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Structure- and Data-Driven Protein Engineering of Transaminases
for Improving Activity and Stereoselectivity
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Abstract: Amine transaminases (ATAs) are powerful biocatalysts for the stereoselective synthesis of chiral amines.
Machine learning provides a promising approach for protein engineering, but activity prediction models for ATAs
remain elusive due to the difficulty of obtaining high-quality training data. Thus, we first created variants of the ATA
from Ruegeria sp. (3FCR) with improved catalytic activity (up to 2000-fold) as well as reversed stereoselectivity by a
structure-dependent rational design and collected a high-quality dataset in this process. Subsequently, we designed a
modified one-hot code to describe steric and electronic effects of substrates and residues within ATAs. Finally, we built
a gradient boosting regression tree predictor for catalytic activity and stereoselectivity, and applied this for the data-
driven design of optimized variants which then showed improved activity (up to 3-fold compared to the best variants
previously identified). We also demonstrated that the model can predict the catalytic activity for ATA variants of
another origin by retraining with a small set of additional data.

Introduction

Chiral amines are frequently used as key chiral building
blocks for the synthesis of bioactive pharmaceuticals and
agrochemicals, and therefore have attracted particular
attention by synthetic chemists.[1] In the last few decades,
several environmentally friendly biocatalytic strategies have
been developed to access chiral amines with high selectivity,
and various enzymes such as hydrolases, oxidoreductases
and transferases have been employed.[2] Amine transami-
nases (ATAs), a subgroup of pyridoxal-5’-phosphate (PLP)-
dependent enzymes that catalyze the asymmetric amination
of a ketone to the corresponding amine, usually exhibit high
enantioselectivity and broad substrate tolerance, and are

thus widely applied for the preparation of optically pure
amines.[3] The most popular example is the (R)-ATA-
catalyzed asymmetric synthesis of the antidiabetic drug (R)-
sitagliptin with >99.95% optical purity developed by
researchers from Merck & Co., Inc. and Codexis, Inc., which
replaced the previously developed asymmetric chemical
hydrogenation.[4] Based on their enantiopreference, trans-
aminases are classified into two types, (S)- and (R)-selective
enzymes, which belong to the fold types I and IV,
respectively, and differ substantially in their protein struc-
ture. So far, the majority of the identified ATAs are (S)-
selective and their substrate binding site is defined by a large
and a small binding pocket, which thus can accommodate
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ketones bearing a large and a small substituent at the
carbonyl carbon.[3]

Protein engineering is powerful in improving various
enzymatic catalytic features such as catalytic activity,
selectivity, substrate promiscuity, and enzymatic stability.[5]

So far, the most effective method of modifying substrate
promiscuity, catalytic activity, and stereoselectivity of ATAs
is to mutate crucial residues adjacent to the two binding
pockets by protein engineering to alter their steric and
electronic environment.[6] Recently, a series of rational-
design or screening methods, such as structure-dependent
rational design,[7] mechanism-guided computational design[8]

and a growth selection[9] method, have been successfully
applied to engineer ATAs for higher activity, broader
substrate scope and improved stereoselectivity towards
particular substrates. However, these strategies require a
significant amount of computational and/or experimental
effort to optimize the biocatalyst.

Machine learning (ML) has been shown to be a new
powerful and competitive approach also suitable for protein
engineering.[10] It has been applied to modulate the catalytic
activity and/or stereoselectivity of a range of enzymes such
as epoxide hydrolase,[11] a nitric oxide dioxygenase which
was evolved for enantioselective carbene Si� H insertion,[12]

an imine reductase,[13] an acyl-ACP reductase[14] and
others.[15] This data-driven strategy can identify catalytic
patterns in the collected data to predict previously unnoticed
but promising variants such as new combinations of sub-
stitutions. Therefore ML is expected to significantly reduce
the computational and experimental efforts required by
traditional strategies.[7,8] Generally speaking, the success of
an ML predictor crucially depends on the quality of the data
used for training. However, the efficient acquisition of high-
quality data has become a major challenge limiting the
application of ML to biocatalyst design, due to the lack of
diversity, sufficient and well-prepared samples in the exist-
ing datasets for model training.[10] Commonly, data from
rational protein design experiments are used to provide a
high-quality training set for ML, while ML predictive models
can help to quickly obtain new and promising variants.
Obviously, it is attractive to combine these two complemen-
tary strategies for protein engineering, however, such a
combination method has rarely been published.[12]

For transaminases, although a ML model for their
stability prediction has been reported recently,[16] a ML
predictor for catalytic activity and stereoselectivity has not
been reported. This is partly due to the time-consuming and
labor-intensive measurement of catalytic activity and stereo-
selectivity towards different substrates, which makes data
collection difficult. This applies especially for stereoselectiv-
ity, which results in low quality ML training data and thus
limits the predictive capability of ML predictor for new
data. Therefore, an assay for rapid measurement of catalytic
activity and stereoselectivity is required to create high-
quality datasets.

Our group had developed a rapid and sensitive photo-
metric acetophenone assay for transaminase-catalyzed reac-
tions, which enables to determine catalytic activity[17] and as
well stereoselectivity by comparing the respective specific

activity using enantiopure (R)- or (S)-substrates (see insert
in Figure 1). In previous work, we already successfully
improved the substrate scope and catalytic activity of several
different ATAs by protein engineering,[18] which identified a
series of crucial residues as potentially influential for the
enzyme-substrate association. This paved the way to ration-
ally design variants and to obtain high-quality data for this
study.

Here we report the structure-guided rational design of
ATA variants to obtain high quality catalytic activity and
stereoselectivity data in the first step, followed by the
building of the ML predictor, which uses a representation of
the enzyme and substrate by descriptors developed from
structural and biochemical considerations. This information
then trained standard ML models for the prediction task.
Finally, we demonstrate its application for the design of new
variants that display higher activity and desired stereo-
selectivity towards substrates that have never been used for
the construction of ML models (see flow chart in Figure S1
and Table S4, Supporting Information).

Results and Discussion

To comprehensively evaluate the impact of protein engi-
neering on biocatalytic reactions and to obtain a diverse set
of data, we focused on a series of ATA variants with
increased or reduced catalytic activity and increased,
reduced or even reversed stereoselectivity. To identify a
suitable scaffold that meets these requirements, several
wild-type ATAs from fold class I and some interesting
variants discovered previously by our group were evaluated
in the model reaction using enantiopure (R)- or (S)-1-
phenylethylamine (PEA) as amine donors and pyruvate as
the acceptor (Figure 1, Figure S2). Among all the candi-
dates, the ATA from Ruegeria sp. TM1040 (abbreviated as
3FCR, according to its PDB code) turned out to be the most
suitable scaffold, which displayed a minor specific activity
towards (S)-PEA, but structure-function analyses revealed
important key residues that modulate activity.[18] Some of its
previously designed variants,[19] such as 3FCR-Y59W/Y87F/
T231A (3FCR-3M) and 3FCR-Y59W/Y87F/T231A/Y152F
(3FCR-4M), showed much higher specific activity towards
(S)-PEA, which demonstrates its potential for altering its
properties through protein engineering. However, none of
the enzymes and variants studied so far displayed any
activity toward (R)-PEA, as training data for a stereo-
selectivity predictor were missing. Therefore, we aimed at
first to reverse the (S)-selectivity to (R)-selectivity of these
enzymes by protein engineering to diversify the stereo-
selectivity data, and secondly to further investigate the
activity of different variants towards (S)- and (R)-PEA to
obtain a diversified activity dataset.

According to our previous work on protein engineering
of (S)-selective ATAs,[18,19] in combination with molecular
docking simulations of wild-type 3FCR and (S)-PEA (Fig-
ure 2), we selected seven crucial residues that are likely to
affect its activity and stereoselectivity. Four of these residues
(Y87, S19, Y152 and S155) are located in the small binding
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pocket and the remaining three residues (T231, Y59 and
L58) are in the large binding pocket. Based on our
previously developed rational-design strategy for reversing
the enantioselectivity,[20] we planned to enlarge the small
binding pocket of wild-type 3FCR and subsequently to
shrink the large pocket. As shown in Figure 2, among the
seven variants screened in the first round (Table S6,
entries 4–10), the variants 3FCR-Y87L and 3FCR-Y152F

showed an initial activity toward (R)-PEA and 3FCR-F87L
even displays slight (R)-preference. The next two rounds of
saturation mutagenesis targeted S19 and T231 using 3FCR-
Y87L as the template and this resulted in a series of (R)-
selective or highly active variants (Table S6, entries 11–24).
Compared to the initial activity of the 3FCR-WT, the
specific activity of the variants was increased up to 2000-
fold, as shown for (R)-PEA using the variant 3FCR-Y87L/
S19W/T231L (Table S6, entry 19). The specific activity ratio
towards (R)-PEA and (S)-PEA could be increased up to
3000-fold for variant 3FCR-Y87L/S19V/T231L (Table S6,
entry 16). Further replacing of the seven key residues using
3FCR-Y87L/S19W/T231L and 3FCR-Y87L/S19V/T231L as
templates did not obtain variants with higher (R)-activity
and selectivity (Table S6, entries 25–34). Variants 3FCR-3M
and 3FCR-4M displayed much higher activity towards (S)-
PEA[19c] and hence a series of variants were designed by
substitution of the key residues from these two scaffolds to
further evaluate the effect of them on the catalytic activity
(Table S6, entries 35–41). The results show that the sub-
stitution of T231L or Y152F had a negative effect on (S)-
activity.

Among the above mentioned 40 3FCR variants, eight
variants displayed weak activity toward (R)- and (S)-PEA
and were thus excluded. We chose the other 32 variants and
wild-type 3FCR to investigate their specific activity toward
13 pairs of enantiopure substrates (13 (R)- and 13 (S)-
compounds). These substrates (Figure 3) contain different
substituents leading to different steric and electronic effects,
and thus their analysis should lead to a clearer perception of

Figure 1. Specific activity of 3FCR variants determined using the acetophenone assay.[17] For this, both (S)- and (R)-PEA were assayed with pyruvate
as amino acceptor. One unit (U) activity was defined as the formation of 1 μmol acetophenone per minute. All measurements were performed in
triplicates and the mean values are indicated in the figure as error bars. The specific activity toward (R)- and (S)-PEA is shown in red and blue bars,
respectively. Detailed data for specific activity measurements are given in Table S6.

Figure 2. External quinonoid intermediate formed by substrate (S)-PEA
and the cofactor PLP located in the active site of 3FCR. The quinonoid
(green sticks) of (S)-PEA was modelled into the substrate binding
pocket of 3FCR. The protein is shown as white cartoon. The carbon
atoms of the residues in the small and large binding pocket are colored
cyan and wheat, respectively. The oxygen and nitrogen atoms of
different residues are colored red and blue.
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the structure-function relationships of the ATAs with their
substrates.

As shown in Figure 3, most of these substrates were
converted by the 3FCR variants, but when the substrate
contains a carboxyl and a phenyl group (substrates 13 and
14), the activity is rather low. Presumably this is because
the carboxylic acid function of the substrate is usually
bound in the large binding pocket by a flexible Arg side
chain. However, if the large binding pocket is occupied,
the phenyl group of the substrate has to be accommodated
into the small binding pocket. When the substrate
contains a hydroxyl group (substrate 3), the activity is
generally lower than for substrate 2, even though both
have almost the same steric effect but differ in their
hydrophobic properties. Therefore, a hydrophilic group is
not well accepted by 3FCR variants in comparison to
hydrophobic groups in the substrates. In addition to the
effect of hydrophobic or acidic groups mentioned above,
the steric effect of substrates also has an important
influence on the specific activity. The presence of a large
substituent such as a naphthyl group in the substrate
usually means that the activity is low, especially for the
(R)-substrates that require the binding of the large
substituent within the small binding pocket (substrates 9
and 10). Regarding the substituent pattern on the benzene

ring, an ortho-substitution (substrate 7) usually causes a
more significant reduction in activity than para- and meta-
substitutions (substrates 5 and 6), implying that the
catalytic activity is more sensitive to the steric hindrance
changes of ortho-positioned substituents.

Among these 3FCR variants, 3FCR-Y59W/Y87F/T231A
and its single-mutation variants such as 3FCR-Y59W/Y87F/
T231A/S19W and 3FCR-Y59W/Y87F/T231A/Y152F dis-
played the highest specific activity toward (S)-substrates,
which probably results from the larger and/or more hydro-
phobic large-binding pocket that can accept a wider range of
substrates. On the contrary, 3FCR-F91L/S19W and its
variants such as 3FCR-F91L/S19W/T231L, 3FCR-F91L/
S19V/T231L and 3FCR-F91L/S19W/T231L/Y59W probably
have a larger small-binding pocket and thus show higher
activity toward (R)-substrates. When the above variants also
have a shrinked large-pocket, such as 3FCR-F91L/S19W/
T231L and 3FCR-F91L/S19V/T231L, then they usually
displayed stronger (R)-selectivity, which is consistent with
our previous findings.

After collecting the above biocatalytic reaction data,
we next built the ML prediction model that utilizes
substrate structures and transaminase sequences as input
variates and predicts specific activities as output results.
Although a series of 3D structure- or 1D sequence-based

Figure 3. Specific activity of 3FCR variants toward (S)- and (R)-enantiomers of amines 1–14. All measurements were performed in triplicates and
the mean values are indicated by a color gradient. Note that compound (R)-3 has the same binding mode as all other (S)-compounds in the active
site, but due to the hydroxyl substituent, its absolute configuration is (R) according to the CIP nomenclature priority rules. The detailed data for
specific activity are given in the Supporting Information file named “SI-excel”.
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descriptors have been successfully applied in biocatalytic
reactions,[21, 22] their performance strongly depends on the
quantity of training data, which is still an obstacle in
present research. This is due to the fact that the activity of
a system is usually dominated by a few functional groups
of the substrate and a small active site of the enzyme. In
other words, a lot of information included in the 3D
structure- or 1D sequence-based descriptors is not rele-
vant to the properties we wish to create, which depresses
the performance of ML without a large number of data.
Considering the important role of steric and electronic
effects of the substrate on the enzyme, we encoded the
most relevant information of substrates and amino acids
residues within the ATA with a modified one-hot code.
As shown in Table S1, each amino acid is encoded into
two elements (denoted as A and B), which respectively
represents the electronic and steric properties of a given
amino acid residue. Each amine substrate can be divided
into a large-pocket binding group and a small-pocket
binding group, and each binding group is encoded into
four elements (A, B, C and D, see Table S2) to describe
its electronic and steric properties. Both 1D and 3D
information of the substrates and amino acid residues of
the enzymes are embedded in the code. Each element of
the code acts as one descriptor of ML models.

After building the descriptors for amino acids and
substrates, we started to create the input file for machine
learning. 3FCR contains 456 amino acids, but only 7 of them
had been changed in the 40 variants studied, and thus the
other 449 amino acids were deleted in the feature selection
step. Finally, 14 amino acid descriptors (7 amino acids×2
elements) and 8 substrate descriptors (4 elements for the
large-pocket binding group and 4 elements for the small-
pocket binding group) were used to form the feature set.
The label of data is the natural logarithm of the specific
activity values. Then we started to build a statistical model
to correlate the specific activity with 22 descriptors. There
are several machine learning algorithms that are used to
solve biocatalytic-related problems.[10] Here we applied four
regression models, these are: random forest (RF), support
vector regression (SVR), kernel ridge regression (KRR),
and gradient boosting regression tree (GBRT) to predict the
reaction activity. Different data split percentages have little
effect on the prediction performance (Figure S9), so we
decided to randomly split the data into training (90%) and
test (10%) sets. Each of these models is in fact given as a
family of models parametrized by so-called “hyper-parame-
ters”. Once the hyper-parameters are chosen, one can fit the
models to data. However, unlike first-principles models with
few parameters, such ML models can overfit and become
useless for the prediction of new case studies. The hyper-
parameters have to be tuned so that the predictive perform-
ance is optimized (Table S3). For this purpose, the expected
prediction error on new cases is estimated by 10-fold cross-
validation, which means to fit the model on training subsets
of the data and validate the predictions on validation
subsets. The details can be found in the Supporting
Information. RF and GBRT performed better than SVR
and KRR (Figure S3). The GBRT predictor provided the

best R2- (0.803) and RMSD-values (1.083), which was
denoted as GBRT-1 (Figure 4A) and was applied in this
research.

Feature importance analysis based on GBRT-1 (an
assessment of the contribution of each descriptor to this
model) reveals the key role of residues 87, 231 and 19
(Figure S4). Therefore, we focused the virtual screening
target on these substitutions and obtained predicted data for
8192 variants. According to the prediction results, the
change of residue 87 had a small effect on the predicted
value, which is inconsistent with the results of the mutation
experiments. This is most likely due to the lack of samples
with a mutation at position 87. We therefore focused on the
mutation at this position and thus selected nine variants with
higher predicted activity toward (R)-substrates or (R)-
selectivity. According to the experimental results (Fig-
ure S5A), 3FCR-Y87C/S19W/T231L displayed higher (R)-
selectivity toward 1-phenyl-butan-1-amine (4), 1-(4-chloro-
phenyl)-ethan-1-amine (5) and 1-(naphthalen-2-yl)-ethan-1-
amine (10) than the other 49 variants.

The GBRT-1 was rebuilt based on the increased dataset
containing all previous data and the above new data (9
predicted variants×28 substrates). The updated predictor
was used to design new variants to predict the activity
toward (S)- or (R)-substrates. Among the variants suggested
by virtual screening, we selected 13 variants with predicted
higher activity toward (S)- or (R)-substrates and studied
their activity by experiments (Figure S5B). To our delight,
3FCR-Y87C/S19W/T231L/Y59W displayed 3.5-fold higher
activity toward (R)-1-phenylpropan-1-amine ((R)-2) and
8% higher activity toward (R)-1-phenyl-butan-1-amine
((R)-4) than the best one among the other 62 variants. The
variant (Y87W/T231A/Y59W) also displayed higher activity
toward (S)-1-(3-chlorophenyl)-ethan-1-amine ((S)-7) and
(S)-1-(naphthalen-2-yl)-ethan-1-amine ((S)-10) than the oth-
er 62 variants, especially toward (S)-10, which was improved
three times compared to 3FCR-Y87F/T231A/Y59W. These
results demonstrate the successful application of the ML
predictor to improve variants.

We further added new experimental data with the
selected 13 variants to the current dataset and retrained
GBRT-1 again. The newly updated model was applied to
design 3FCR variants with higher activity for (R)- and (S)-1-
(4-methylphenyl)-ethan-1-amine (15) by virtual screening.
Among these 8124 screening variants, 3FCR-F91L/S19W/
T231L/Y59W and 3FCR-F91F/T231A/Y59W displayed the
highest activity toward (R)- and (S)-15, respectively. To our
delight, the measured activities of these two variants were
similar to the predicted values (Figure 4B). To further
evaluate the updated GBRT-1 system for the prediction of
activity toward (R)- and (S)-15, we measured the reactions
of all variants and the results achieved a nice regression with
R2 0.846 (Figure S6).

Finally, the GBRT-1 predictor was reconstructed with all
available data, resulting in an R2 up to 0.905 (Figure 4C). Its
feature importance result (Figure 4D) displays more weight
on amino acid features compared to the results shown in
Figure S4, which probably results from the greater variation
in amino acids from additional experiments. Element B of
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residues 87, 231 and 19 were extracted as important features,
which implies their steric effects on the predicted activity
values. The insignificance of residues 155 and 58 may result
from the small amount of data available for mutations at
these residues. Different from amino acid features, the
impacts of all substrate features on this model were
observed. Especially, the large importance of element B of
both large- and small-pocket demonstrates that the ortho
substituent in the benzene ring plays an essential role on
catalytic activity of 3FCR.

The ATA from Ruegeria pomeroyi (abbreviated as
3HMU, according to its PDB code) is another important
(S)-selective transaminase which is widely used in chiral
amine synthesis.[18, 19] Although it shows totally different
catalytic activity toward (S)-PEA compared to 3FCR-WT
(Figure S2), it has a similar 3D structure, especially in the
active site region. Therefore, we hoped to extend the
application of GBRT-1 to predict the catalytic activity of
3HMU. Based on a protein structure alignment, seven key

residues were identified (Table S7). To compare the
catalytic activity and to calibrate the predictor GBRT-1,
we designed three 3FCR variants (3FCR-Y87F/S19F/
T231A/Y59W, 3FCR-Y87F/S19F/T231A/ Y59W/Y152F
and 3FCR-Y87L/S19F/T231A/Y59W, Table S7, entries 1–
3) as they have key residues similar to 3HMU-WT and
3HMU-F91L (Table S7, entries 4–5), respectively. Com-
bining the activity data of these three 3FCR variants with
previous 3FCR data, the ML model denoted as GBRT-2
was obtained (Figure S7A). In order to assess the
predictive ability of GBRT-2, we designed several 3HMU
variants containing the corresponding mutations of these
key residues (Table S7, entries 6–15), and measured their
specific activities toward 30 substrates. Unfortunately, the
results showed that the measured values and predicted
values show only low correlation (Figure S7B). This is due
to the fact that the catalytic activity of the 3FCR and
3HMU variants are usually quite different, which indi-
cates that the activity of different ATAs is influenced not

Figure 4. Regression performances of the prediction values and true values from the initial dataset using GBRT-1. (A) Comparison of measured
and predicted specific activity values of 3FCR-F91L/S19W/T231L and 3FCR-F91F/T231A/Y59W toward substrate (R)-15 and (S)-15. (B) Regression
performances (C) and feature importance (D) of the updated GBRT-1 predictor trained by all existing data. The true value of each point
corresponds to the natural logarithm of the mean specific activity values (mU/mg) of three independent experiments. Blue and red dots in the
figures represent data from training and test set, respectively. A detailed explanation of the descriptors in (D) is given in Tables S1 and S2.
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only by the seven key residues shared in the active site,
but also by other complex factors such as PLP-protein
interactions. Although the two transaminases are in the
same superfamily and share a highly similar fold, there are
slight but significant differences of the backbone struc-
tures, e.g., in loop regions near to the active site, which
might explain the lower quality of the predictions. An
indicator variable that distinguishes between 3HMU and
3FCR was appended to the representation, thus allowing
models to interpret the descriptors conditional on the two
ATAs. The GBRT-2 predictor was constructed based on
the new set of descriptors. 90% of 3HMU catalytic data
were randomly selected and combined with 3FCR data to
train the updated GBRT-2 (Figure 5A). The remaining
10% of 3HMU data composed the test set. To our delight,
the updated GBRT-2 resulted in an R2-score of up to
0.764 on the 3HMU test set (Figure S7C). Although the
test set of GBRT-2 and the updated GBRT-2 are of
different size, the introduction of the protein identifier
descriptor indeed improves the R2 score for 3HMU (Fig-
ure 5B).

Conclusion

A high-quality dataset obtained by structure-dependent
protein engineering, as well as a modified one-hot code that
represents the most relevant electronic and steric properties
of the key amino acids and substrates, paved the way for
building an activity predictor for the amine transaminase
3FCR. We could demonstrate that the model can predict the
catalytic activity of 3FCR variants for various amine
substrates by virtual screening, which was then confirmed by
experimental data. Thus, we have demonstrated the applica-
tion of this simple but practical predictor in the data-driven

rational design of 3FCR variants toward different substrates
to obtain higher activity and especially also inverted stereo-
selectivity. With the help of the protein category descriptor
and the design of calibration variants, we also extended this
ML model to the amine transaminase 3HMU. The perform-
ance was acceptable but still far from perfect. Considering
the limitations of this model in predicting the catalytic
activity of ATAs involving complex substrates or other
origin of ATAs, we will continue to improve this ML
predictor by adding more data and selecting appropriate
descriptors and algorithms in the future. This will also
address our observation that the engineering effort is much
more complex than simply increasing or decreasing the
pocket size of the enzyme.
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Figure 5. Regression performances of the prediction values and true values for 3FCR and 3HMU variants using the updated GBRT-2 predictor (A).
Feature importance of the updated GBRT-2 (B). The true value of each point corresponds to the natural logarithm of the mean specific activity
values (mU/mg) of three independent experiments. Blue and red dots in the figure represent data from training and test sets, respectively. All
available specific activity data are shown in Figure S8. The detailed measured specific activity data are shown in the Supporting Information file
named “SI-excel”.
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