
GigaScience, 2022, 11, 1–14

DOI: 10.1093/gigascience/giac104

TECH NOTE

learnMSA: learning and aligning large protein families

Felix Becker * and Mario Stanke *

Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17489 Greifswald, Germany
∗Correspondence address. Felix Becker. E-mail: felix.becker@uni-greifswald.de; Mario Stanke. E-mail: mario.stanke@uni-greifswald.de

Abstract

Background: The alignment of large numbers of protein sequences is a challenging task and its importance grows rapidly along with
the size of biological datasets. State-of-the-art algorithms have a tendency to produce less accurate alignments with an increasing
number of sequences. This is a fundamental problem since many downstream tasks rely on accurate alignments.

Results: We present learnMSA, a novel statistical learning approach of profile hidden Markov models (pHMMs) based on batch gra-
dient descent. Fundamentally different from popular aligners, we fit a custom recurrent neural network architecture for (p)HMMs to
potentially millions of sequences with respect to a maximum a posteriori objective and decode an alignment. We rely on automatic
differentiation of the log-likelihood, and thus, our approach is different from existing HMM training algorithms like Baum–Welch. Our
method does not involve progressive, regressive, or divide-and-conquer heuristics. We use uniform batch sampling to adapt to large
datasets in linear time without the requirement of a tree. When tested on ultra-large protein families with up to 3.5 million sequences,
learnMSA is both more accurate and faster than state-of-the-art tools. On the established benchmarks HomFam and BaliFam with
smaller sequence sets, it matches state-of-the-art performance. All experiments were done on a standard workstation with a GPU.

Conclusions: Our results show that learnMSA does not share the counterintuitive drawback of many popular heuristic aligners, which
can substantially lose accuracy when many additional homologs are input. LearnMSA is a future-proof framework for large alignments
with many opportunities for further improvements.

Keywords: profile hidden Markov model, multiple sequence alignment, machine learning

Background
Profile hidden Markov models (pHMMs) are probabilistic models
for protein families. One of their applications is remote homol-
ogy search in large databases [1, 2]. Typically, an existing multiple
sequence alignment (MSA) is turned into a pHMM, but pHMMs
can also be trained on unaligned sequences and a MSA can be
decoded from the learned model [3–5]. The training of pHMMs us-
ing the Baum–Welch algorithm was originally applied “with hand-
holding” to selected protein families [3], which required a human
to decide between specific architectures (e.g., for modeling a do-
main as opposed to an entire protein). Advantages of the statis-
tical learning approach over traditional aligners are a consistent
probabilistic background for position-specific gap penalties and
that both training and decoding are linear in the number of se-
quences. However, profile HMM training has never been popular as
a general-purpose alignment method since tabula rasa learning is
challenging. Apart from the model architecture being problem de-
pendent, another common issue is that algorithms may get stuck
at local optima in the parameter space. Simulated annealing [4]
and particle swarm optimization [6, 7] could further improve upon
Baum–Welch in this regard but never resulted in applicable tools
comparable to modern state-of-the-art aligners. Gradient descent
methods like the popular Adam algorithm [8] are a hitherto en-
tirely unexplored class of algorithms for HMM training with in-
creasing relevance in the advent of automatic differentiation [9].

Established tools that construct MSAs are either unfit for large
numbers of sequences or their accuracy decreases when the num-
ber of aligned sequences grows large [10, 11]. This effect is particu-
larly present for progressive algorithms, which rely on a guide tree

that dictates the order of the sequences to be aligned, by greedily
starting with closely related ones. One drawback of this approach
is the inability to revert gaps. Early errors accumulate when more
and more sequences are added.

One way to revert incorrect gaps is iterative refinement, where
intermediate alignments guide the construction of subsequent
ones [12]. Although iterative refinement strategies can improve
accuracy on moderate sequence numbers, they are unsuitable for
large numbers of sequences from a computational perspective.
For example, MAFFT G-INS-i produces very accurate alignments
but is slow and memory-hungry due to an all-to-all pairwise align-
ment stage. MAFFT-Sparsecore applies MAFFT G-INS-i to a small
set of core sequences and progressively adds the remaining se-
quences thereafter [13]. This strategy is suitable to scale up itera-
tive refinement to large sequence numbers, but biases in the core
sequences have to be avoided by choosing them as diverse as pos-
sible.

Divide-and-conquer strategies like PASTA [14] and MAGUS [15]
first construct subalignments on relatively small subsets of the
sequences and merge them thereafter. MAGUS uses a Graph Clus-
tering Merger for the latter stage. Recently, MAGUS was updated
to support recursion for ultra-large datasets [16]. Another tech-
nique with improved accuracy is the regressive method, which
starts to align sequences containing the most dissimilar ones first
and merges subalignments by using an overlapping sequence [10].
Divide-and-conquer strategies have enabled the execution of slow
but accurate algorithms like MAFFT G-INS-i on large datasets and
improved accuracy compared to progressive strategies [10, 15].

Received: June 7, 2022. Revised: September 1, 2022. Accepted: October 6, 2022
C© The Author(s) 2022. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

http://orcid.org/0000-0001-8696-0384
http://orcid.org/0000-0001-6831-8523
mailto:felix.becker@uni-greifswald.de
mailto:mario.stanke@uni-greifswald.de
http://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2022, Vol. 11, No. 1

However, they are still heuristics that ignore everything but a sub-
set at first and are prone to errors in their merging steps.

Last, UPP [17] is related to our method by the fact that it also
uses a pHMM (or an ensemble of pHMMs) to represent MSAs. How-
ever, UPP does not train a model on unaligned sequences. Instead,
it first constructs a backbone MSA on a subset of the sequences
using tree-guided PASTA in order to estimate the HMM parame-
ters. Afterward, it adds the remaining sequences using the HMM.
UPP has shown good performance in the presence of high se-
quence length heterogeneity.

All mentioned MSA algorithms rely on accurate guide trees,
and tree construction often becomes the computational bottle-
neck. Clustal Omega [11] uses the mbed method to construct a
tree. A faster but less accurate alternative is MAFFT-PartTree [18],
and another popular algorithm is FastTree [19]. A slow but very
accurate tree construction algorithm based on all-to-all pairwise
alignments is used in the G-INS-i option of MAFFT [12]. The bot-
tom line is the constant need to balance quality and speed when
constructing trees.

To date, deep learning is not commonly used for multiple se-
quence alignment, and if it is, its function is usually supplemen-
tary, for example, by optimizing the order of progressive alignment
with reinforcement learning [20] or employing a decision-making
model to select from different strategies in a MSA pipeline [21].
While some proof of concepts exist, the respective software is not
feasible for large numbers of sequences, generally not optimized
(stated by the authors), or not available at all. For pairwise align-
ment, the traditional dynamic programming framework can be
supplemented by reinforcement learning [22] or deep models in-
spired by recent advances in natural language processing improv-
ing accuracy on remote homologs [23]. While deep learning is cur-
rently usually not used for their construction, MSAs are, however,
a popular input for end-to-end machine learning methods that
solve downstream tasks [24–27].

Our proposed aligner learnMSA is based on automated statis-
tical learning of a pHMM with gradient descent. It does not re-
quire a tree and has a linear asymptotic runtime in the num-
ber of sequences, which is faster than most tree algorithms. No
progressive, regressive, or divide-and-conquer heuristic is used.
Therefore, we avoid heuristic-based errors when merging sub-
alignments or progressively adding sequences. We provide a more
robust framework for (ultra-)large MSAs without the counterin-
tuitive drawback of losing accuracy when many additional ho-
mologs are input.

We begin with the description of the underlying model and a
batchwise variant of the forward algorithm that plays a central
role during parameter training. We empirically show the suitabil-
ity of learnMSA by testing it on ultra-large protein families from
Pfam [28] with up to 3.5 million sequences as well as the estab-
lished biological benchmarks HomFam and BaliFam.

Methods
Model
Profile hidden Markov models are well-known probabilistic mod-
els of sequence consensus. When used to model a protein family,
the aim is to define a probability distribution over the space of all
possible protein sequences such that member sequences of the
family have large probabilities. The resulting statistical model can
be used for database searches [1] and MSA construction [3].

In a pHMM, a linear chain of match states represents the con-
sensus sequence of the family in question. Insertions and dele-
tions with respect to the consensus are modeled by position-
specific states and transitions. See Fig. 1A for an illustration of
the pHMM.

In addition to the standard pHMM architecture, we deploy
an augmented model following HMMER’s “Plan7” [29, 30] (or-
ange states and transitions in Fig. 1A). The HMM parameters are
learned from unaligned protein sequences. In contrast to previ-
ous approaches, our method also learns the additional “Plan7” pa-
rameters jointly with the pHMM core model. Previously, HMMER
used predefined value sets for different alignment modes (local
or global, unihit or multihit) [30]. Here, we automatically learn
the correct alignment mode jointly with the core pHMM start-
ing tabula rasa. We have special states for the left (L) and right (R)
flank of the model. Initialization and regularization of the flanking
states differ from ordinary insertion states Ii (see section “Train-
ing”). Moreover, the augmented model allows multihit alignments
(i.e., sequences may contain repeats of a single domain motif by
looping backward). The state C models any unannotated region
between 2 domain hits and must be visited to jump from the
end state E back to the start state S. The model further handles
sequence length heterogeneity (fragmentary sequences) through
entry and exit probabilities from S into the consensus and, respec-
tively, from the consensus to E. Note that since version 2, HMMER
uses a trick to achieve a uniform distribution over all possible
pairs of entry and exit points into the core model [30]. Here, we
follow the older construction with explicit entry and exit proba-
bilities, but they are now data dependent instead of ad hoc.

The set of all transition and emission parameters is learned
from data with careful initialization and under the use of Dirich-
let priors (see section “Training”). In general, we have 1 trainable
parameter for each possible state transition and, in case of the
emissions, 1 parameter per match state and amino acid. There are
exceptions: insertion and flanking states use a fixed background
emission distribution that is not optimized. The self-loop (and re-
spectively exit) probabilities for the flanking states L, R, and C are
tied to prevent a bias toward one of the sides. Delete states (as well
as the domain start and end states S and E) are silent (i.e., they
have no emission distribution and do not not advance the posi-
tion in the observed sequence).

A pHMM can be parameterized by 2 probability matrices for
transitions and emissions and an initial state distribution. Let Q
be the set of all states and A be the stochastic |Q| × |Q| matrix
of state transitions. Observe that for pHMMs, this matrix is very
sparse. We call the number of match states in a model its length l.
Let Q′ : = Q \ {D1, . . . , Dl, S, E} denote the set of all emitting states.
Let B be the |Q′ | × 25 emission matrix, which is constructed by con-
catenating l learnable emission distributions of the match states
with background distributions for all insertions and the flanks.
The second dimension of B corresponds to the 20 standard amino
acids, plus selenocysteine, pyrrolysine, and the ambiguous codes
X, B, and Z. The terminal symbol (26th letter) has an implicit prob-
ability of 0 at all states except T.

In order to apply gradient descent, we parameterize the model
by unconstrained kernels θA and θB and enforce the probabilistic
constraints that the rows of A and B sum up to 1 with a softmax
function defined on a real vector: so ftmax(x)i = exi∑

j e
x j .

As seen in Fig. 1A, the emission distribution of, for example,
Mi is computed by so ftmax(θB

i), where θB
i = (θBi

A , θ
Bi
R , θ

Bi
N , θ

Bi
D , . . .) is

the ith row of θB. The matrix B is constructed from the kernel θB

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

learnMSA: Learning and aligning large protein families | 3

A B

Figure 1: (A) LearnMSAs underlying pHMM based on HMMER’s “Plan7” model. For the transition (emission) distributions, unconstrained learnable
parameter matrices θA (θB) are transformed by softmaxes over the outgoing edges of a state or the amino acid alphabet, respectively. Squares indicate
match states, diamonds are insertions, and circles are silent states (either delete states or the start and end state). In contrast to previous approaches,
we also learn transition probabilities augmenting the core model (orange). (B) Sketch of a recurrent neural network architecture with a HMM-Cell that
implements the forward recursion. The first layer at the bottom computes ancestral distributions of amino acids for a sequence Si using a rate matrix
and an evolutionary time τ i that is learned jointly with the HMM parameters.

by using softmaxes to compute the match distributions over the
amino acid alphabet.

The kernel θA is a collection of parameter vectors correspond-
ing to different transition types that share the same initialization
and prior. For example, we have l − 1 parameters for the match-
to-match transitions. The total number of allowed transitions in
the model as shown in Fig. 1A is linear in l. The probability dis-
tribution of transitioning from, for example, match Mi to one of
the 4 adjacent states Mi + 1, Ii, Di + 1, or E is calculated by con-
structing the vector θA

Mi
= (θA

Mi,Mi+1
, θA

Mi,Ii
, θA

Mi,Di+1
, θA

Mi,E
) and comput-

ing so ftmax(θA
Mi

). We store A (or, in fact, a matrix closely related to
A as described in section “Implicit model”) in sparse matrix rep-
resentation where illegal transitions are implicitly zero.

For the initial state distribution P0, we use a simple
parametrization by introducing a scalar θ init that controls the
probability of starting in the left flank. To this end, we define pinit

= σ (θ init), where σ is the sigmoid function. The initial distribution
is P0(L) = pinit and P0(S) = 1 − pinit and P0(q) = 0 for q �= L, S.

In the following, let θ = (θ init, θA, θB) denote the complete set of
learnable parameters for the (augmented) pHMM.

Batchwise forward algorithm
Assume for now that no silent states exist. For the pHMM as intro-
duced in section “Model,” we will describe an equivalent implicit
model without the silent states D1, …, Dl, S, and E in section “Im-
plicit model”.

An unaligned protein sequence S can be described by a path
π of hidden states in the pHMM. Under our assumption, π

= π0, …, πn − 1 and S = s0, …, sn − 1 have the same length
n. The joint probability of observed and hidden sequence is
P(S, π) = P0(π0)P(s0 |π0)

∏
i>0 P(πi |πi−1)P(si |πi), where the transition

and emission probabilities are computed as described in sec-
tion “Model” above.

The likelihood of a sequence is the sum of the joint probabilities
over all possible hidden paths: P(S) = ∑

π P(S, π), which is related to
HMMER’s forward score [30]. Intuitively, it describes how well a se-
quence fits to the consensus when considering all possible align-
ments. The likelihood can be efficiently computed with dynamic

programming using either the forward or the backward algorithm
[31]. We present a batchwise variant of the forward algorithm that
plays a central role during parameter training of learnMSA.

The forward probabilities are α(i)q : = P(πi = q, s0, . . . , si). The
well-known dynamic programming recursion to compute α(1), …,
α(n − 1) is

α(i)q = P(si | q)
∑
q′∈Q

P(q | q′)α(i − 1)q′ (1)

with α(0)q = P(s0|q)P0(q).
Equation (1) lends itself to an efficient implementation for a

batch of sequences of size b. Let the b × 25 matrix S(i) denote
the tuple of all ith sequence positions in the batch, that is, S(i)

j

is an one-hot representation of the ith residue of sequence j.
We omit the implementation detail that for variable-length se-
quences, some positions might be terminal symbols here. In the
following, we factor out a partial likelihood term in each forward
step to allow an underflow-safe computation of the likelihood.
The batchwise forward recursion is

α′(i) =
⎧⎨
⎩

S(i)BT ◦ α′ (i−1)
Z (i−1) A, i > 0

S(0)BT ◦ P0, i = 0

Z (i) = ∑
q∈Q α′(i)q

L(i) = lnZ (i). (2)

where i is a sequence index, α
′
(i) are b × |Q| batches of scaled

forward variables, ◦ denotes element-wise multiplication (with
shape broadcasting, where required), and the matrix multiplica-
tion that involves A uses an efficient implementation that exploits
the sparse representation. Observe that α(i) = α′(i) ◦ ∏i−1

i′=0 Z (i′).
The likelihood (for a single sequence) can eventually be com-

puted as P(S) = ∑
qα(n − 1)q. However, we prevent numerical un-

derflow by equivalently using the partial log-likelihood values in
Equation (2):

ln P(S) =
n−1∑
i=0

L(i). (3)

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

4 | GigaScience, 2022, Vol. 11, No. 1

Viterbi decoding
When we decode an alignment, we are interested in the
hidden path of a sequence with maximum probability
(i.e., arg maxπ P(S, π)). This can be computed efficiently using
the Viterbi algorithm [31], which is closely related to the forward
algorithm.

A Viterbi MSA can be constructed by aligning the most likely
hidden sequences of all input sequences [3]. Currently, we leave
insertions unaligned and left-adjusted except for the left flank,
which is right-adjusted. Moreover, if domain repeats occur, the ith
occurrences of the domain in multiple sequences respectively are
currently aligned with each other. With both simplifications, we
accept that we are in a slight disadvantage compared to state-of-
the-art aligners, which will align all residues globally.

Implicit model
Conventionally, the forward recursion for pHMMs is implemented
in linear time per step by explicitly handling silent states (the
delete states Di, the starting state S, and the ending state E) [32].
This requires a long-winded sequential computation of the for-
ward variable for the delete states where α(i)Dj depends on α(i)Dj−1 .
Here, we treat all silent states as implicit states, that is, internally
we use an equivalent model that has only emitting states, by fold-
ing all transitions entering and leaving a silent state. That means
all possible partial state paths that start and end in an emitting
state and consist only of silent states else are replaced by single
transitions that have probability equal to the probability of the
respective partial path. In detail, each partial path Mi → Di + 1 →
…Dj − 1 → Mj for j > i + 1 is replaced by an edge with probability

P(Mj | Mi) = P(Di+1 | Mi)

⎛
⎝

j−2∏
i′=i+1

P(Di′+1 | Di′)

⎞
⎠ P(Mj | Dj−1). (4)

This changes the asymptotic runtime of the forward algorithm,
because the number of possible transitions from each match state
is not constant anymore. However, we can now implement Equa-
tion (2) by taking full advantage of modern (GPU-accelerated)
computing frameworks. We found that given the typical length
of a protein (our benchmarks contain sequences of length up to
800), the asymptotic downgrade is acceptable in the light of par-
allelism: we can compute all values of α(i) in parallel given α(i −
1). In the batchwise forward algorithm, the bottleneck is the ma-
trix multiplication with the transition matrix, which should use
an efficient implementation that exploits sparseness.

Folding all edges adjacent to silent states is referred to as the
implicit model, represented by a transition matrix Aimpl replacing
A from section “Model.” Note that Aimpl is still very sparse. Tran-
sitions over the start state S and the end state E (i.e., deletions of
initial or terminal parts) are handled analogously. Also note that
empty, infinite silent loops through the model are not possible, be-
cause the unannotated segment state C is an insertion that emits
at least 1 amino acid and cannot be skipped.

Training
During training, learnMSA uses a recurrent neural network archi-
tecture with a pHMM cell that scans a batch of sequences column-
of-residues-wise and successively applies Equation (2). This archi-
tecture is visualized in Fig. 1B with the addition of “Ancestral prob-
abilities” as described later. Given θ , the parameters of the model,

the log-likelihood of a random batch of b sequences is

L(θ; S1, . . . , Sb) =
b∑

i=1

ln P(Si | θ). (5)

The general goal while successively observing random batches
is to adjust θ such that L increases over time. In practice, we
minimize a loss function related to L that also incorporates prior
knowledge about proteins.

Existing optimization algorithms like Baum–Welch [3] or simu-
lated annealing [4] avoid using gradients of L and use the forward–
backward algorithm for parameter updates instead. An advan-
tage of learnMSA is the possibility to optimize the HMM jointly
with other layers. Currently, we demonstrate this as described
in section “Ancestral probabilities,” but a broader field opens up
in this direction as discussed later. Gradient-based optimization
can also be applied to objectives that are not based on likelihood,
for instance, the discrimination or classification of (sub)families
[33]. Traditional HMM learning algorithms are not used for online
learning, although such variants exist [5]. Typically, they require
more technical work to include priors than our gradient-based
approach. None of the methods can guarantee globally optimal
results. However, learnMSA can make use of the advancing opti-
mization toolbox for machine learning problems based on auto-
matic differentiation [9].

Maximum a posteriori loss
Models found by maximizingLmight generalize weakly. This is es-
pecially true if the number of training sequences m is low. Our ex-
periments will mainly focus on cases where m is large (i.e., 10,000
to millions of sequences). However, we can still have overfitting
problems. Domain motifs of subfamilies might be underrepre-
sented in the sequence set, leading to a skewed model. Moreover,
we might end up with a result that fits the data well but is not bio-
logically plausible (e.g., a model that allows very long insertions or
many gap openings). A maximum a posteriori estimate attempts to
fit the data while at the same time penalizing implausible models
[3]. In this sense, we define our loss function as

�(θ; S1, . . . , Sb) = − 1
b
L(θ; S1, . . . , Sb) − 1

m
ln(ρ(θ)). (6)

The loss � has a foundation in Bayesian statistics. The first term
is the log-likelihood per sequence averaged over a batch of se-
quences. Usually, we choose b < m and consequently perform
stochastic gradient descent. This allows us to rapidly train models
even on millions of homologous sequences. We use random uni-
form batch sampling. The second term is the prior density (i.e., ρ

is a function that rewards plausible models). We normalize by 1
m

to make the estimate consistent. The effect of the prior is reduced
proportional to the number of training sequences. This is partic-
ularly important because we use a general (i.e., family-agnostic)
prior that should work over the full range of dataset sizes. Follow-
ing conventional standards [3], we use Dirichlet densities [34, 35]
over the different types of transition distributions and the match
emissions.

To reduce the total number of hyperparameters that have to
be set by hand, we salvaged as much general-purpose informa-
tion as possible from Pfam HMMs. For the core model probabili-
ties, we took over 3 million example transition distributions and
maximized the likelihoods of 3 Dirichlets: one for matches, inser-
tions, and deletions, respectively (see Table 1).

For the emissions, we tested Dirichlet mixtures with different
component counts (1, 9, 32, 64, 128, 512), which we trained on the

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

learnMSA: Learning and aligning large protein families | 5

Table 1. Dirichlet parameters for the core pHMM transition distri-
butions estimated from Pfam HMMs

α Match Insert Delete

Match 40.59 0.96 0.68
Insert 26.75 23.32 —
Delete 37.79 — 25.15

match emission distributions of Pfam HMMs, but found that for
large sequence counts, a single Dirichlet density (i.e., a mixture
with 1 component) is enough. The expectation of this Dirichlet
distribution is also used to initialize the match emissions as well
as the (fixed) insertion emissions and the flanks.

As described earlier, we optimize the transition probabilities for
flanking states, domain multihits, and the entry and exit probabil-
ities jointly with the core model. We found that these transitions
require strict regularization. We defined a simplified set of hy-
perparameters αflank, αsingle, and αglobal and (currently only roughly)
searched for suitable values based on the quality of the produced
alignments. These hyperparameters have a probabilistic founda-
tion as parameters of Dirichlet priors over specific Bernoulli distri-
butions that were defined to favor the probability p = 1 for partic-
ular, carefully defined events. That means the prior can be max-
imized by maximizing p, but this choice has to be balanced with
the likelihood. For each possible choice of p and α, the logarithmic
prior densities are (α − 1)ln p + (α

′ − 1)ln (1 − p), where we set α
′

= 1. The motivation behind this ad hoc choice was to keep the set
of hyperparameters for the method simple while maintaining the
probabilistic interpretation of the regularization term.

In particular, αflank controls the pressure to align to the core
model (rather than using the flanking states), that is, increasing
αflank will result in longer insertions at the flanks and between
repeated domain segments. The parameter αflank regularizes the
self-loop probabilities of all flanking states, as well as P0(L) and
P(R|E). Furthermore, we introduce αsingle to penalize core model re-
peats favoring large values for the probability 1 − P(C|E) = P(R|E)
+ P(T|E). Last, αglobal penalizes local alignments that use entry and
exit transitions other than S → M1 and Ml → E. The probabilities
regularized by αglobal were chosen such that all choices of start and
end points into the consensus S → Mi → … → Mj → E for 1 ≤ i ≤
j ≤ l, (i, j) �= (1, l) are penalized uniformly. More precisely, we favor
large probabilities 1 − P(Mi|S)P(E|Mj) for 1 ≤ i ≤ j ≤ l, (i, j) �= (1, l).
The values used for this article are αflank = 7,000, αsingle = 1e9, and
αglobal = 1e4.

Initialization
First, we guess an initial model length l by taking the median of
the sequence lengths and scaling it by a constant c. We found that
c = 0.8 works well. It is easier to find a rough initial consensus if
the number of match states is limited, which forces the model
to restrict itself to the more relevant parts of the sequences. The
median is more robust against fragmentary sequences than the
average.

The initialization of θ could in principle use prior knowledge
about the protein family at hand. However, we are interested in
tabula rasa training with an universal initial parameter set inde-
pendent of the input sequences. We chose an ad hoc position in-
dependent initialization that reflects the prior distributions. In-
tuitively, we want the initial model to focus its probability mass
on paths that use all match states. We do this by having larger
probability for the initial match–match transitions. We took care

to initialize the entry probabilities dependent on the model length
such that P(M1|S) is always roughly 1

2 . Moreover, we initialize the
repeat transition E → C with a very small probability, and for the
flanking states L, R, and C, we initialize such that the self-loops
are more likely than the exits.

Model surgery
After training, we might observe rarely used match states or
overused insertion states. We can discard or expand those posi-
tions and adapt the model length, which is known as model surgery
[3].

Given a trained model, we discard match positions that are
used by less than 50% of the sequences. Likewise, we expand po-
sitions where more than 50% of all sequences have an insertion
by a number of new match states equal to the average insertion
length. If a match position is discarded, all incident edges are re-
moved and new edges with default initialization are carefully in-
serted to close the holes (there is a hole for each consecutive seg-
ment of discarded positions). If an insertion is expanded, edges
at the position of interest that connect left and right model parts
are removed. Eventually, all edges incident to a new match state
are default initialized. After each surgery iteration, the flanking
states, θ init, the kernel for the transition distribution of the end
state E, and the evolutionary times τ of the ancestral probability
layer (for details, see section “Ancestral probabilities”) are reset to
default and the model is trained again. This is repeated at most
4 times, which we found is a good compromise between speed
and accuracy. Per default, we train 5 independent models and op-
timize them with model surgery. Eventually, we choose the model
with parameters θ that maximizes 1

m (L(θ; S1, . . . , Sm) + ln(ρ(θ))) to
decode the final alignment.

If the number of surgery iterations is >1, we found it benefi-
cial (both performance- and accuracy-wise) to restrict training in
all but the last iterations to sequences with lengths above the qth
quantile while keeping a minimum of k sequences. Therefore, ini-
tial parameter updates are always on sequences that have roughly
full length. Short fragmentary sequences may disturb early train-
ing epochs. It is easier to incorporate them, if a rough consen-
sus is established and the matter simplifies to fine-tuning the en-
try, exit, and repeat probabilities. We found that q = 50% and k =
10,000 work well. This is in line with other large-scale MSA meth-
ods, where a common denominator is a strong preliminary fo-
cus on putative full-length sequences (i.e., sequences with lengths
from the upper quantiles). For example, MAFFT-Sparsecore only
considers sequences with lengths above the median for its core
alignment and the regressive strategy favors the longest sequence
as representatives of subtrees (i.e., longer sequences are aligned
first).

Ancestral probabilities
We naturally assume the existence of a single whole-protein con-
sensus sequence C that represents the sequence set we wish to
align. Homologous sequences Si may be closely or distantly re-
lated to C (i.e., we assume they have independent expected mu-
tations per site with respect to the consensus). Model-wise, we
introduce evolutionary times τ i to estimate the distance of Si to
C. The process is conventionally described by the general time-
reversible substitution model parameterized by a 20 × 20 matrix
Q of instantaneous substitution rates from 1 amino acid to any
other [36, 37]. Like the scoring matrices used by traditional align-
ment algorithms, Q models prior biological knowledge on the rel-
ative expected frequencies of amino acid substitutions. From Q,

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

6 | GigaScience, 2022, Vol. 11, No. 1

the amino acid mutation probabilities after time τ given an initial
amino acid can be derived as follows:

P(τ) = exp(τQ), (7)

where exp denotes the matrix exponential. The ath row of this
matrix, P(τ)a, corresponds to the expected amino acid distribution
after time τ when starting with amino acid a. As the model is time-
reversible, it is also the distribution of amino acids τ time units ago
at a site where amino acid a is observed now.

We initialize τ with zeros and optimize it under the constraints
0 ≤ τ S ≤ 2.5, where the maximal value of 2.5 corresponds to the
PAM250 matrix and zero is the identity. The vector τ is learned
jointly with the HMM parameters θ . Put differently, we learn the
branch lengths of a starlike tree jointly with the sequence model.
For each batch of sequences, the correct subset of τ is gathered.
The ancestral probabilities with the final values τ are also used
during Viterbi decoding of the alignment. More precisely, we re-
place all likelihoods P(Si | θ) with P(Si | θ, τi).

The τ i are related to sequence weights, but they are learned
from data and do not require a tree or any other pairwise sequence
comparison. Assume that for some suitable distance metric, one
sequence Si has a large total distance to all other sequences. In
a sequence weighting scheme, Si would typically have a larger
weight than sequences with many close relatives to account for
the underrepresentation. Choosing a large τ i can increase P(Si|θ ,
τ i) by smearing Si toward the consensus. But this increase is inde-
pendent of all other sequences and involves no change of θ .

Technical background
We use TensorFlow [38] to automatically compute the gradients
of � with respect to θ and τ . We use the Adam optimizer [8] with
a learning rate of 0.1 to minimize �. Note that automatic differ-
entiation allows low-effort changes to the HMM architecture and
the prior. Moreover, the addition of any type of preliminary deep
learning layer (e.g., ancestral probabilities) is possible. Using a ma-
chine learning back end provides access to GPU acceleration and
other computational benefits out of the box. Our method does not
strictly require a GPU, but it is highly recommended to use one to
train models beyond length 100. The training automatically scales
to multiple GPUs by splitting the batches.

Data description
We tested learnMSA on HomFam [11], BaliFam [39], and the 10
largest Pfam [28] families. The former two are benchmark collec-
tions based on reference alignments from HOMSTRAD [40] and
BAliBase [41], respectively. Each reference set is embedded into a
large set of putative homologs gathered from Pfam. BaliFam has 2
variants where the references are embedded into 100 and 10,000
homologs, respectively. Low sequence numbers were not our tar-
get of interest, but we included the small BaliFam variant specif-
ically to test the upscaling ability of our model. See Table 2 for
further details. We did not modify, extend, or reduce HomFam or
BaliFam other than the embedding step as just described.

To test the ability of our method to align under high sequence
length heterogeneity, we constructed a fragmentary variant of
BaliFam10000 by following the procedure that was used to test
UPP before [17]. We chose BaliFam10000, because the homologs
had lengths comparable to the references, whereas HomFam ho-
mologs in many cases appear to be not full-length. We con-
structed a high-fragmentation collection BaliFrag by randomly se-
lecting 40% of the sequences per dataset in BaliFam10000. For

each of these sequences, we sampled a fragment length from a
normal distribution with mean equal to 33% of the mean length
of the full-length sequences and a standard deviation of 15. We
sampled uniformly from all valid starting positions of the frag-
ment in the whole sequence.

Finally, we experimented with 10 ultra-large datasets that were
acquired from Pfam by selecting the largest families (based on the
number of sequences in the full alignments) and downloading the
respective UniProt datasets that were generated by searching the
UniProtKB database using the Pfam family HMM. We also down-
loaded the corresponding seed alignments to use them as a ref-
erence. For the training datasets, we added the seed sequences
to the UniProt datasets if not already present and removed all
gaps. The families are Zinc finger C2H2 type (PF00096), WD do-
main G-beta repeat (PF00400), ABC transporter (PF00005), Protein
kinase domain (PF00069), Ankyrin repeats (PF12796), Major Fa-
cilitator Superfamily (PF07690), Leucine rich repeat (PF13855), Fi-
bronectin type III domain (PF00041), Response regulator receiver
domain (PF00072), and Immunoglobulin I-set domain (PF07679).
All have known 3-dimensional structure. ABC transporter is the
largest dataset with about 3.5 million sequences. See Table 3 for
details.

Analysis
We compared learnMSA to the following aligners: Clustal Omega
(version 1.2.4), regressive T-Coffee (version 13.45.0.4846264), MA-
GUS (git hash f9a3676 from 2022-01-21), UPP (version 4.5.2), and
MAFFT-Sparsecore (MAFFT Version 7.490). To the best of our
knowledge, there is no mature deep learning–based tool for large
multiple alignment of proteins available for comparison.

The command lines to align HomFam and BaliFam were (in-
put/output and CPU arguments omitted):

MsaHmm.py

clustalo -t protein --outfmt=fa
mafft-sparsecore.rb

run_upp.py -M -1 -m amino

magus.py -t clustal --recursive false

t_coffee -reg -nseq 100 -tree mbed

-method mafftginsi_msa

and for the ultra-large datasets (commands equal to the Hom-
Fam/BaliFam case omitted):

mafft --parttree

magus.py -t random --recurse True

--recurseguidetree clustal

t_coffee -reg -nseq 1000 -tree parttree

-method mafftfftnsi_msa

We ran learnMSA as well as UPP on all datasets (including ultra-
large) in default mode without manual parameter adjustments.
We did not attempt to align the ultra-large files with Clustal
Omega, because we already observed a severe drop in accuracy on
sequences in the thousands. MAFFT-Sparsecore refused to align
the ultra-large datasets. We used MAFFT with the parttree op-
tion instead. For MAGUS, we enabled recursion for the ultra-large
datasets, set the guide tree for the highest recursion level to “ran-
dom” due to very long runtimes with other choices, and used
clustal trees for all other recursion levels. To use T-Coffee regres-
sive on the ultra-large datasets, we increased the maximum num-
ber of sequences in the subalignments to 1,000 in the hope that
we could avoid very long MSAs due to concatenated independent
gaps during the merging steps. For a speedup, we also ran T-Coffee
with parttree and MAFFT FFT-NS-i. All parameter changes in order
to align the ultra-large datasets were done reactively after testing

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

learnMSA: Learning and aligning large protein families | 7

Table 2. Dataset properties

Collection
Number of

families Number of sequences Sequence length
Min Max Avg Min Max Avg

HomFam (refs.) 94 5 41 8 14 854 215
HomFam 94 93 93,681 8,007 12 854 148
BaliFam (refs.) 59 4 142 27 22 471 158
BaliFam100 59 104 242 127 20 764 161
BaliFam10000 36 10,004 10,142 10,031 7 607 175
BaliFrag 36 10,004 10,142 10,031 7 607 129

Table 3. Ultra-large dataset properties

Family No. of sequences %id Sequence length

Combined Seed Min Max Avg

PF00005
3,489,586

55 26 18 683 146

PF07690
1,861,106

192 13 37 577 284

PF00096
1,783,511

159 41 12 34 23

PF00072
1,767,045

52 25 28 156 110

PF00400
1,594,257

1,465 24 12 101 35

PF00069
1,154,714

38 21 24 511 227

PF12796 945,198 184 24 27 153 78
PF13855 766,271 62 28 26 73 57
PF00041 666,310 98 20 27 139 81
PF07679 579,519 48 21 25 149 83

Sequence identity is based on full alignment. Sequence lengths are given for
the combined dataset.

the slower and more accurate settings used for HomFam and Bal-
iFam first.

Our method was run using 8 CPU cores, 100 GB of RAM, and
a NVIDIA GeForce RTX 3090 GPU for all datasets, including the
ultra-large ones. All other aligners did not utilize a GPU and were
run using 8 CPU cores and 100 GB of RAM for HomFam and Bali-
Fam and 16 cores and 500 GB of RAM for the ultra-large datasets.
We chose all memory numbers as a safe upper limit and did no
further experiments to evaluate tight requirements. We used a
wall clock limit of 3 days for each individual ultra-large alignment.

Sum-of-pairs (SP) score and total column (TC) score were com-
puted by comparing the subalignments induced by the reference
sequences to a structure-based alignment (in case of HomFam
and BaliFam) or the Pfam seed alignment (in case of the ultra-
large datasets). We used T-Coffee with the aln_compare option. The
reference sequences are not known to the aligning method.

On the ultra-large datasets, learnMSA is most accurate and
fastest in almost all cases (see Table 4). All other methods ex-
cept UPP required manual adjustment of the default parameters
to get them to work. In the end, not all tested aligners were able to
align all datasets indicating technical limitations of state-of-the-
art tools. In addition to timeout and memory issues, we observed
a tendency of the divide-and-conquer methods (T-Coffee, MAGUS)
to construct MSAs with much larger column counts than the ref-
erence (see the expansion column in Table 4), sometimes to the
extent that the output file was too large for further usage. This is
most likely due to their merging of subalignments in which inde-

pendent gaps are stacked rather than aligned. LearnMSAs align-
ments do not grow in length with increasing number of sequences.
Fig. 2 shows representatively that ultra-large MSAs computed by
learnMSA tend to be tighter than those of comparable tools and
do not suffer from underalignment. In the case of PF00096, learn-
MSA has no clear advantage, but this family has relatively high
sequence identity and very short sequences and is therefore eas-
ier to align than the others. Below 1 million sequences, learnMSA
loses its runtime advantage and is about as fast as MAFFT and
T-Coffee but at the same time much more accurate.

Fig. 3 shows the distribution of SP and TC scores for HomFam
and BaliFam. We were able to match state-of-the-art performance
on HomFam. If restricted to the 20 sequence sets with at least
10,000 sequences, the benefit of using pHMM-based alignment in-
creases. Note that the number of sequences in the HomFam col-
lection varies significantly (see Table 2). Likewise, HMM matches
state-of-the-art performance on BaliFam10000 but falls behind on
BaliFam100.

LearnMSA aligned HomFam and BaliFam10000 in a total of
40 hours (sequential training of 5 independent models on the
same machine). For the same, Clustal Omega took 3.5 hours,
MAFFT-Sparsecore 24 hours, UPP 19 hours, T-Coffee regressive
9 hours, and MAGUS 48 hours.

We also evaluated how increasing the number of homologs that
are aligned together with the reference sequences affects align-
ment accuracy. To create a biologically realistic test setting, we
took the 10 Pfam datasets from Table 3 and aligned the combi-
nation of the respective seed sequences (called references in the
following) with random subsets of the remaining homologs. We
started by aligning only the references. Note that the reference set
sizes vary between 38 and 1,465 (Table 3). Homologs were drawn
randomly without replacement from the UniProtKB datasets to fill
up the aligned datasets to monotonically increasing sizes, such
that the resulting sets are nested (in a series of MSAs, homologs
are only added, never removed). We repeated this serial sampling
procedure 10 times and averaged the results over equal-sized
alignments. We compared learnMSA with T-Coffee regressive and
MAFFT using the commands above from previous experiments,
both the accurate and fast variants.

As seen in Fig. 4, the accurate variants of T-Coffee regres-
sive, MAFFT-Sparsecore, and learnMSA are similar in SP score
when only aligning the references. Further, all alignment methods
lose accuracy after adding homologs at all. However, the asymp-
totic accuracy of learnMSA is barely affected by the number of
added homologs, whereas we observe clearly decreasing trends
for the other methods. The relative performance of the meth-
ods is dataset dependent and indicates that learnMSA has ad-
vantages for the global alignment of protein families. Starting
at 200,000 sequences, we observed that regressive T-Coffee and
MAFFT-Sparsecore failed for some MSA tasks (we allowed 200 GB

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

8 | GigaScience, 2022, Vol. 11, No. 1

Table 4. Results for the ultra-large datasets

Family Method SP TC Hours Expansion

PF00005 learnMSA 74.9 22.2 10.0 1.89
UPP 73.5 10.2 52.5 1.98
MAFFT error
MAGUS timeout
Regressive T-Coffee error

PF07690 learnMSA 56.1 0.0 30.2 1.82
UPP 51.6 0.0 35.5 2.48
MAFFT error
MAGUS timeout
Regressive T-Coffee error

PF00096 learnMSA 92.9 6.5 0.9 1.16
UPP 86.3 0.0 1.7 2.23
MAFFT 84.1 16.1 0.3 2.74
MAGUS 94.8 3.2 3.6 4.68
Regressive T-Coffee 69.9 0.0 0.9 6.55

PF00072 learnMSA 92.4 39.2 2.9 1.1
UPP 91.4 34.6 6.7 1.32
MAFFT 64.9 4.6 7.6 3.69
MAGUS 85.8 33.1 24.8 2.41
Regressive T-Coffee output too large

PF00400 learnMSA 18.0 0.0 1.1 1.29
UPP 3.6 0.0 2.0 2.62
MAFFT 0.0 0.0 2.3 7.71
MAGUS 6.9 0.0 12.6 17.32
Regressive T-Coffee 0.0 0.0 2.0 51.28

PF00069 learnMSA 83.4 24.9 11.3 1.37
UPP 83.3 20.2 19.5 1.6
MAFFT 54.9 5.4 53.0 3.52
MAGUS 65.4 18.1 29.1 4.77
Regressive T-Coffee error

PF12796 learnMSA 72.4 0.0 1.3 0.85
UPP 40.8 0.0 4.3 3.18
MAFFT 40.4 0.4 7.5 6.36
MAGUS 58.9 0.0 67.2 5.62
Regressive T-Coffee output too large

PF13855 learnMSA 94.7 26.2 0.8 1.05
UPP 91.0 21.5 2.5 1.71
MAFFT 80.6 3.1 1.2 3.05
MAGUS 94.7 38.5 54.1 1.47
Regressive T-Coffee 49.2 0.0 0.8 7.21

PF00041 learnMSA 79.1 16.5 1.0 1.34
UPP 74.9 22.0 2.3 2.18
MAFFT 43.2 0.0 2.0 7.83
MAGUS 72.6 10.1 53.8 6.4
Regressive T-Coffee 37.0 0.0 0.8 15.16

PF07679 learnMSA 94.1 50.0 0.9 1.11
UPP 88.7 46.0 2.9 1.43
MAFFT 68.1 13.0 1.1 3.36
MAGUS 84.0 42.0 4.3 2.12
Regressive T-Coffee 44.2 2.0 0.6 8.55

Expansion denotes the ratio of the length of the predicted alignment (induced by the reference sequences) to the reference alignment length. Values greater than 1
indicate underalignment (i.e., the estimated alignment is longer than the reference). Timeout: the alignment could not be completed by the method within a wall
clock limit of 3 days. Error: the alignment failed with an error (either out of memory or another unknown reason). Output too large: the alignment was successful,
but the output file was impractically large to be properly postprocessed (e.g., PF12796: T-Coffee 445 GB, learnMSA 1.2 GB). For each cell and column, the best value
is in boldface.

of RAM per MSA). The only methods able to align all datasets were
learnMSA and MAFFT with the partree option. For our evaluation,
we decided to replace each failed MSA with the largest success-
ful alignment in the respective series of nested sets, assuming, in
favor of the aligning method, that the failed MSA is in theory unaf-
fected by an increase in sequence numbers. Despite that, as seen
in Fig. 4, typically a further increase in the number of homologs

still leads to a decrease in accuracy of the established algorithmic
aligners.

For the high-fragmentation collection BaliFrag, learnMSA can
compete with MAFFT-Sparsecore, UPP, and MAGUS (Fig. 3). All
rely on robust ways to exclude putative fragmentary sequences in
early alignment stages by restricting initial backbone alignments
to sequences from the upper quantiles [13, 15, 17]. Clustal Omega

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

learnMSA: Learning and aligning large protein families | 9

Figure 2: Vertical MSA slices for the ultra-large family PF00069 with more than a million sequences. The 10 most informative sequences (i.e., the most
dissimilar ones based on the reference MSA) were extracted using T-Coffee. We took a random vertical slice ranging from columns 25 to 90 in the
reference MSA and computed vertical slices for the predicted MSAs as induced by the sequence fragments. We used Jalview 2.11.2.2 with clustalx
coloring for visualization. For better comparability, TTK_HUMAN was selected as reference sequence.

and T-Coffee regressive fall behind in this benchmark. This anal-
ysis confirms that learnMSA can accurately adapt to fragmentary
sequences by first training a pHMM on sequences that are deemed
full-length and fitting to the complete sequence set thereafter.
Partial-domain hits correctly use the entry and exit transitions as
seen in Fig. 5. The difference of learnMSA to the competing meth-
ods is that we do not restrict the initial stages to a constant-sized
subset of the sequences and that the final alignment is, in prin-
ciple, able to correct incorrect decisions from earlier iterations. A
suitable number of full-length examples is required to find a cor-
rect initial model length and to build a consensus. However, UPP
teaches us that it is easy to add fragmentary sequences with pH-
MMs once a full-length consensus is established [17].

Discussion
We have proposed learnMSA, a novel unsupervised learning ap-
proach for the alignment of large protein families. In contrast to
state-of-the-art aligners, learnMSA does not require a tree, which
eliminates a crucial performance bottleneck and makes learn-
MSA asymptotically fast—linear in the number of sequences. It is
interesting to see that state-of-the-art performance on large se-

quence numbers can be reached without a tree by uniform batch
sampling. Our method does not rely on progressive, regressive, or
divide-and-conquer heuristics. We showed empirically that learn-
MSA, when aligning millions of sequences, is both more accurate
and faster (even though the measured time was for 5 independent,
sequentially trained models). Moreover, when aligning Pfam fam-
ilies, additional homologs decrease the accuracy of traditional,
heuristic methods (if they are feasible for large sequence numbers
at all), whereas learnMSA is more robust. Whether this statement
also applies to established benchmarks like HomFam remains an
open question that can be answered if more homologs are gath-
ered for these datasets in the future. A similar scaling experiment,
which was done for T-Coffee regressive [10] based on HomFam,
suffers from limited data coverage for large sequence numbers
(i.e., the number of available families decreases when the MSA
depth increases). This is not the case in our study as enough ho-
mologs were available from the UniProtKB datasets.

LearnMSA generalizes and automatizes earlier pHMM training
approaches for protein families. It does this by taking HMMER’s
“Plan7” model but avoids the manual adjustment of the “align-
ment mode” (local versus glocal or unihit versus multihit). In-
stead, the extra states and transitions (orange in Fig. 1A) are opti-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

10 | GigaScience, 2022, Vol. 11, No. 1

Figure 3: Total column (TC, left) and sum-of-pairs (SP, right) scores for the HomFam (top) and BaliFam (bottom) collections.

Figure 4: Alignment accuracy as a function of family size. For evaluation purposes, increasing numbers of further homologs are added to a static set of
reference sequences. The data points are labeled with the fractions of alignment tasks that produced an usable MSA at all. Missing data points
indicate that the aligning method failed for the entirety of the datasets. In case of a failed alignment (due to hardware constraints), we inserted the
score of the largest successful alignment in the respective series of nested sets, in favor of the aligning method. Therefore, the plot shows the behavior
of the accuracy of the remaining MSAs under the (obliging) assumption that the failed MSAs are in theory unaffected by an increase in sequence
numbers. Such incomplete data points are colored red. The shaded area is the standard deviations over the 10 samples, averaged over the families.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

learnMSA: Learning and aligning large protein families | 11

Figure 5: A learned pHMM for the Bowman–Birk serine protease inhibitor family in the HomFam collection with Viterbi paths for 3 different
sequences: A single domain hit (blue), a multihit (brown) and, a partial hit (cyan). Numbers on edges are transition probabilities, numbers on nodes are
self-loop probabilities. For each match states, the top 3 amino acids and their probabilities are printed, along with the probability of entering and
exiting at the respective match.

mized jointly with the core model starting with a tabula rasa con-
figuration, which greatly reduces the required hand-holding. This
is also beneficial, if a suitable alignment mode for a dataset is
unknown. LearnMSA is designed in a way that minimizes the as-
sumptions a user has to make. Note that for all tested datasets,
including dramatically varying sequence numbers and levels of
fragmentation, we used learnMSA’s default configuration of hy-
perparameters. It should be pointed out that learnMSA is partic-
ularly accurate compared to other methods when aligning fami-
lies that contain multihits. This is clearly visible in Fig. 6, for ex-
ample, in the cases of Beta gamma crystallin (“cryst,” PF00030),
Bowman–Birk protease inhibitor (“bowman,” PF00228), or Annexin
(“annexin,” PF00191).

On HomFam and BaliFam, we match state-of-the-art perfor-
mance but observe reduced relative accuracy for low sequence
numbers. This indicates that there is a lower limit on the sequence
numbers below which learnMSA’s performance decreases rela-
tively to other methods, but this is not surprising for a statistical
learning approach and can currently be solved by falling back to
a traditional aligner. There is a slight disadvantage of HMM in av-
erage scores for HomFam over all 94 datasets compared to only
the largest 20. HomFam contains datasets with a few as 93 se-
quences. Further evaluation revealed that the disadvantage is not
fully explained by low sequence numbers alone, however. Instead,
we observed problems if the reference sequences are significantly
longer than the homologs (for instance, rhv references are on aver-
age 5 times as long as the homologs). Fig. 6 (left) indicates a neg-
ative correlation between relative reference length with respect
to homologs and score difference. The low-score cases frequently
map to “multidomain” secondary structures. In those cases, the
references are full-length proteins and the homologs pruned to
a specific domain (i.e., information is cut away). This effect is
present for all comparison tools except UPP, which is shown in
Fig. 6 on the right. For statistical learning, the choice of homologs
in HomFam constitutes a problem. The number of reference se-
quences is very low (8 on average for HomFam), and they can con-
tain information that the homologs miss, which means that po-
tentially important motifs are underrepresented in the dataset.
In such situations, it is both hard to guess a suitable initial model
length and train a full-length model from scratch. Moreover, this
reveals a potential weak spot of the HomFam collection: a method
that aligns the longest sequences in a dataset first will most likely
catch the references early. The score, which is estimated on the

references only, might therefore overestimate the true score on
the complete dataset.

Note that in principle, learnMSA could also align DNA/RNA se-
quences, but this feature is not implemented yet. Machine learn-
ing methods can likely play out their advantages more for pro-
teins due to the relative complexity of parameter space and priors.
Further, learnMSA is currently best suited for short- or medium-
length sequences.

Conclusion
Our proposed approach constitutes a probabilistically grounded
framework for a large MSA that has potential for further im-
provements in several directions. Further development might be
straightforward because of the extensible nature of our method.

A natural extension of the work presented here are ensem-
bles of pHMMs. They are used in UPP, where a subset of the
sequences is aligned and subsequently represented by an en-
semble. Recently, MAGUS combined with an HMM ensemble has
shown improved accuracy as well [42]. On the HomFam collec-
tion, UPP’s performance decreased slightly when replacing the en-
semble with a single HMM [17]. The latter is related to our ap-
proach, with the difference that for learnMSA, the HMM parame-
ters depend on all input sequences instead of a randomly selected
backbone set. This might explain why learnMSA aligns HomFam
slightly more accurately than UPP, as seen in Fig. 3, even though
learnMSA does not currently use an ensemble.

When benchmarking learnMSA, we observed decreasing rel-
ative performance when reducing the number of sequences to
align. The behavior of state-of-the-art tools is usually comple-
mentary: they are more accurate for lower sequence numbers.
Moreover, Fig. 6 shows that the relative performance of learnMSA
greatly depends on the particular (reference) dataset. This sug-
gests the idea of a combined approach to multiple sequence align-
ment, where a prior (e.g., the number of sequences) or posterior
(e.g., the likelihood) criterion is used to decide between the MSA
of either learnMSA or of an established heuristic aligner.

In contrast to traditional learning algorithms for HMMs,
gradient-based learning can, in principle, be a module of a larger
machine learning model that is trained end-to-end. By design,
learnMSA can incorporate any type of sequence context encoded
into the HMM alphabet. For instance, single-sequence secondary
structure predictions can be incorporated. Secondary structure is

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

12 | GigaScience, 2022, Vol. 11, No. 1

Figure 6: A detailed comparison of the performance of learnMSA relative to MAFFT-Sparsecore (left) and UPP (right) for all 94 HomFam families
grouped by secondary structure. Score difference is defined as SP(learnMSA) − SP(other). Relative reference length is defined as the ratio of the average
reference length and the average length of the combined dataset including the homologs. For example, “Ald_Xan_dh_2” references are on average
about 7 times as long as the respective homologs. The legend contains the average SP score of learnMSA per structure group.

more conserved than primary sequence, and this approach has
been shown to increase accuracy in the presence of low sequence
identity [43]. There are many kinds of interactions in proteins
that are not easily modeled by our current approach (e.g., pair-
wise correlations between amino acid distributions in positions
that are widely separated in the primary sequence but close in
the 3-dimensional structure). The field of protein language mod-
eling where parameter-rich sequence models are learned semi-
supervised [44, 45] based on Attention [46, 47] or LSTMs [48]
is also compatible and complementary to our approach. Cur-
rently, we use very limited prior knowledge about proteins in
the form of parameters as we simply one-hot encode amino
acids and only use a rate matrix to compute ancestral probabil-
ities. Using instead semantically rich [44] residual-level embed-
ding vectors from pretrained language models may benefit the
predictions.

Availability of Source Code and
Requirements
� Project name: learnMSA
� Project homepage: https://github.com/Gaius-Augustus/lear

nMSA
� Operating system(s): Platform independent
� Programming language: Python3
� Other requirements: Python packages tensorflow, optional for

visualization: networkx, logomaker
� License: MIT
� RRID: SCR_022572
� biotoolsID: learnMSA

Data Availability
The datasets supporting the results of this article are available in
the repository https://github.com/felbecker/MSA-HMM-Analysis.
An archival copy of code and data is also available via the Giga-
Science database GigaDB [49].

Abbreviations
GPU: graphics processing unit;
MSA: multiple sequence alignment;
(p)HMM: (profile) hidden Markov model.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
F.B. designed and implemented learnMSA, prepared the data, ran
all software, and wrote the manuscript. M.S. conceived the idea
and designed and implemented an initial version of a recurrent
machine learning layer for HMMs and provided prototype code
for the usage of ancestral probabilities. Both authors approved the
final manuscript.

References
1. Eddy, SR. Accelerated profile HMM searches. PLoS Comp Biol

2011;7(10):e1002195.
2. Mistry, J, Finn, RD, Eddy, SR, et al. Challenges in homology search:

HMMER3 and convergent evolution of coiled-coil regions. Nucleic
Acids Res 2013;41(12):e121.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

https://github.com/Gaius-Augustus/learnMSA
https://github.com/felbecker/MSA-HMM-Analysis

learnMSA: Learning and aligning large protein families | 13

3. Krogh, A, Brown, M, Mian, IS, et al. Hidden Markov models in
computational biology: applications to protein modeling. J Mol
Biol 1994;235(5):1501–31.

4. Eddy, SR. Multiple alignment using hidden Markov models. Proc
Int Conf Intell Syst Mol Biol 1995;3:114–20.

5. Baldi, P, Chauvin, Y, Hunkapiller, T, et al. Hidden Markov mod-
els in molecular biology: new algorithms and applications. Adv
Neural Info Process Syst 1992;5.747–754

6. Rasmussen, TK, Krink, T. Improved hidden Markov model
training for multiple sequence alignment by a particle swarm
optimization—evolutionary algorithm hybrid. Biosystems
2003;72(1–2):5–17.

7. Sun, J, Wu, X, Fang, W, et al. Multiple sequence alignment us-
ing the hidden Markov model trained by an improved quantum-
behaved particle swarm optimization. Info Sci 2012;182(1):93–
114.

8. Kingma, DP, Ba, J. Adam: a method for stochastic optimization.
2014. arXiv preprint. arXiv:14126980.

9. Baydin, AG, Pearlmutter, BA, Radul, AA, et al. Automatic dif-
ferentiation in machine learning: a survey. J Machine Learn Res
2018;18:1–43.

10. Garriga, E, Di Tommaso, P, Magis, C, et al. Large multiple se-
quence alignments with a root-to-leaf regressive method. Nat
Biotechnol 2019;37(12):1466–70.

11. Sievers, F, Wilm, A, Dineen, D, et al. Fast, scalable generation
of high-quality protein multiple sequence alignments using
clustal omega. Mol Syst Biol 2011;7(1):539.

12. Katoh, K, Standley, DM. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability.
Mol Biol Evol 2013;30(4):772–80.

13. Yamada, KD, Tomii, K, Katoh, K. Application of the MAFFT
sequence alignment program to large data—reexamination
of the usefulness of chained guide trees. Bioinformatics
2016;32(21):3246–51.

14. Mirarab, S, Nguyen, N, Guo, S, et al. PASTA: ultra-large multiple
sequence alignment for nucleotide and amino-acid sequences.
J Comp Biol 2015;22(5):377–86.

15. Smirnov, V, Warnow, T. MAGUS: multiple sequence alignment
using graph clustering. Bioinformatics 2021;37(12):1666–72.

16. Smirnov, V. Recursive MAGUS: scalable and accurate multiple
sequence alignment. PLoS Comp Biol 2021;17(10):e1008950.

17. Nam-phuong, DN, Mirarab, S, Kumar, K, et al. Ultra-large align-
ments using phylogeny-aware profiles. Genome Biol 2015;16(1):
1–15.

18. Katoh, K, Toh, H. PartTree: an algorithm to build an approximate
tree from a large number of unaligned sequences. Bioinformatics
2007;23(3):372–4.

19. Price, MN, Dehal, PS, Arkin, AP. FastTree 2—approximately
maximum-likelihood trees for large alignments. PLoS One
2010;5(3):e9490.

20. Jafari, R, Javidi, MM, Kuchaki Rafsanjani, M. Using deep rein-
forcement learning approach for solving the multiple sequence
alignment problem. SN Appl Sci 2019;1(6):1–12.

21. Kuang, M, Liu, Y, Gao, L. DLPAlign: a deep learning based pro-
gressive alignment method for multiple protein sequences. In:
CSBio’20: Proceedings of the Eleventh International Conference on Com-
putational Systems-Biology and Bioinformatics. 2020. p. 83–92. New
York, NY, USA: Association for Computing Machinery.

22. Song, YJ, Ji, DJ, Seo, H, et al. Pairwise heuristic sequence align-
ment algorithm based on deep reinforcement learning. IEEE
Open J Eng Med Biol 2021;2:36–43.

23. Llinares-López, F, Berthet, Q, Blondel, M, et al. Deep embedding
and alignment of protein sequences. bioRxiv 2021. https://doi.or
g/10.1101/2021.11.15.468653.

24. Jumper, J, Evans, R, Pritzel, A, et al. Highly accurate protein
structure prediction with AlphaFold. Nature 2021;596(7873):
583–9.

25. Mirabello, C, Wallner, B. RAWMSA: end-to-end deep learn-
ing using raw multiple sequence alignments. PLoS One
2019;14(8):e0220182.

26. Fukuda, H, Tomii, K. DeepECA: an end-to-end learning frame-
work for protein contact prediction from a multiple sequence
alignment. BMC Bioinformatics 2020;21(1):1–15.

27. Ju, F, Zhu, J, Shao, B, et al. CopulaNet: learning residue co-
evolution directly from multiple sequence alignment for protein
structure prediction. Nat Commun 2021;12(1):1–9.

28. Mistry, J, Chuguransky, S, Williams, L, et al. Pfam: the pro-
tein families database in 2021. Nucleic Acids Res 2021;49(D1):
D412–9.

29. Eddy, SR. Profile hidden Markov models. Bioinformatics (Oxford,
England) 1998;14(9):755–63.

30. Eddy, SR. A probabilistic model of local sequence alignment
that simplifies statistical significance estimation. PLoS Comp Biol
2008;4(5):e1000069.

31. Rabiner, L, Juang, B. An introduction to hidden Markov models.
IEEE Assp Magazine 1986;3(1):4–16.

32. Durbin, R, Eddy, SR, Krogh, A, et al. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge, UK:
Cambridge University Press; 1998.

33. Van der Auwera, S, Bulla, I, Ziller, M, et al. ClassyFlu: classifica-
tion of influenza A viruses with discriminatively trained profile-
HMMs. PLoS One 2014;9(1):e84558.

34. Brown, M, Hughey, R, Krogh, A, et al. Using Dirichlet mixture pri-
ors to derive hidden Markov models for protein families. Proc Int
Conf Intell Syst Mol Biol 1993;1:47–55.

35. Sjölander, K, Karplus, K, Brown, M, et al. Dirichlet mix-
tures: a method for improved detection of weak but sig-
nificant protein sequence homology. Bioinformatics 1996;12(4):
327–45.

36. Dayhoff, MO, Eck, R, Park, C. A model of evolutionary change in
proteins. Atlas Protein Sequence Structure 1972;5:88–99.

37. Le, SQ, Gascuel, O. An improved general amino acid replacement
matrix. Mol Biol Evol 2008;25(7):1307–20.

38. Abadi, M, Barham, P, Chen, J, et al. TensorFlow: a system for large-
scale machine learning. In: 12th USENIX symposium on operating
systems design and implementation (OSDI 16). 2016, p. 265–83. Sa-
vannah, GA, USA: USENIX.

39. Edgar, RC. MUSCLE v5 enables improved estimates of phyloge-
netic tree confidence by ensemble bootstrapping. bioRxiv 2021.
https://doi.org/10.1101/2021.06.20.449169.

40. Stebbings, LA, Mizuguchi, K. HOMSTRAD: recent developments
of the homologous protein structure alignment database. Nucleic
Acids Res 2004;32(Suppl 1):D203–7.

41. Thompson, JD, Koehl, P, Ripp, R, et al. BAliBASE 3.0: latest devel-
opments of the multiple sequence alignment benchmark. Pro-
teins 2005;61(1):127–36.

42. Shen, C, Zaharias, P, Warnow, T. MAGUS+ eHMMs: improved
multiple sequence alignment accuracy for fragmentary se-
quences. Bioinformatics 2022;38(4):918–24.

43. Wright, ES. DECIPHER: harnessing local sequence context to im-
prove protein multiple sequence alignment. BMC Bioinformatics
2015;16(1):1–14.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

https://doi.org/10.1101/2021.11.15.468653
https://doi.org/10.1101/2021.06.20.449169

14 | GigaScience, 2022, Vol. 11, No. 1

44. Alley, EC, Khimulya, G, Biswas, S, et al. Unified rational protein
engineering with sequence-based deep representation learning.
Nat Methods 2019;16(12):1315–22.

45. Rao, R, Bhattacharya, N, Thomas, N, et al. Evaluating pro-
tein transfer learning with TAPE. Adv Neural Info Process Syst
2019;32:9689.

46. Vaswani, A, Shazeer, N, Parmar, N, et al. Attention is all you need.
Adv Neural Info Process Syst 2017;30.5998–6008

47. Devlin, J, Chang, MW, Lee, K, et al. Bert: pre-training of deep bidi-
rectional transformers for language understanding. 2018. arXiv
preprint. arXiv:181004805.

48. Hochreiter, S, Schmidhuber, J. Long short-term memory. Neural
Comput 1997;9(8):1735–80.

49. Becker, F, Stanke, M. Supporting data for “learnMSA: learning
and aligning large protein families.” GigaScience Database. 2022,
http://dx.doi.org/10.5524/102320.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac104/6833031 by Ernst-M

oritz-Arndt-U
niversität G

reifsw
ald user on 11 April 2024

http://dx.doi.org/10.5524/102320

