only after empirically modifying the force 
field, was a very good agreement between experiment and simula-
tion attained (full line). Figure was reprinted from Ref. [76] by A.K. 
Soper under Creative Commons Attribution License
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Single crystal diffraction Similarly to X-ray scattering, dif-
fraction of single crystals affords a four circle goniometer for 
orienting the sample with respect to the incident beam. Both 
rotating crystal or Laue methods with a single incident energy 
or a white neutron spectrum, respectively, may be applied [25, 
81, 82]. Inspection of the Brookhaven protein database [6] 
shows that only some 200 protein structures out of 175,000 
have been determined by neutrons, while the dominant 
method is X-ray scattering. A major application of neutrons 
consists in the determination of proton positions, which is not 
possible with X-rays. The treatment of neutron data follows 
similar lines as of X-ray diffraction and is not discussed here.

In spite increasing the performance of sources and instru-
ments, the large minimum crystal sizes remain an issue for 
neutrons. A very recent neutron diffraction paper [83] on a 
sugar-binding protein (8DHD) is based on crystals with sizes 
of 3–10  mm3. This seems to be tiny, but even in a somewhat 
older review on X-ray diffraction [84], it is claimed that crys-
tals 0.1–0.3 mm in size are sufficient for this technique. This 
corresponds to a crystal volume of 0.001–0.01  mm3, which 
is still about a factor of 1000 lower than for neutrons. Taking 
into account the efforts made by biochemists to grow single 
crystals for structural studies on thousands of proteins, this 
difference in sensitivity may be decisive for the choice of 
X-rays rather than neutrons.

Fig. 20  Modern triple-axis spectrometer: schematic layout of IN8 
at a thermal beam (ILL, Grenoble) [47], reprinted by kind permis-
sion, ©ILL wwww. ill. eu. The “white” neutron beam (from the right) 
passes through a diaphragm (orange) to a monochromator drum with 
three crystals (blue is active, red and gray). The wavevector �⃗ki and 
the corresponding energy Ei of the incident neutrons are determined 
by this monochromator. The Bragg angle at the monochromator may 
be varied by rotating the drum (first axis) and the shielding (blue 
dots and dark gray) appropriately. After passing through the monitor, 
which measures the number of neutrons passing to the sample and a 
second diaphragm, the beam passes the sample (red circle) and finally 

the beam stop. The background level is reduced by further shielding 
(gray). The scattering angle at the sample is varied by rotating the 
analyzer/detector unit (green) and adapting the shielding around the 
sample accordingly (second axis). The final wavevector �⃗kf  and the 
energy Ef of the scattered neutrons is measured by Bragg reflection at 
the second crystal, the so-called analyzer (light blue). This energy is 
scanned by rotating this crystal and the detector unit (green polygon) 
with a counter tube inside around the third axis. The monochromator 
and analyzer consist of large single crystals for selecting wavelengths 
by Bragg reflections

Fig. 21  Phonon dispersion curves of solid MgO [86]. Optical tech-
niques only yield few results (*) for optical phonons at the Γ-point, 
where all elementary cells oscillate in phase. Only the systematic 
neutron measurements in a wide range of wavevectors and ener-
gies (frequencies in THz) yield sufficient data (open symbols) 
for calibrating electron structure calculations on the crystal (full 
lines).  Reprinted from J. Phys. Chem. Solids., 61, Parlinski K, 
Łaz˙ewskib J, Y. Kawazoe, “Ab initio studies of phonons in MgO by 
the direct method including LO mode”, 87–90, Copyright 1999, with 
permission from Elsevier

http://www.ill.eu
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Inelastic scattering (INS)

Triple‑axis spectrometer The genuine type of instrument 
for INS at a continuous reactor source is the triple-axis spec-
trometer (Fig. 20), which was mentioned in the textbook of 
solid-state physics by Kittel [1]. As the name says, angles at 
three axis are variable (cf. Fig. 20). The energy and momen-
tum transfers are calculated according to Eqs. (4) and (6) and 
Fig. 2, respectively. A wide range of energy and momentum 
transfers can be scanned. By collimation of the incident and 
scattered beams, the resolution of Q and E can be adjusted. 
As the instrument detects low count rates, heavy shielding 
is afforded to prevent spurious background radiation from 
reaching the detector. In combination with the large beam 
size, big masses have to be moved, and a special technique 
was developed to mount the sample and detector on pres-
surized air cushions, which glide on a polished marble table 
with an area of several  m2 (“Tanzboden” instruments). As 
the sensitivity of this setup with only one detector covering 
a small steric angle of scattered neutrons is small, one usu-
ally measures coherent intensity, which is concentrated in a 
small angular range with well-defined Q transfer.

Dispersed modes phonons In extended crystals with high 
translational symmetry, vibrations of the particles are usu-
ally not independent, but the relative phase between adjacent 
equivalent oscillators is well defined. Such lattice vibrations 
or so-called phonons have wavelengths in the order of a few 
lattice constants. That means that oscillators, which are only 
a few nanometers apart from each other, vibrate with oppo-
site phases. With a typical sound velocity of v = 6000

m

s
 

[85], a wave spreading through the MgO crystal, a so-called 
phonon, with a frequency of � = 5THz = 5 ⋅ 10

12s−1 has a 
wavelength of � = 12Å , which corresponds to three lat-
tice constants, i.e., is on an atomic length scale. Equiva-
lent oscillations, which differ only by the phase difference 
between adjacent oscillators, have different frequencies, and 
such modes are called “disperse.”

The wavelength of optical radiation in an appropriate fre-
quency range below, e.g., 25 THz (Fig. 21) is higher than 
12 µm, which is at least four orders of magnitude higher 
than a typical lattice constant. Thus, only phonons, where 
adjacent unit cells vibrate nearly in phase, can be observed 
by radiation with such long wavelength or small wavevec-
tor k. Due to this “k = 0” selection rule, acoustic phonons 
normally do not appear in the IR and Raman spectra. For 
optical phonons, the full dispersion curves are not seen, but 
only the limit, where the whole lattice oscillates in phase (cf. 
* in Fig. 21). In variance to optical radiation, wavelengths 
and energies of thermal neutrons both match the range of 
lattice vibrations, and numerous complete phonon spectra of 

systems with extended periodicity such as crystalline MgO 
were measured by coherent INS [87, 88].

Textbooks for solid-state physics [1] typically propose 
very simple approaches for the crystal vibrations such as 
the Debye model, not respecting internal interactions and 
being insufficient for any specific description of the solid. 
By neutron scattering, one obtains phonon dispersion curves 
as a function of the crystal orientation. From the phonons, 
a series of physical properties are derived such as a precise 
density of vibrational states, specific heat, sound velocity, 
and elastic constants. Interaction potentials in the crystal 
may be calibrated by comparing measured and calculated 
dispersion curves.

Backscattering spectrometer Very high-energy resolutions 
are attained with backscattering spectrometers such as IN13 
and IN10 in Grenoble. This is a special spectrometer type 
with energy definition by Bragg scattering at crystals, being 
designed for resolving very small energy transfers from the 
elastic line [47]. These spectrometers make use of the fact 
that the wavelength resolution on an ideal crystal in the limit 
of backscattering ( Θ = 90◦ ) may, in principle, go to infinity. 
We obtain from the Bragg condition for the first refraction 
order:

and if the neutrons scattered from the sample are col-
lected in a finite angular range ΔΘ , the corresponding wave-
length spread still is very small.

In these spectrometers, in general, monochromator and 
analyzer are crystals of the same material (e.g.,  CaF2) with 
essentially the same lattice constant. By heating or by peri-
odic motion, the effective lattice constant of the analyzer 
is slightly shifted with respect to that of the monochroma-
tor due to thermal expansion or Doppler shift, respectively, 
and the detected scattered neutrons have a slightly different 
wavelength than the incident beam, corresponding to a small 
energy transfer. In practice, typical resolutions are 1–10 µeV 
at energy transfers of 50–500 µeV. An important application 
of spectrometers for small transition energies is tunneling 
spectroscopy, since tunneling splitting usually has energies 
well below the vibrational spectra [40].

Spectroscopy of methyl groups in condensed phases Many 
organic molecules contain methyl groups, and their dynam-
ics are intensively studied by inelastic neutron scattering. 
In organic chemistry, one usually considers  CH3 groups 
which are connected by a single C–C bond to the body of 
the molecule, as freely rotating around this bond. In fact, it 

(61)

� = 2 ⋅ dz ⋅ sin(Θ) ⇒ Δ� = 2 ⋅ dz ⋅ cos(Θ) ⋅ ΔΘ

⇒
Δ�
�

=
2 ⋅ dz ⋅ cos(Θ)

2 ⋅ dz ⋅ sin(Θ)
⋅ ΔΘ = cot(Θ) ⋅ ΔΘ → 0 ⋅ ΔΘ for Θ → 90◦
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is very unlikely that the energy of this bond is completely 
independent of the rotation angle. In practice, “freely rotat-
ing” means that the barrier height against rotation is only 
in the order of a few R ⋅ T  with T ≈ 300K , and that rapid 
thermally activated reorientation and redistribution over all 
angles is observed. In condensed phases, the methyl group 
usually is trapped in a cage of arbitrarily arranged atoms. 
Perturbation of the rotation around the figure axis is due to 
intramolecular and, in condensed phases, also to intermo-
lecular interactions. Even though usually much weaker than 
in hydrogen bonding systems, they still hinder the rotation.

In an angular dependent potential as in Fig. 22 bottom, 
the rotation of the methyl group around its figure axis is 

hindered. Now, three transitions are possible: (1) the mol-
ecule undergoes torsional vibrations around the figure axis 
without changing the arrangement of the protons with 
respect to the cage. These so-called librations often have 
transition energies of a few meV and are discussed in “Libra-
tions of methyl groups in solid”; (2) at low temperatures, 
the protons can tunnel simultaneously from the respective 
minima (at 60°, 180°, 300°) through the potential barriers 
(at 120°, 240°, 0°) to the respective next minimum; and (3) 
at higher temperatures, thermally activated reorientation 
occurs as jumps over the barriers, in some analogy to the 
translational jump diffusion described above.

In a classic picture, we could number the protons 
n = 1,2,3, and distinguish three identical ground states, e.g., 
by watching which of the protons points to the left in Fig. 22, 
top. We see librations maintaining the rotational orienta-
tion and thermally activated reorientation. For a quantum 
mechanical description, the three protons can no longer be 
distinguished, and any stationary wave function must be 
adapted to the three-fold symmetry of the system. If we now 
prepare the methyl group in a state where indeed one proton 
is fixed, e.g., pointing to the left in Fig. 22 top, we obtain a 
state that is not adapted to the symmetry of the system and 
thus is nonstationary. It will evolve, and the protons will 
exchange their positions by “tunneling” through the potential 
wells with a frequency �tun . Looking for stationary states 
leads to a different result than in the classical description. 
We again get three states in the librational ground state, but 
they all have nonzero energy due to the zero-point energy 
of the libration (cf. Fig. 22, bottom). Further on, the three 
states result from a superposition of the three orientations 
and are symmetry adapted. In the frame of group theory 
for a three-fold symmetric system (symmetry group  C3) we 
obtain a totally symmetric single A and a doubly degenerate 
E level. The tunnel splitting ΔEtun between both has a similar 
origin as the well-known umbrella splitting of the ground 
state of the nonplanar  NH3 molecule. Tunnel splitting of 
stationary states and tunnel frequency of the nonstationary 
states are connected by ΔEtun = h ⋅ �tun . This ΔEtun sensibly 
depends on the barrier and rapidly decreases with increasing 
height. As is known from the basics of quantum mechanical 
tunneling, the splitting also depends on the barrier width. 
Thus, e.g., a six-fold potential in a symmetric cage induces 
a higher splitting than the shown threefold at equal height. 
The rotational modes of the methyl group are related to the 
nuclear spin of the system, and the transition between the A 
and E states afford a flip of the total nuclear spin of the three 
protons. Such transitions are optically forbidden, but can be 
excited by neutrons having a magnetic moment.

Fig. 22  Tunneling and torsional vibration of a methyl group around 
its figure axis, cf. [36]. Top: schematic view of a methyl group in a 
cage seen from top. In the condensed phases the methyl group in the 
center may be surrounded by other atoms yielding an angular depend-
ent potential. An arbitrarily chosen arrangement of vanderWaals 
spheres of carbon (full black), oxygen (full red), and hydrogen (open 
circles) is plotted. As the methyl group will not undergo significant 
polarization and has a symmetric charge distribution around its fig-
ure axis, steric vanderWaals interactions will yield a major contribu-
tion to the interaction of  CH3 with its cage. Bottom: interaction with 
the cage yields a rotational hindrance potential, which depends on the 
angle Φ of the methyl group around its figure axis (blue line). Inde-
pendently of the cage structure, this potential is strictly three-fold 
symmetric since a rotation by 120° corresponds to a permutation of 
the indistinguishable hydrogen atoms [36]. In most cases, the poten-
tial is deep enough for providing three deep potential wells and cor-
responding equilibrium orientations of the group. Inside the poten-
tial well, a ground state and at least one excited librational state are 
found. Both the ground and the first excited librational states are split 
into two energy levels each (thin black lines), see text
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Energy and momentum transfer definition 
by time‑of‑flight (TOF) techniques

Whereas monochromators on the basis of Bragg reflections 
are well known from X-ray sources, especially synchrotrons, 
neutrons offer a second possibility for defining the energy by 
determining their flight time over a given distance. The so-
called time-of-flight methods use pulsed beams: in a pulse 
all neutrons start at the same position, usually the sample, 
and at the same time, and a time dependent detector meas-
ures the number of neutrons as a function of their time of 
arrival. Thereby, the neutron velocity is determined with 
adequate precision. This method has no analogy in X-ray 
scattering, but neutron instruments scan a large incident 
energy range this way.

Choppers and velocity selectors in the primary 
spectrometer

The incident pulse is shaped by choppers and usually has a 
width of only a few µs. Usually, all incident neutrons have 
a well-defined energy and hit the sample at the same time.

Pulsed beams Pulsed neutron sources are only spalla-
tion sources, with the exception of the pulsed reactor in 
Dubna [48]. At pulsed sources, virtually all spectrometers 
apply TOF techniques, which make ideal use of the avail-
able neutron flux. The neutron sources usually are designed 
for yielding sufficiently short pulses with reasonable time 
frames, and the source pulse can be used directly for deter-
mining the neutron start time instead of a first chopper. 
Choppers are only required for velocity determination, as 
each pulse consists of a wide spectrum of neutrons with 
different velocities. Two choppers with well-defined phase 

shifts with respect to the source pulse or a velocity selec-
tor are sufficient to filter the desired energy range. Often, 
the pulse width at spallation sources is proportional to the 
inverse velocity and filtering results in constant relative res-
olution for TOF experiments at different wavelengths.

At continuous reactor sources, pulsed beams for inelastic 
scattering can only be obtained with a great loss of average 
flux. The incident beam is chopped into pulses with a width 
of, e.g., 40 µs, which puts a lower limit to the instrument 
resolution. The distance between two pulses, the so-called 
frame time, determines the energy range and is typically 
2–10 ms. Already with 2 ms, the duty cycle is only 2%.

There are two different approaches for velocity determi-
nation in the primary spectrometer:

For elastic scattering without energy analysis in the sec-
ondary spectrometer, velocity selectors are used that consist 
of one piece looking somewhat like an Archimedean screw 
and filtering incident neutrons with a rather high-duty cycle 
at a continuous source. These selectors admit frame overlap, 
i.e., fast scattered neutrons from the next pulse reach the 
detector at the same time as slow ones from the earlier pulse. 
These devices work for scattering without energy resolution 
and are preferably used for small-angle neutron scattering 
(SANS) (see below). A fairly low-velocity resolution is suf-
ficient, about 10%, and the resulting neutron beam has a high 
flux. Consequently, SANS instruments with velocity selec-
tors may also be used at smaller neutron sources.

If energy analysis in the secondary spectrometer is 
afforded for inelastic scattering, one uses distinct choppers 
generating an incident beam of short pulses with defined 
energy. During the scattering process, the neutrons change 
their velocity and reach the detectors at different times. 
For measuring this time spread, short pulses with signifi-
cant distance are necessary, which is attained by choppers 
with small duty cycles. By a second chopper with the same 

Fig. 23  Scheme of a Fermi chopper with a rotating collimator con-
sisting of a pile of aluminum foils (white) and thin Gd layers (black). 
Left: open position, neutrons (orange) are only slightly attenuated by 
the aluminum. In the open position, the Gd layers are parallel to the 

beam and shade off  only a small part of it (thin white lines on the 
right). Right: if the rotating collimator is only slightly inclined with 
respect to the open position, the neutrons hit the Gd foil and the beam 
is closed. Thereby a small duty cycle is obtained
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rotational speed, but with a fixed phase shift Δ� , only those 
neutrons are taken out of the pulse from the first chopper and 
reach the sample, which have a selected velocity. In analogy 
to light, this beam is called “monochromatic.”

There are several possibilities for constructing neutron 
choppers. One option is to use slit choppers with pairs of 
discs rotating in opposite sense. Another possibility is to put 
a tight neutron collimator into the rotator, which set up is 
called a Fermi chopper (Fig. 23). The collimator may con-
sist of a package of thin aluminum foils that are covered by 
Gadolinium layers. As long as the collimator is perfectly 
aligned to the beam, the neutrons pass through the aluminum 
without major attenuation. As soon as the chopped rotates a 
few degrees out of this position, the neutrons hit the Gado-
linium and are adsorbed. Short pulse widths are obtained by 
high rotation speeds of 5000–30,000 rpm.

Velocity selection principle Generating monochromatic 
neutron beams by choppers or velocity selectors works 
somewhat like the green wave at a traffic light for cars. Two 
traffic lights are switched with the same frequency, but the 
second one is shifted by just the time a car needs to reach 
it starting with the prescribed speed at the first one. Only 
cars with the desired velocity pass without problems, the 
others have to stop at this second traffic light (the difference 

Fig. 24  Schematic time distance diagram for filtering neutron veloci-
ties by choppers. The vertical timelines indicate opening and clos-
ing of three choppers. The hatched area left of chopper 1 indicates a 
continuous flow of neutrons from a reactor source. On pulsed spalla-
tion sources, the function of chopper 1 may be replaced by the source 
itself. The choppers rotate at 7500 rpm and open every 4 ms. Chop-
pers 1 and 3 (black lines) are phase shifted for letting neutrons with 
2500 m/s or about 33 meV pass (full orange lines). Without chopper 
2, neutrons with 833 m/s could also pass and yield parasitic intensity 
at about 3.6 meV (dashed orange line). These neutrons are stopped by 
chopper 2 (blue timeline)

Fig. 25  Typical setup for a time-of-flight spectrometer at a thermal 
beam: PANTHER at the ILL in Grenoble [89]. A monochromatic 
incident beam is obtained by Bragg reflection on a crystal (oriented 
pyrolytic graphite or copper). Background is reduced by a series of 
disc choppers (green), and the flux of fast neutrons is suppressed by a 
sapphire crystal. The wavelength of the outgoing neutrons is propor-
tional to their flight time from sample to detector and can be meas-

ured by time resolving the count rate at the detectors. By recording 
data time resolved, e.g., in 512 channels with a time resolution of 
4 µs, a wide time spread of neutrons between two pulses is scanned. 
For technical reasons, usually spectra with energy transfers of up to 
80% loss of the incident energy are observable. Figure was reprinted 
by kind permission of A. Filhol. Schematic layout of PANTHER 
©ILL www. ill. eu
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to neutrons is that cars with a wrong velocity should not 
just be absorbed and disappear and that the duty cycle of a 
traffic light should be higher than just a few percent as for a 
neutron chopper).

Figure 24 demonstrates the generation of pulsed mono-
chromatic neutron beams for inelastic neutron scattering, 
since this technique has no analogy in optical or X-ray meth-
ods. The crystal monochromator transmitted higher refrac-
tion orders than 1, and thus shorter wavelengths. Velocity 
selectors and choppers suppress these higher orders, but 
choppers have some transmission for longer not shorter 
wavelengths than the selected one, and thus three instead 
of two pulse shaping devices are needed. In our example of 
the green wave, you can also pass through at somewhat less 
than half the speed, e.g., 20 instead of 50 km/h just skipping 
one green phase. This will not make the drivers behind you 
happy, but is not prevented by just two traffic lights. One 
needs a third light somewhere in between, which switches at 
the same frequency and in appropriate phasing with respect 
to the outer traffic lights to stop the car with half the speed. 
Similarly to the green wave for cars, two choppers also let 
neutrons pass with a lower than the desired velocity, which 
is a lower-order contamination. In variance to the high-order 
contamination at monochromator crystals, this problem can 
be sorted out by a third chopper in between. This is a major 
advantage with respect to wavelength determination at mon-
ochromator crystals.

Secondary spectrometer: analysis by time 
measurement

Typically, excitations with weak Q-dependencies are meas-
ured at TOF spectrometers (Fig. 25) rather than at triple 
axes instruments. Incoherent scattering functions and coher-
ent scattering from local excitations are often only weakly 
angular dependent, and the intensity is spread over a large 
angular range. In such cases, a much smaller Q-resolution 
is afforded, as for dispersed modes as discussed above, and 
the signals from larger angular ranges can be averaged for 
reducing the noise. In contrast to the filter spectrometers 
as discussed below, at a TOF spectrometer, very complete 
scattering functions can be measured within a wide range 
of momentum transfers, and yield important results on the 
physics of the system [16].

Large arrays of detectors are afforded for achieving a high 
sensitivity. The scattered neutrons are detected in an angular 
range of, e.g., 20–130° by a high number of 3He counters, 
and large ranges of energy transfers and scattering angles are 
scanned simultaneously. Scanning a larger energy range and 
a wide angular range simultaneously results in large multi-
plexing advantages as compared with the triple axis spec-
trometers. Not only at pulsed sources, time-of-flight spec-
trometers are the obvious choice. These two multiplexing 

advantages not only compensate the small duty cycle at a 
reactor source for powder samples or incoherent scatterers, 
but also result in significantly better signal intensity for exci-
tations scattering into a larger angular range.

TOF spectrometers at cold sources run with small inci-
dent energies of up to 5–10 meV (cf. IN5, IN6 in Greno-
ble), and very small energy transfers of a few µeV can be 
resolved. Typical examples in this range are quasielastic 
scattering in diffusing systems (cf. Fig. 11) and tunneling 
transitions (cf. “Spectroscopy of methyl groups in condensed 
phases”). In principle, excitations with higher energies can 
also be measured by scanning the energy gain range, but 
their intensity will be low due to the small Boltzmann fac-
tor (cf. Fig. 4).

Fig. 26  Inelastic neutron scattering spectra of hexamethylene 
tetramine (HMT) [16]. Energy loss spectra at (from top to bottom) 5, 
80, and 245 K, summed up over the full range of momentum transfers 
Q. The neutron energy loss is plotted in + x direction for comparison 
with other spectroscopies. The observed transitions are indicated by 
arrows in the top spectrum. Peaks at 45.3, 55, 62.2, and 82.1  meV 
were assigned to C–N–C bending modes ν16, ν10, ν25, and to the 
C–N–C stretch mode ν24, respectively (cf. [90–92]). Peak positions 
were determined by Gaussian fits, and the resolution width was about 
3–4 meV. The peak intensities strongly decrease with increasing tem-
perature, following the decrease of the Debye–Waller factor
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Time-of-flight spectrometers with higher incident energies 
(Fig. 15) give access to energy loss spectra of periodic excita-
tions and reveal data, which are in general not accessible by 
optical methods. First the evaluation of the Q-dependence of 
the spectra and the corresponding amplitude of motion is pre-
sented. The other two examples are excitations without dipole 
moment change, but with nuclear spin conversion (spin flip), 
methyl tunneling, and hydrogen rotation.

Inelastic incoherent scattering

Q‑dependent vibrational spectra The Q-dependence of the 
incoherent contribution yields a structure factor, which is 
characteristic for the motion of a single oscillating system. 
This was shown in the example of HMT, which has a charac-
teristic vibrational spectrum in neutron scattering (Fig. 26).

The general expression for the scattering function of 
vibrational transition from a ground state with frequencies 
�j is [93]:

Here, �i is the cross section of atom i. In the isotropic 
case, i.e., “powder averaging”, one obtains: 

The uij are the amplitudes of atom i due to the vibrational 
mode j. u2

ij
 is the temperature-dependent mean square ampli-

tude of the respective vibration, and u2
j
 is a weighted average 

over all atoms i. The exponential is strongly Q dependent 
DWF , as known from diffraction (cf. Eq. (18)).

The equation shows that not only so-called single phonon 
transitions v = 0 → 1 are seen, but also “multiphonon tran-
sitions” to higher states n > 1. These transitions are usually 
very weak in optical spectra. Here, the contribution of these 
levels increases with increasing Q , since the preexponential 
of higher n then increases faster with Q than for small n. In 
a molecule, transition energies from different modes add 
up, and the spectrum reflects the density of states and its 
convolutions with itself [94].

In variance to optical spectroscopies, the intensities of 
vibrations only depend on the motions of the atomic nuclei, 
not on the electrons. The respective data for �⃗uij can be 
deduced simply from force field models and do not require 
calculations on the electronic structure. An early example for 
this is the HMT. In publications on diffraction, usually the 
parameter B , and not the squared amplitude, is quoted, which 
is linked to it by− u2

3
= − B

8�2
 . A comparison of the measured 

values for B from Fig. 27 to data derived from force field 
calculations [90] shows good agreement (Table 7).

Librations of  methyl groups in  solids The frequencies of 
the librations of methyl groups (Fig.  22) are higher than 
the corresponding free rotations, which is higher than 
2 ⋅ BCH3 = 1.3meV for the  CH3 group with a rotational con-
stant BCH3 = 0.65meV . The values largely depend on the 
curvature of the hindrance potentials in their minima. Such 
transitions are often more sensitive to the molecular envi-
ronment than internal modes with high frequencies such as 
bond stretch or bending vibrations. Librations do not affect 
the dipole moment of the group and are IR inactive. On the 
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Fig. 27  The Q-resolved intensities I of each transition decreases 
strongly with increasing Q . The plot of ln

(

I∕Q2
)

 over Q2 yields 
straight lines, as shown for the line at ΔE = 45.3meV (cf. Fig.  26). 
The slopes yield the averaged squared amplitudes of motion of all 
modes of the molecule parallel to Q , − u2

3

Table 7  B values in Å−2 from 
direct measurement [16] and 
from force field calculations 
[90]

At low temperature (5  K), the 
amplitudes are mainly due to 
the zero-point motion of the 
molecular vibrations, at higher 
temperatures they are due to 
thermal motion

T (K) 5 80 245 300

Measured 1.7 3.0 5.8 –
Calculated 1.8 2.7 – 7.4
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other hand, they induce proton motion with large amplitudes 
often dominating the neutron spectra [95].

Molecular hydrogen The properties of hydrogen have been 
well studied [96] but have regained interest, as it is a con-
sideration for green energy, and hydrogen storage at high 
densities is still an issue. All vibrational and rotational tran-
sitions of the hydrogen molecule are forbidden in IR absorp-
tion, since the molecule has no permanent nor a vibration-
induced dipole moment. The weak IR absorption of the 
rotating molecule, e.g., was found in a 10-cm-long sample 
[97], not in the thin films as are typically used for IR spec-
troscopy. In contrast, neutrons are strongly scattered at  H2, 
and detailed spectroscopic data are obtained.

The condensed phases of hydrogen are quantum sys-
tems. If the density increases during condensation, the 
available space for each molecule decreases. As a con-
sequence of Heisenberg’s uncertainty relation, the 
momentum distribution gets wider and the kinetic energy 
increases. If one tried to compress the system to a density 
given by the vanderWaals radii, an energetically unfavora-
ble state with very high kinetic energy was attained. It 
is known even from the simplest examples, such as the 
particle-in-the-box, that reducing dimensions increases the 
energies of the levels.

In condensed phases of particles with higher mass, this 
effect is usually negligible, but in liquid and solid hydrogen, 
the density is determined by the zero-point energy of the 
intermolecular vibrations. This momentum distribution and 
zero-point energy was measured directly by inelastic inco-
herent neutron scattering [14]. It had been shown in initial 
experiments that in thermal neutron spectra, strong mul-
tiphonon contributions are seen (cf. Eq. (62)), which con-
verge to recoil scattering at even higher momentum trans-
fers [98]. Only if the neutron is very fast and the interaction 
is short, then each scattering atom acts as a freely recoiling 
scattering center, and the relation between momentum and 
energy transfers is given by classical mechanics of recoil 
of two moving particles. It is possible to determine the 
momentum distribution of the scattering sample this way 
[14]. This is analogous to determining the momentum dis-
tribution of bound electrons by Compton scattering [99]. 
An intuitive picture of this is that a fast neutron does no 
more scan a periodic motion of the scattering atom, but 
only its present momentum. The scattering spectra of such 
neutrons will no more reflect vibrational transitions, but 
only the momentum distribution in the ground state. The 
resulting kinetic zero-point energies of solid and liquid 
hydrogen at 10 and 17 K, respectively, correspond to much 
higher thermal energies of 76 and 63 K, i.e., much higher 
than expected in a classical system. Additionally, due to the 
mentioned quantum effect, the value is higher in the solid, 

Fig. 28  Schematic view of a secondary spectrometer with fixed final 
neutron energy (TOSCA, ISIS). A small part of the incident neutrons 
hitting the sample are scattered by an angle of about 2Θ = 135◦ . By 
Bragg reflection at a graphite crystal, the wavelength of the scattered 
neutrons is defined, and higher orders are suppressed by a beryllium 
filter. By determining the total time of flight of the neutrons in the 
detector, the incident energy is calculated [27]. Reprinted with per-
mission from https:// www. isis. stfc. ac. uk/ Pages/ tosca- user- manua 
l6685. pdf, copyright ISIS Neutron and Myon Source, Rutherford 
Appleton Laboratory, Didcot, Great Britain

Fig. 29  Atomic cross section of carbon and beryllium atoms in pyro-
lytic carbon and in Be crystals for thermal neutron radiation as a 
function of the neutron energy [101]. The filter efficiency is enhanced 
by cooling the filter and suppressing crystal vibrations (cf. Fig. 28). 
At higher temperatures, where the carbon atoms oscillate, momen-
tum transfers below the one corresponding to Bragg scattering (cf. 
2.1.5.2) are possible with significant intensity, and the transmission 
is reduced by a factor of 50 or 100. Reprinted from https:// ncnr. nist. 
gov/ instr uments/ fans/ princ iple/ xsec2. gif of the National Institute of 
Standard and Technology (NIST)

https://www.isis.stfc.ac.uk/Pages/tosca-user-manual6685.pdf
https://www.isis.stfc.ac.uk/Pages/tosca-user-manual6685.pdf
https://ncnr.nist.gov/instruments/fans/principle/xsec2.gif
https://ncnr.nist.gov/instruments/fans/principle/xsec2.gif
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which has slightly lower temperature but a higher density 
than the liquid.

Filter spectrometer

The neutron filter spectrometer is a device for measuring 
neutron energy losses in a large energy range in only one 
experiment. Among all neutron scattering instruments, the 
filter spectrometer is the most comparable to mid infrared 
(MIR) absorption spectroscopy and covers the energy range 
of intramolecular vibrational excitations. As the filter spec-
trometers are used for inelastic scattering, one has to deter-
mine both the energies Ei and Ef  of the incident and of the 
scattered neutrons, respectively, and calculate the excitation 
energy E from E = Ei − Ef .

A filter spectrometer is typically connected to a beam tube 
with fast neutrons, e.g., from hot source neutrons, since the 
energies of thermal neutrons around 50 meV or 400  cm−1 are 
too low for intramolecular vibrations. This variable, high-
incident energy Ei is determined in the primary spectrometer 
either by Bragg scattering at a monochromator crystal before 
the sample (IN1Be in Grenoble), or on a pulsed source by 
the total flight time from source to detector (TOSCA in Chil-
ton or VISION in Oak Ridge [100]). The sample can then be 
exposed to a “white” beam of neutrons with energies from a 
few meV up to 1–2 eV. This setup, with a large bandwidth of 
incident energies and a small window for Ef  is called “indirect 
geometry.”

The final energy, Ef  , has a small fixed value given by 
the secondary spectrometer. Only scattered neutrons are 
detected, which have nearly completely lost their energy by 
exciting transitions in the sample (Fig. 28). The final energy 
of the scattered neutrons usually is very small as compared 
with the incident one, and is considered to be more or less 
constant. E is only varied by scanning the incident energy.

In spite of the low energy Ef  , the flight time in the sec-
ondary spectrometer is small due to the short flight pass 
from sample to detector. As the analyzing unit is close to 
the sample, scattered neutrons are detected under a large 
steric angle, which enhances the sensitivity of the spectrom-
eter. This final energy is either determined by neutron filters 
(IN1B, FDS) (Figs. 28, 29), by Bragg scattering at a crystal 
(TOSCA), or an appropriate combination of these methods. 
The filter makes use of the fact that below a certain wave-
length �max no Bragg condition

 is fulfilled, and the neutrons pass through without much 
attenuation. Here, dmax is the maximum lattice constant, typi-
cally the distance between two planes with small crystallo-
graphic indices (cf. “Elastic Bragg scattering in the particle 

(63)
� =

2 ⋅ dz ⋅ sin(Θ)

Δn
;Δn ≥ 1;sin(Θ) ≤ 1;dz ≤ dmax ⇒ �max = 2 ⋅ dmax

model”). Only the neutrons with wavelengths above twice 
this maximum lattice constant are detected.

The first filters were based on beryllium and had a cut off 
near 4 meV. As all neutrons below this value were counted 
without further distinction, the neutron energy loss was only 
defined within 4 meV, and the spectrometers had a fairly low 
resolution. Additional filters of pyrolytic graphite improved 
the resolution considerably (Fig. 29). This material consists 
of large plates of (002) planes, which are oriented vertically 
to the beam and have a lattice constant of d(002) = 3.35Å . 
Only neutron radiation with wavelengths lower than 
�max = 6.7Å can undergo Bragg reflections, whereas radia-
tion with longer wavelengths is only attenuated by the weak 
incoherent scattering of carbon atoms. The corresponding 
cutoff energy Emin , below which the transmission of the filter 
is high, is then given by

Now, only at small energy transfers, the resolution of 
the spectrometer is determined by the analyzer window. At 
higher energy transfers, the width of the energy distribution 
in the incident beam of typically 2–4% of Ei is more impor-
tant. Infrared absorption is measured in the full range from 
5 to 500 meV (40–4000  cm−1) with a much better resolution 
of, e.g., 10 µeV (0.1  cm−1). In condensed systems, vibra-
tional transitions often have a high intrinsic width, and the 
disadvantage of INS resolution with respect to MIR loses 
some importance. The main interest in neutron spectra from 
filter spectrometers is to obtain complementary data to IR, 
recorded with a completely different intensity distribution 
reflecting only the nuclear motions [102], and to fit them by 
molecular force fields and other simulations.

(64)Emin =
81.80meV
(

�∕1Å
)2

= 1.82meV

Fig. 30  Density of states of solid MgO. a Measured by inelastic neu-
tron scattering at the spectrometer TFXA [104]. b calculated using 
Eq.  (62’), the tail is due to multiphonon transitions. Reprinted from 
J. Mol. Struct.. 349, Langel W., “Neutron spectroscopy and Car-
Parrinello simulation at adsorbates on magnesium oxide surfaces”, 
69–72, Copyright (1995), with permission from Elsevier
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The filter spectrometer does not make the information 
hidden in the Q dependence accessible, which would be 
another potential advantage of INS (cf. Figs. 26, 27). The 
useful range of energy transfer is often E ≫ Ef  , and the scat-
tered neutrons have nearly completely lost their momentum:

The momentum transfer Q at higher energy transfers is 
nearly equal to the momentum ki of the incident neutrons 
and independent of the scattering angle. On the other hand, 
neutron count rates from a large steric angle may now simply 
be added up, reducing the statistical error in the data.

As no Q resolution is attained, typical samples for filter 
spectrometer are polycrystalline powders [103], amorphous 
solids, or liquids without long-range translational symmetry. 
The scattering signal is from powder, averaging over arbi-
trarily oriented oscillators in the sample. No interference 
between different oscillating systems is observed, and the 
coherent and the incoherent parts may be added correspond-
ing to the addition of all atomic intensities.

The intensity of vibrational modes is seen in a large range 
of energies with similar sensitivity (Fig. 30). At a given tem-
perature, the amplitude of the modes is inversely propor-
tional to the transition energy.

The observed energy transfer is 

as long as ki ≫ kf  . The squared amplitude is inversely 
proportional to the energy transfer, and the product of 
momentum transfer and amplitude is approximately con-
stant along the spectrum for modes with the same oscil-
lator mass. This is often determined by the proton mass, 
since in the spectra of many compounds, preferably modes 
with a high participation of vibrating hydrogen atoms are 
seen. The incoherent scattering cross section of protons 
and the amplitudes u2 are high, since the oscillating mass 
is small. The dimensionless product Q2

⋅ u2 is essential for 
the intensity, with which fundamental excitations appear 
[16], and thus, without detailed analysis, the spectra may 
be seen as an approximation of the vibrational density of 
states as a function of the energy transfer, Z(E):

(65)Ef ≪ Ei ⇒ kf ≪ ki ⇒
��⃗Q = ��⃗ki − ��⃗kf ≈ ��⃗ki

(66)E = Ei − Ef =
ℏ2

⋅ k2
i

2 ⋅ mn

−
ℏ2

⋅ k2
f

2 ⋅ mn

≈
ℏ2

⋅ k2
i

2 ⋅ mn

≈
ℏ2

⋅ Q2

2 ⋅ mn

(67)

S(Q,E) ∝ Z(E) ⋅ Q2
⋅ u2 ⋅ exp

(

−
Q2

⋅ u2

3

)

∝ Z(E) ⋅ E ⋅ u2 ⋅ exp

(

−
Q2

⋅ u2

3

)

∝ Z(E) ⋅ E ⋅

1

E
⋅ exp

(

−
E ⋅

1

E
⋅ const

3

)

≈ Z(E) ⋅ const}

Often, the neutron data may be compared with the den-
sity of states of ideal homogeneous crystals, and infor-
mation on inhomogeneities and local excitations may be 
derived.

High-energy transfers are linked in a filter spectrometer 
to high-momentum transfers, which favor the occurrence 
of higher transitions. It may thus occur that not only single 
phonon transition of oscillators from the ground to the first 
excited state ( v = 0 → 1 ) is observed, but also multipho-
non contributions (Fig. 30). According to Eq. (62’), the 
intensity of the transition ( v = 0 → n ) is proportional to 
(

Q2
⋅ u2

)n
⋅ exp

(

−Q2
⋅u2

3

)

 and these transition become 
increasingly important with higher Q [94]. It was even 
shown in [105] that in the limit of high Q , the multiphonon 
spectrum of  H2 converges to the scattering function for 
single-particle recoil.

Large structures: small‑angle neutron scattering 
(SANS) and reflectometry

Principle of SANS

A special type of neutron diffraction is the so-called small-
angle neutron scattering (SANS), where Q is significantly 
smaller than for the first Bragg reflection of the atom–atom 
interference. Q is so low that the phase factor between 
adjacent atoms in such units is close to one:

As we see from the properties of Fourier transform, 
small angles and Q correspond to larger dimensions in the 
sample. Thus, interferences are not observed between sin-
gle atoms as in wide-angle diffraction, but between zones 
of different scattering length densities (pores, droplets, 
large molecules, etc.) in the sample (solvent, solid matrix). 
In many systems, the matrix is water, in which particles 
such as molecular aggregates are dissolved.

Small-angle scattering makes important contributions 
to biochemistry and biology, since biomolecules usually 
contain an significant amount of hydrogen and match 
the size range accessible with SANS [106]. In contrast 
to X-rays, the hydrogen may be visualized by contrast 
variation, even selectively in parts of the sample. A major 
application of neutron scattering to the life sciences is in 
the field of SANS.

There is some analogy to light scattering, where inter-
ferences are also not observed between atoms but between 

(68)Φn,n+1 = exp
(

−i��⃗Q ⋅

(

r⃗n+1 − r⃗n
)

)

≈ 1
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extended particles such as oil droplets, which are embedded 
in a bulk environment with different refraction index, e.g., 
water or gas. Here, similarly transparent particles in water 
are only seen if their index of refraction for visible light dif-
fers from that of the solvent. One may think of gel beads, 
which seem to disappear when diluted in water since they 
take up so much liquid that their refraction index is very 
close to that of the solvent.

The crucial parameter for neutrons is the scattering 
length density Nb in a homogeneous part of the sample (cf. 
Eq. (25)). A contrast between a particle and the surround-
ing matrix is obtained if their scattering length densities are 
different. This parameter has a similar meaning in a neutron 
scattering experiment as the index of refraction for light. 
Both are related to each other (cf. Eq. (26)), but other than in 
optics, neutron scattering lengths of a material are more eas-
ily accessible than refraction indices. As neutron scattering 

lengths can be positive or negative, their average density is 
not always positive but may become zero or even negative. 
Most importantly, the scattering lengths of protons and deu-
terons have opposite signs (cf. Table 5). By selective partial 
deuteration, it is thus possible to vary the contrast between a 
dissolved particle, e.g., a large biomolecule, and the solvent 
[107–109].

The scattering intensity in the small-angle range is given by

Here, N is the number of the particles with scattering length 
density Nb(particle) embedded into an environment, with a 
different scattering length density Nb(matrix) . The amplitudes 
of the scattered wave from particles and matrix scale with the 
difference of Nb and the particle form factor F(Q) . We saw 
above that, in the case of scattering at higher Q , the atomic 

(69)
I(Q) = N ⋅

(

Nb(particle) − Nb(matrix)
)2

⋅ F2(Q) ⋅ Si(Q)

Fig. 31  Method of SANS [110]. Top: transition from wide-angle to 
small-angle scattering. Neutrons with a given scattering angle are 
scattered on circles around the beam going through the sample. At 
high angles in a Debye–Scherrer setup (dashed arrows), the detec-
tor usually only covers a small part of this circle. At small scatter-
ing angles, a position-dependent detector can record the full circle 
(magenta circles). The wavevectors of the incident and final beams, �⃗ki 
and �⃗kf  , are nearly parallel. The respective ��⃗Q is very small and almost 
vertical to the incoming beam (magenta bar on the sample). For clar-
ity, only one possible �⃗kf  is plotted. Bottom: SANS-2 in Geesthacht 

[111] was used for pioneering experiments [107]. It consists of two 
components, one for the SANS and one for spin polarization: the neu-
tron beam from the cold source passes a velocity selector, which fil-
ters the appropriate wavelength band with a high duty cycle, and a 
collimator for reducing divergence. A tight collimation of the incident 
beam is afforded, since the scattered neutrons may only diverge by a 
few tenths of a degree from it. After the sample, a large 2D position-
sensitive detector is movable inside the evacuated beam tube from 
about 0.7–20 m behind the sample
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form factor F(Q) is one as the interaction potential between 
atom and neutron is reduced to a δ potential. As we consider 
larger particles here, F(Q) is no more trivial and contains 
important information. For comparing with measured inten-
sities I(Q) , the form factor and the difference in scattering 
length densities between matrix and particle must be squared. 
Finally, Si(Q) describes the interference between different par-
ticles (see below).

Experimental setup

By defining the spin orientation of the neutron and parts of the 
sample, interference between these parts is observed rather 
than incoherent hydrogen scattering. After the velocity selec-
tor, a neutron polarizer consisting of curved magnetic mir-
rors permitted the selection of the spin orientation, and in a 
spin flipper, the orientation attained in the polarizer could be 
reversed. The guide field keeps the neutron spin orientation 
from there. In the sample itself, nuclear spins can be oriented 
by strong magnetic field of a few T.

Scattering with a given angle results in circles around the 
incident beam (Fig. 31, top). The intensity in the center is 
obscured by the incident beam or has to be shaded by a beam 
stop. Around the center, the intensity is angle dependent. At 
higher angles, it decreases with increasing angle. The typical 
experiment employs neutrons from a cold source with wave-
lengths � = 6 − 20Å This puts a lower limit to the incident 
wave vector of

The scattering angle and momentum transfer then are at 
maximum

By resolving this Qmax to 1%, one obtains a maximum 
size of r = 1

Q
= 1

1%⋅10−2Å−1
= 10

4Å = 1μm . The neutron 
wavelength is orders of magnitude lower than in light scat-
tering, and smaller structures are monitored. The vector ��⃗Q 
is nearly precisely vertical to the beam, and the extension 
of particles in beam direction does not have any influence 
on the observed pattern.

Spin selective scattering In 2.2, we saw that the occur-
rence of two combinations for orientations of nuclear and 
neutron spin is a major source for incoherent scattering, 
and in the case of protons, even the only one. Sophisticated 

(70)ki =
2�

20Å
= 0.31Å

−1

Qmax

ki
≈

rdetector

dsample−detector
=

0.32m

10m
;

(71)Qmax =
Qmax

ki
⋅ ki ≈ 0.31Å−1

⋅ 0.032 ≈ 10
−2Å−1

experiments may overcome this incoherence by defining 
both the spin orientations of the neutron and of special 
parts of the sample (Fig. 31, bottom): spin polarization of 
neutrons in the incident beam is possible by reflecting the 
neutrons spin selectively.

A polarizer may consist of a magnetic crystal working 
as a totally reflecting mirror. If we now orient the mag-
netic spins of the nuclei in a magnetic field, as is known 
from NMR, we can obtain scattering from only one com-
bination. By spin labeling, one can study special parts of 
the sample [107, 108]. Another important device is the 
spin flipper, which exchanges neutrons with spin + 1/2 
and −1/2. The variation of the contrast and spin polariza-
tion techniques have no analogy in X-ray scattering but 
yield a large scope of information, e.g., for biomolecules.

SANS at anisotropic samples

If the sample is isotropic, the signal on circles around the 
incident beam with a constant scattering angle and a con-
stant modulus of Q is principally constant, but subject to 
noise. It is thus feasible to sum up and average the respec-
tive intensities. An isotropic sample does not necessarily 
consist of spherical particles, but the scattering particles 
just have to be randomly oriented as, e.g., is powders or 
solutions. For such samples with large random mutual 
distances, we obtain I(Q) from averaging and can extract 
the form factor of the scatterer from the broadening of the 
elastic line (Fig. 32a, b).

A striking example for SANS at anisotropic systems 
were experiments where a preferential orientation of 
rod-shaped micelles in an aqueous solution was attained 
by shearing the liquid (Fig. 32c) [112, 113]. The experi-
ment is a further example for using sophisticated sample 
environments in combination with neutron scattering. 
The main axis of the micelles was vertical to the incident 
beam. The data in Fig. 32b, c clearly show that the dif-
fraction pattern is only circular symmetric to the inci-
dent beam as long as no shear is applied and the micelles 
are oriented randomly to the incident beam. The spikes 
observed indicate the size and mutual distance of the 
micelles. Other possibilities for orientation of anisotropic 
objects are opened up by magnetic or electric fields.

Information from isotropic samples

Form factor of  large structures The form factor F(Q) of 
larger units is calculated in general as

(72)F(Q) =
∫

exp
(

i��⃗Q ⋅ r⃗
)

⋅ dr⃗
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This is a continuum approximation in contrast to the 
atom–atom interference in wide angle diffraction and inelastic 
scattering as discussed above. The integral sums up the phase-
shifted sphere waves exp

(

i��⃗Q ⋅ r⃗
)

 from each volume element 
dr⃗ around position r⃗ inside the respective scattering unit,r⃗ 
starting from its center. Here, the analysis of F(Q) for a sphere 
with radius R and position-independent Nb is demonstrated in 
two different Q ranges, the Guinier and Porod ranges, with 
Q ⋅ R ≈ 1 and Q ⋅ R ≫ 1 , respectively. This may look some-
what mathematical but shows how the assumption of a con-
tinuum with constant scattering length density directly results 
in the observed scattering pattern, which are essential for 
understanding SANS. The form factor for a sphere is a 
straightforward calculation by polar coordinates, with �Qr 
being the angle between the scattering and position vectors ��⃗Q 
and r⃗ . One obtains with u = cos

(

�Qr
)

 in standard polar 
coordinates:

Guinier range and particle sizes In the range of small Q 
transfers, the exponential is developed into

(73)

F(Q) =
∫

exp
(

i��⃗Q ⋅ r⃗
)

⋅ dr⃗ =
∫

R

0
∫

𝜋

0
∫

2𝜋

0

exp
(

iQ ⋅ r ⋅ cos
(

𝜃Qr
))

⋅ r ⋅ sin
(

𝜃Qr
)

⋅ d𝜑 ⋅ r ⋅ d𝜃Qr ⋅ dr = 2𝜋
∫

R

0
∫

1

−1
exp(iQ ⋅ r ⋅ u) ⋅ du ⋅ r2 ⋅ dr

and the three integrals are evaluated separately:

The first integral over 1 just yields the sphere volume 
Vs , and the second one disappears, since all directions of 
r⃗ are equally distributed. In the third integral, one makes 
use of the relation between the gyration radius Rg and R 
for a homogeneous sphere [117],

One  ob t a in s  F(Q) = Vs ⋅

(

1 − (Q⋅Rg)
2

6

)

≈ Vs ⋅ exp 
(

−(Q⋅Rg)
2

6

)

 and

Without proof, it is said that this relation also holds for 
many other not fully regular structures such as globular pro-
teins, where the gyration radius is better defined and more 
meaningful than any overall radius. The form factors of many 
geometries converge to a bell-shaped function, looking similar 
to a DWF but with the gyration radius as parameter rather 
than the vibrational amplitude. In this Guinier range (Fig. 33), 
the size of particles may be evaluated by plotting ln(I) over Q2 
yielding a straight line with slope −

R2
g

3
.

Porod range At higher Q , the Guinier approximation 
will fail (cf. Fig. 33). One starts again from Eq. (73) with 
the assumption of a homogeneous sphere, but the integral 
is directly evaluated (the second integral is solved by inte-
gration by parts using Qr as variable):

(74)exp(iQ ⋅ r ⋅ u) ≈ 1 + iQ ⋅ r ⋅ u −
(Q ⋅ r ⋅ u)2

2!
+…

(75)2�
∫

R

0
∫

1

−1
1 ⋅ du ⋅ r2 ⋅ dr =

4�

3
R3 = Vs

2�
∫

R

0
∫

1

−1
iQ ⋅ r ⋅ u ⋅ r2 ⋅ du ⋅ dr = 0

2�
∫

R

0
∫

1

−1

(

−
(Q ⋅ r ⋅ u)2

2!

)

⋅ du ⋅ r2 ⋅ dr

=
4�

3
⋅

∫

R

0

(

−
(Q ⋅ r)2

2!

)

⋅ r2 ⋅ dr

= −
4�

3
⋅ R3

⋅

(

(Q ⋅ R)2

10

)

= −
4�

3
⋅ R3

⋅

((

Q ⋅ Rg

)2

6

)

(76)
(

Rg

)2

3
=

(R)2

5

(77)I(Q) ∝ F2(Q) = V2

S
⋅ exp

(

−

(

Q ⋅ Rg

)2

3

)

Fig. 32  SANS data from isotropic and anisotropic samples: a The 
small angle diffraction pattern of a single anisotropic particle is not 
circular symmetric. Due to reciprocity of Fourier transform, large 
extension in space (a) corresponds to small extension in Q,ΔQ = 2�

a
, 

and vice versa. b Linear 3D plot of SANS intensity around the inci-
dent beam. The neutron beam has a high cross section and pene-
trates a large zone of the sample. Thereby, good powder averaging is 
attained. Scattering from randomly oriented particles is circular sym-
metric, even if the particles themselves are anisotropic. This is seen 
here at the example of rod-shaped micelles with a radius of 19.3 Å 
in aqueous solution, yielding a signal fully circular symmetric to the 
incident beam [112, 113] (N-hexadecyloctyldimethylammonium bro-
mide (C16-C8DAB) 50  mM/l 25  °C). For further analysis, the sig-
nal from isotropic samples is summed up on circles around the inci-
dent beam having the same scattering angle, and the result is plotted 
as I(Q) over Q (see below and [114]). SANS pattern reprinted with 
permission from Kalus J, Hoffmann H, Chen S, Lindner P. Correla-
tions in micellar solutions under shear: A small-angle neutron scat-
tering study of the chain surfactant N-hexadecyloctyldimethylam-
monium Bromide. J. Phys. Chem. 93, 1989, 4267–4276. Copyright 
1989 American Chemical Society. c 3D plot of a result from an ani-
sotropic sample: The solution in the beginning randomly oriented 
micelles was exposed to shearing with a velocity of 2000   s−1 in the 
device shown, and simultaneously studied by SANS. The shear veloc-
ity was sufficient to attain an ordered liquid crystalline aggregate 
of the micelles. The peaks appearing in the data indicate the small 
distance between adjacent micelles in a direction vertically to their 
axis. The experiment gave direct information on the geometry of the 
micelles, on phases and on the relaxation time for reorienting in the 
liquid [112, 113]. Insert reprinted from Chem. Phys.103, Herbst L, 
Hoffmann H, Kalus. J, Thurn IH, May R. Orientational relaxation of 
aligned rod-like micelles on a time scale of 300 ms. Copyright 1986, 
437–445 with permission from Elsevier

◂



 ChemTexts (2023) 9:12

1 3

12 Page 46 of 55

and using a spherical Bessel function:

In this Porod range, the intensity is plotted as log(I(Q)) 
over log(Q) . This expression is transferable in good 
approximation to nearly spherical molecules such as glob-
ular proteins [118]. Form factors for other geometries are 
different and may not be simply calculated analytically. 
It was shown that there is some ambiguity in extracting 
the shape of the scattering particle from the measured 
signal only. According to [119], the shape may be devel-
oped into spherical harmonics, whose mutual orientation 
has no influence on the recorded S(Q) . A better way is 
to model the particle shape and compare the calculated 
scattering function with the measured one. One may 
apply numerical calculation, e.g., Monte Carlo, and fits, 
such as Reverse Monte Carlo [109, 120]. This is an algo-
rithm similar to standard Monte Carlo methods, but the 

(78)F(Q) = 2�
∫

R

0
∫

1

−1
exp(iQ ⋅ r ⋅ u) ⋅ du ⋅ r2 ⋅ dr = 2� ⋅

∫

R

0

exp(iQ ⋅ r) − exp(−iQ ⋅ r)

iQ ⋅ r
r2 ⋅ dr =

2�

Q3
⋅

∫

QR

0

(Q ⋅ r) ⋅ 2 ⋅ sin(Q ⋅ r) ⋅ dQr = VS ⋅
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important difference is that the calculation is not targeting 
to minimize the potential energy, but the mean squared 
deviation between the measured data, here from SANS, 
and the pattern calculated from a model. In each step, this 
model is slightly modified according to the Monte Carlo 
procedure until the form factor calculated from the model 
converges to the experimental data. A more generally 
applied approach is now the molecular dynamics simula-
tion (MDS). A system structure is built from available 
information on crystal structure, protein folding, etc. After 
running the simulation, the diffraction pattern and spectra 
are extracted and compared with experimental data.

Size distribution In Fig. 33 it is demonstrated how the 
small-angle pattern is smeared out if the sample is no more 
monodisperse but has a wider particle size distribution. As 

Fig. 33  Calculated small-angle scattering (left) on a linear and (right) 
log–log scale from homogeneous spheres with an average radius of 
gyration of 25 Å (cf. Eq.  79). The insert shows the radius distribu-
tions: At high Q , the intensity decreases proportionally to Q−4 . This 
range is called the Porod range. The small Q range around and below 
Q ⋅ Rg = 1 (red mark) is called the Guinier range. I(Q) may be fit-
ted by Eq. (77) (full red line), and the particle radius is directly esti-
mated. Typically, the intensity decrease is measured in a range of 
three orders of magnitude [115]. Form factors calculated from sharp 
size distributions (right, black lines in all three plots) show charac-
teristic singularities resulting from the periodicity of the sin-function 

in Eq. (79). Between each two maxima, a sharp minimum is seen at 
sin(Q ⋅ r) − Q ⋅ r ⋅ cos(Q ⋅ r) = 0 ⇒ Q ⋅ r = tan(Q ⋅ r) ⇒ ΔQ ⋅ r ≈ �.  
In principle, the particle radius can also be evaluated from the dif-
ference in Q between two minima. In practice, the minima are usu-
ally smeared out, firstly because often the particle radius r is not well 
defined, but has a size distribution (blue lines). In case of powders, 
this is called a polydisperse system. Consequently, the minima for 
each size occur at slightly different Q . Secondly, the instrument res-
olution may be not small enough. The incident beam has a signifi-
cant spread of wavelength and directions, and the scattering angle, at 
which a given value of Q is observed thus is spread (cf. [116])
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Fig. 34  a Unfolding of a protein leads to an increase in size. In a 
SANS experiment, this is seen as a spreading of the distance distribu-
tion function p(r) to higher lengths r [124]. In the figure, p(r) is plot-
ted for solutions of bovine serum albumin (BSA). The addition of the 
ionic surfactant hexadecyl trimethyl ammonium bromide (C16TAB) 
leads to a large extension of p(r) from 50 to 100 Å, which is ascribed 
to unfolding. The effect is reversible under the influence of a nonionic 
surfactant, C12E10. Reprinted from ACS Omega, 2018, 3, Saha D, 
Ray D, Kohlbrecher J, Aswal VK. Unfolding and refolding of pro-

tein by a combination of ionic and nonionic surfactants. b SANS of 
a complex of bacterial proteins. The main peak centered around 50 Å 
is fitted by data from molecular dynamics simulations. The tail up 
to 150 Å indicates aggregation of these complexes [115]. Reprinted 
from Biophys. J. 116, 2019, 1931–1940, Martin R, Larsen AH, Corey 
RA, Midtgaard SR, Frielinghaus H, Schaffitzel C, et al. Structure and 
dynamics of the central lipid pool and proteins of the bacterial holo-
translocon under CC-BY license

Fig. 35  a Schematic plot of a system with large particles yielding 
small-angle scattering as a product of the single particle form fac-
tor F2(Q) and the interference term Si(Q) . b Linear plots for SANS 
at micelles in a 1% lithium dodecyl sulfate (LDS) solution [128]: in 
this system the particle–particle distance s is fairly well defined and 
of the order of the particle diameter. The small-angle scattering func-
tion is the product of the particle form factor F2(Q) and an additional 
particle–particle interference term Si(Q) . In the experiment, the shape 
and distance of the micelles was modified by adding a macrocyclic 

compound to the solution in the ratio 0 (solid lines), 0.5 (dashed), 
and 1.0 (dash–dotted). The form factor F2(Q) is restricted to a smaller 
range, implying swelling of the micelles. The peak in Si(Q) is shifted 
to larger Q , indicating a decrease in the average distance. Reprinted 
by permission from “Structure and aggregation of lithium dode-
cyl sulfate micelles in the presence of a macrocyclic cage: a SANS 
study”, P. Baglioni, Y.C. Liu, S.H. Chen and J. Teixeira, J. Phys. IV 
France, 3, 1993, IX International Conference on Small Angle Scatter-
ing, C8-169–172
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example, a Gaussian distribution was chosen. Another typi-
cal function, applying to many systems with gradual growth, 
e.g., for pores and metal particles [121, 122], is called log-
normal distribution:

(80)n(r) =
1

(2�)1∕2 ⋅ ln(�)
⋅ exp

⎛

⎜

⎜

⎝

−
1

2
⋅

�

ln
�

r∕r0
�

ln(�)

�2
⎞

⎟

⎟

⎠

r0 and � are a length and a dimensionless parameter, which 
determine the center and the width of the distribution, 
respectively.

Fractals The form factor of a sphere decreases with Q 
as F2(Q) ∝ Q−4 (Fig. 33(right)). The maxima occur for 
sin

(

��⃗Q ⋅ �⃗R
)

= 0 ⟺ cos
(

��⃗Q ⋅ �⃗R
)

= 1, ��⃗Q ⋅ �⃗R ≫ 1:

A straight line through the local maxima of S(Q) has a 
slope equal to −4. From this line, the particle sizes and 
shapes cannot be evaluated, since the slope is obtained 
for any form factor, and by varying the particle size, the 
straight line is only shifted in the x direction. A special 
case of systems have fractal properties, showing self-sim-
ilarity. Roughly speaking, this means that you cannot tell 
from a photograph of a sample how close you were to it, 
and which length scale is reproduced. Handling fractals 
affords a large mathematical overhead beyond the scope 
of this paper, but some very relevant systems such as DNA 
strands show such properties [123]. For such samples, the 
slope m becomes larger than m = −4 , yielding a so called 
fractal dimension d = −(m + 1) < 3.

Pair distance distribution function For further data analy-
sis, the scattering function S(Q) may be converted to a dis-
tance distribution function p(r) [125]. This is analog to g(r) 
for wide-angle diffraction, but does not reflect distances 
between discrete atoms but between volume elements in a 
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Fig. 36  Schematic drawing of neutron reflection at a phospholipid 
layer on water. The hydrophilic heads of the lipid molecules (red) are 
dissolved in the surface layer of water (light blue). The hydrophobic 
tails (green) form a layer on top of the water. The incoming neutron 
beam is specular reflected at two interfaces, the incoming and out-
going beams forming the same angle Θ with the surface. The two 
reflection planes are indicated in green and light blue, the refraction 
index changing from air to the hydrophobic layer, and from this layer 
to bulk water, respectively. By selective deuteration, it might also be 
possible to obtain further reflection planes, e.g., between the hydro-
philic heads and bulk water. The two indicated reflected waves will 
interfere constructively or destructively depending on their wave-
length and the resulting momentum transfer ��⃗Q . From this interfer-
ence, the thickness of the hydrophobic layer can be calculated

Fig. 37  Time-of-flight reflectometer. The neutron beam with a wide 
spectrum of different wavelengths (from left) is pulsed by disc chop-
pers (turquoise) is slightly deflected by a mirror and falls onto the 
plane sample. All wavelengths are mainly specular reflected under the 

same angle and arrive at the detector (right). Neutrons arriving at dif-
ferent times have different velocities and thus wavevectors, and there 
reflection corresponds to different momentum transfer Q. Figure was 
reprinted from Ref. [132] under CC-BY 4.0 license
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continuum. A typical example for using the distance distri-
bution p(r) is to see its extending to larger r by unfolding or 
by aggregation of proteins [126] (Fig. 34).

Interference between large objects In many, especially sol-
ute samples for SANS, the distribution of mutual distances 
between the particles is arbitrary. Then, no well-defined 
interference between the scattering from different particles 
is observed, and the small-angle signal I(Q) only reproduces 
their form factor F2(Q) . In some cases, there is a regular dis-
tance distribution between the centers of the particles. The 
distance between next neighbors may, e.g., be defined by the 
structure of the system, if the particles are in contact to each 
other at high concentrations in solutions, or if they are part 
of a larger unit. Typical examples are micelles and porous 
membranes [127].

If the mutual distance of the particles studied by SANS is 
of a similar order of magnitude as their diameter, we obtain 
broad interference peaks that are separated from the elastic 
line. These result from the interference of different particles 
(Fig. 35) and contain information on their pair distribution. 
Mathematically, the distribution of the particles is a convo-
lution of the three-dimensional shape of a single particle 
around its center, with the distribution of the particle centers 
in space. For obtaining the Q-dependent scattering function, 
this distribution has to be Fourier transformed and according 
to the convolution theorem [129], a convolution in space 
results in a multiplication of scattering functions in Q space:

In monodisperse systems such as micelles, the form fac-
tor F(Q) is well defined and the interference term Si(Q) can 
be extracted easily [130] yielding, e.g., the average particle 
distance.

An exciting application of the interference between 
larger units is the determination of protein–protein dis-
tances on larger units such as ribosomes by triangulation 
[106, 107, 131]. Here, the mutual distance between these 
proteins obviously is well defined by the ribosome struc-
ture. By contrast variation and spin polarization, it is pos-
sible to distinguish the interferences between specific large 
biomolecules [108].

Reflectometry

We have seen above that from the scattering length den-
sity of neutrons, a refraction index for neutron waves can be 
derived. Similarly to optics, specular reflection of the neu-
tron beam is observed at plane layers with different refrac-
tion indices. By working at angles above the limit Θt of total 
reflection, information about the layer may be obtained. In 
systems such as light water with a negative scattering length 

(82)I(Q) ∝ F2(Q) ⋅ Si(Q)

density Nb , the refraction index is above one, and no total 
reflection at all is possible when the beam enters the layer 
from vacuum ( n = 1 ). The reflectivity rapidly decreases with 
increasing reflection angle according to a Q−4 law, and at 
Q ≈ 0.1 , a technical limit of about 10−5 is reached. Thus, 
one has to work with similarly small scattering angles as 
in SANS.

Neutron reflectometry is preferred to X-rays when hydro-
gen in layers plays an important role [132]. A typical appli-
cation is the measurement of the thickness of thin layers, 
e.g., of polymers or of phospholipid layers from biological 
membranes (Fig. 36). Reflected beams from the interfaces 
of air–phospholipid and phospholipid–water interfere, and 
from interference fringes, the thickness of the layers are 
determined. By keeping the sample of a few  cm2 in area 
in a Langmuir trough, the conditions can be controlled. In 
complex systems with a stack of layers with different com-
positions, the scattering length densities and resulting refrac-
tion indices of specific layers may be varied by partial deu-
teration, and the thickness of the layers may be determined 
independently of each other. Additionally, the difference in 
composition and the roughness may be determined [118].

Other than in SANS, one exposes the sample to a pulsed 
“white” neutron beam with a large wavelength spread. By 
TOF techniques as discussed elsewhere, a range of momen-
tum transfers Q is scanned at a constant specular angle with-
out modifying the sample geometry (Fig. 37).

Slow dynamics: spin echo spectrometer

Neutron spin echo spectroscopy (NSE) is a specialized appli-
cation of neutron scattering permitting the measurement of 
slow dynamics in large systems [133]. On a molecular scale, 
characteristic times of motions increase with an increase of 
the system mass. Single atoms in molecules have vibrational 
frequencies up to 120 THz corresponding to times of 8 fs. 
Vibrations of small molecules in a crystal are in the range 
of 100 GHz with corresponding vibrational times of around 
10 ps. The relaxation times of  H2O molecules in the liquid 
are in a similar order of magnitude. Large molecules such as 
polymers or proteins may have relaxation times in the range 
of ns to µs. These molecules often do not show periodic 
motions but have heavily overdamped dynamics.

The velocities of the neutron in the incident beam and 
after scattering on, e.g., a polymer are compared by a trick. 
The basic idea is that the time the neutron spends in a lon-
gitudinal magnetic field of given length is measured by the 
change of its polarization due to spin precession. By a spin 
flip device, the neutrons are first polarized along z direction 
and enter a magnetic field (Fig. 38 (top)). By precession, 
the magnetic moment of each neutron changes its direction 
according to the time the neutron spends in this primary 
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field. After scattering, the neutron spin is flipped and the 
neutrons pass an identical magnetic field, where their spins 
rotate backwards. Neutrons that have the same velocity 
after the scattering than before, i.e., which were scattered 
elastically, come out with the same polarization as at the 
beginning, whereas inelastically scattered neutrons have 
a remaining polarization, which is measured at the detec-
tor. Essentially, the neutron velocity is monitored by this 
precession, and we may consider this as a special type of 

time-of-flight measurement. A detailed derivation shows that 
by this method the intermediate scattering function of the 
sample is obtained.

NSE affords an important theoretical background and 
may look very abstract to the reader. I give an intuitive anal-
ogy as measuring the velocity change of a rubber ball bounc-
ing back from a wall. The approach described here may not 
be very practical in daily life but should help to understand 
what spin echo means. Imagine that the ball rotates around 
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a vertical axis and is thrown horizontally against the wall, 
its orientation with respect to its rotation is indicated by an 
arrow on top, oriented at the beginning towards the wall 
(Fig. 38 (bottom)).

Now, take a neutron as ball, replace the arrow by the spin, 
whose orientation is measured at the start and at the detec-
tor. The rotation of the arrow then is the precession of this 
spin by precession in a magnetic field. The rotational speed 
is indeed constant and only given by an external magnetic 
field. Replace the wall by a sample, which does not reflect 
a ball but scatters the neutron, and induces a reversal of the 
precession direction by a spin flip near the sample. Then, 
one can measure a change in the translational velocity of the 
neutron with very high precision just by comparing the spin 
orientation at the beginning and at the end of the flight pass.

A classic application of NSE is a study on the mecha-
nism of diffusion in polymer melts [134]. Two different 
mechanisms are discussed, among others: the Rouse and 
the reptation model. The first considers the polymer strand 
as composed of small units, such as loops, which are only 
fixed at their end points and move in a liquid. The reptation 
model explains the diffusive motion of the polymer strand 
by its creeping along in the liquid like a subway train in its 
tunnel. By NSE, the intermediate scattering function I(Q,t) 
was measured in a large time range and plotted over 

√

t for 

various values of Q. A comparison with simulations for 
both models permitted to decide in the respective example 
in favor of the Rouse approach, where I(Q,t) had no signifi-
cant Q-dependence.

Conclusions

The text explains, at several occurrences, how neutron scat-
tering yields information that is not accessible by other 
methods. This is very important for appreciating the need 
for neutron scattering. As these topics have to be explained 
in various larger contexts, they might get lost in the text, 
and it will be helpful to compile them here as a conclusion:

• Nondestructive testing of large samples of many materi-
als is possible due to the large penetration depth of neu-
trons. Neutron beams are not ionizing, induce nearly no 
thermal load, and induce no chemical effects (photodis-
sociation a.o.).

• Protein crystallography may be extended to high Q , 
yielding good resolution without destroying the sam-
ples by exposure to large doses of synchrotron radia-
tion.

• The momentum transfer Q is used as an additional 
parameter for inelastic and quasielastic scattering, e.g., 
for diffusion, for phonons, and for the amplitude of 
localized vibrations. The resulting scattering functions 
yield deep insight in atomic dynamics not accessible by 
electromagnetic radiation (X-rays, IR) due to the mis-
match of wavelength and energy. Moreover, simultane-
ous diffraction and spectroscopy experiments are pos-
sible by neutrons.

• In addition to well-defined excitations, aperiodic dynam-
ics are seen, e.g., diffusion by quasielastic scattering, and 
sometimes even a transition from damped periodic vibra-
tions to overdamped diffusion.

• No selection rules as in IR or Raman apply. Modes such 
as  CH3 librations and  H2 rotations and phonons are seen, 
which are optically inactive.

• The intensities are only related to core dynamics and thus 
may directly be described by force fields. Calculations 
on electron shells and dipole moments, as needed for the 
interpretation of optical spectra, are not required.

• The high cross sections of hydrogen and deuterium make 
hydrogen visible. This is of great interest in biochemical 
and organic compounds such as proteins and polymer 
materials.

• Variation of contrast by deuteration and spin polariza-
tion gives access to information beyond SAXS.

Fig. 38  Top: schematic drawing of the principle of neutron spin echo 
spectroscopy. In external magnetic fields the neutron spin is rotating 
according to the drawing. The neutron is flying from source to sam-
ple to detector and its magnetic moment is rotating around the flight 
path due to an external magnetic field. It is not important to use very 
monochromatic neutrons. Those which are slower (red, S) than the 
average ones (green) just rotate a bit further on the way to the sample 
and a bit further back on the way to the detector, and the fast neutrons 
(blue) rotate less far in and less out. Reprinted from “Neutron Spin 
Echo” Roger Pynn, https:// www. ncnr. nist. gov/ summe rscho ol/ ss11/ 
pdf/ Neutr on_ Spin_ Echo_ tutor ial. pdf Bottom: intuitive model for the 
spin-echo neutron spectrometer. Here, instead of the neutron, a rub-
ber ball is thrown with an arrow painted on it marking its orientation 
looking from top. First line from top: the ball rotates clockwise (lit-
tle black arrows) when flying from the bowler to the gray wall (black 
arrow). Imagine that by some means, the ball during hitting the 
wall shall continue to rotate with the same angular velocity but just 
reverses its rotational direction and rotates anticlockwise on the way 
back to the bowler. Second line: only a ball coming back with exactly 
the same translational velocity as being thrown to the wall will make 
the same number of rotations backwards and the arrow is exactly ori-
ented towards the wall again, when reaching the bowler. Third line: 
if the ball is reflected back from the wall a bit slower than it flew into 
(which is usually the case), it will have more time to rotate on the way 
back than on forward direction, and the arrow has gone a bit further 
and points up in the drawing. Conversely, (fourth line): if the ball is 
faster on its way back and has less time, it cannot rotate as far back 
as it had done forth on its way to the wall and still points down. The 
position of the arrow at the detector thus is a sensitive measure for the 
change of the velocity of the ball at the wall

◂

https://www.ncnr.nist.gov/summerschool/ss11/pdf/Neutron_Spin_Echo_tutorial.pdf
https://www.ncnr.nist.gov/summerschool/ss11/pdf/Neutron_Spin_Echo_tutorial.pdf
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