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ZUSAMMENFASSUNG 

 

In vielen industriellen Bereichen haben biotechnologische Prozesse rein chemische 

Verfahren ersetzt bzw. neue umweltschonende Enzym-basierte Verfahren ermöglicht. 

Besonders bei der industriellen Enzymsynthese kommen Mikroorganismen wie z.B. 

modifizierte Bacillus Stämme zum Einsatz. Die Organismen Bacillus licheniformis und 

Bacillus pumilus sind dabei von großer Bedeutung. B. licheniformis ist in der Lage 

Proteine in großen Mengen zu sezernieren, während B. pumilus eine hohe Resistenz 

gegenüber oxidativem Stress aufweist.  

Während der Produktionsprozesse im Fermenter können Bedingungen auftreten, die die 

Physiologie der produzierenden Organismen beeinträchtigen. Dies kann zu einer 

quantitativen, aber auch qualitativen Minderung der Produkte führen. Dieser 

Beeinflussung können beispielsweise chemische Prozesse, die Einstellung der 

Temperatur, des pH-Werts oder der Sauerstoffverfügbarkeit zugrunde liegen. Es kann 

daher zu verschiedenen Stresssituationen für die produzierenden Bakterien kommen. 

Zellen reagieren auf veränderte Umweltbedingungen, indem sie die Stressoren 

wahrnehmen und eine physiologische Schutzreaktion einleiten, was meist durch die 

Induktion oder Derepression verschiedener Regulons realisiert wird. 

Um einen optimalen Produktionsprozess durchführen zu können, sollte man den 

Stoffwechsel des verwendeten Bakteriums, sowie seine Reaktion auf Stressbedingungen 

genau kennen. Ziel dieser Arbeit war es, die Stressantwort von B. licheniformis auf 

Hitzestress und Salzstress, sowie von B. licheniformis und B. pumilus auf oxidativen 

Stress zu analysieren. Die Untersuchungen erfolgten auf Ebene der Transkription mittels 

cDNA-Microarrays. Dies ist die unmittelbarste globale Methode, um Änderungen in der 

Physiologie der Zelle zu analysieren. Die Identifizierung von Stress-spezifischen 

Markergenen und ihre Unterscheidung von der SigB regulierten generellen 

Stressantwort war ein weiteres Ziel dieser Arbeit. Die Kenntnis dieser Markergene 

ermöglicht eine zeitnahe Analyse der Fermentationsbedingungen und damit verbunden 

eine mögliche Optimierung des Prozesses.  

Die Transkriptomanalysen dieser Arbeit zeigten, dass B. licheniformis auf Hitzestress mit 

der Induktion von Hitzeschockgenen reagiert, die verschiedenen Regulons angehören. 



  ZUSAMMENFASSUNG 

   7 

Dazu gehören unter anderem das htpG Gen, sowie das HrcA Regulon oder das CtsR 

Regulon, welche vorwiegend Chaperone und Proteasen kodieren, die zur 

Proteinqualitätskontrolle beitragen. Diese Reaktionen unterscheiden sich nicht 

signifikant von der des Gram-positiven Modellorganismus Bacillus subtilis. Die generelle 

Stressantwort (SigB Regulon), die durch Hitzestress aktiviert wird, konnte für 

B. licheniformis durch die Untersuchung einer ΔsigB Mutante genauer analysiert 

werden. Auch unter Salzstress konnte eine starke Induktion der generellen 

Stressantwort bei B. licheniformis festgestellt werden. Gene für die Aufnahme und die 

Synthese kompatibler Solute wurden stark induziert, ebenso wie verschiedene Gene für 

Transportsysteme mit mehr oder weniger bekannter Funktion. Die Synthese der 

osmoprotektiven Metabolite Prolin und Glycin-Betain konnte in einer Untersuchung des 

Metaboloms genauer verifiziert werden. Bei der Reaktion auf oxidativen Stress zeigten 

sich Unterschiede sowohl zwischen B. licheniformis und B. pumilus, als auch im Vergleich 

der oxidativen Stressreaktion beider Organismen zu der Reaktion von B. subtilis. In 

B. licheniformis werden bei oxidativen Stress die Gene des Glyoxylatzyklus induziert. 

Eine Aktivierung des Glyoxylatzyklus unter oxidativen Bedingungen konnte durch eine 

Analyse des Metaboloms von B. licheniformis bekräftigt werden. Zusätzlich ist das PerR 

Regulon in B. licheniformis gegenüber B. subtilis um zwei Gene erweitert. Im Gegensatz 

dazu fehlen mehrere Gene des PerR Regulons im Genom von B. pumilus, wie z.B. katA 

(vegetative Katalase) oder ahpCF (Alkylhydroperoxidreduktase). Dafür wurden in 

B. pumilus Gene induziert, die unter oxidativen Stressbedingungen weder in B. subtilis, 

noch in B. licheniformis hochreguliert wurden. Darüber hinaus wurden bekannte 

Regulons, reguliert durch z.B. Spx, CtsR oder SOS in beiden Organismen induziert. 

Zusammengefasst analysiert diese Dissertation auf Transkriptomebene die 

Stressantworten von B. licheniformis auf Hitze-, Salz- und oxidativen Stress, sowie 

zusätzlich die oxidative Stressantwort von B. pumilus. Es konnten verschiedene Stress-

spezifische Regulons sowohl in B. licheniformis und auch B. pumilus identifiziert werden, 

die auch der Stressantwort von B. subtilis entsprechen. Es war jedoch auch möglich, 

weitere Gene der Stress-spezifischen Antwort beider Organismen zuzuordnen und 

Unterschiede zwischen den Stressantworten der Organismen zu finden, wie 

beispielsweise die Abwesenheit von Teilen des PerR Regulons in B. pumilus oder die 

Aktivierung des Glyoxylat-Wegs in B. licheniformis unter oxidativem Stress.   
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SUMMARY 

 

In many industrial sectors biotechnological production processes have replaced pure 

chemical methods and allowed new, ecologically friendly and enzyme-based processes. 

Microorganisms, such as modified Bacillus strains are used in particular for the industrial 

enzyme synthesis. The two organisms Bacillus licheniformis and Bacillus pumilus are of 

great industrial importance. B. licheniformis is able to secrete proteins in large amounts, 

while B. pumilus shows high resistance to oxidative stress. 

During production processes different conditions can occur that affect the physiology of 

the production hosts and may result in a quantitative, but also a qualitative impairment 

of the products. This influence is based on e.g. chemical processes, the setting of 

temperature, pH, or oxygen availability and can lead to various stress situations for the 

bacteria. Cells respond to changes in their environment by sensing stressors and initiate 

a response to the stress, which is usually implemented by an induction or derepression 

of various regulons. 

In order to conduct an optimal production process, the metabolism and stress responses 

of the utilized bacteria should be known exactly. The aim of this study was to analyze of 

the stress response of B. licheniformis to heat and salt stress, and the stress response of 

B. licheniformis and B. pumilus to oxidative stress. These analyses were performed at the 

level of transcriptomics using cDNA microarrays, which is the most direct and global 

method for the analysis of changes in the physiology of a cell. The identification of stress 

specific markers genes and their differentiation from the SigB regulated general stress 

response has been another purpose of this work. Knowledge of these marker genes 

enables a prompt analysis of the fermentation conditions and thus a possible 

optimization of the process. 

The transcriptome analyses of this work show that B. licheniformis responds to heat 

stress by the induction of heat shock genes belonging to different regulons. These 

include the htpG gene, the HrcA regulon or the CtsR regulon, encoding chaperones and 

proteases, which mainly contribute to the protein quality control. The heat stress 

response of B. licheniformis revealed no fundamental differences to the heat stress 

response of the Gram-positive model organism Bacillus subtilis. The general stress 
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response (SigB regulon), which is activated by heat stress, could be analyzed in more 

detail by the study of a ΔsigB mutant of B. licheniformis. Salt stress also provokes a 

strong induction of the general stress response in B. licheniformis. Genes for the 

transport and synthesis of compatible solutes were strongly induced, as well as several 

genes for transport systems with more or less known functions. The synthesis of the 

osmoprotective metabolites proline and glycine betaine could be verified in more detail 

by a metabolomics approach. The response to oxidative stress showed differences 

between both B. licheniformis and B. pumilus, and also to the oxidative stress response 

of B. subtilis. In B. licheniformis, the genes of the glyoxylate cycle are induced during 

oxidative stress. An activation of the glyoxylate bypass under oxidative conditions could 

be confirmed by a metabolome analysis of B. licheniformis. In addition, the PerR regulon 

of B. licheniformis is extended to include another two genes compared to B. subtilis. In 

contrast, several genes of the PerR regulon lack in the genome of B. pumilus, such as 

katA (vegetative catalase) or ahpCF (alkyl hydroperoxide reductase). However, other 

genes were induced in B. pumilus that were upregulated under oxidative stress 

conditions neither in B. subtilis nor in B. licheniformis. In addition, known regulons, 

regulated by e.g. Spx, CtsR or SOS were induced in both organisms. 

In summary, this dissertation transcriptionally analyzes the stress responses of 

B. licheniformis to heat, salt and oxidative stress, and in addition the oxidative stress 

response of B. pumilus. Several stress-specific regulons were identified in both, 

B. pumilus and B. licheniformis, which also correspond to the stress response of 

B. subtilis. However, it was possible to additionally assign genes to the stress specific 

responses of both organisms and to find differences, such as the absence of parts of the 

PerR regulon of B. pumilus, or the activation of the glyoxylate pathway in B. licheniformis 

during oxidative stress.  

  



INTRODUCTION   

10 

INTRODUCTION 

 

TRANSCRIPTOMICS AND THE METHODOLOGY OF MICROARRAYS 
 

The transcriptome is the entity of all transcripts produced in a cell at a given time. 

Transcripts are all RNA molecules, i.e. mRNAs, rRNAs, tRNAs and other non-coding RNAs. 

Unlike the genome, that is more or less static in the entirety of the genetic material of a 

cell, the transcriptome is dynamic and can vary during different environmental 

conditions. As the transcriptome comprises all mRNAs, it reflects the genes that are 

actively expressed at any given time. This is why the term “transcriptomics” is also 

referred to as gene expression analysis.  

In order to analyze the transcriptome, different comprehensive techniques are currently 

used. In this study the methodology of cDNA microarrays was applied and will be 

introduced in more detail. Besides microarrays, other approaches like e.g. RNAseq [1] or 

the “Serial Analysis of Gene Expression” (SAGE) [2] can be utilized to investigate the 

transcriptome. 

Microarrays are the most commonly used technique to measure the expression levels of 

large numbers of genes, or to genotype multiple regions of a genome. An array consists 

of a solid support surface, usually a glass or a silicon chip, on which microscopic DNA 

spots are attached on. Every Spot contains picomoles of a specific DNA sequence, called 

probes (or reporters/oligos). These probes can be made up of small oligonucleotides, 

PCR products or other DNA elements. In general, RNA is isolated from two (or more) 

samples/experimental groups/etc. that should be compared, and converted into either 

antisense RNA (aRNA) or complementary DNA (cDNA). Through this conversion the 

target is fluorescently labeled with a fluorochrome. Afterwards, the labeled target is 

hybridized against the probes. The array is then scanned by a high resolution scanner 

that is able to quantify the fluorescence signal of the probe-target hybridizations. The 

data thus obtained is processed by the application of bioinformatics. However, the 

accomplishment of these steps can vary between different platforms.  

A wide range of microarray review articles are available online, see for example [3-7].  
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The current study uses data obtained from cDNA microarrays (Agilent technologies, 

Santa Clara, CA, USA) for gene expression analyses of Bacillus licheniformis and Bacillus 

pumilus. In cDNA microarrays, both the probes and the targets are cDNAs. RNA from two 

different samples is reverse-transcribed and simultaneously labeled each with one of 

two different fluorescent dyes, usually Cyanine-3 (Cy3) and Cyanine-5 (Cy5), and the two 

samples are co-hybridized to one array. Subsequently, Cy3 and Cy5 fluorescence is 

measured separately, and captured in two images. These are merged to produce a 

composite image. The hybridization intensity is represented by the amount of 

fluorescent emission, which gives an estimate of the relative amounts of the different 

transcripts that are present. This so called “two-color-hybridization strategy” is often 

used within cDNA microarrays.  

In this study, a common reference design was used for the arrays. This means each 

experimental sample was hybridized against a common reference sample (e.g. an 

experimental control sample or a mixture of various samples). This allows derived 

comparisons between large numbers of samples, without requiring that every pairwise 

comparison has to be performed or a dye-swap is needed, but maintaining the internal-

control aspect of two-color hybridizations [7, 8]. 

The B. licheniformis and B. pumilus arrays were designed by Sacha van Hijum 

(Netherland Bioinformatics Center, Nijmegen, Netherlands) according to the annotation 

of Veith et al. [9] and Handtke et al. [10]. The data evaluation was done using the 

Rosetta Resolver biosoftware (c/o Ceiba Solutions, Boston, MA, USA) or a script 

obtained from Sacha van Hijum [11, 12]. 
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BACILLUS - A GENUS OF DIVERSITY - UTILIZED BY THE INDUSTRY 
 

Bacillus is a manifold genus of Gram-positive, rod shaped, endospore forming bacteria 

and part of the family Bacillaceae, order Bacillales, class Bacilli, phylum Firmicutes in the 

domain Bacteria. It comprises various species with different characteristics, like the 

pathogens Bacillus anthracis or B. cereus [13, 14] and also species of industrial 

relevance, like B. licheniformis, B. pumilus or B.  subtilis [15-17]. 

Nowadays, B. subtilis is the best-studied and most widely used model organism for 

Gram-positive bacteria, as it is Escherichia coli for Gram-negatives. B. subtilis is 

categorized as GRAS-organism (Generally Regarded As Safe), easily cultivatable and 

highly accessible for genetic manipulation. The genome sequence of B. subtilis is 

available since 1997 [18] and was re-sequenced in 2009 [19]. Since years comprehensive 

studies in terms of molecular biology and cell biology were carried out by diverse study 

groups. This allowed the global analysis of the adaptation processes of B. subtilis to 

various environmental changes or stresses [20-22]. The two species B. licheniformis and 

B. pumilus are closely related to this model organism [23, 24].  

The genome of B. licheniformis was sequenced and published in 2004 by two different 

groups [9, 25]. The sequence shows broad similarity with B. subtilis, but contains defined 

differences. Among others, two striking differences are: (i) the presence of the 

glyoxylate bypass that is lacking in B. subtilis and (ii) an anaerobically active 

ribonucleotide reductase. These findings explain the ability of B. licheniformis to grow on 

acetate or 2,3-butanediol as carbon source and furthermore utilize glucose anaerobically 

[9]. The other investigated Bacillus in this study, B. pumilus, showed highly increased 

resistance against hydrogen peroxide (H2O2) and UV radiation compare to other Bacillus 

species [26, 27]. Such strains have been isolated in form of dormant spores in 

manufacturing systems and surfaces of spacecrafts and at the International Space 

Station ISS [27-29]. One of these strains, B. pumilus SAFR-032, was isolated at the Jet 

Propulsion Lab in Pasadena, and its genome sequence was published in 2007 [27]. Both 

species are then as now subject of numerous functional genomics studies [27, 30, 31]. 
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Figure 1. SEM picture of vegetative Bacillus cells (Bacillus pumilus). Imaging Center Greifswald, 

Department of Microbiology, University of Greifswald [32] 

 

Besides these specific biochemical properties of both Bacilli, their main focus on 

research is the biotechnological application. Many industrial sectors have established 

biotechnological production processes in parallel to chemical production. In most cases 

these products originate from fermentations with bacteria or yeasts. The biggest part is 

represented by the microbial enzyme production, but also individual amino acids are 

synthesized by microorganisms. Industrially used microbial synthesis directly competes 

with the chemical processes in case of cost and yield. The bacterial workhorses are 

usually optimized in their genetic composition to increase the production and to block 

undesirable metabolic pathways.  

Altogether, modified Bacillus strains perform half of the total industrial enzyme 

production, simply because they show high growth rates and are able to secrete large 

amounts of extracellular enzymes [17]. Among these are e.g. alkaline proteases, 

amylases, lipases and many more, which are especially important in the detergents 
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industry. Bacillus species for enzyme production are in use by various companies, e.g. 

BASF, Novozymes or AB Enzymes. B. licheniformis shows the mentioned benefits of 

Bacillus species in enzyme productions, but can reach higher cell densities, and in 

association yields higher amounts of the product during fermentations, compared to 

B. subtilis [17, 33]. Whereas B. licheniformis is already used as production host for years, 

B. pumilus is relatively new in the biotechnological field. Sangeetha et al. [34] showed 

the enormous potential of B. pumilus as the strain SG2 produced and secreted both 

proteases and lipases in large quantities from industrial effluents. 

Like most organisms Bacilli have to cope with ever changing environmental conditions in 

their natural habitat. They can be subjected to varying nutrition supplies and starvation 

or e.g. radiation, shifts in the concentrations of salts or temperature changes. The ability 

to adapt to unfavorable stress or starvation conditions is essential for the survival of 

cells and is accomplished by complex regulatory networks. The occurrence of such 

circumstances during production processes could interfere with the growth of bacteria 

and also impair product formation or quality. In order to optimize the production 

process it is necessary to understand the physiology of the production host throughout 

the fermentation. Specific marker genes, like nutrient-starvation or product-related 

genes could be identified in different hosts that allow an image of the current 

physiological and productive state of the cell. However, it is a prerequisite to monitor 

and analyze these parameters during a fermentation process nearly in real-time, as 

possible e.g. with electrical biochips [35-37]. Global gene expression analyses in defined 

cultivations that simulate critical process conditions enable the identification of genes 

which expression is relevant and specific for selected processes [38]. This study 

comprehensively analyzes the stress responses of B. licheniformis and B. pumilus against 

environmental stresses and identifies stress specific marker genes, e.g. for oxidative-, 

salt- or heat stress. 
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HEAT STRESS AND THE ROLE OF THE SIGB REGULON 
 

In their natural habitat or occasionally during production processes, bacteria can be 

subjected to temperature shifts. A sudden increase in temperature causes the transient 

induction of a group of genes (heat shock genes, HSGs), resulting in the synthesis of so-

called heat shock proteins (HSPs). These proteins appear to be highly conserved through 

evolution, indicating similar functions in all organisms [39]. As heat can cause damage to 

protein structures, leading to misfolding or aggregation of proteins and thus interfere 

with vital cellular functions, refolding or degradation of involved proteins is a major task 

of cellular protein quality control systems. Hence, most heat shock proteins belong to 

either of two classes: molecular chaperones or ATP-dependent proteases [40, 41]. 

Whereas chaperones ensure that polypeptides fold or assemble properly in the cell, 

proteases degrade affected proteins, which are unable to refold into their native 

structure. In many cases of protein quality control, chaperones and proteases 

collaborate [42, 43]. In the Gram-positive model organism B. subtilis, the genes of the 

heat shock response are organized in several regulons; e.g. σB, HrcA, CtsR, CssR and 

others [40, 44]. 

One of the strongest reactions of B. subtilis towards various stress- or starvation 

conditions, including heat, is the general stress response controlled by the alternative 

sigma factor σB. The σB regulon is one of the most extensive stress- and starvation 

regulons, as it provides the cell with comprehensive, non-specific, preventive resistances 

against different stress conditions in response to only one stimulus. Besides heat, e.g. 

ethanol-, salt- or acid stress or starvation of glucose or phosphate could trigger the 

general stress response. In B. subtilis, more than 150 genes belong to that regulon, and 

amongst others, genes for unspecific oxidative-, heat- or osmotic stress resistances are 

regulated by σB [45-47]. The sigB gene is the penultimate of an eight gene operon 

encoding seven Rsb-proteins (Regulation of SigmaB). The entire operon is constitutively 

transcribed from an upstream σA promoter and the genes rsbV-rsbW-sigB-rsbX can be 

autoinduced from an internal σB promoter [48, 49]. The activity of σB is regulated by 

partner switching mechanisms of alternatively binding proteins, whose interactions are 

determined by the phosphorylation status of the partners [50, 51]. In brief, σB is 
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sequestered by an anti-sigma factor RsbW, thereby preventing σB-interaction with the 

RNA-polymerase core enzyme. RsbW also possesses a serine kinase activity, which is 

responsible for the phosphorylation - and thereby reversible inactivation - of RsbV (anti-

anti-sigma factor). If B. subtilis is exposed to a stimulus of the general stress response, 

the phosphate is removed from RsbV~P by one of the phosphatases RsbP or RsbU. 

Dephosphorylated RsbV has the ability to attack the inhibitory complex of RsbW and σB 

and so release the sigma factor. The mentioned phosphatases respond to different 

situations; RsbP reacts to energy stress situations, RsbU is environmental stress 

responsive [52-54]. 

 

 

Figure 2. Schematic model of SigB regulation. Chromosomal organization of the sigB and rsbQP 

operon and representation of the signal transduction pathways responsible for σB activation in 

B. subtilis. The environmental stress pathway is activated by e.g. salt [47, 55], heat [44, 56], or 

manifold other stimuli [47, 55, 57-60]. The energy stress pathway is activated by different 



  INTRODUCTION 

   17 

starvation conditions or limitations [52, 55, 61, 62]. Abbreviations: Core RP (RNA polymerase 

core enzyme), L11 (ribosomal protein L11), Obg (GTP-binding protein Obg). Modified from [50]. 

 

B. licheniformis owns a conserved operon that shows high similarity to the eight-gene-

sigB operon of B. subtilis. Furthermore, a protein that is inducible by different stress 

conditions and that cross-reacts with a B. subtilis anti-SigB antibody is present in B.  

licheniformis, suggesting that the general stress system of B. licheniformis is very similar 

to that of B. subtilis [63]. On the other hand, B. licheniformis revealed no general stress 

response after nutrient limitation situations [30, 64], which can be explained by the 

missing rsbPQ operon in the genome of B. licheniformis [9, 25]. However, in response to 

environmental stresses B. licheniformis showed the induction of genes belonging to its 

putative σB-dependent general stress response [65-67].  

In this study, we were able to further characterize the σB regulon of B. licheniformis by 

comparative genomics and the construction and investigation of a B. licheniformis ΔsigB 

mutant [66]. Thereby we found several genes regulated by σB that are also part of the 

general stress response in B. subtilis, encoding e.g. general stress proteins GspA or YdaG, 

catalase KatE or σB itself. However, among the general stress response in B. licheniformis 

are a number of genes without homologous genes in B. subtilis and therefore specific for 

the general stress response of B. licheniformis, e.g. mcrA encoding a protein with 

endonuclease activity, BLi00576 encoding a fatty acid desaturase or BLi02212 encoding a 

Na+/solute symporter. Many of these genes encode still hypothetical proteins (e.g. 

BLi03885 or BLi01417). Besides this, there are a lot of genes being σB-dependent in 

B. subtilis that are either not σB-dependent or under dual control by other regulators in 

B. licheniformis. Due to our study the σB regulon of B. licheniformis could be described 

and defined in more detail and enables a better distinction between general and specific 

stress response, which is important for the definition of stress specific marker genes 

[66]. 

Besides the general stress response that we could observe during all our environmental 

stress experiments there is always a stress specific response towards a stimulus. In 
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B. subtilis genes of the e.g. HrcA-, CtsR-, CssR regulon are induced specifically in 

response to heat stress.  

The HrcA regulon of B. subtilis consists of the heptacistronic dnaK operon and the groEL-

groES operon [40, 53]. These operons encode the major chaperones of the cytosol that 

prevent protein misfolding and aggregation by stabilization of unfolded or partially 

folded proteins [68, 69]. Both operons are under negative control of the transcriptional 

repressor HrcA, encoded by the first gene of the dnaK operon. HrcA interacts with a 

perfect inverted repeat of 9 bp separated by a 9-bp spacer, named CIRCE element 

(Controlling Inverted Repeat of Chaperone Expression) that precedes both operons [70, 

71]. Expression of the HrcA regulon is induced by the presence of denatured proteins in 

the cytosol and it was postulated that the GroESL system is required to maintain the 

repressor in its active state [53, 72]. During heat the GroESL system is titrated by non-

native proteins, and the repressor is inactivated and dissociates from the promoters of 

the target genes allowing transient induction of transcription [53]. Nielsen et al. [73] 

detected CIRCE elements in B. licheniformis in front of the dnaK and groEL-groES 

operons, observed heat induction of them and revealed an upregulation of the HrcA 

regulated genes at 37°C in a ΔhrcA mutant, thus confirming repression of this operon by 

HrcA. In the study presented here, heat-dependent induction of the HrcA regulon was 

observed at the proteome level as well as the transcriptome level for B. licheniformis in 

a subtilis-like manner [66]. 

The CtsR regulon in B. subtilis includes the two single genes clpP and clpE and the 

tetracistronic clpC operon. These genes encode the ATPase subunits ClpC and ClpE, the 

protease subunit ClpP, the global repressor CtsR with its modulators of activity McsA 

and McsB. CtsR contains an helix-turn-helix motif and controls the expression of clpP, 

clpE and the clpC operon by binding specifically to a direct heptanucleotide repeat in 

their promoter region [74, 75]. Upon heat exposure the regulon is expressed due to a 

transient, temperature-dependent inactivation of the repressor CtsR, which is an 

intrinsic thermosensor [76]. Thus, the Clp protease system is upregulated to deal with 

heat-affected proteins [77-79]. Further regulation at the posttranscriptional and 

posttranslational level results in an accurate fine-tuning of the amount of the different 

Clp proteins in the cell depending on growth phase and conditions [80]. For 
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B. licheniformis, CtsR repression of the regulon could be confirmed based on a ΔctsR 

mutant strain that showed increased expression of the target genes at 37°C in 

comparison to the wild type strain [73]. Our analysis of B. licheniformis corroborates 

heat induction of the CtsR regulon by strong induction of the CtsR regulated genes and 

corresponding proteins during heat stress [66]. 

While the HrcA and CtsR regulons are negatively controlled by two different 

transcriptional repressors and the σB regulon is regulated by this alternative sigma 

factor, the htpG gene represents an own "class" of heat shock genes which is under 

positive control of an unidentified regulator. The htpG gene encodes a protein with 

chaperone function [81] and was upregulated during heat stress in our study, as it is in 

B. subtilis [40, 66, 81]. Likewise positively regulated by heat stress is the CssRS two-

component system with its members htrA and htrB, encoding putative membrane-

anchored proteases and the system itself [82]. This system also responds to secretion 

stress [82-84]. CssS is a typical sensing kinase and is induced in response to high-level 

production of homologous or heterologous proteins and by heat stress. Translocation of 

secreted proteins is required for induction and the response to an activating signal is 

amplified by positive autoregulation, leading to increased CssRS expression and 

expression of the chaperones-proteases HtrA and HtrB, that refold or degrade misfolded 

proteins within the cell envelope [82, 84]. Transcription of the genes htrA and htrB is 

upregulated in B. subtilis when cells are subjected to a heat shock [40, 53] and could be 

confirmed for B. licheniformis by our study and Nielsen et al. [66, 73].  

There are a lot of genes induced during heat stress both in B. subtilis and 

B. licheniformis, that do not belong to one of the regulons previously discussed, e.g. 

genes of the σI regulon [66, 85]. B. subtilis as well as B. licheniformis experience a mild 

oxidative stress response during heat stress, indicated by an induction of genes 

belonging to the Spx and/or PerR regulon [66, 86]. Furthermore there are genes in 

B. licheniformis that were - or were not - expressed under heat stress, unlike in 

B. subtilis. Various genes belonging to the regulons of ECF type sigma factors were 

induced in B. licheniformis during heat stress, as well as a high affinity phosphate 

transport system (pstA-S) or genes encoding tryptophan synthesis enzymes (trpA-F) [66]. 

On the other hand, genes belonging to the heat shock stimulon of B. subtilis were not 
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induced in B. licheniformis, e.g. the genes clpX or lonA encoding parts of ATP-dependent 

proteases [53, 80].  

The heat shock stimulon of B. subtilis is the largest characterized for this organism with 

more than 200 heat shock genes described in different studies [40, 53, 87]. In 

B. licheniformis a similar situation became apparent. Some of the regulons involved in 

the heat shock response also function in other starvation or environmental stress 

responses and therefore are not solely part of the heat shock stimulon, as described 

below [66]. 
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OXIDATIVE STRESS AND THE REACTION OF BACILLI TO HYDROGEN PEROXIDE 
 

Aerobe living organisms use molecular oxygen (O2) for respiration or oxidation of 

nutrients to obtain energy. However, through the use of oxygen reactive by-products 

can be formed, so-called reactive oxygen species (ROS) [88-90]. ROS comprise 

superoxide (O2
·-), hydrogen peroxide (H2O2), hydroxyl radical (OH·) and in addition ozone 

(O3) and singlet oxygen (1O2) [91, 92]. Superoxide, hydrogen peroxide and the hydroxyl 

radical are successive one-electron-reduction products of molecular oxygen. Superoxide 

and hydrogen peroxide are inadvertently produced by enzymes, which usually are 

capable of univalent electron transfer [93]. Thus, enzymes of electron transport chains 

are common producers of ROS [90, 94, 95]. Superoxide dismutase, a ubiquitous enzyme 

among aerobic organisms, is able to convert superoxide into hydrogen peroxide, and 

this can be detoxified by catalase or peroxiredoxins. The hydroxyl radical is generated 

from hydrogen peroxide in the Fenton reaction or from hydrogen peroxide and 

superoxide in the Haber-Weiss reaction. It is highly reactive and cannot be eliminated by 

an enzymatic reaction (Farr, 1991; Kehrer, 2000}. Singlet oxygen can be formed 

chemically or in photosynthetic systems [96, 97] and ozone can be generated by UV-light 

in the atmosphere. If ROS increase intracellularly to a level that exceeds the cells 

defense capacity, the cellular redox status becomes imbalanced and oxidative stress 

emerges [91]. 

All cellular macromolecules can be attacked by ROS such as nucleic acids, proteins or 

lipids. In nucleic acids, ROS can attack both the bases and the sugar-phosphate backbone 

of the DNA, breeding strand breaks or the release or oxidation of bases. That in turn can 

produce 8-hydroxyguanine, urea, hydroxymethyl urea or thymine glycol [98, 99]. 

Alterations like strand breaks and other lesions that block replication or transcription are 

likely to contribute more towards cell death than base damage does. Base damages do 

not hinder the work of polymerases, but they may contribute significantly to 

mutagenesis [91]. During oxidative stress in lipids primarily poly unsaturated fatty acids 

are attacked by ROS, resulting in lipid peroxidation and thereby lipid peroxyradicals or 

hydroperoxydes [100]. The end products of lipid peroxidation include alkanes, ketones, 

epoxides and aldehydes, what can do further damage to macromolecules e.g. by 
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interaction with proteins or DNA [91, 101]. In addition, lipid peroxidation can lead to an 

increased fluidity of the cell membrane and thereby to a loss of structural integrity, 

which is required e.g. for transport of most nutrients or F1/F0 ATPase activity [91]. 

However, since bacteria mainly assemble mono unsaturated and saturated fatty acids 

into their membranes, lipid peroxidation seems to play a minor role in bacteria [102]. 

When proteins are exposed to ROS, the peptide backbone or amino acid side chains of 

proteins can be differently oxidized. Oxidation of the peptide backbone results in 

fragmentation of proteins due to back bone cleavage [103, 104]. Furthermore, 

preferentially sulfur containing and aromatic amino acids are attacked by ROS, e.g. 

oxidation of methionine and cysteinyl residues form methionine sulfoxide derivatives 

and disulfide derivatives, respectively [104]. Fe-S clusters can be oxidized by ROS 

accompanied by the release of free iron [93, 102]. Due to the fact that ROS attack 

reactive metal centers of redox-active proteins, several enzymes are affected and 

functionally altered by oxidative stress, as for example dehydratases functioning in 

aromatic and branched-chain amino acid biosynthesis or the fumarase [105]. Through 

modifications of amino acids the protein structure is altered, what can lead to targeted 

proteolytic degradation of the affected proteins [91, 104].  

As oxidative stress means a severe impairment of all physiology, cells have developed 

different strategies to defend themselves against it. One opportunity is (i) the 

detoxification of the ROS, accomplished by cellular enzymes, such as catalase, 

superoxide dismutase or alkylhydroperoxide reductase. These enzymes are able to 

convert ROS into nontoxic metabolites. A second possibility is (ii) the protection of 

macromolecules, warranted e.g. by DNA-protecting proteins that form biocrystalline 

complexes with DNA and secure it from ROS [106]. Thiols can be secured from ROS by S-

thiolations; where low molecular weight thiols form disulfide bonds to protein thiols, 

thereby preventing irreversible oxidation of the protein thiols by ROS [107, 108]. In 

addition, (iii) the repair or removal of damaged molecules is used in defense to ROS 

[109, 110]. The induction of genes involved in the oxidative stress response is controlled 

by different regulators which react upon oxidative modification of their amino acid 

residues. 
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In low GC, Gram-positive bacteria like Bacilli the peroxide stress response is primarily 

regulated by the repressor PerR. PerR is a dimeric Fur-family repressor that controls the 

transcription of its regulated genes [111]. Due to peroxide stress a histidine residue in 

the PerR protein is oxidized to 2-oxohistidine, accompanied by conformational changes 

and resulting in derepression of the regulon [112]. In B. subtilis, the PerR regulon 

comprises genes encoding catalase (katA), alkylhydroperoxide reductase (ahpCF), DNA-

binding stress protein (mrgA), heme biosynthesis (hemAXCDBL), regulators (perR, spx 

and fur) and zinc uptake (zosA) [113-115]. In B. licheniformis and B. pumilus, the PerR 

proteins of both species show high similarity to the subtilis-like PerR (more than 90% 

identity, respectively). In our analysis of B. licheniformis the previously mentioned PerR 

regulated genes were all induced after peroxide treatment, indicating a similar regulon 

structure as it is known in B. subtilis. In addition, we were able to extend the 

B. licheniformis PerR regulon, as we found the two genes perR2 (formerly BLi04114; 

transcriptional Fur-family regulator) and hemH2 (BLi04115; Ferrochelatase 2) in an 

operon with katA (catalase), regulated by PerR [65]. On the other hand, the PerR 

regulon of B. pumilus differs from the B. subtilis or B. licheniformis PerR regulon. 

Whereas the genes spx, fur, zosA or hemAXCDBL showed increased induction rates 

during peroxide treatment, the genes katA, mrgA or ahpCF are completely missing in the 

genome of B. pumilus. These are genes that exhibit very high induction rates both in 

B. subtilis or B. licheniformis cells subjected to hydrogen peroxide. Furthermore, 

B. pumilus has no other gene annotated as alkylhydroperoxide reductase. Instead of 

catalase KatA, a gene annotated as catalase KatX2 (53% sequence similarity to B. subtilis 

KatX, major spore catalase) was very high induced in peroxide stressed B. pumilus cells 

and is a potential member of the B. pumilus PerR regulon [32]. Another repressor 

involved in the oxidative stress response of Bacilli is OhrR. In B. subtilis it represses the 

thiol-dependant peroxidase OhrA [116], but not the ortholog OhrB, which is σB regulated 

[115]. The redox active cysteine of OhrR is initially oxidized to a sulfenic acid and can 

subsequently react to an S-thiolation, sulfonamide, sulfinic and sulfonic acid in response 

to organic peroxides [116-119]. Whereas no increased expression of the ohrA gene was 

observed in H2O2 stressed B. subtilis or B. licheniformis cells [65, 120], in our study of 

B. pumilus we noticed a strong induction of this gene in response to H2O2, indicating an 

involvement of this peroxiredoxin in the H2O2 resistance in B. pumilus [32]. In B. subtilis, 
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the cellular concentration of the regulator Spx is tightly maintained at a low level under 

reducing conditions by ClpXP-catalyzed proteolysis [121]. The redox state of the 

cytoplasm is the major effector driving Spx activation. Spx contains a CXXC-motif at its N-

terminus, which forms an intramolecular disulfide bond after oxidation [122 2005]. 

Under oxidative, prevailing disulfide stress, both redox-sensitive PerR and YodB negative 

regulators of Spx are inactivated [123] and Spx can interact with the C-terminal domain 

of the α-subunit of the RNA-Polymerase [124]b. The Spx regulon is composed of genes 

whose product function in thiol homeostasis (thioredoxin TrxA, thioredoxin reductase 

TrxB), detoxification (thiolperoxidase Tpx, reductase NfrA) or cysteine synthesis (yrrT 

operon, cysK), required in the maintenance of the cellular redox balance [125-127]. In 

B. licheniformis and B. pumilus genes of the respective Spx regulon were upregulated 

after H2O2 treatment, but with rather moderately increased expression rates [32, 65]. 

ROS exhibit a high DNA damaging potential. Upon damage of DNA the bacterial SOS 

response is induced, which allows a cell first to repair the damaged DNA and only after 

that continue with the cell cycle [128, 129]. The SOS response is regulated by RecA, a 

protein that recognizes single-strand DNA regions and the repressor LexA. During 

normal growth, LexA binds to a 20-bp consensus sequence (SOS-box) in the operator 

region of the SOS specific genes, thereby blocking their transcription. Upon binding of 

RecA to single-stranded DNA LexA is inactivated leading to the induction of the SOS 

regulon [130]. The SOS regulon consists of different enzymes function in DNA repair, e.g. 

the excinuclease UvrABC or the holliday junction helicase RuvAB [131]. Furthermore, the 

cell division is suppressed in order to permit DNA repair prior to formation of new 

bacterial generations [132]. In our analyses of hydrogen peroxide stresses 

B. licheniformis and B. pumilus cells the SOS response was clearly activated [32, 65], as it 

was shown for B. subtilis elsewhere [120]. ROS also have an impact on the protein 

quality of the cells. In Gram-positive bacteria protein quality control is exerted amongst 

others by the global heat shock repressor CtsR, which is activated not only by heat, but 

also by other environmental stresses. The CtsR regulon comprises chaperones or 

proteases functioning in the rescue or degradation of misfolded proteins (e.g.ClpC, ClpE, 

ClpP). During different thiol modulating stresses the CtsR regulon is induced by a 

different mechanism compared to heat shock in B. subtilis [109, 120, 133]. The CtsR 

regulon of B. licheniformis and B. pumilus were also induced during peroxide stress [32, 
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65]. Besides induction of operons more or less directly associated to oxidative stress 

described above, H2O2 treated Bacilli exhibited a general stress response [32, 65, 120]. In 

B. subtilis, genes encoding catalases KatX or KatE or the DNA-binding protein Dps are 

under control of σB [45-47], as it is for B. licheniformis [66]. As mentioned before, the 

catalase KatX shows very high expression rates during peroxide treatment, simultanous 

with the absence of catalase KatA in the genome of B. pumilus. Another gene strongly 

induced in B. pumilus under these conditions is dps. Dps is a paralog of the DNA-

protecting protein MrgA, which is missing in the B. pumilus genome as well [32]. 

In this study we were able to detect other genes upregulated during peroxide stress, 

either in B. licheniformis or B. pumilus. In B. licheniformis the glyoxylate bypass genes 

aceA and aceB (formerly BLi04207 and BLi04208) were heavily induced during peroxide 

treatment. B. subtilis and B. pumilus lack the glyoxylate cycle. In contrast E. coli induces 

the glyoxylate shunt during oxidative stress. In parallel, the isocitrate dehydrogenase in 

E. coli can be inactivated by oxidation, accompanied by the fragmentation of the protein 

and thereby a breakdown of the tricarboxylic acid (TCA) cycle. This redirects the 

metabolic flux into E. coli 's glyoxylate cycle, which supplies malate and NADPH for 

biosynthetic and regenerating reactions [134, 135]. In our study of B. licheniformis we 

confirmed our transcriptomic results with a metabolomic analysis of the TCA cycle and 

glyoxylate cycle metabolites. The results supported the idea of an oxidatively damaged 

isocitrate dehydrogenase and an activated glyoxylate bypass during peroxide stress in 

B. licheniformis. 

Bacillithiol (BSH; Cys-GlcN-mal) is a low molecular weight thiol that was identified 

recently in e.g. in Bacillus species, Staphylococcus aureus or Deinococcus radiodurans 

[136, 137]. It takes over a similar role as Glutathione (GSH; -L-glutamyl-L-

cysteinylglycine), that is the most prominent redox-buffer in many eukaryotes and 

Gram-negative bacteria. In our study of peroxide stressed B. licheniformis cells, we could 

not detect any upregulation of the genes for Bacillithiol synthesis. However, we were 

able to observe a distinct upregulation of these genes in B. pumilus indicating an 

involvement of Bacillithiol in the H2O2 resistance of that organism. These findings were 

confirmed by a metabolomics approach concerning the concentration of the cytosolic 
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thiol compounds. The metabolome analysis showed at least a doubling of the 

intracellular Bacillithiol concentration after peroxide treatment in B. pumilus cells [32].  

The peroxide stress response of B. licheniformis seems to be quite similar to that of the 

model organism B. subtilis, with the addition of B. licheniformis -specific peroxide stress 

genes and the involvement of the glyoxylate cycle during oxidative stress. The peroxide 

stress response of B. pumilus differs from that, because of its reduced PerR regulon, the 

lack of alkylhydroperoxide reductases and the strong induction of genes, which were 

much less induced in B. subtilis and B. licheniformis [32, 65].  
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SALT STRESS AND THE OSMOTIC STRESS RESPONSE OF BACILLI 
 

The availability of water is indispensable for the survival of cells. An important challenge 

Bacilli have to cope with, both in their natural habitats and in industrial processes, are 

increases in the external salinity; also referred to as salt stress or osmotic stress. As 

common soil bacteria, Bacilli undergo fluctuations in the water availability of their 

natural habitat, due to frequent drying or flooding of the soil. This causes sudden 

changes in the concentrations of salts and osmolarity around the cell. As the bacterial 

cell wall allows unselective passing of macromolecules, the cytoplasmic membrane 

represents the most important boundary between cell and environment. This is not 

permeable for macromolecules or ions, but for water. If the environment outside of the 

cell evolves a hyper-osmotic character, e. g. by an increased salt concentration, the cell 

is endangered by the loss of water to the environment, due to diffusion along the 

osmotic gradient and thereby a loss of the positive cell pressure (turgor) [138]. However, 

the maintenance of the turgor is essential for survival and growth of cells and therefore 

effective water management a necessity [139, 140].  

Comprehensive studies of B. subtilis have shown that salt stress is one of the strongest 

inducers of the general stress response [141, 142], and members of the σB regulon 

contribute to stress resistance when the cells are exposed to osmotic shocks [143, 144]. 

But due to the transient nature of the induction of the σB regulon in response to acute 

salt stress, the general stress response system is not crucial for the ability of B. subtilis to 

survive under high salinity growth conditions, but rather a specific stress response that 

regulates changes in the water economy of the cell [138, 140, 142, 145]. 

The initial response to a hyper-osmotic surrounding coupled with osmotic stress is the 

uptake of potassium ions (K+) to counteract the outflow of water [146]. In Bacilli, this 

uptake is mediated by the potassium transport systems KtrAB and KtrCD [147]. The 

second step of osmotic adaptation is the accumulation of compatible solutes thereby 

permitting a reduction in the cellular potassium level [140, 146]. Compatible solutes are 

osmoprotective substances that comprehensively occur in all three domains of life 

(bacteria, archea and eukaryotes) [148-150]. Compatible solutes comprise classes of 

sugars and polyols, amino acids and their derivates, trimethyl ammonium compounds, 
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methyl sulfonium compounds and sulphate esters. Some examples of them are shown 

exemplarily in Figure 3. Usually, compatible solutes are water-soluble, polar, unable to 

cross cell membranes rapidly without transport systems and most of them are not 

charged at a pH around 7. Besides their ability to hydrate the cell, compatible solutes 

can act as chemical chaperones, stabilizing proteins or other cell components against 

denaturing effects of high ionic strength [151-153]. In a hyper osmotic environment, the 

cell is able to synthesize large amounts of compatible solutes, but with external 

availability the uptake of osmoprotectants is preferred, due to rapidness and energy 

efficiency [154]. The uptake from the environment is carried out by osmotically 

regulated transport systems, in Bacilli named Opu-transporter ("osmoprotectant 

uptake"). 

 

 

Figure 3: Structures of selected osmoprotectants.  

 

In our analysis of salt-stressed B. licheniformis cells, we found no significant changes in 

the transcriptional expression of potassium transporter genes (e.g. ktrA, ktrB, ktrC, ktrD, 

yubG) [67]. This is consistent with investigations of B. subtilis, where neither the 
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potassium concentration of the environment, nor the salt concentration of the medium 

influences expression of the ktr-transcripts [147]. 

B. subtilis possesses five Opu-transport systems [155-158]. OpuA, OpuB and OpuC are 

multi-component ABC-type transporter, whereas the substrate specificity is 

comparatively low for OpuA and especially for OpuC. A broad spectrum of 

osmoprotectants is transported by this system (see Figure 4). On the other hand, OpuB 

is a highly specific transporter solely for the osmoprotectant choline. OpuD and OpuE 

are single component transporters with high substrate specificity, for glycine betaine or 

proline, respectively. B. licheniformis completely lacks the OpuB transporter for the 

transport of choline, but the expression rates of the other Opu-transporter genes were 

highly induced during salt stress [67]. In addition, other genes encoding transport 

systems of more or less known functions were induced in salt-stressed B. licheniformis 

cells. Among them, the two genes BLi03671 (putative ABC transporter) and BLi03672 

(transmembrane protein) showed heavy induction rates. A protein sequence 

comparison (http://blast.ncbi.nlm.nih.gov/Blast.cgi) showed a high similarity with a not 

further characterized transport system of B. pumilus, not existing in B. subtilis. Besides 

induction through salt stress, ECF sigma factor independent induction of these two 

genes was shown in B. licheniformis by treatment with vancomycin [159]. 

In addition to the uptake of compatible solutes, cells enable the possibility to synthesize 

them de novo or by transformation of precursors; primarily proline and glycine betaine 

[146, 148]. During physiological growth conditions, synthesis of the amino acid proline 

for anabolic purposes is carried out by the enzymes ProBAI in B. subtilis. The 

corresponding genes are induced in response to proline limitation via a T-box regulatory 

mechanism [160]. On the other hand, the synthesis of proline as an osmoprotectant is 

mediated by the enzymes ProJAH. In B. subtilis expression of the proHJ genes is induced 

during increased external salinity but proA is not [161]. The γ-glutamyl phosphate 

reductase ProA represents an interface between both proline synthesis pathways in 

B. subtilis, and disruption of the gene leads to abolishment of the osmoadaptive proline 

synthesis and also to proline auxotrophy [161]. The genetic composition, together with 

our analysis of B. licheniformis, displayed a different situation for this organism 

compared to B. subtilis. In B. licheniformis, there are two homologous genes named 
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proA1 and proA2, encoding each a γ-glutamyl phosphate reductase. ProA1 takes part in 

the anabolic pathway of proline synthesis. The gene proA2 is part of the proHB2A2 

operon, which is the "genetic block" for the osmoprotective synthesis of proline in 

B. licheniformis [67]. Moreover, in the context of synthetic microbiology this operon 

provides the opportunity to engineer salt stress resistance in salt-susceptible 

microorganisms.  

Besides Proline, glycine betaine, a trimethylated derivative of the amino acid glycine, is 

widely used as compatible solute in nature and used by B. subtilis under challenging 

high-osmolarity conditions. Microorganisms can synthesize glycine betaine by one of 

two different routes: (i) through a stepwise methylation of the amino acid glycine [162, 

163] or (ii) through the import and subsequent oxidation of choline [164-166]. In 

B. subtilis, choline itself has no osmoprotective function per se [164, 167], but glycine 

betaine is produced through the uptake of the precursor via the OpuB and OpuC ABC 

transporters and a subsequent two-step oxidation process by the type III alcohol 

dehydrogenase GbsB and the glycine betaine aldehyde dehydrogenase GbsA, with 

glycine betaine aldehyde as intermediate product [164, 168]. An induction of the 

gbsAB operon in response to a salt shock was shown previously [169]. Recent studies 

revealed that glycine betaine production is regulated by the choline - and not osmotic - 

sensitive GbsR repressor in B. subtilis, controlling expression of the opuB and gbsAB 

operons [170]. Apart from the OpuB transporter, B. licheniformis possesses homologs of 

the glycin betaine synthetic genes, hypothesizing a similar regulation. However, our 

transcriptomic analysis of salt stressed B. licheniformis cells showed increased 

expression of the genes gbsAB, in spite of a lack of choline in our growth medium.  

Thereupon we performed a metabolomic analysis to check a possible different 

regulation. Therefore, B. licheniformis cells were cultivated in (i) synthetic medium, 

containing added (ii) choline, (iii) NaCl or (iv) both. The metabolomic analysis revealed 

that external provided choline plays no significant role under normal growth conditions, 

but with its external availableness under salt stress conditions choline is taken up into 

the cell and subsequently used for betaine synthesis. Salt stressed cells grown in media 

without choline showed no changes in the betaine levels compared to unstressed cells, 

but increased amounts of proline and glutamate. On the other hand, salt stressed cells 
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grown in choline-containing medium showed control level proline concentrations. This 

argues for a B. subtilis -like GbsR regulation in B. licheniformis with choline dependency. 

These findings also confirm the preference of uptake compared to synthesis of 

compatible solutes [67, 154, 170]. 

As expected from investigations of B. subtilis [141, 142], B. licheniformis also showed a 

strong induction of the general stress response after salt stress [67]. In addition to the σB 

regulon, Bacilli possess sigma factors with extracytoplasmic function (ECF sigma factors), 

which specifically govern the physiological response to cell envelope stress [171]. Among 

B. subtilis’ seven ECF sigma factor regulons [171], three are affected by a sudden 

increase in the external osmolarity in B. subtilis; σM, σW and σX [141, 169, 172]. Due to 

the high similarity of the consensus promoter sequences and diverse overlaps between 

the members of the four ECF sigma factor regulons σM, σV, σW and σX it is hard to 

distinguish between them [173-175]. In salt stressed B. licheniformis cells, only genes of 

the two ECF regulons σW and σX showed increased induction rates [67]. We did not find 

any σM-dependent gene induced in B. licheniformis after salt stress, whereas the σM 

regulon in B. subtilis is known to be essential for prolonged growth and survival in a high 

salt containing environment [172]. 

The other way round, during low osmotic conditions these osmoprotectants are a threat 

to the integrity of cell. Despite the existence of aquaporins in many microorganisms, no 

bacterial cell can actively pump water across the cytoplasmic membrane to compensate 

for water influx or efflux [140, 176, 177]. During an osmotic down-shock, water-

attracting ions and compatible solutes are therefore rapidly released through 

mechanosensitive channels (e.g. MscL and MscS). This is important to curb the inflow of 

water and to prevent an undue increase in turgor [178-181]. 
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Figure 4. Schematic overview of the osmotic stress response of A) B. subtilis and B) 

B. licheniformis. Uptake and/or synthesis of potassium and compatible solutes like proline or 

glycine betaine is carried out via the Opu-transporters or, in case of glycine betaine and proline, 

synthesis within the cell. Modified from [67, 138].   
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CONCLUDING REMARKS 
 

In this dissertation a comprehensive dataset on global gene expression patterns during 

selected physical stress situations of the industrially relevant bacterium B. licheniformis 

could be established. Furthermore, the stress response against hydrogen peroxide was 

analyzed in both, B. licheniformis and B. pumilus. By this approach specific marker genes 

for the investigated stresses could be identified. In addition, individual differences of the 

stress adaptation of B. licheniformis and B. pumilus in comparison to the Gram-positive 

model organism B. subtilis could be revealed. This supports the necessity of analyzing 

the stress response of each organism of interest rather than relying on the information 

derived from model organisms in the specific family. 

In response to high osmotic conditions specific Opu-transporters were induced in 

B. licheniformis, as well as other transport systems of so far unknown functions, like e.g. 

the system BLi03671/03672. Also the proline synthesis specific for salt stress was 

induced. Other genes could be detected, which were not specific for salt stress but 

rather general stress genes, like the SigB regulon or genes controlled by ECF sigma 

factors. 

For peroxide stress in B. licheniformis and B. pumilus significant differences were 

determined also in respect to B. subtilis. In B. licheniformis the induction of the 

glyoxylate shunt was detected during oxidative stress and also the PerR-response in this 

organism seemed to be extended compared to B. subtilis. On the other hand, parts of 

the PerR regulon are missing in B. pumilus, but other specific genes like katX or dps are 

strongly upregulated. Furthermore, known regulons like the Spx, CtsR or SOS regulon 

were induced in both organisms. 

B. licheniformis responds to heat by the induction of many different regulons. Some of 

them are not specific to this stress, like the general stress response or the CtsR regulon. 

In general these regulons do not differ significantly from the response of B. subtilis. 

However, the heat stress response is mainly conducted by chaperones and proteases 

that also do not differ in many eukaryotic organisms. 

The ascertained stress specific marker genes can further be utilized to develop assays 

that allow an improved monitoring of critical stress situations during fermentation 

processes in order to be able immediately adjust fermentations to ensure optimal 



INTRODUCTION   

34 

production conditions. Thus, this study provides fundamental information for the 

improvement of the fermentation processes for both organisms analyzed. 

 

 
Figure 5. VENN-Diagram of genes and regulons belonging to either the heat stress (red), the 

oxidative stress (blue) or the salt stress (green) response of B. licheniformis. Inside the 

intersection of the circles (overlapping areas) regulons / genes are listed that belong to at least 

two - or all - stress responses investigated in this study (purple, turquois, orange, brown areas) 

[65-67].     
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