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A B S T R A C T   

Peatlands contribute to a wide range of ecosystem services. They play an important role as carbon sinks in their 
natural state, but when they are drained, they cause carbon emissions. Rewetting drained peatlands is required to 
reduce carbon emissions and create new carbon sinks. However, drained peatlands are commonly used as 
grassland or croplands; therefore, alternative agriculture schemes are required following rewetting. Pal-
udiculture, i.e., agriculture on wet and rewetted peatlands, is an option in these areas after rewetting to produce 
biomass sustainably. Monitoring of peatland management is challenging, yet needed to ensure a successful 
rewetting and plantation of, e.g., Phragmites australis and Typha spp., two plants which are commonly used in 
paludiculture. Remote sensing is an excellent tool for monitoring the vegetation composition of vast rewetted 
peatland regions. However, because many peatland species have similar spectral characteristics, such monitoring 
is ideally based on high-spatial, high-temporal hyperspectral images. Data that complies with all these re-
quirements does not exist on a regular basis. Therefore, we assessed the potential for mapping peatland vege-
tation communities in the Peene and Trebel river basins of the federal state of Mecklenburg-Western Pomerania, 
Germany, using multi-date hyperspectral (PRISMA) data. We used regression-based unmixing to map fractions of 
different peatland vegetation classes. Results were analyzed with regard to the contribution of multi-date ob-
servations and, in comparison, to multispectral datasets (Landsat-8/Sentinel-2). Our results showed that different 
classes are best mapped at different observation dates. The multi-date hyperspectral datasets produced less Mean 
Absolute Error (MAE = 16.4%) than the single-date hyperspectral images (ΔMAE + 1%), with high accuracies for 
all classes of interest. Compared to the results obtained with multispectral data from similar acquisition dates and 
annual spectral-temporal metrics (STM), the results from hyperspectral data were always clearly superior 
(ΔMAE + 4%). Besides the superior performance during comparisons, our results also indicate that information 
that can be derived from the hyperspectral data with the regression-based unmixing goes clearly beyond that of 
discrete classification. With more hyperspectral sensors coming up and an expected higher availability of multi- 
data hyperspectral imagery, these data can be expected to play a bigger role in the future monitoring of 
peatlands.   

1. Introduction 

Peatlands are among the most valuable ecosystems in the world; they 
contribute to a wide range of critical ecosystem services, e.g., conserving 
biological diversity (Barthelmes et al., 2015; Parish et al., 2008), regu-
lating water supply (Xu et al., 2018), reducing flood risks (Lupascu et al., 
2020), and mitigating climate change (Leifeld and Menichetti, 2018; 

Strack, 2008). Nevertheless, peatlands are facing threats due to artificial 
drainage, mainly as a basis for agricultural development, plantations, as 
well as urban spread and industrial development (Dise, 2009; Roucoux 
et al., 2017). 

Drainage systems were developed in peatlands for agricultural pro-
duction since centuries; as a result, about 50% of the peatlands in the 
European Union are degraded with >90% of peatlands in Germany 
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being degraded (Joosten et al., 2017; Tanneberger et al., 2021). 
Peatland degradation has various severe impacts on the ecosystem 

(Fluet-Chouinard et al., 2023). One of the most critical ecosystem ser-
vices provided by peatlands is carbon sequestration and storage. Peat-
lands cover only 3% of the world’s land area (Parish et al., 2008), yet 
they store more carbon than any other ecosystem on the planet (500 Gt 
carbon); additionally, they contribute to the annual sequestration of 
around 0.37 Gt of CO2 (Joosten et al., 2016). On the other hand, peat-
lands that have been drained and degraded are the cause of approxi-
mately 2 Gt of CO2 equivalents per year of global carbon emissions 
(Tanneberger et al., 2022; Joosten, 2010). Drained peatlands also in-
crease the frequency and extent of peat fires (Kettridge et al., 2015; 
Schulte et al., 2019), potentially leading to additional carbon emissions. 
Furthermore, the reduction and degradation of peatlands decrease 
native species abundance (Lehosmaa et al., 2017); for example, Fraix-
edas et al. (2017) reported that 40% of peatland bird populations were 
reduced in northern Europe. Similarly, bird populations were affected in 
north-eastern Germany (Görn et al., 2015). Drainage and related 
degradation also cause changes in the natural sediment trapping prop-
erty, hence, soil erosion (Tuukkanen et al., 2016) as well as increasing 
acidity (Saarinen et al., 2013). 

In recent years, the importance of peatlands to society and the 
ecosystem has been widely acknowledged (Bain et al., 2011), and their 
roles regarding biodiversity, flood mitigation, and especially carbon 
storage are now well understood (Parish et al., 2008). Hence, the 
rewetting of drained peatlands is nowadays primarily initiated to con-
trol greenhouse gas emissions and reduce net carbon loss (Günther et al., 
2020) but also to support ecosystem services in general (Curtis et al., 
2014; Kimmel and Mander, 2010). In addition, peatland rewetting can 
reduce fire risk by increasing the moisture content (Sirin et al., 2020) 
and aid in boosting biodiversity values (Görn and Fischer, 2015; Görn 
et al., 2015; Hoffmann et al., 2018). 

Rewetted peatlands can either be left unused as nature protection 
areas or used for sustainable biomass production on wet soils, i.e. as so- 
called “paludiculture” (Tanneberger et al., 2022). In both scenarios, 
carbon emissions are reduced, the peat body is preserved, peat can be 
accumulated under favourable conditions, and other ecosystem services 
are supported, e.g., biomass production or water purification (Günther 
et al., 2020; Tanneberger et al., 2022; Vroom et al., 2018). The biomass 
produced by paludiculture is, depending on the species, mainly utilized 
as animal fodder, to produce energy, for building materials, including 
roof thatching, and packaging in north-eastern Germany. 

In order to achieve carbon neutrality, the Paris Agreement mandates 
that 500,000 km2 of drained peatlands shall be rewetted globally before 
2050–2070 (Kreyling et al., 2021). In Mecklenburg-Western Pomerania, 
about 26,000 ha of peatlands were rewetted (MLU 2017). Nevertheless, 
rewetting peatlands can take years to decades (Pouliot et al., 2011). 
Therefore, constant monitoring is necessary to determine whether the 
process is successful or not (Knoth et al., 2013). 

For north-eastern Germany, most rewetting activities relate to fen 
peatlands. Paludiculture on such rewetted fen peatlands is still in its 
early days, and besides the utilization as wet grassland, experiments 
with potential species include the plantation of Phragmites australis 
(Common Reed) and Typha spp. (Cattail). The success of the biomass 
production of paludiculture crops depends on the rewetting status, such 
as water level, and nutrient conditions, which are species-specific 
(Haldan et al., 2022). In addition, dry conditions may alter the vegeta-
tion composition, which may lead, for example, to shrub encroachment 
in peatlands (Wichtmann and Schäfer, 2007). Thus, the abundance and 
composition of species can be used as an indicator for the success of fen 
peatland rewetting, and vegetation remote sensing may function as a 
reliable proxy for rewetting success (Beyer et al., 2021). 

Distinguishing vegetation types on wet and rewetted peatlands with 
remote sensing imagery is always challenging (Krankina et al., 2008; 
Lees et al., 2018). Although rewetted fen peatlands show similarities to a 
cropland-grassland mosaic, they differ in some respects, which makes a 

clear delineation of surfaces and disentangling sub-pixel components 
more challenging: vegetation such as P. australis, Typha spp. and wet 
grassland experience phenology, yet the relatively high share of remnant 
dry vegetation is not necessarily fully and continuously harvested, partly 
due to complicated access. Especially in areas without regular harvest, a 
mix of non-photosynthetically active (NPV) and green vegetation (GV) 
co-exists with a high share of background signal with varying shadow 
and water fractions. Moreover, small-scale variations in the water and, 
hence, temperature regimes lead to offsets in phenology and, this way, 
additional changes in the appearance of the surfaces in Earth observa-
tion data. However, we can resolve these difficulties by using multi-date 
remote sensing images that can accurately map the peatland vegetation 
communities using phenological variation in different seasons much 
better than single-date imagery. Multi-date imagery, however, can only 
be provided by spaceborne systems, which bring along 10–30 m spatial 
resolutions for freely and regularly available data. At such scales, 
P. australis and Typha spp. occur intermixed with other peatland species 
and background classes; therefore, sub-pixel classification appears more 
suitable than per-pixel classification to detect the respective cover 
fractions. 

In principle, an accurate mapping of vegetation communities on 
rewetted areas is possible using very high spatial resolution multispec-
tral data obtained from an Unmanned Aerial Vehicle (UAV) (Abeysinghe 
et al., 2019; Beyer et al., 2019; Higgisson et al., 2021; KopeĿ et al., 2016; 
Steenvoorden et al., 2022). Furthermore, airborne hyperspectral images 
can be used (Elmer et al., 2021). But, capturing multi-date remote 
sensing images from UAVs and airborne systems at a landscape level is 
critical in terms of time, organization or cost, and pre-processing efforts. 

Some studies have employed commercial high-resolution multi-
spectral images for mapping peatland species. For example, Ghioca- 
Robrecht et al. (2008) used multi-date QuickBird imagery for mapping 
Typha spp. and P. australis, but they faced misclassification errors due to 
the absence of shortwave-infrared (SWIR) bands. Landsat data covers 
the SWIR; nevertheless, the classification may suffer from spectral am-
biguity at the combined spectral and spatial resolution of Landsat 
(Brown et al., 2007). Regardless, Landsat annual or seasonal spectral- 
temporal metrics may be useful for detecting vegetation types using 
phenological fluctuation across time (Okujeni et al., 2021). 

Data from imaging spectrometers with high spectral resolution from 
the visible to the SWIR domain are useful for differentiating peatland 
vegetation communities (McPartland et al., 2019) and such data will 
play a more important role in the future with the currently accessible 
spaceborne hyperspectral data from Hyperspectral Precursor and 
Application Mission (PRISMA — Loizzo et al., 2018), Environmental 
Mapping and Analysis Program (EnMAP — Guanter et al., 2015) and the 
upcoming Copernicus Hyperspectral Imaging Mission for the Environ-
ment (CHIME) and Surface Biology and Geology (SBG) missions with 
quasi-continuous spectral coverage between 400 and 2500 nm (nm). 
The combination of these spaceborne hyperspectral sensors, particularly 
when used in conjunction, will offer a series of multi-date observations 
that prove valuable for studying the growing season of peatland 
vegetation. 

Recently, PRISMA data have been used for mapping forest types 
(Vangi et al., 2021) and crop classification (Pepe et al., 2020), but to the 
best of our knowledge, PRISMA data have not been explored for 
unmixing peatland species. We found one study using 30-m hyper-
spectral data from the Earth-Observing One (EO-1) Hyperion for map-
ping related peatland vegetation, i.e. P. australis in coastal wetlands, 
with per-pixel classification (Pengra et al., 2007). However, for the 
monitoring of peatland rewetting activities, a discrete 30-m scale ap-
pears too coarse and per-pixel classification hence not useful. 

In the presented study, we test the two hypotheses that i) the high 
spectral information content of PRISMA data allows for more accurate 
sub-pixel mapping and, hence, compensates for the limited spatial res-
olution of the image data and ii) observations from multiple dates 
further improve the map accuracy. This way, we investigate the 
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potential contributions of new or future data from spaceborne imaging 
spectrometers to monitoring peatlands. To test our hypothesis, we use 
the concept of regression-based unmixing with synthetic training data 
(Okujeni et al., 2013). The approach was developed for sub-pixel map-
ping of urban areas with (simulated) EnMAP-data and showed the added 
value of the hyperspectral information compared to multispectral 
Landsat data of the exact spatial resolution (Okujeni et al., 2015). The 
approach proved reliable and accurate in several follow-up studies and 
has been more frequently used for the analysis of vegetation type cover 
fractions at the sub-pixel scale with hyperspectral and multispectral data 
(Borges et al., 2022; Cooper et al., 2020; Stanimirova et al., 2022). 
Previous research by Okujeni et al. (2021) demonstrated the capability 
of utilizing imagery from multiple dates. Consequently, this approach 
appears highly suitable for our objective of mapping rewetted fen 
peatlands in the state of Mecklenburg-Western Pomerania, located in 
north-eastern Germany, by leveraging multi-date, spaceborne imaging 
spectroscopy data. 

We ask the following research questions (RQ),  

1) How far do multi-date observations contribute to more accurately 
quantifying peatland vegetation composition?  

2) To what extent does the additional spectral information in imaging 
spectroscopy data support the mapping of peatland vegetation 
communities compared to multispectral information? 

2. Methods 

2.1. Study area 

For this research, we selected rewetted percolation fens located in 
the valleys of the Peene and Trebel rivers in Mecklenburg-Western 

Pomerania, Germany. The study area spans from 53◦49′N to 53◦59′N 
latitude and 12◦53′E to 13◦1′E longitude (Fig. 1). It corresponds to the 
area covered by three flightlines from airborne image acquisition (see 
section 2.2.3). The study area experiences an average annual air tem-
perature of 9.2 ◦C and an average annual rainfall of 583 mm at the 
nearby weather station of Teterow for the period of 1991–2020 
(Deutscher-Wetterdienst, 2023). The fens in the Peene and Trebel river 
basins were formed during the Holocene as a result of the meltwater 
from the last glacial period (Succow, 1971). These fens possess an 
exceptional flora typically associated with fen ecosystems (Görn et al., 
2015; Hennicke, 2001). The Peene riverine peatland area is of interna-
tional importance and in large parts protected within the NATURA 2000 
network (Hoffmann et al., 2018). Since the 1960 s, several parts of the 
peatlands in the Peene river valley were heavily drained and used as 
grassland. However, since 1992 the peatlands along the Peene river’s 
banks have been partly rewetted in order to accomplish biodiversity 
conservation goals (Hoffmann et al., 2018; Timmermann et al., 2009; 
Zerbe et al., 2013). 

The study area is covered by peatland plants such as Phalaris arun-
dinacea (Reed Canary Grass), Carex spp. (Sedges), Phragmites australis 
(Common Reed) and Typha spp. (Cattail) (Fig. 2), as well as other 
landcover categories, including forests, non-wet grasslands, wet grass-
lands, shrublands, water bodies, croplands and settlements. In our study 
area, peatland species can be found in both unmanaged nature reserves 
and wet agriculture. 

2.2. Image data 

To investigate the surplus of multi-date hyperspectral spaceborne 
imagery, we used PRISMA data from three acquisition dates and created 
different products (Section 2.2.1) for the regression-based unmixing 

Fig. 1. Study area map – peatlands around the Peene and Trebel rivers, north-eastern Germany. < Source: Waterbody boundaries were obtained from Open-
StreetMap, and peatland boundaries were provided by the State Office of the Environment, Nature Conservation, and Geology (LUNG), Mecklenburg- 
West Pomerania. 
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Fig. 2. Field photographs – A) P. australis, B) Typha spp., C) P. arundinacea, D) Carex spp., E) Wet grasslands and F) Shrublands.  
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approach (Section 2.4). The results were compared to different products 
obtained from combined Landsat-8 and Sentinel-2 imagery (Section 
2.2.2). We also incorporated airborne hyperspectral data from the 
Airborne Visible Infrared Imaging Spectrometer – Next Generation 
(AVIRIS-NG), which offers higher spatial and spectral resolution (Sec-
tion 2.2.3). This data was ingested to create a classification map, which 
was later used to validate the unmixing results. Please refer to Fig. 3 for 
an overview of all image data pre-processing steps and the various 
products utilized in the experiments. 

2.2.1. Hyperspectral data acquisition and pre-processing 
We obtained the PRISMA Level 2D cloud-free datasets for 19 April, 

16 June, and 13 August 2021 (Fig. 3 & Fig. 4), from the Italian Space 
Agency (ASI). The PRISMA data have a medium spatial resolution (30 
m) and high spectral resolution (12 nm) for 239 bands within the 

spectral range from 400 to 2505 nm. The Level 2D PRISMA datasets 
were already orthorectified, atmospherically corrected, and delivered in 
he5 format. We converted the PRISMA datasets into TIFF format and 
removed the water absorption and bad bands (1–5, 103–113, 147–164 
and 225–234) using the EnMAP-Box (EnMAP-Box, 2019); finally, we 
used 190 spectral bands for the fraction mapping. The multitemporal 
PRISMA data had geolocation offsets; therefore, we co-registered them 
with PlanetScope next-generation images using AROSICS (Scheffler 
et al., 2017). 

2.2.2. Multispectral data acquisition and pre-processing 
To evaluate the surplus of the hyperspectral information, we 

included time series of multispectral data from the same period. We 
obtained Sentinel-2 (S2) and Landsat-8 (L8) level-1 data from the Eu-
ropean Space Agency (ESA) and the United States Geological Survey 

Fig. 3. Flowchart showing all image data sources, the applied pre-processing steps and the resulting data products used during the analysis.  
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(USGS), respectively, for the period from January 2021 to December 
2021. We downloaded all images with a cloud cover of less than 75%. 
Before further investigation, we pre-processed the images and converted 
them to level-2 data (Fig. 3). This pre-processing encompassed cloud and 
cloud shadow masking, following the methodologies proposed by Frantz 
et al. (2018) and Zhu and Woodcock (2012). Additionally, we applied 
corrections for topographic effects, atmospheric influences, bi- 
directional reflectance distribution function, and adjacency effects. 
Furthermore, we co-registered the S2 images with L8 data to ensure 
spatial alignment. Sentinel-2 images were resampled to 30 m spatial 
resolution to match the spatial and spectral resolution of L8. All of the 
pre-processing tasks for both S2 and L8 data were carried out using the 
Framework for Operational Radiometric Correction for Environmental 
Monitoring (FORCE) developed by Frantz (2019). 

The combined datasets of S2 and L8 lead to high temporal coverage 
(Griffiths et al., 2019). Still, relatively high cloud coverage over the 
study region in 2021 limited the number of available scenes. Therefore, 
we used FORCE to generate best pixel composite (BPC) for April-June in 
order to allow for comparison with the available PRISMA data (no 
spatially continuous and cloud-free S2/L8 data for August available). 
Moreover, we created spectral-temporal metrics (STM) from the com-
bined S2/L8 data for the entire year 2021 for a comparison of the higher 
spectral content of PRISMA data with the higher temporal content of S2/ 
L8 (Okujeni et al., 2021). STM constitute descriptive statistics on all 
available clear sky observation for a pixel in a defined time period 
(Frantz, 2019). This way, not only best pixel values but also the variation 
throughout the year is used for the comparison, and hence, the variation 
in reflectance of the temporally higher-resolved multispectral sensors is 
taken into account. As STM, we calculated the 25th, 50th, and 75th 
percentile for the S2 and L8 Blue, Green, Red, NIR, SWIR-1, and SWIR-2 
bands. 

2.2.3. AVIRIS-NG airborne data, pre-processing and classification 
We procured three AVIRIS-NG surface reflectance flightlines acquired 

on 31 May 2021 as part of the European Space Agency (ESA) CHIME 
campaign (https://ares-observatory.ch/esa_chime_mission_2021/). The 

area covered by the three adjacent flightlines constitutes the selected 
study area. The AVIRIS-NG data have a high spatial resolution (5.8 m) 
and spectral resolution (5 nm) with spectral ranges from 380 to 2510 nm 
(Fig. 4D). We mosaicked the AVIRIS-NG scenes and subsequently 
removed the water absorption and bad bands (1–10, 194–210, 286–316, 
319, 325–329 and 420–425) from the dataset; in the end, we used 355 
spectral bands for the image classification. For the classification, we used 
441 training points that were collected. The AVIRIS-NG data were clas-
sified into eleven distinct landcover types – P. australis, Typha spp., 
P. arundinacea, Carex spp., forest, non-wet grasslands, wet grasslands, 
shrublands, water bodies, croplands and settlements using Support Vec-
tor Machine (SVM) with radial basis function and parameter grid search. 
The accuracy of the AVIRIS-NG classified map was validated using an 
additional set of 356 independent ground truth points. 

The LC classification from the AVIRIS-NG data product provided 
high overall accuracy (90.4%) with well-balanced producer’s and user’s 
accuracies (>87%) for the classes of P. australis, Typha spp., shrublands, 
wet grasslands, and water (Table 1). 

Fig. 4. Mean spectral signatures of P. australis and Typha spp. – A) PRISMA – acquired in 19 April 2021, B) PRISMA – acquired in 16 June 2021, C) PRISMA – 
acquired in 13 August 2021 and D) AVIRIS-NG – acquired in 30 May 2021. 

Table 1 
Classification accuracies based on the AVIRIS-NG data product. Values for target 
classes of the fraction maps appear bold. (*Note that P. arundinacea and Carex 
spp. have later been combined into the wet grasslands class for the purpose of 
unmixing medium-resolution images).  

Landcover class User accuracy [%] Producer accuracy [%] 

P. australis 93 87 
Typha spp. 90 90 
Shrublands 96 93 
Wet grasslands 93 93 
Water bodies 100 93 
P. arundinacea 80 86 
Carex spp. 70 86 
Forest 97 96 
Croplands 96 83 
Non-wet grasslands 80 90 
Settlements 87 93  

M. Arasumani et al.                                                                                                                                                                                                                            

https://ares-observatory.ch/esa_chime_mission_2021/


Ecological Indicators 154 (2023) 110665

7

2.3. Field data collection 

In our study sites, the different peatland vegetation communities are 
often intermixed. We identified P. australis and Typha spp. in larger 
patches (>30×30 m), which could be used for model training, whereas 
P. arundinacea and Carex spp. are mostly dispersed or scattered (less 
than 20×20 m) and surrounded by vegetation from the wet grassland 
class. Therefore, we did not find a pure reference area of 30x30 m of 
P. arundinacea and Carex spp. pixels and we included these species into 
the wet grassland category for the unmixing of medium-resolution 
hyperspectral and multispectral datasets. We collected 98 reference 
areas with homogeneous vegetation cover in the field for P. australis and 
Typha spp., shrublands, wet grasslands and water to be used in the later 
training of the mapping algorithm. Furthermore, using Google Earth, 54 
reference areas were created for training the background class (settle-
ments, croplands, forests and grasslands) based on the field knowledge. 
Then, we created a spectral library (see next sub-section) based on the 
ground truth training points and the reflectance profiles from the cor-
responding pixels in the hyperspectral and multispectral datasets. 

2.4. Regression-based unmixing 

The regression-based unmixing method with synthetically mixed 

training data from spectral libraries (Okujeni et al., 2013) was used to 
map the fractions of P. australis, Typha spp., shrublands, wet grasslands 
and water bodies using the single and multi-date hyperspectral and 
multispectral datasets (Fig. 5). Fraction mapping is performed using 
machine learning regression. For training the regression model, reflec-
tance profiles representing different class fractions are synthetically 
created by weighted averaging of two or three LC types. The weights are 
then used as labels representing the cover fraction as target variables 
during the regression training (see Cooper et al., 2020 for a detailed 
description of the approach). We generated synthetic training data from 
the spectral library (see section 2.3); we created 1000 synthetic training 
samples for each class. Subsequently, each synthetically mixed spectral 
signature was randomly created according to the following procedure: 
(a) we assigned a value of a 50% chance for a two-class mixture, a 40% 
chance for a three-class mixture, and a 10% chance for a four-class 
mixture based on field knowledge and initial experiments, (b) a target 
class of the original library signature was randomly selected and then 
assigned to create the synthetically mixed spectral signature. This step 
assured the inclusion of a target class signature. After that, additional 
library signatures were randomly selected based on class likelihoods, 
which were chosen by the proportionate representation of each class 
entry in the spectral library; this procedure ensured the completion of 
the synthetically mixed feature, (c) then, random mixing fractions 

Fig. 5. Workflow for mapping peatland vegetation communities using a regression-based unmixing approach with hyperspectral and multispectral data products.  
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ranging from 0% to 100% were assigned to the respective spectra, with a 
sum-to-unity constraint. Furthermore, we included pure library spectra 
in each synthetic training dataset and assigned mixing fractions of 100% 
or 0% to library signatures from the target and non-target classes, 
respectively. We used the Light Gradient Boosting Machine (LightGBM) 

regression algorithm for fraction mapping (Ke et al., 2017). The 
LightGBM approach is relatively fast while ensuring high accuracy at the 
same time (Ke et al., 2017). The creation of the spectral library and 
fraction mapping was performed using the EnMAP-Box (EnMAP-Box, 
2019). 

Fig. 6. The very high resolution classification map of peatland vegetation communities produced based on the AVIRIS-NG data with 5.8 m pixel size (*Note that the 
fractions derived from the medium resolution images were validated using this data). 
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2.5. Validation 

LC fractions at the sub-pixel scale require spatially highly resolved 
LC information for validation. It is challenging to produce validation 
data of peatland fractions by field surveys because of the water depth 
and variety of mixed species in peatlands. However, high spatial reso-
lution classification outcomes could also be an alternative (Atzberger 
and Rembold, 2013; Ge, 2013; Ge et al., 2016; Kattenborn et al., 2019). 
Thus, we used the high resolution classification map from the AVIRIS- 
NG data product (see Section 2.2.3) that was 27 times higher in 
spatial resolution to validate the fraction maps from the PRISMA and 
multispectral datasets (Fig. 6). Based on this information, we created the 
Mean Absolute Error (MAE) from a pair-wise comparison of results from 
the regression model with the pixel-wise aggregated classification map 
from AVIRIS-NG. In order to obtain a representative sample, we used a 
stratified approach and randomly selected 150 pixels for each class. 

3. Results 

3.1. Single-date vs. multi-date hyperspectral unmixing 

While comparing single-date unmixing results from PRISMA data, 
the April and June datasets produced the overall best results, whereas 
the August dataset performed worst (see Table 2 and Fig. 7). The classes 
of high interest (Typha spp. and P. australis), performed differently over 
time, for example, Typha spp. fraction results were best in June (MAE =
15.05%) as April and August’s datasets produced higher errors (ΔMAE 
+ 2%). The April dataset produced the best fraction results of P. australis 
(MAE = 18.73%; June ΔMAE + 2%, August ΔMAE + 2%). With regard 
to the other classes, the MAEs also varied between months, and the 
PRISMA data from April led to the highest accuracies for wet grasslands, 
and data from June produced the best accuracy for the water class. 

The two-date combination with the highest accuracy was obtained 
from the April-June datasets (MAE = 16.41%) when compared to other 
combinations (see Table 2 and Fig. 7). The combination of June and 
August was the only two-date combination performing slightly worse 
than one single-date combination (i.e., April). The April-June (MAE =
14.94%) and June-August (MAE = 15.26%) datasets produced best 
fraction results of Typha spp., while the April-August data produced the 
best results for mapping P. australis fractions (MAE = 17.98%). The 
April-June datasets generated the best results for shrublands (MAE =
15.49%). 

The three-date combination (April-June-August) yielded less error 
(MAE = 16.69%) compared to the results of all previous combinations, 
except for the results from the April-June datasets (Fig. 7). We also 
noticed that the three-date dataset produced the best results for both 
P. australis (MAE = 18.26%) and Typha spp. (MAE = 15.34%), in 
contrast to other combination datasets, which produced the best results 
for Typha spp. but not for P. australis and vice versa. 

Scatter plots with the estimate and reference fractions per class 
(Fig. 7; see S1 for a complete set of scatter plots) show the distribution of 
fraction values. First of all, it can be seen that a high share of pixels of 
multiple LC with a full range of fractions consists in the reference data 

and that such fractions are also mapped at full range by the regression- 
based unmixing. For all model results, the R2 >0.5 indicates a correla-
tion with the quantitative reference information. Better performing 
models (with R2 >0.65 or MAE <18%) appear to clearer follow the 1:1 
line when regarding the point distribution and the linear function fitted 
to the reference and prediction. 

3.2. Hyperspectral vs. Multispectral data unmixing 

The overall MAE for both results derived from multispectral data 
were clearly above 20% and hence worse than all results from the 
hyperspectral data. The differences in MAE were at least 2.2% 
(compared to PRISMA August) and 3.5–4.5% for most comparisons (See 
Table 2 and Fig. 7). 

The maps produced from hyperspectral (Fig. 8) and multispectral 
data (Fig. 9) show similar patterns, especially in areas where peatland 
patches are widespread. However, when using hyperspectral data, the 
mixtures of P. australis and Typha spp. were clearly predicted compared 
to multispectral data that slightly overpredicted the P. australis and wet 
grasslands fractions (Fig. 7). 

Fig. 10 shows a subset of peatland species fraction maps created 
using hyperspectral April-June data (left) and multispectral April-June 
(BPC; right) in comparison to the aggregated results from the AVIRIS- 
NG classification (center). The fraction of Typha spp. (red) in the 
hyperspectral was almost identical to the validation data. However, 
Typha spp. fractions were overestimated when using multispectral data. 
In contrast to multispectral data, results from the hyperspectral data 
show the rather linear features of P. australis (green) in the mosaic of 
Typha spp, where they appear as brown, indicating a less differentiated 
regression result. The water fraction near P. australis was accurately 
detected by the hyperspectral data, but it was overestimated by the 
multispectral data as Typha spp. 

Fig. 11 depicts a subset of wet grasslands, shrublands, and water 
maps derived from hyperspectral April-June and multispectral April- 
June (BPC) data. The hyperspectral data’s wet grasslands fraction 
nearly matched the validation data. However, multispectral data 
underestimated the fraction of wet grasslands. The shrublands fraction 
from hyperspectral data was slightly matched with the validation data, 
but in some areas, the fraction was overestimated, whereas multispectral 
data produced results that differed from the validation data. 

4. Discussion 

Systematic monitoring of the abundance of peatland vegetation 
communities is essential for understanding the success of rewetting ac-
tivities. Therefore, identifying the vegetation composition of various 
peatland species with high spatial resolution is critical for the sustain-
able long-term management of peatland and its biodiversity. Hence, 
deriving highly accurate information requires high spatial resolution 
images and sufficient spectral or temporal coverage to differentiate 
spectrally ambiguous vegetation types. However, spaceborne sensors 
with high spectral and temporal information content only have medium 
spatial resolutions of 10–30 m pixel size. Therefore, monitoring with 

Table 2 
Mean Absolute Errors (MAE; in % fraction cover) of unmixing results from the hyperspectral and multispectral datasets.  

Datasets Typha spp. (MAE %) P. australis (MAE %) Shrublands (MAE %) Wet grasslands (MAE %) Water (MAE %) Average (MAE %) 

PRISMA April  16.86  18.73  17.37  17.99  15.59  17.31 
PRISMA June  15.05  20.85  17.52  19.96  13.82  17.44 
PRISMA August  17.95  20.96  19.16  20.36  15.91  18.87 
PRISMA April-June  14.94  18.99  15.49  18.26  14.38  16.41 
PRISMA April-August  16.43  17.98  16.83  18.63  15.08  16.99 
PRISMA June-August  15.26  19.47  17.9  20.45  13.57  17.33 
PRISMA April-June-August  15.34  18.26  16.06  19.81  13.99  16.69 
L8 + S2 (April-June BPC)  19.16  22.36  21.14  22.69  19.91  21.05 
Landsat-8 + Sentinel-2 (STM)  22.16  23.78  20.87  22.17  20.02  21.8  

M. Arasumani et al.                                                                                                                                                                                                                            



Ecological Indicators 154 (2023) 110665

10

data from these systems requires sub-pixel analyses to derive cover 
fractions of the relevant vegetation types. Our results indicate that 
PRISMA data can be used to generate highly accurate maps of peatland 
vegetation fractions. Such knowledge of, e.g., the water fraction, the 
proportion of various peatland species, and associated land cover in-
formation, can support paludiculture management by indicating the 
abundance of managed species but also by functioning as proxies for the 
rewetting success: Rewetting conditions, such as dry or wet conditions, 
are explained by transition zones between species and water fractions; 
this information also aids in preventing the expansion of shrublands into 
peatlands, as shrublands can invade peatlands when conditions are dry 
(Wichtmann and Schäfer, 2007). Additionally, fraction maps can be 
used to investigate the diversity and occupancy of various peatland taxa 
in protected areas. 

The aim of this study was to investigate the contribution of data from 
new spaceborne imaging spectrometers to monitoring peatland vegeta-
tion cover, and this way, the success of rewetting activities. We specif-
ically tested whether single-date or multi-date hyperspectral images are 
better for mapping vegetation fractions in peatlands (RQ1). We found 
that using multidate-observation hyperspectral datasets can provide a 
more accurate estimate than a single-date observation. The multi-date 
hyperspectral images accurately mapped the target class fraction of 
Typha spp. and P. australis. When single dates were compared, they all 
showed similar average MAE; however, the June data produced the best 
results for mapping Typha spp., whereas the April datasets produced the 
best mapping results for P. australis. 

With regard to multi-date imagery, the April-June PRISMA datasets 
produced the best results (Table 2) in detecting Typha spp. (MAE =

14.94 %) compared to other combinations. The phenological variation 
between April-June (end of winter season – growing season) made a 
significant contribution to the best outcomes. Variation stems, e.g., from 
the unique Typha spp. cigar-shaped brown flowering that begins in May 
and ends in July (Demırezen and Aksoy, 2004; Heinz, 2011; Pijlman 
et al., 2019) and from the strong chlorophyll content in P. australis 
without any flower from May to June. The PRISMA April-June datasets, 
on the other hand, produced marginally more errors in identifying 
P. australis than the April-August datasets; we assume that the April- 
August datasets have the most promising results due to the presence of 
the red-purple P. australis flowers, which start blooming at the end of 
July and appear in August. (McKEE and Richards, 1996; Packer et al., 
2017; Vymazal and Krőpfelová, 2005). The fraction results from three 
date combinations (April-June-August) produced the best average ac-
curacy for both P. australis and Typha spp. 

Given the fact that each peatland species’ flowering and growth 
phases vary and that individual species have different best observation 
dates, the contribution of multi-date imagery can be clearly confirmed. 
This finding is in line with previous research using multispectral data 
(QuickBird), which also noticed that multiseason data gave the best 
results by incorporating phenological variation (Ghioca-Robrecht et al., 
2008). When biomass is high, single-date imagery can show a similar 
spectral reflectance among the peatland species. 

We achieved less than 19% overall MAE for mapping all classes using 
hyperspectral images and for some target classes clearly lower class-wise 
MAE. The point distribution in the scatter plots (Fig. 7) shows that 
despite some remaining offsets to the 1:1 line, the gradual distribution of 
LC fractions is represented in the results, which hence go beyond the 

Fig. 7. The scatterplots of predicted vs. reference fractions. A) Unmixing results from PRISMA April-June, B) PRISMA April-June-August, C) Best pixel composite 
(April-June) of L8 and S2, and D) annual spectral-temporal metrics from L8 and S2. 

M. Arasumani et al.                                                                                                                                                                                                                            



Ecological Indicators 154 (2023) 110665

11

information derived in a discrete LC classification. The correlation be-
tween prediction and reference is high (R2 ~0.8 in most cases) when 
multiple observations of hyperspectral data are used, and the fitted line 
is close to the 1:1 line. Especially for models that achieve MAEs as low as 
~15%, the high correlation is visible in the distribution of the point 
clouds. Here, the quantitative superiority of the hyperspectral to the 
multispectral results becomes clearly visible. Although results for 
P. australis were lower than for the other target classes, the MAE of 19% 
in a quantitative map of areal species fractions appears more accurate 
and higher in information content than, e.g., the 61.1.% class-wise ac-
curacy of a discrete classification achieved in an existing study (Pengra 
et al., 2007). From a methods perspective, the regression-based 
unmixing approach (Okujeni et al., 2013) proved reliable for mapping 
the fraction of P. australis and Typha spp. with medium-resolution 
hyperspectral data. In accordance with Okujeni et al. (2021) we can 
report that the approach is capable of using the information from multi- 
date hyperspectral images, which leads to the highest accuracies for 
most LC fractions. Our study shows that the regression-based unmixing 
approach may even be used at the species level when multi-date 
hyperspectral images are used. The target species dominating in our 
study area, i.e., P. australis and Typha spp., existed both in rather pure 
patches and in transition zones (see Fig. 6). In contrast, P. arundinacea 
and Carex spp. were principally dispersed and did not appear in larger 
patches; therefore, no sufficient number of pure pixels were available for 
training and we were not able to map them individually using 30 m 
PRISMA datasets with the selected approach. Hence, we merged them as 
part of the wet grassland category. For future work, the inclusion of 
areas where these species are more widely available seems useful. 
Furthermore, the increasing availability of spaceborne hyperspectral 
data may lead to multi-date spectral libraries, e.g., incorporating spec-
tral profiles from PRIMSA or EnMAP, but also higher resolution airborne 
data (Priem et al., 2019). These may then be used in studies targeting 

even more species. 
Furthermore, we investigated the differences between results from 

hyperspectral and multispectral data for unmixing peatland vegetation 
communities (RQ2). Both single and multi-date hyperspectral datasets 
lead to higher accuracies than multispectral data from multiple obser-
vations. Our direct comparison was limited to the April-June two-date 
imagery, due to little coincidence in data availability for the two data 
types. Nevertheless, results of the direct comparison were 4–5% lower in 
MAE for the April-June PRISMA data, and even results from each single- 
data hyperspectral dataset were better in MAE by ~2% or more. 
Therefore, the additional spectral information content of the PRISMA 
data seems highly relevant for the quantitative description of peatland 
vegetation fractions. 

The strength of multispectral data from L8 and S2 lies in the high 
temporal information content and hence the good representation of the 
phenological variation of plants, which may be represented in STM 
(Griffiths et al., 2019). Therefore, we additionally compared results from 
PRISMA to those from STM, which incorporate all cloud-free pixels from 
S2 and L8. The STM achieved the weakest accuracies during our ex-
periments; however, the two-date multispectral data was more accurate 
than STMs. For example, the fraction results of Typha spp. (MAE =
19.16%) and P. australis (MAE = 22.36%) from the April-June multi-
spectral datasets (Fig. 7) was slightly better than the fraction results of 
Typha spp. (ΔMAE + 3%) and P. australis (ΔMAE + 1%) from the annual 
STMs. It can be assumed that the phenological shift between April and 
June contributes to accuracies. But this shift is invisible in the STMs due 
to temporal aggregation. 

Our work towards answering RQ 1 and 2 clearly shows that medium- 
resolution hyperspectral images (PRISMA) contribute to more accurate 
monitoring of vegetation composition in rewetted peatlands. We 
revealed differences in best observations for detecting different peatland 
species. Combining multiple hyperspectral observations produced the 

Fig. 8. Fraction maps based on the April-June PRISMA data for A) P. australis, Typha spp., and water, and B) shrublands, wet grasslands, and water.  
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Fig. 9. Fraction maps based on April-June (best pixel composite) S2/L8 datasets for A) P. australis, Typha spp., and water, and B) shrublands, wet grasslands 
and water. 

Fig. 10. A) The fraction map from PRISMA April-June, B) Validation data from AVIRIS-NG, and C) The fraction map from the S2 and L8 datasets (April-June BPC).  
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most accurate LC fraction maps for all vegetation types. We can there-
fore clearly show a contribution of multi-date information. Still, it is 
unclear whether adding more data will further improve the accuracies 
for specific species and all LC fractions. Similarly, answering the ques-
tion of optimal observation dates requires much denser data availability, 
which can, however, be expected with the parallel availability of mul-
tiple hyperspectral sensors in the future. 

With regard to the benefits of the hyperspectral information 
compared to that from operational multispectral instruments, we could 
show the superiority of the hyperspectral data. Nevertheless, the data 
situation in 2021 did not allow for exploring the full potential of mul-
tispectral data. Here, further studies on combining the 30 m hyper-
spectral data with normally much denser S2 time series with 10 m 
resolution may be most interesting. Especially for less cloudy years, the 
S2 information will probably add more details. Despite the potentially 
better results from denser multispectral time series, the benefits of 
incorporating multi-date hyperspectral information into the monitoring 
of peatlands are very clear. 

5. Conclusions 

In the context of climate change mitigation, the monitoring of 
peatlands, their rewetting success and management can be expected to 
gain higher relevance in the near future. The quantification of peatland 
vegetation types and, more importantly, those species used in pal-
udiculture schemes is one main component of this monitoring. We have 
shown that imagery from spaceborne hyperspectral sensors can 
contribute to such quantitative maps based on both, their multi-data 
availability and the high spectral information content compared to 
multispectral data. Therefore, we extend the application fields for this 
increasingly available data source by another highly relevant one. The 
quantitative description of peatland vegetation fractions is possible at 
high accuracies and hence goes clearly beyond that of discrete 

classification. For the application of spaceborne hyperspectral data in 
general, we have shown that in the future, the more frequent availability 
of the data marks a milestone in monitoring environmental processes 
intra-annually. Moreover, findings from this work underline the capa-
bilities of regression-based unmixing with synthetically mixed training 
data in the context of deriving land cover fractions, even at a high level 
of thematic detail. In combination, the mapping approach in combina-
tion with the hyperspectral data can be expected to contribute to mul-
tiple environmental processes. 
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