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1 Introduction 

1.1 Background 

Benign prostatic hyperplasia (BPH) prevalence reaches 50% among 50-year-old men, and 

prostatic enlargement probability is 90% among 80-year-old men [Espinosa 2013]. BPH is 

associated with different symptoms. Often, the patients suffer from bladder outlet 

obstruction and lower urinary tract symptoms (LUTS or so-called prostatism [Abrams 

1994]). A possible explanation for the obstruction is the pressure caused by BPH on the 

urethra. In general, the relationship between clinical symptoms and BPH is still not well 

understood [Hald 1989, Oelke 2007]. BPH can compromise the quality of life, requires 

long-term medication and, in many cases, ultimately surgery [Abrams 1994]. For BPH 

diagnosis, the prostate volume (PV) and serum prostate-specific antigen (PSA) levels 

should be measured. Prostatic enlargement showed correlation with serum PSA values 

[Stamey 1987] and age [Vesely 2003] [Tanguay 2009]. 

Despite its high prevalence and clinical significance, there are a number of open questions 

in BPH. The literature reports various cut-off values for pathological enlargement of the 

prostate. While Kim et al. defined a PV ≥ 25 ml as the criterion for an enlarged prostate 

[Kim 2011], Herbert et al. defined enlarged prostate as PV ≥ 40 ml [Herbert 2004]. PV 

measurement in large population-based studies would allow deriving more objective 

reference values and a more valid early BPH diagnosis. 

In the clinical context, measurement of PV is important for treatment response monitoring 

in the clinical applications for BPH management research. Ditonno et al. [Ditonno 2005] 

evaluated the efficacy of oral lonidamine treatment for subjects with BPH symptoms. The 

subjects in the treatment group experienced a decrease of 11.2% in PV. Boyle et al. used 

PV to predict the outcome of BPH treatment with finasteride [Boyle 1996]. Silvero et al. 

analyzed whether the effect of further combination with additional medications could offer 

an advantage in BPH treatment, potentially reducing the time required to achieve its 

symptomatic effect [Di Silvero 2005]. Accurate PV assessment is therefore an essential 

step for similar studies. PV assessment is currently achieved using transrectal ultrasound 

(TRUS) as the gold standard in clinical applications. By convention, TRUS assumes a 

prostate gland shape to be ellipsoid [Milonas 2003]. Extensive enlargement caused by 
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BPH, however, can cause additional form variations, rendering that strict shape 

assumption inaccurate for precise assessment of PV. Nathan et al. revealed that PV 

estimation using the ellipsoid formula often underestimates the real PV and argued that all 

measured dimensions contain errors [Nathan 1996]. Rodriguez et al. confirmed the 

consistent underestimation of the actual gland size with the ellipsoid formula [Rodriguez 

2008]. They concluded that the width in TRUS and not the length is the least reliable 

factor.   

Different groups have carried out research on the topic of PV prediction from serum PSA 

levels [Roehrborn 1999, Morote 2000, Park 2013]. Similar prediction models have the 

potential to estimate PV without using the TRUS modality, which can be an advantage 

especially in cases of patients with contraindications against TRUS, e.g., patients with 

anal fissures. In addition, the shape assumption used as the standard in TRUS can 

underestimate the PV. In their research, Morote.et al. and Park et al. used the ellipsoid 

formula for PV estimation. More exact prediction models could be developed using 

methods for PV estimation more reliable than the ellipsoid formula.  

Although MRI is more costly in clinical routines than TRUS, regular MR examination could 

be completely non-invasive. Hence, MRI provides an additional option for PV estimation, 

but its usability and precision has not yet been assessed in sufficient detail. To validate PV 

measurement based on MRI for clinical use requires a characterized sample of the 

general population, in which participants have undergone a standardized MRI exam. 

1.2 The Study of Health in Pomerania (SHIP) 

The Study of Health in Pomerania (SHIP) is a general adult population-based prospective 

cohort study in the region of Western Pomerania in northeastern Germany [Hegenscheid 

2009, Voelzke 2011]. The aim of SHIP is to assess general health in the community and 

measure the prevalence of common risk factors for preclinical diseases to allow better 

understanding of the cause of disease and ultimately improve prevention.  

Data are collected in SHIP using interview-based surveys as well as non-invasive 

methods. The second follow-up of SHIP included a whole-body Magnetic Resonance 

Imaging (WB-MRI) standardized protocol for all participants, representing the general 
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health status of the population. The third follow-up examination of SHIP participants (also 

including WB-MRI) is scheduled for the year 2014. 

1.3 Objectives of the thesis 

The first objective of this thesis was to develop a method for automated prostate 

segmentation in a WB-MRI context of a population-based study. Automation should 

reduce interobserver variation and human resources in image reading. The second 

objective was to evaluate a new, accurate MR-guided approach for assessment of PV 

without any shape assumption and suitable for clinical and clinical epidemiological 

applications. Both objectives made use of kernel-based methods, which were not applied 

previously for PV estimation in the MR modality. In particular, the possibility of integrating 

Support Vector Machines methods in epidemiological and clinical epidemiological 

applications is to be evaluated.  

This cumulative thesis is based on two peer-reviewed original articles recently published 

in international journals [Habes 2013b, Habes 2013c]. The material of both papers is 

attached to the thesis in Appendix I [Habes 2013b] and Appendix II [Habes 2013c]. In the 

following section, the basic approach, data and instruments used are summarized. The 

core results of both papers are presented in the results section. In the discussion section, 

the present work is put in the context of recent published literature and a detailed outlook 

toward future research aspects on the topic is provided. 

2 Materials and Methods 

2.1 MR Images 

All Study participants underwent MRI scans using a 1.5-T MR scanner (Avanto; Siemens 

Medical Systems, Erlangen, Germany) [Hegenscheid 2009, Voelzke 2011]. As described 

in the SHIP protocol, the axial Proton Density Fast Spin Echo Fat Saturated Sequence 

was used for pelvis visualization [Hegenscheid 2009]. Figure 1 illustrates an example of 

the sequence used for one SHIP participant and the corresponding anatomical structures 

of the pelvis. Image parameters of this sequence were: TR 3230 ms, TE 34 ms, flip angle 

90°, voxel size (0.8 × 0.8 × 3 mm: 0.9 mm gap). In this thesis, MR images of the pelvis 

region in two different groups of randomly selected SHIP participants were used.   
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Figure 1: a) an axial slice example of the sequence used for visualization of pelvic structures in 
SHIP for one participant, b) anatomical image of the male pelvis [Cahill 1995]. This material is 

reproduced with permission of John Wiley & Sons, Inc 
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The first group – consisting of sixteen participants' scans (males between 40 and 60 years 

old) – was used to develop a fully automatic algorithm, which was validated against 

randomly selected manual segmentations by two different observers. Following Tingelhoff 

et al, the decision was made in this thesis to have two expert observers (A and B) assess 

a limited number of MRI scans rather than have only one observer assess the maximum 

number of screens in order to parameterize the fully automated prostate segmentation 

algorithm [Tingelhoff 2008]. However, resources of two manual readings for the evaluation 

were limited for only sixteen subjects, bearing in mind that this fully automated method is 

intended to reduce the need for human resources in reading MR scans. The second group 

– consisting of fifty-three participants' scans (males between 35 and 70 years old) – was 

used to develop a semi-automatic algorithm for applications in a clinical context. Those 

measurements and the clinical standard formula for PV estimation (ellipsoid) were 

compared to the manual delineation of observer A (as the closest to the real PV), who 

measured the PV with the ellipsoid formula and the semi-automated method developed. 

This semi-automated method is to be employed as an adjunct tool in clinical studies, and 

is not intended to replace the human expert. Slice by slice, the experts performed the 

manual prostate delineation on the scans by visual inspection without further algorithmic 

support, using the open source Biomedical Image Analysis Package ImageJ, version 1.45 

[Schneider 2012]. 

The ethics committee of the University of Greifswald approved the general SHIP project. 

The SHIP personnel obtained written informed consent from all participants, which 

included MRI studies for quantitative evaluation in a large variety of research areas, also 

including the prostate. All algorithms developed during this thesis used ImageJ, version 

1.45 [Schneider 2012] as the developing framework.   

2.2 Prostate volume estimation methods 

During this Ph.D. thesis, binary class Support Vector Machines (C SVM) algorithms were 

initially developed for automated segmentation of human structures in ultra-short echo 

time (UTE) MR images, including the skull as well as cavities, in tasks of different projects 

[Habes 2013a]. The pipelines developed in that study showed that binary SVM methods 

can be used for automated segmentation from double components produced 

simultaneously by the UTE sequence. Both components could help in tissue 
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discrimination, since they contained complementary information. However, the pelvic 

sequence used in SHIP – to visualize general pelvic organs – produces only one 

component. This makes prostate delineation using SVM methods in this sequence more 

challenging. The integration of C SVM in the fully automated algorithm for PV estimation 

required additional automatically generated features for prostate tissue discrimination, as 

well as consideration of a more complex voxel neighborhood [Habes 2013b]. The 

application of single-class Support Vector Machines (S SVM) required a histogram-based 

normalization step to automate the skull segmentation [Habes 2013a]. However, in this 

thesis, the application of S SVM for accurate PV estimation made use of its advantage in 

training with just one class and with a limited sample [Habes 2013c]. In the following, both 

algorithms developed for prostate volume estimation are explained. 

2.4.1 Method 1: C SVM for epidemiological studies 

Cortes and Vapnik presented the binary Support Vector Machines (the term C SVM is 

used here as suggested in kernel-based methods literature) for binary class classification 

[Cortes 1995], in which vectors of two classes are labelled and used as the training set. C 

SVM finds the optimal hyperplane, which separates the two classes in the training set, and 

uses this for new data classification. Figure 2 illustrates the principle of C SVM. 

 

Figure 2: Optimal hyperplane separating the vectors of the training set, which consists of two 
classes (“+”,”-”). 

For non-linearly separable cases, the data are transformed in higher dimension feature 

space F using a kernel function.  
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In this thesis, a new algorithm based on C SVM for prostate segmentation in the whole-

body MRI context was developed [Habes 2013b]. In this algorithm, the segmentation task 

is considered a binary voxel classification problem, where every voxel is assigned to either 

prostate tissue or background. The classification vectors in this algorithm are generated 

from 3D neighboring voxels using a “plus”-symbol-like structure and automatically 

generated features for prostate description. The Gaussian Kernel was used for mapping in 

higher feature space. The features used for appropriate prostate description are: median, 

gradient, anisotropic diffusion and eigenvalues of the structure tensor. Pre-isolation of 

urological organs – to reduce the number of voxels to be classified – was achieved using 

a maximal-entropy thresholding step. This developed method is designed for 

epidemiological studies, since the algorithm does not require any human interaction for 

automated prostate volume delineation or volume estimation, which reduces human error 

and ensures reproducibility. In terms of epidemiological studies, full automation is the first 

requirement for the developed algorithm, although more accurate methods are available 

(see results section). 

2.4.2 Method 2: S SVM for clinical studies 

Schölkopf et al. introduced the single-class Support Vector Machines (S SVM) 

[Schloelkopf 2001a, Schloelkopf 2001b] for classification using a training set consisting of 

just one class as the training sample. Figure 3 illustrates the principle of S SVM. Mapping 

the training set in the higher dimensional space F is achieved via a kernel function. An 

optimal subset of F must be then sought to separate the training examples from the origin 

of F. In this thesis project, a new algorithm based on S SVM for prostate volume 

estimation in a whole-body MRI context was developed [Habes 2013c]. The prostate 

volume estimation is considered 3D object reconstruction by the S SVM classification 

technique. Using manually seeded semi-landmarks on the contour of the prostate, the S 

SVM is capable of whole-prostate reconstruction. Every landmark is a vector in the image 

coordinates. Mapping in the feature space was established using the Gaussian kernel. 

This newly developed method is designed for clinical studies, since the resulting PV is 

more accurate than both method 1 and the ellipsoid formula (see results section). In terms 

of clinical studies, accuracy is the first requirement for the developed algorithm, although 

human interaction in some steps is required. 
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Figure 3: Separating the single training sample (“-”) from the origin (“+”) of the feature space is 
similar to the binary case, in which the second class consists of just one vector (the origin). 

MRI provided an opportunity for validation of the systematic underestimation of the 

ellipsoid shape assumption, which is widespread in clinical PV assessment using the 

TRUS modality. PV based on the ellipsoid formula V = H x W x L x π/6, where H is the 

height, W the width, and L the length of the prostate in the 3-D MR image, was calculated. 

It was then compared to S SVM-based PV [Habes 2013c]. The manual prostate 

delineation was used here as the reference (the closest to real PV). The dimensions H 

and W were set on the axial view of the prostate central slice. L was set on the coronal 

view. 

2.5 Evaluation Strategy 

For a complete overview of the statistical analysis and the evaluation strategy used for 

both methods developed here, see Habes 2013b and 2013c. All statistical analyses were 

calculated using the open-source software for statistical computing R, version 2.15.2. 

Differences were considered to be statistically significant at a level of p<0.05. 

Using Bland-Altman plots, the mean difference (MD) and the limits of agreement within 

95% confidence intervals (CI) were calculated [Bland 1986]. Furthermore, the strength of 

the association between automated and reference PV was calculated using Spearman’s 

rank coefficients. The results of Bland-Altman plots and Spearman's rank correlation 

coefficient analysis compared with manual readings of observer A and B are listed in 

Table 1 for method 1. 
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3 Results 

For a complete overview of results, see the results sections in Habes 2013b and 2013c. 

Evaluation strategy Observer A Observer B 

Spearman's rank (ρ) 0.936* 0.859* 

Bland-Altman Plot MD = 3 

CI: −3.1 to 9.2 

MD = 1.9  

CI: −7.1 to 10.8 

 
Table 1: Results evaluation of PV estimated using method 1 vs. manual volume estimation of two 
human experts (observers A and B). 
* Significant differences are indicated: p < 0.05. 
MD: Mean Difference 
CI: Limits of agreement within 95% confidence intervals  
 
Evaluation strategy Method 2 Ellipsoid Formula 

Spearman's rank (ρ) 0.965* 0.873* 

Bland-Altman Plot MD = −0.05 

CI: −3.8 to 3.7 

MD = 8.6  

CI: 1 to 16.2 

 
Table 2: Results evaluation of PV estimated using method 2 and the ellipsoid formula method 
against manual volume estimation of one human expert. 
* Significant differences are indicated: p < 0.05. 
MD: Mean Difference 
CI: Limits of agreement within 95% confidence intervals 
 

The results of Bland-Altman plots and Spearman's rank correlation coefficients analysis 

are listed in Table 1 for method 1 and Table 2 for method 2 with respect to the 

corresponding reference. 
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4 Discussion 

4.1 Summary 

The quantification of prostate enlargement is a significant clinical challenge. WB-MRI 

provides an innovative option, which was obtained in this thesis. Using kernel-based 

methods, the first aim of this thesis research was to fully automate prostate segmentation 

and volume estimation based on WB-MRI in the context of a population-based 

epidemiological study. This method reduces the need for human resources in image 

readings and thus allows processing a large number of MR scans with a reasonable 

amount time and effort. The second aim was to develop a new, accurate, and reliable 

method without any prostate shape assumption. Although this method requires 

involvement of an expert, it provides accurate PV estimation. This method was additionally 

compared to the ellipsoid shape assumption for the prostate [Habes 2013c]. The 

quantitative evaluation of the prostate shape assumption – similar to the shape 

assumption used as the standard in clinical diagnostics with the TRUS modality – in the 

sample of this thesis yielded systematically lower PV compared to method 2 [Habes 

2013c] and manual prostate delineation by the expert (8.6 ml underestimation with the 

ellipsoid formula compared to 0.05 ml overestimation with method 2). A similar 

comparison was not provided for method 1, since the ellipsoid formula plays no role in 

epidemiological studies. This cumulative thesis is based on two peer-reviewed journal 

publications [Habes 2013b, Habes 2013c], which are attached in the Appendix and cover 

both aims separately.  

For an overview of current published research on automated prostate volume estimation 

based on MR and TRUS images, see Habes 2013b. A comparison between S SVM and C 

SVM for the segmentation of anatomical structures was provided in a previous study 

[Habes 2013a] using different kernels for the segmentation. However, the aim of this study 

was not to directly compare C SVM and S SVM, but rather to develop dedicated methods 

for specific tasks in epidemiological and clinical studies. 
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4.2 Limitations 

One limitation of both studies is the lack of direct comparison between MR- and TRUS- 

(the contemporary clinical gold standard) based PV and a validation against 

prostatectomy specimen-based PV. Both were obviously not possible in the context of the 

population-based SHIP cohort protocol. Non-invasive methods only could be integrated in 

the protocol for all participants for ethical reasons in the context of a large prospective 

cohort study. Furthermore, prostatectomy is performed only in cases of pathologically 

proven prostatic cancer. In a recent study, Turkbey et al. showed that MR-based PV is 

smaller than the real prostatectomy specimen-based PV. They revealed a strong positive 

correlation between prostatectomy specimen-based PV and that derived from manual 

segmentation of MR scans (R = 0.89–0.91, p < 0.0001) [Turkbey 2013]. It must be 

mentioned that prostatectomy specimens in their experiment included the seminal vesicles 

and variable amounts of adjacent tissue; this may be a systematic reason for 

underestimation by MRI, as the authors reported. To date, the literature contains no direct 

comparison of MR-based PV with subsequent prostatectomy specimens without seminal 

vesicles and without shape assumption. Turkbey et al. also found that the ellipsoid formula 

could underestimate the PV, which confirms results reported in this thesis.  

The literature also contains relatively little data on comparisons between MR- and TRUS-

based PV. Al-Rimawi et al. reported a strong correlation between TRUS- and MR-based 

PV [Al-Rimawi 1994]. Weiss et al. reported similar correlations between TRUS- and 

endorectal MR-based PV [Weiss 2012]. Both authors, however, used the ellipsoid formula 

for corresponding PV estimation. 

4.3 Outlook 

Different steps must still be achieved in order to validate, improve and extend the methods 

developed during this thesis research. In the following paragraph, some core research 

plans are summarized: 
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4.3.1 Direct MR-based prostate volume validation against clinical gold 

standards 

Our research group has currently developed a study protocol to directly compare PV 

assessment accuracy between TRUS and MRI without shape assumption and 

prostatctomy specimens. Recently, our research group has received approval from the 

ethics committee of the University of Greifswald for this analysis to recruit a clinical cohort. 

4.3.2 Further optimization of the developed methods 

Method 1: 

One improvement will be to reduce the time required (currently an average of 10 min). 

Different strategies could help reduce the necessary generated features for prostate 

discrimination, e.g., integrating further sequences such as the Dixon sequence from the 

SHIP protocol used for the abdominal area and with lower resolution compared to the 

pelvis sequence. In the Dixon sequence, discriminating between the bladder and prostate 

tissue based on intensity information is possible using the resulting components. 

Integrating the Dixon sequence in the segmentation pipeline would first require rigid co-

registration with the pelvis sequence. 

Method 2: 

One improvement for this method will be to make it completely automated. Here, the semi-

landmarks will be found automatically. From the expert manual segmentations of the 

prostate, an atlas can be generated. Non-rigid registration of the atlas to a new scan could 

deliver a prostate probability (p) map. The highest probability voxels could be used for 

prostate reconstruction with S SVM. Receiver operating curve (ROC) analysis could 

facilitate finding the optimal p value. It is important to note that the non-rigid registration 

requires considerable calculation time; therefore, detailed research on the suitable 

algorithms needs to be carried out. 

4.3.3 Prostate sub-region segmentation 

McNeal defined the prostate histologically [McNeal 1968, McNeal 1981]. He divided the 

prostate in four regions: the peripheral zone (PZ, over 70% of the prostate gland), the 
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central zone (CZ, 25% of the prostate gland), the preprostatic region, which contains the 

transition zone (TZ), and the anterior fibro-muscular stroma. This histological 

differentiation between the zones has been limited to biological differences. 

The prostatic anatomy is distinguishable using the MRI modality, but the signal intensities 

of the CZ and the TZ are similar [Hricak 1987, Verma 2011]. Therefore, they are defined in 

the radiological literature as the central gland (CG) [Verma 2011]. Figure 4 illustrates the 

zonal anatomy of a 60-year-old SHIP participant. 

It is widely accepted that the TZ is the site of origin of BPH [McNeal 1981]. BPH 

prevalence reaches 50% among 50-year-old men [Espinosa 2013]. Corinca et al. 

observed a positive correlation between aging and CZ volume [Corica 1999]. A recent 

study by Turkbey et al. using MRI modality confirmed that CG volume is associated with 

age and with changes in lower urinary tract symptoms, while PZ volume had no 

correlation with age [Turkbey 2012]. Zhang et al. confirmed the positive association 

between TZ volume and aging using the TRUS modality [Zhang 2013]. Hence, the 

association between prostatic zone volumes and further epidemiological parameters 

remain an open field of research. 

On the other hand, the anatomical regions of the prostate are associated with prostate 

cancer. It is widely believed in the urological community that the site of origin of most 

prostatic carcinomas is located in the PZ [McNeal 1981]. Reissigl et al. confirmed that 

most prostatic cancer originated in the PZ (67% of the patients) and only 28% in the TZ 

[Reissigl 1997]. Erbersdobler et al. reported that TZ carcinomas are less malignant than 

PZ carcinomas [Erbersdobler 2002]. Newton et al. revealed that smaller prostate size 

could predict high-grade prostate cancer [Newton 2010]. To date, the literature contains 

nothing on the association between volumes of prostate anatomy regions and carcinoma. 

Zlotta et al. concluded that TZ volume measurements based on TRUS modality are more 

accurate than PV assessment using the prolate ellipsoid method [Zlotta 1999], which 

could make the TZ volume a more reliable clinical biomarker. A similar study on an MR 

basis would be helpful to further evaluate this possibility. Automation of prostate zonal 

anatomy segmentation in SHIP will allow studying further associations with clinically 

relevant epidemiological parameters beyond aging (e.g., smoking).  
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Figure 4: Zonal anatomy of a 60-year-old SHIP participant with prostatic enlargement (PV = 51.3 
ml). Axial images (a-d) and coronal image e) represent zonal anatomy: S = seminal vesicle, B = 
bladder, CG = central gland (central zone and transition zone), PZ = peripheral zone, U = urethra 



CONCLUSION 

  15 

Finally, prediction models at the prostatic region level, similar to those derived for PV 

estimation based on serum PSA values are a promising research field. A method 

combining S SVM and C SVM in the same framework in which prostatic contour is 

detected could allow more accurate prostatic sub-region segmentation for clinical 

purposes.   

5 Conclusion 

The increasing epidemiological need for fully automated methods of prostate volume (PV) 

estimation in WBI scans requires algorithms with high segmentation quality and without 

human interaction, which reduces human error and ensures reproducibility. The binary 

Support Vector Machines (C SVM)-based method developed in this thesis showed PV 

estimation accuracy comparable to human experts in MR reading and is suitable for 

integration in epidemiological studies. 

In the clinical context, accuracy is the first requirement for any computerized method, 

although human interaction in some steps is necessary. The widespread ellipsoid formula 

used in clinical diagnostics showed systematic underestimation of PV in MRI in this thesis. 

Alternatively, the single-class Support Vector machines (S SVM)-based method agreed 

excellently with the reference PV. The promising results with respect to accuracy indicate 

considerable potential for clinical application. Based on the results of this thesis, it is 

recommended to increase the use of accurate computerized methods in clinics for PV 

estimation based on MR or TRUS. 
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Abstract 

Benign prostatic hyperplasia (BPH) is one of the most widespread diseases among men older than 

50 years. The literature provides various cut-off values for pathological enlargement of the 

prostate. Prostate volume (PV) measurement in large population-based studies would allow 

deriving more objective reference values and a more valid early BPH diagnosis. A fully automated 

method is therefore required. In the clinical context, the measurement of the PV is important for 

treatment response monitoring in the clinical applications for BPH management research, and an 

accurate method for PV is essential. 

Magnetic Resonance Imaging was used for PV estimation. Two methods based on the Support 

Vector Machines (SVM) were developed: the binary Support Vector Machines (C SVM)-based 

method for epidemiological studies and the single-class Support Vector Machines (S SVM)-based 

method for clinical studies. The second method was additionally compared to the ellipsoid formula 

for PV estimation, which is widespread in the clinic. 

The comparison between volume measurement of the C SVM-based method and manual 

delineation of observers A and B yielded a strong correlation (Spearman's rank correlation 

coefficients ρ of 0.936 [p < 0.001] and 0.859 [p < 0.001], respectively). Comparing the C SVM-

based method and the two manual delineations by observers A and B shows an agreement with a 

mean difference of 3.0 ml (95% confidence interval of -3.1 to +9.2 ml) and 1.9 ml (95% confidence 

interval of −7.1 to +10.8 ml), respectively. 

The S SVM-based method and the reference PV (manual delineation of observer A) show 

excellent correlation (Spearman’s rank correlation coefficient ρ = 0.965, p < 0.001), while the 

ellipsoid formula is less well correlated with the reference PV (Spearman’s rank correlation 

coefficient ρ = 0.873, p < 0.001). The mean difference between S SVM and the reference PV was 

−0.05 ml (95% confidence interval of −3.8 to +3.7 ml); on the other hand, the mean difference 

between the ellipsoid formula and the reference PV was much greater, with 8.6 ml (95% 

confidence interval of +1 to +16.2 ml).  

The C SVM-based method has considerable potential for integration in epidemiological studies. 

The prostate volumes obtained by the S SVM-based method agreed excellently with the reference 

and would be clinically useful for urologists in prostate volumetric analysis. 
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Zusammenfassung 

Die benigne Prostatahyperplasie (BPH) ist eine der am meisten verbreiteten Erkrankungen bei 

Männern, die älter als 50 Jahre sind. Für diese Vergrößerung der Prostata sind unterschiedliche 

Volumen-Schwellenwerte aus der Literatur bekannt. Eine Messung des Prostatavolumens (PV) 

sollte daher in einer populationsbasierten Studie objektive Referenzwerte liefern und eine 

frühzeitige valide BPH-Diagnostik ermöglichen. Dafür ist eine genaue vollautomatische Methode 

zur Volumenbestimmung notwendig. Im klinischen Kontext spielt die PV-Messung eine große 

Rolle als Behandlungsüberwachungsparameter in der klinischen Anwendung sowie für die 

Forschung im BPH-Management. Eine genaue Methode für die PV-Messung ist hier essentiell. 

Für die PV-Messung wurden MRT-Bilddaten des Prostata-Areals verwendet. Zwei „Support Vector 

Machines“-basierte Methoden wurden für die Volumenbestimmung entwickelt: die „binary Support 

Vektor Machines“ (C SVM)-basierte Methode für epidemiologische Studien und die „Single Class 

Support Vector Machines“ (S SVM)-basierte Methode für klinische Studien. Die zweite Methode 

wurde mit der klinisch weitverbreiteten Ellipsen-Formel für PV-Messung verglichen. 

Der Vergleich zwischen der PV-Messung der C SVM-basierten Methode und der manuellen 

Abgrenzung der Prostata durch zwei Beobachter zeigt eine starke Korrelation (Spearman's 

Korrelationskoeffizient ρ = 0.936, p < 0.001 und = 0.859, p < 0.001). Der Bland-Altman-Plot zeigt 

eine Übereinstimmung mit dem Mittelwert der Differenzen von 3.0 ml (95 % Konfidenzintervall: -

3.1 bis +9.2 ml) und 1.9 ml (95 % Konfidenzintervall: −7.1 bis +10.8 ml). 

Die S SVM-basierte Methode besitzt eine exzellente Korrelation mit der Referenz-PV –manuelle 

Abgrenzung vom Beobachter– (Korrelationskoeffizient ρ = 0.965, p < 0.001), während das 

bekannte Ellipsen-Modell eine deutlich geringere Korrelation mit der Referenz-PV 

(Korrelationskoeffizient ρ = 0.873, p < 0.001) aufweist. Der Mittelwert der Differenzen zwischen 

der S SVM-basierten Methode und der Referenz-PV war −0.05 ml (95 % Konfidenzintervall: -3.8 

bis +3.7 ml). Der Mittelwert der Differenzen zwischen der Ellipsen Formel und der Referenz-PV 

war mit 8.6 ml deutlich höher (95 % Konfidenzintervall: +1 bis +16.2 ml). 

Die C SVM-basierte Methode hat somit ein deutliches Potential für die Integration in 

epidemiologischen Studien zur BPH. Die S SVM-basierten Prostatavolumen stimmen mit der 

Referenz exzellent überein. Die Methode ist daher nützlich für klinisch-urologische Prostata-

volumetrische Analysen. 
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Abbreviations 

Benign prostatic hyperplasia    BPH 

Prostate volume      PV 

Transrectal ultrasound     TRUS 

The Study of Health in Pomerania   SHIP 

Whole-body Magnetic Resonance Imaging  WB-MRI 

Binary-class Support Vector Machines C SVM 

Single-class Support Vector Machines  S SVM 

Mean difference      MD 

Confidence intervals     CI 

The peripheral zone     PZ 

The central zone      CZ  

The transition zone     TZ 

The central gland     CG 
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Appendix I: Automated prostate segmentation in whole‐body MRI scans 

for epidemiological studies 

 
Appandix I is based on: 

Mohamad Habes, Thilo Schiller, Christian Rosenberg, Martin Burchardt and Wolfgang 

Hoffmann, "Automated prostate segmentation in whole-body MRI scans for 

epidemiological studies. " Phys. Med. Biol. 2013; 58 : 5899-5916, DOI:10.1088/0031-

9155/58/17/5899 

The final version can be downloaded from: 

http://iopscience.iop.org/0031-9155/58/17/5899/article# 

I Abstract 

The whole prostatic volume (PV) is an important indicator for benign prostate hyperplasia. 

Correlating the PV with other clinical parameters in a population-based prospective cohort 

study (SHIP-2) requires valid prostate segmentation in a large number of whole-body MRI 

scans. The axial proton density fast spin echo fat saturated sequence is used for prostate 

screening in SHIP-2. Our automated segmentation method is based on support vector 

machines (SVM). We used three-dimensional neighborhood information to build 

classification vectors from automatically generated features and randomly selected 16 MR 

examinations for validation. The Hausdorff distance reached a mean value of 5.048 ± 

2.413, and a mean value of 5.613 ± 2.897 compared to manual segmentation by 

observers A and B. The comparison between volume measurement of SVM-based 

segmentation and manual segmentation of observers A and B depicts a strong correlation 

resulting in Spearman's rank correlation coefficients (ρ) of 0.936 and 0.859, respectively. 

Our automated methodology based on SVM for prostate segmentation can segment the 

prostate in WBI scans with good segmentation quality and has considerable potential for 

integration in epidemiological studies. 
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I. 1. Introduction 

Benign prostatic hyperplasia (BPH) is the leading cause of enlargement of the prostate. 

Clinical indicators for BPH are prostate volume (PV), prostate-specific antigen (PSA) 

levels and maximum flow rate on uroflowmetry. The radiological indicator for BPH is PV, 

which correlates with PSA serum values (Stamey et al 1987, Vesely et al 2003). To date, 

the gold standard to assess PV is trans-rectal ultrasound (TRUS) (Bates et al 1996). MRI 

provides an alternative for non-invasive prostate visualization. In addition to a strong 

prostatic enlargement, BPH can cause form variations, which means that strict form 

assumptions, such as the ellipsoid formula widely used in combination with TRUS, can be 

inaccurate for PV quantification. 

The study of health in Pomerania (SHIP) is a population-based epidemiological study of 

adults in the region of western Pomerania in northeastern Germany (Völzke et al 2011, 

Hegenscheid et al 2009). The focus in SHIP is utilizing non-invasive methods to 

investigate common risk factors, preclinical disease states and manifest diseases. In 

SHIP-2, a standardized imaging protocol is applied to all participants. In the context of a 

large population study, it is important to develop a method for automatic prostate 

segmentation. A fully automatic segmentation method is important to reduce the influence 

of inter-observer variation and to improve reproducibility. In epidemiological applications, it 

is important to develop a method with minimal human interaction. A variety of strategies 

has been previously suggested for prostate segmentation in CT images. Mazonakis 

proposed an algorithm based on region growing (Mazonakis et al 2001). Region-growing 

based methods are at a disadvantage, since they heavily depend on image quality. 

Furthermore, Mazonakis' approach is still semi-automated, i.e., it requires manual setting 

of three seed points. Lee and Chung introduced a fuzzy-inference-based radial basis 

function (RBF) for the segmentation task in CT images (Lee and Chung 2004). This 

approach, like other neural networks, requires costly system training, which can limit its 

wider practical application. An automated segmentation method was proposed by Chen 

et al (2011). The authors implemented a segmentation cost function based on a Bayesian 

framework with the incorporation of anatomical constraints. However, for the prostate, the 

reliability of anatomical constraints can be limited, since the position of the prostate 

changes due to dynamic filling situations of the bladder or rectum. There are also 
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approaches for CT images which depend upon large deformation 3D registration, such as 

in (Foskey et al 2005) for prostate segmentation. Conceptually, registration-based 

approaches are very sensitive to form or intensity variations, which may limit their 

usefulness (Costa et al 2007). Recently, the use of MRI for prostate visualization and 

related clinical diagnosis has become commonplace, a diagnostic trend which has driven 

the need to develop new techniques for this type of images. An atlas-based approach for 

prostate segmentation was presented by Klein et al (2008). That method does not 

distinguish between the prostate tissues and the adjacent seminal vesicles, which we 

however consider an essential requirement for clinical prostate research. Klein et al 's 

method also includes an intensity-based registration step, which can fail in cases of 

intensity inhomogeneities or strong form variation. Martin et al described a spatially 

constrained deformable model for segmentation (Martin et al 2010). Deformable models 

usually require a large amount of prior information for an adequate training process. 

Including all of the possible prostate shape variations would make the human interaction 

step very time consuming and thus costly. Deformable models are also known to fail in 

situations with inordinate noise or poor image resolution, as may be the case with WBI 

using an MR sequence protocol that is not selectively optimized for prostate imaging. 

Again it is important to note that with BPH, the prostate can undergo strong shape 

variation. Pasquier et al (2007) introduced a model-based method for prostate contour 

delineation in T2-weighted MRI images, which does not require the costly training step 

(Pasquier et al 2007). However, this is a semi-automatic approach which requires user 

interaction to initialize the model position from a selected target in the MRI volume. As 

described in the standard SHIP examination protocol, Hegenscheid et al used the axial 

proton density fast spin echo fat saturated (Ax PD TSE FS) sequence, which showed the 

best performance in discriminating between structures in the pelvic region (Hegenscheid 

et al 2009). 

No work has been published to date on segmenting the prostate in WBI scans or in the Ax 

PD TSE FS sequence, either with a semi- or a fully automatic method. In the Ax PD TSE 

FS sequence, it is still unclear how well prostatic tissues can be distinguished from the 

surrounding vessels and seminal vesicles. The prostate in this sequence cannot be 

considered a continuous organ, since it is occasionally barely distinguishable from the 

seminal vesicles. Therefore, there is a need for a new segmentation method that can be 
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utilized in the framework of WBI scans. In the literature, kernel-based methods have not 

yet been used for whole deformable organ segmentation. Our choice is motivated by the 

fact that SVM needs only a small number of vectors to train the system effectively. In this 

paper, we propose an SVM-based algorithm that allows automated detection of the 

prostate in Ax PD TSE FS MRI data, and suggest suitable features for the accurate 

assessment of the prostate. Automated image analysis results are compared with the 

results of manual assessments by two urological radiology experts. 

I. 2. Materials and methods 

The MRI volumes used in this study were acquired with a 1.5-T MR imager (MAGNETOM 

Avanto; Siemens Medical Systems, Erlangen, Germany). All subjects in this study were 

among the participants of the SHIP (Völzke et al 2011, Hegenscheid et al 2009). 

Participants were informed in detail about the study by trained personnel (radiology 

assistants and radiologists). Oral and written informed consent was obtained from all 

participants. The ethics committee of University of Greifswald approved the study protocol. 

The participants were placed in the MRI scanner in supine position. Five stations were 

used to create the WBI image (head, neck, abdomen, pelvis and lower extremities). The 

reconstruction of the WBI volume can be done as a post-processing step (Rummeny et al 

2006). The pelvic region image volumes were used for the prostate segmentation. 

We used the Ax PD TSE FS sequence. Typical parameters of this sequence are: TR 3230 

ms, TE 34 ms, flip angle 90°, voxel size (0.8 × 0.8× 3 mm: 0.9 mm gap), 1 average used 

for pelvis imaging. The bore size was 60 cm, horizontal. An SQ engine gradient system 

with a maximum gradient field strength of 45 mT m−1 was available with a slew rate of up 

to 200 T m−1 s−1. 512 phase-encoding steps were used; the phase-encoding direction 

was anterior to posterior. The acquisition time for one volume was 2:43 min. Each dataset 

had a resolution of 512 × 512 × 60 voxels. The multi-station technique was used to 

establish a WBI scan. 

The experiments in this paper are based on 16 of randomly selected participants images. 

Since both bladder and prostate lie near the center of the volume, it is possible to reduce 

the calculation room for the prostate segmentation by applying a window of size 176 × 256 

× 60 voxels in the center of the volume.  
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Figure 1. Axial slice example of the Ax PD TSE FS sequence. Axial slice example of the Ax PD 
TSE FS sequence used in the SHIP study for one participant. This sequence is used to visualize 
pelvic organs. 

Figure 1 illustrate an axial slice example of the Ax PD TSE FS sequence for one 

participant in the SHIP study and the related anatomical structures. To segment the 

prostate, we designed and developed a method based on support vector machines 

(SVM). 

I. 2.1. SVM-based segmentation 

The consecutive steps of our approach are explained in detail in the following subsections. 

A flowchart explaining the whole process of the segmentation as well as the training 

pipeline is illustrated in figure 2 

. 
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Figure 2. Flowchart of our SVM-based developed method. Flowchart exploring the SVM-based method developed here for prostate 

segmentation in WBI scans. 
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This flowchart shows that after system training, a new image can be segmented fully 

automatically. The steps of the algorithm are explained in detail in the following. 

I. 2.1.1. Images labeling and system training 

The system was trained with 16 randomly selected image volumes from the SHIP-2 

database. The labeling process was done by one urological radiology expert. He labeled 

the prostate tissues in the images 'by hand'. The radiology expert was asked to use all 

prostate slices in the volume for each subject. Labeling was done over a masked pelvis 

image. When one label is set on one voxel, the label is drawn simultaneously for control. 

The prostate tissue was labeled with 100 labels and another 100 labels were used for the 

background. Figure 3 illustrates the labeling process led by one radiology expert. Every 

label is expressed with one symbol drawn simultaneously for control.  

 

Figure 3. Prostate labeling. Axial slice example for generated mask superimposed on prostate 
used in this study during the training process led by the expert (dark points correspond to the 

prostate class and 'x-symbols' to the background class. Sample of eight labels for every class 

isllustrated; for every subject, 100 vectors from the whole volume were used for every class). 

In this figure, samples of eight labels for every class are illustrated. The leave-one-out 

method was used to generate training pools. This procedure iteratively leaves out the 
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training set of one definite subject (k). The system is trained on remaining training sets for 

segmentation purposes and then image of k is segmented. This method ensures 

generalization of the segmentation method to independent test images not present in the 

training pool. 

I. 2.1.2. Mask generation 

The main aim of this mask is to reduce the amount of the input data. This is essential to 

reduce the necessary data for the SVM training step.  

 

Figure 4. Example slices of the maximal-entropy thresholding. Example slices of the maximal-

entropy thresholding result of the pelvis for a random SHIP-2 participant. Since the urological 

system in the Ax PD TSE FS sequence is always located in the middle of the image, a window in 

the center of the field of view was applied (A = the original image / axial, B = thresholding results / 
axial. Tissues with high water content such as prostate, bladder, intestine and penis are 

thresholded with this technique. The urological system is included in the largest three-dimensional 

component in the binary volume. We applied a region-growing-based algorithm to isolate it. The 
results shown are after applying this algorithm). 

 



 

  
31 

Use is made of an established thresholding technique based on the maximal-entropy of 

the distribution of the intensities in the volume to binarize the input image (Kapur et al 

1985). In this thresholding technique two types of classes are considered, foreground and 

background. The entropy of each class is calculated based on the following formulas: 

where G is the maximum gray-level value in the volume, pg is the cumulative probability 

function of the gray-level g, and T is the thresholding value in the histogram of the MRI 

volume. The thresholding problem can then be considered as an optimization problem. 

The optimal threshold of the image is defined as: 

 � = max(�!"#$%#"&'((�)+ �!"#$%&'()*(�)), (3) 

and the image is optimally binarized when the sum of the foreground and background's 

entropy is maximal. As illustrated in figure 4, the result of this thresholding technique 

includes soft tissues with a large proportion of water as 'prostate, bladder, intestine and 

penis'. To isolate the urological system, a binary region-growing-based algorithm is 

applied to find the largest three-dimensional, connected region (Burger and Burge 2008). 

I. 2.1.3. Features extraction 

In this step, the features required for the definition of the prostate are generated. Various 

features have been well studied in the traditional two dimensions in computer vision. In the 

field of medical imaging, however, organ description should be based on three-

dimensional features. The features used in this study are 3D median, 3D gradient, two 

based on 3D anisotropic diffusion and two 3D based on the eigenvalue of structure tensor. 
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The 3D filters were applied to achieve best discrimination between prostate and 

surrounding tissues. In general in MRI, different tissue types can share the same intensity 

interval (Gonzalez et al 2009); hence, to enable valid discrimination for SVM, further 

information is needed. Anisotropic diffusion features discriminate between prostate and 

surrounding vesicles. Median features discriminate between prostate and seminal 

vesicles. Eigenvalues of structure tensors and gradient features discriminate between 

prostate and bladder. 

3D anisotropic diffusion 

Smoothing is a common technique to reduce noise in medical images. Filters such as the 

Gauss filter are often used in computer vision. In medical imaging, however, it is very 

important not to affect vascular structures through the noise reduction filtering process. 

Perona (1990) introduced the anisotropic diffusion filter to reduce noise without removing 

significant structures from the image (Perona and Malik 1990). Smoothing in this method 

is formulated as a diffusion process that can be controlled at the boundaries by selection-

adaptive diffusion strengths. The formulation of the anisotropic smoothing process can 

also be used in MRI data. Extension to three dimensions can be done easily (Gerig et al 

1992). When the filtering process makes use of all three dimensions, the noise reduction 

is more effective, since the nature of the edges will also be three dimensional and the 

useful neighborhood is larger. Anisotropic diffusion can be mathematically formulated as: 

 
��

��
= div(�(�,�, �, �)∇�) (4) 

The diffusion function c(x, y, z, t), which controls diffusion strength, is a function of the 

voxel intensity gradient magnitude. The coordinates (x, y, z) represents the spatial 

coordinates of the image in the three-dimensional MRI volume set, t is the diffusion 

process order parameter and is used in the discrete implementation as the iteration step. 

This analysis employs two types of diffusion functions: 
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where κ represents the diffusion constant, ∇ denotes the gradient operator. The two 

functions 5 and 6 define two different scale spaces. The first scale space enhances object 

edges during the diffusion process over low-contrast cases. This is important for better 

object discrimination through the object boundaries. The second function enhances object 

regions over smaller regions, which allows better enhancement of the prostate region over 

small regions in the created mask. Empirical analysis led to using the function parameter κ 

= 70, t = 10 for our experiments. 

Eigenvalues of structure tensor 

The structure tensor includes first- and second-order intensity-related information. This 

kind of information has been used by different authors for different tasks. For instance, 

Rao and Schunk (1991), analyzed flow-like texture information (Rao and Schunck 1991), 

Gülich et al (1987) and Nitzberg et al (1992) detected corners (Nitzberg and Shiota 1992). 

Eigenvalue decomposition of a 3 × 3 symmetric matrix as the structure tensor results in 

three corresponding eigenvectors (e1, e2, e3). The eigenvector e1 stand for the largest 

eigenvalue, and the eigenvectors e2, e3 for middle and smallest eigenvalues, 

respectively. The largest and smallest eigenvalues of the structure tensors were used as 

features for the present system. 

I. 2.1.4. Vector construction 

We are dealing with three-dimensional neighborhood information for the construction of 

vectors. To reduce classification room dimensions, the conventional three-dimensional 

bounding box surrounding labeled voxels was not used. The values of the target voxel and 

its three-dimensional (n-1) neighbors in the automatically generated features are used for 
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the vector construction. The neighborhood structure employed is three dimensional plus 

symbol-like structure. The vector is defined from one feature, depending on this three-

dimensional neighborhood structure, and is thus termed 'feature vector'. For a given 

radius r, the n dimensions of the feature vector from the target voxel and its three 

dimensional (n − 1) neighbors can be formulated as: 

 � = (1+ 4 ⋅ �) ⋅ (1+ 2 ⋅ �),where� = 1,2,… ,5 (7) 

The feature vector can be defined as 

 �(!,!,!) = (�!,�!… , �!), (8) 

where x, y and z are the spatial coordinates of the target voxel v, and f1,f2...fn are the 

feature values from the three-dimensional neighborhood information. We obtained the 

best segmentation in our investigations with the radius r = 2 and resulting feature vectors 

with n = 45. The classification vectors were built into our segmentation algorithm using the 

feature vectors. The classification vector can be formulated as: 

 �!"#$$%&%!#'%() = (�!,(!,!,!),�!,(!,!,!)…�!,(!,!,!)), (9) 

where u is the number of features. In our experiments, u has the value 6 (i.e., 2 structure 

tensor based-, 2 anisotropic diffusion-, 1 median- and 1 gradient images). 

I. 2.1.5. Binary SVM classification 

The SVM method is used for the binary classification (Cortes and Vapnik 1995, Vapnik 

1999). For the training pool P, consists of m vectors xi from an ℜ! space and labeled in 

two different classes such as yi = −1 for background and yi = +1 for prostate tissue. The 

SVM finds the best hyperplane wx−b=0, which divides the space into two classes, and 

where w represents the normal vector and b the bias value. These parameters w and b 
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characterize the optimal hyperplane. In this context the following objective function should 

be minimized: 

 Φ(�, �) =
1

2
(� ⋅ �)+ �

!

!!!

�! , (10) 

under the following constraints: 

�!((� ⋅ �!)− �) ≥ 1− �!∀� = 1,… ,� and �! ≥ 0∀� = 1,… ,�, where the parameter ξ 

represents a slack variable indicating how much the ith instance extends onto the wrong 

side of the optimal hyperplane, and C is the penalty misclassification parameter. The 

kernel trick is used to map the data, in a nonlinear separable case, to a more suitable 

space via a kernel function K (Scholkopf and Smola 2001). The decision function to 

classify the test vector x not included in the training set using Lagrange multipliers ai, and 

kernel function K is: 

 �!"#(�) = sgn

!"##$%&'()&$%!

�!�!�(�,�!)− �  (11) 

The kernel used here is the RBF: 

 �(�! , �!) = e
(!!⋅∥!!!!!∥

!) (12) 

The use of other kernels such as the polynomial kernel were investigated, but performed 

less effectively than the RBF kernel. Empirical analysis led to using following parameter 

(formula 10: C = 100), (formula 12: γ = 1). Finding the optimal hyperplane separating the 

two classes of training vectors (formula 10) took on average not more than 2 s for a 

training pool consisting of training data of 15 scans (100 × 100 vectors × 15). The 

classification task required considerably more time, since many more vectors needed to 

be applied on formula 11. This task took on average 8 min in our implementation (CPU: 

Intel Xeon 2.4 GHz, RAM: 8 GiB, OS: Linux Ubuntu 10.10, programming language: Java). 

The result of the classification is a binary volume. 
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I. 2.1.6. Post processing 

This step in our method is used to fill in gaps resulting from voxels of cysts, which are not 

detected as prostate tissue. Cysts in the prostate gland are prevalent pathological findings 

(Nghiem et al 1990), which can be observed in 7.6% of the population (Ishikawa et al 

2003). Cysts appear much lighter than the surrounding tissue in the sequence used. For 

such cases a binary region-growing algorithm (Burger and Burge 2008) was applied to fill 

in gaps of the segmented prostate as a post-processing step, since voxels of the cysts 

should be also considered in the PV assessment. In two subjects, cysts in the prostate 

were present. The binary region-growing algorithm is integrated in the automatic 

segmentation pipeline. 

I. 2.2. 3D level sets-based segmentation 

For segmentation with this method, the Fiji implementation of level sets (Sethian 1999) 

was used as a semi-automated computerized reference. Fiji is an open-source imaging 

package freely available (Schindelin et al 2012). This implementation is based on the 

sparse-field method (Yoo 2004). An initial contour is required to segment the prostate, 

which will be considered as the initial curve. It expands while trying to find the prostate 

boundaries. We applied this segmentation technique on the 3D anisotropic filtered image 

(formula 5). 

I. 2.3. Evaluation criteria 

To validate the developed method, two different observers segmented the prostate 

manually (observer A, observer B). The manual segmentations were done slice by slice 

and the contours of the prostate were defined without any further algorithmic support. The 

sensitivity (Sn) and specificity (Sp) of whole segmented prostate were used as evaluation 

criteria. These measurements are widely used for segmentation evaluation (Jian et al 

2012, Hu et al 2012) and can be formulated as: 

 �! =
TP

TP+ FN
 (13) 
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�! =

TN

TN+ FP
, 

(14) 

where true positive (TP), false positive (FP), true negative (TN), and false negative (FN) 

values between the segmentations are calculated. 

Besides sensitivity and specificity, the shape-based measurement was also used to 

evaluate the segmentation performance. A robust, well-known measurement based on the 

shape is the Hausdorff distance (HD) (Huttenlocher et al 1993), which can be formulated 

as (Böttger et al 2007, Hu et al 2012): 

 HD(�,�) = ���(�(�,�),�(�,�)), (15) 

where X and Y are sets of surface points of the two binary segmentation objects. d(X, Y) 

is the Euclidean distance between two points. The HD results in the maximum error of the 

binary objects. 

PV was quantified by summing all of the resulting segmentation voxels multiplied by the 

voxel size. The Bland–Altman method was subsequently used to evaluate the 

disagreements in PV measurements. The Bland–Altman plot is commonly used to 

evaluate the agreement between two methods, usually in the context of clinical 

measurements (Bland and Altman 1986). Spearman's rank correlation coefficient analysis 

was performed to show the strength of the association between the volumes estimated. All 

previous evaluation criteria were calculated between the binary segmentations (automated 

versus manual or manual versus manual) as 3D objects. 

I. 2.4. Statistical analysis 

Statistical significance for PV measurements was assessed using R 2.15.1, a free 

software environment for statistical computing and graphics. The Shapiro–Wilk test (Zar 

1984) was used to test for the normality of data. Further, the F-test was performed to 

prove the equality of two variances. To test for the equality of the means of any two 

samples, a paired t-test was used by assuming normality and equality of variances. In 
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cases of non-normal distribution, the Wilcoxon rank sum test was used to test the equality 

of the means of the two examples. Differences were considered to be statistically 

significant at a level of p < 0.05. 

I. 3. Results 

The prostate segmentation with the method presented here was automatically performed 

with no user interaction. Figure 5 illustrates the differences between automatically 

segmented prostate and the corresponding two manual segmentations by the radiology 

experts for one subject. 

 

Figure 5. Segmentation results of the SVM-based approach. Segmentation results of the SVM-
based approach (green) superimposed on manual segmentations by urological radiology experts 

in one sequence. (A = superimposed over segmentation by observer A (red); B = superimposed 

over segmentation by observer B (yellow)). 

 

I. 3.1. SVM-based segmentation evolution experiment 

A complete overview of the results obtained from the different evolution strategies 

(sensitivity, specificity, HD) used to evaluate SVM-based method developed here and the 

level sets-based method are listed in table 1. The evaluation was performed between the 

SVM-based method and the level sets-based method against the manual segmentation of 

observers A and B. Values are expressed as means ± SD. Results of statistical analysis 
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for comparison between SVM-based and level sets-based are also listed in the same 

table. 

I. 3.2. PV agreement experiment 

A comparison of the PV between the computerized and the two manual measurements is 

shown in figure 6, which illustrates the box-plot of resulting PV values.  

 

Figure 6. Box-plot for resulted PV values. PVs were determined manually by observers A and B 

and by use of two different methods 1: our developed SVM-based, 2: level sets-based. 

The mean manual volume measurement by observer A was 26.996 ml with a standard 

deviation of 9.717 ml. The mean manual volume measurement by observer B was 25.809 

ml with a standard deviation of 8.217 ml, while the mean volume measurement by the 

SVM-based method developed here was 23.950 ml with a standard deviation of 8.721 ml 

and by level sets-based method was 28.613 ml with a standard deviation of 15.057 ml. No 

statistically significant difference in the mean values between PV of observer A and B 

measurements was found. 
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The comparison between volume measurement of SVM-based segmentation and manual 

segmentation of observers A and B depicts a strong correlation, resulting in a Spearman's 

rank correlation coefficient (ρ) as listed in table 1. 

Bland–Altman plot results between the measurements of our automatic SVM-based 

versus the level sets-based approach as well as the measurements by the two observers 

A and B are listed in table 1. The results of our SVM-based method indicate that the mean 

difference compared to observers A and B as well as the limits of agreement within the 

95% confidence interval (CI) were small enough to show good agreement. 

I. 3.3. Inter-observer variations 

PV measurements showed relevant inter-observer variation. Observer A measurement of 

the PV reached a mean difference of 1.2 ± 3.6 ml (mean ± standard deviation) and a 95% 

CI −6.1 to 8.5 versus observer B's measurement. 
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 Observer A versus Observer B versus 

Evaluation strategy SVM-based Level sets-based p-value SVM-based Level sets-based p-value 

Sensitivity 0.800 ± 0.066 0.656 ± 0.137 0.0006 0.788 ± 0.077 0.655 ± 0.139 0.0040 

Specificity 0.998 ± 0.0004 0.998 ± 0.0001 0.2611 0.998 ± 0.0006 0.998 ± 0.0001 0.3332 

Hausdorff distance 5.048 ± 2.413 5.564 ± 2.528 0.2522 5.613 ± 2.897 5.945 ± 2.518 0.5619 

Spearman's rank (ρ) 0.936* 0.664*   0.859* 0.624*   

Bland–Altman Plot md = 3 ± 3.1 md = −1.6 ± 13   md = 1.9 ± 4.5 md = −2.8 ± 11.8   

  CI: −3.1 to 9.2 CI: −27.5 to 24.3   CI: −7.1 to 10.8 CI: −26.3 to 20.7   

Table 1. Segmentation evaluation results comparing the fully automatic SVM-based method and the level sets-based method. Evaluation 

was performed against the manual segmentation of observers A and B. 
*Significant differences are indicated: p < 0.05. md: mean difference. 
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I. 4. Discussion and conclusion 

I. 4.1. Comparison to clinical PV standards 

PV is an important indicator for BPH. The definition of pathological enlargement of the 

prostate differs in the literature. In (Kim et al 2011) BPH was defined as PV > 25 ml and 

an international prostate symptom score > 8. PV measurement in large population-based 

studies would make it possible to derive more objective threshold values (e.g. the 95% 

quantile of the PV distribution). 

The gold standard method to quantify PV in urological practice is TRUS. The most 

common way to calculate PV is by using the prolate ellipsoid formula: PV = H × W × L × 

π/6, where: H is height, W is width and L is length of the prostate in the ultrasound image 

(Bates et al 1996). Terris et al showed that this method has a high correlation with the 

actual PV as measured after radical prostatectomy (Terris and Stamey 1991). Using 

TRUS, Bates et al reported considerable inter-observer variations in PV quantification 

(Bates et al 1996). They reported a mean difference of 0.3 ± 5.3 ml (mean ± standard 

deviation) with a 95% CI of −10.9 to 10.9. To our knowledge, inter-observer variations of 

manual PV quantification of 3D objects in MRI images has not been studied 

systematically. In our analysis, manual segmentations by two urological radiology experts 

showed slightly better PV quantification accuracy in MRI with mean difference of 1.2 ± 3.6 

ml (95% CI −6.1 to 8.5) compared to Bates et al results. Note that the comparison with 

published values was not direct, because different databases were used. 

I. 4.2. Evaluation of the new methodology 

To our knowledge, no algorithm to segment the prostate in WBI scans or the Ax PD TSE 

FS has been published to date, neither for semi- nor fully-automatic segmentation. 

Conventional computerized segmentation techniques, such as fast marching (Sethian 

1999, Yoo 2004), did not yield acceptable segmentation results. Kallenber et al used 

neural networks to automate breast density segmentations (Kallenberg et al 2011). With 

limited training efforts, we developed a new prostate segmentation technique for Ax PD 

TSE FS, which can be used in the context of epidemiological studies, since it requires no 

user interaction and hence can be readily implemented in large scale studies. 
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Automatic segmentation of the prostate in 3D MRI volumes can be regarded as a binary 

classification problem, where each voxel can be assigned to either prostate tissue or the 

background. To our knowledge, SVM has not been previously used to segment 

deformable organs like the prostate in MRI images. The SVM approach developed here 

depends upon automatically generated 3D features of the volume as well as 3D 

neighborhood structures. Median, gradient, anisotropic, and eigenvalues of the structure 

tensor features were automatically generated for the classification task. These features 

can give a full description of the prostate. The dimensions of the volume to be 

distinguished were reduced through maximal-entropy thresholding. 

PV automatically measured with the method developed here has a CI width of −3.1 to 9.2 

versus observer A, and −7.1 to 10.8 versus observer B, which is comparable to previously 

published values for inter-observer variation in TRUS (−10.9 to 10.9 )(Bates et al 1996). 

Mean PV differences of our automated approach compared to human observers (3 ± 3.1 

ml versus observer A, and 1.9 ± 4.5 ml versus observer B) are also close to the published 

values for TRUS (0.3 ± 5.3 ml, gold standard) (Bates et al 1996). Note that these 

comparisons with published values were not direct, because different databases were 

used. 

I. 4.3. Comparison to level sets-based segmentation 

Even the results obtained by the level sets-based segmentation in some evaluation 

strategies are similar: specificity (Sp) = 0.998 ± 0.0001 versus observer A and Sp = 0.998 ± 

0.0001 versus observer B, HD = 5.564 ± 2.528 versus observer A and HD = 5.945 ± 2.518 

versus observer B. Other evaluation strategies show that the SVM-based segmentation is 

more accurate than the level sets-based one for prostate segmentation in whole-body MRI 

scans: sensitivity (Sn) = 0.656 ± 0.137 < 0.800 ± 0.066 versus observer A and Sn = 0.655 

± 0.139 < 0.788 ± 0.077 versus observer B. Spearman's rank (ρ) compared to volumes 

estimated by observer A (ρ) = 0.664 < 0.936 and (ρ) = 0.624 < 0.859 compared to 

volumes estimated by observer B. Bland–Altman plots show CI width of −27.5 to 24.3 

versus observer A, and −26.3 to 20.7 versus observer B, which are obviously worse than 

those of the SVM-based method (−3.1 to 9.2 versus observer A and −7.1 to 10.8 versus 

observer B). 
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I. 4.4. Validation through literature review 

Direct comparisons of our computerized algorithm with previously developed methods in 

the literature are limited because different databases, protocols and evaluation criteria 

were used. Furthermore, to our knowledge, this is the first study segmenting the prostate 

in MR modality with the Ax PD TSE FS. 

Recent works in MR modality, such as that presented by Toth et al , reported similar 

results: Sn = 0.81 and Sp = 0.99 (Toth et al 2011b). Langerak et al , also reported a similar 

Sp value of 0.99 value (Langerak et al 2010). Gao et al , reported an HD of 10.22 ± 4.03 

mm (Gao et al 2010), which are worse than the results achieved in the present study. 

Although the sensitivity obtained by using our SVM-based method is high, it does not 

reach the one reported by Martin et al , (Sn = 0.86) (Martin et al 2010). Note that the above 

comparisons were not direct, because different databases were used. Some researchers 

used the root mean square distance, e.g., Zhu et al , who obtained a value of 5.4811 ± 2.9 

mm (Zhu et al 2007). Other authors used the mean absolute distance as evaluation 

strategy, Allen et al , achieved a value of 2.8 ± 0.82 mm (Allen et al 2006) and Toth et al , 

reported a value of 5 mm (Toth et al 2011b). Toth et al , using volumetric ratio for 

evaluation, obtained a value 1.05 ± 0.21 (Toth et al 2011a). Dowling et al , used median 

Dice coefficient for evaluation and obtained a value of 0.86 (Dowling et al 2011). 

Other recent methods have been developed to automate prostate segmentation in TRUS 

modality such as that by Diaz et al , who achieved results close to ours; they reported an 

Sn value of 80% (Diaz and Castaneda 2008). Garnier et al , also presented a similar mean 

HD value (4.79 ± 1.62) (Garnier et al 2011). Some researchers used volume error as an 

evaluation criterion; for instance, Mahdavi et al , obtained volume errors of 6.63 ± 0.9% 

(Mahdavi et al 2011), while other authors validated their methods with yet other evaluation 

strategies. Medina et al , used the contour mean distance and reported a value of 3.58 ± 

1.49 pixels (Medina et al 2006). Yan et al , evaluated their method with the mean absolute 

distance and reported a value of 2.01 ± 1.02 mm (Yan et al 2010), while Ghose et al , 

evaluated their method using Dice coefficients and reported a value of 0.95 ± 0.2 (Ghose 

et al 2012). 
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I. 4.5. Advantages of the SVM-based segmentation 

Besides the full automation and the accurate segmentation proven from our results, our 

approach has the advantage of being able to highly accurately segment the prostate with 

a limited training set (200 vectors × 15 images). 

Methodologies based on shape for segmentation require large number of masks in the 

case of the prostate. The reason is that prostate shape differs strongly between 

individuals especially in the case of BPH. The training set of such methodologies should 

include all possible prostate shape variations to enable accurate prostate detection. Such 

methodologies could segment the prostate accurately once their systems are sufficiently 

trained. Chen et al 's methodology for prostate segmentation in CT images presented in 

(Chen et al 2011) needed 184 scans for training. Klein et al 's method requires masks 

generated through manual segmentation by experts, which include all possible shape 

variations of the prostate (Klein et al 2008). Depending on radiological expertise, manual 

segmentation of the prostate for evolution purposes in this study took an average of 10 

min, while labeling of vectors on the prostate gland in our study took an average of about 

1 min. 

Our developed methodology however is classification-based. Furthermore SVM can make 

good generalization from a limited number of training sets (Shao and Lunetta 2012) and 

can achieve very good classification accuracy. Following Tingelhoff et al we decided 

having two expert observers rather than the maximum number of screens with only one 

observer (Tingelhoff et al 2008). Resources of two manual readings for our evaluation 

were available for only randomly selected 16 subjects. These were sufficient however for 

our developed algorithm to segment the prostate highly accurately. 

I. 4.6. Limitations and outlook 

Nonetheless, some limitations should be considered regarding the results of the present 

study. First of all, MRI-based PV determination for the subjects participating in this study 

could not be directly compared to corresponding TRUS data due to the ethical consent 

standards of the SHIP study. Second, the Bland–Altman plots indicate very similar PV 

estimation results compared to the manual segmentation by observer A, but less similar 

compared to observer B. Therefore, the system in its current status may need a visual 
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radiological control of its results for clinical use. The optimization of our algorithm will 

increase accuracy in discrimination between prostate and seminal vesicles or penis-

related tissue. 

Implementation optimization is possible using more processing units for classifying vectors 

simultaneously (e.g., GPU-based implementation). We assume that this will improve the 

performance time considerably (calculation time could be reduced to less than 1 s). In the 

context of epidemiological studies and considering the fact that manual prostate 

segmentation by our human observer took 10 min on average, the performance of our 

implementation is acceptable, since it completely lacks human interaction. 

An algorithm was developed for the automatic segmentation of the liver in whole-body 

MRI scans (Gloger et al 2010). This method, however, cannot be adapted for prostate 

segmentation in one component sequence, since the Dixon sequence (Dixon 1984) used 

in that work produces four image components. It was also possible to automate skull 

segmentation using the ultra-short echo time (UTE) sequence, which produces two image 

components (Rota Kops et al 2011, Habes et al 2013). The present authors intend to 

optimize the system by considering more information acquired about the prostate in the 

SHIP protocol to improve the segmentation itself and to expand our system with a 

decision-support unit. Moreover, we plan to investigate the possibilities of further 

integration of more SHIP sequences for automatic segmentation and PV quantification in 

SHIP-2 to improve our segmentation results. 

I. 5. Conclusion 

Our automatic methodology based on SVM for prostate segmentation in Ax PD TSE FS 

can segment the prostate in WBI scans with high segmentation quality. Our SVM-based 

method compared to that based on level sets showed better segmentation accuracy. The 

results show that the methodology we developed here is comparable to urological 

radiology expert prostate readings in WBI scans and it is suited for epidemiological 

studies. 
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Appendix II: New technique for prostate volume assessment. 

 

Appandix II is based on: 

Mohamad Habes, Jeanette Bahr, Thilo Schiller, Jens-Peter Kühn, Laura Hoppe, Martin 

Burchardt, Wolfgang Hoffmann, "New technique for prostate volume assessment." World 

journal of urology (2013): (accepted, in press). DOI:10.1007/s00345-013-1220-2 

The final published version can be downloaded from: 

http://link.springer.com/article/10.1007%2Fs00345-013-1220-2/fulltext.html 

II. Abstract 

Purpose 

The prostate-specific antigen density (PSAD) helps distinguish between benign prostatic 

hyperplasia (BPH) and prostate cancer. Accurate prostate volume (PV) assessment is 

necessary for PSAD calculation and both BPH diagnosis and treatment response 

monitoring; therefore, accurate PV measurement is increasingly becoming an essential 

step in the urology. 

Methods 

Magnetic resonance imaging was used for PV estimation. A new technique based on 

single-class support-vector machines (S SVM) for accurate PV estimation was realized. 

Three estimation methods were compared; method 1: planimetry (reference), method 2: S 

SVM based, and method 3: prolate ellipsoid. 

Results 

Method 1 and method 2 depict a strong correlation (Spearman’s rank correlation 

coefficient ρ = 0.965, p < 0.001). The interrater reliability for method 1 and method 2 

readings as expressed by the intraclass correlation coefficient (ICC) was 0.975 (p < 

0.001). Comparison between method 3 and the two other methods shows ρ = 0.873 (p < 

0.001), and ρ = 0.795 (p < 0.001), respectively. ICC was 0.54 and 0.505, respectively. The 

mean difference between method 1 and method 2 was −0.05 ml. The limits of agreement 
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with the 95 % confidence interval were −3.8 to 3.7 ml. Comparing method 3 and the two 

other methods shows a worse agreement with mean difference of 8.6 ml (95 % confidence 

interval of 1.0–16.2 ml) and 8.6 ml (95 % confidence interval of −0.7 to 18.0 ml), 

respectively. 

Conclusions 

The prostate volumes obtained by our technique agreed excellently with the planimetry 

(reference) method. This new technique would be clinically useful for urologists in prostate 

volumetric analysis. 

II. Introduction 

Benign prostatic hyperplasia (BPH) is the leading cause of enlargement of the prostate [1]. 

BPH can cause compression of the intraprostatic urethra, which in turn often leads to 

urinary flow obstruction. This common disease often compromises the quality of life, 

requires long-term medication, and sometimes ultimately surgical intervention. 

Accepted indicators for BPH are the prostate volume (PV), prostate-specific antigen (PSA) 

levels, and the maximum flow rate on uroflowmetry (MFR). The most important 

radiological indicator for BPH is PV, which has been shown to correlate with clinical PSA 

serum values [2, 3] and reduction in MFR. The definition of pathological enlargement of 

the prostate is variable and differs in the literature. Kim et al. [4].defined a PV ≥ 25 ml as 

the cutoff value for BPH. It was shown that not only the transition zone volume but also 

the whole prostate volume (PV) correlates with the volume and weight of resected tissue 

in patients after transurethral resection of the prostate due to BPH [5]. 

Furthermore, the measurement of the PV can be used as both a diagnostic and a 

monitoring parameter in the clinical management of BPH [1, 2]. Therefore, a robust and 

device-independent technique to determine the true PV is necessary to assess reliable 

volume. At this time, the standard of reference to evaluate the PV is transrectal ultrasound 

using the ellipsoid formula [5]. In addition to strong prostatic enlargement, BPH can cause 

form variations, which means that strict shape assumptions can be inaccurate for 

assessment of PV based on transrectal ultrasound with the ellipsoid formula. The purpose 

of this study was to evaluate a new MR-guided approach for assessment of PV based on 

pattern recognition methodology without any shape assumption. 
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II. Materials and methods 

In the population-based prospective cohort Study of Health in Pomerania (SHIP), healthy 

volunteers underwent whole-body magnetic resonance imaging using a 1.5-T MR scanner 

(Avanto; Siemens Medical Systems, Erlangen, Germany) [6, 7]. Hegenscheid et al. [7] 

used the axial proton density fast spin echo fat-saturated sequence for the pelvis region 

visualization in axial slice orientation. Image parameters of this sequence were the 

following: TR 3,230 ms, TE 34 ms, flip angle 90 °, and voxel size (0.8 × 0.8 × 3 mm: 0.9 

mm gap). In this study, MR images of the prostate of randomly selected SHIP participants 

were used to determine the prostate volume by means of three different estimation 

methods. Fifty-three images of volunteers (with PV < 60 ml) were assessed. In this paper, 

we describe the three estimation methods that were used to calculate the prostate volume 

and compare their results. 

The Ethics Committee of the University of Greifswald approved the general SHIP study 

project, and this associated project. Written informed consent was obtained from all SHIP-

cohort participants. 

II. Prostate volume estimation methods 

II. Method 1: planimetry 

This method is based on the manual tracing of the prostate by an urologist with 

radiological expertise. By manual delineation, the prostate was outlined slice by slice upon 

visual inspection without further algorithmic support. A binary 3-D object was generated 

from all slices. PV was then calculated from the number of voxels in the object multiplied 

by the voxel size of the scan. For manual delineation, the open-source software Image J 

for image analysis was used [8]. Since planimetry-based assessment of PV is closest to 

the actual prostate shape, we used the planimetry-based assessment as the reference (or 

“gold-standard”) in this study. 

II. Method 2: single-class support-vector machines-based technique 

The support-vector machines (SVM) method is well established in pattern recognition for 

binary classification tasks [9, 10]. Using training data of two classes, SVM can find the 

optimal hyperplane separating them. The optimal hyperplane will then be used for 
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classification of new data that were not included in the training set. We used recently 

binary SVM for prostate segmentation [11]. However, in this study, we developed PV 

assessment algorithm based on the single-class SVM (S SVM) method, which is 

suggested by Schölkopf et al. [12] for classification tasks. Here, the SVM training data are 

sufficient to be labeled with just one class. The training set in this case should have 

probability distribution function P in the feature space F. An optimal subset S of F must be 

sought that separates the whole training set from the origin of F. 

Using the S SVM, six landmarks on the contour of the prostate in every slice were 

manually seeded. Every landmark represents a vector in the spatial coordinates of the 

image. Separating the landmarks with S SVM from the origin of F reconstructs a 3-D 

prostate object. Prostate volume estimation in this method is then similar to that applied to 

the manually delineated slices. 

II. Method 3: prolate ellipsoid formula 

The prostate volume was determined by a urologist with radiological expertise using the 

widely clinically recognized prolate ellipsoid formula: V = H x W x L x π/6, where H is 

height, W is width, and L is length of the prostate in the 3-D image. This calculation 

assumed that the prostate has an ellipsoid shape. Dimensions of the prostate were 

calculated using the software Image J [8]. Three views of the three-dimensional 

orthogonal projections were used. The dimensions H and W were set on the axial view of 

the prostate center slice. L was set on the coronal view. 

II. Evaluation strategy 

The Wilcoxon rank sum test was used to test the equality of the means of the two 

examples. Multiple tests were performed by applying Bonferroni corrections. PV data are 

given as mean ± SD. To demonstrate the width of the confidence interval of the estimated 

PV, Bland–Altman plots with 95 % confidence intervals are shown. This plot is commonly 

used to evaluate the agreement between two methods in the context of clinical 

measurements [13]. 

Scatter plots and Spearman’s rank correlation coefficient analysis were calculated to show 

the strength of the association between the volumes estimated with various methods. To 

show the interrater reliability and agreement with quantitative data, the measurements 
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were evaluated by using the intraclass correlation coefficient (ICC) [14, 15]. We used the 

R package irr, which included estimation of the intraclass correlation coefficient (ICC) for 

one-way and two-way models. This ICC computes single-score or average-score ICCs as 

an index of interrater reliability of quantitative data. Additionally, the F test and confidence 

intervals were computed. We used the two-way model with type of agreement and single-

score ICC (2, 1). Further, we illustrated a figure with PV estimation error (PV of reference 

measurement—PV of estimation method) for all volunteers. Statistical analyses were 

performed using R 2.15.2, a free software environment for statistical computing and 

graphics. Differences were considered to be statistically significant at a level of p < 0.05. 

II. Results 

Figure 1 illustrates an example of one slice of resulted prostate contour for one subject via 

planimetry and S SVM.  

 

Fig. 1: Prostate contouring via two different methods (method 1: planimetry [green] and method 2: 

S SVM [red]) 
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Fig. 2: Prostate volumes were determined by use of three different methods (method 1 planimetry, 

method 2 S SVM, and method 3 prolate ellipsoid). Values are expressed as mean ± SD. 

Significant differences are indicated: ***p < 0.001 

 

 

Fig. 3: Scatter plots a, b, and c are used to show the relation between methods. Relationships 
between prostate volumes calculated with three different methods (method 1 planimetry, method 2 

S SVM, and method 3 prolate ellipsoid) were determined by use of Spearman’s rank correlation 

coefficient (ρ) and the intraclass correlation coefficient (ICC). Significant differences are indicated 

as: ***p < 0.001 

 

As shown in Fig. 2, the PV assessment based on the prolate ellipsoid formula yielded 

significantly smaller volumes as compared with both planimetry and S SVM. The 
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relationship between the PVs estimated by all three methods is shown in Fig. 3. The 

comparison between method 1 and method 2 depicts a strong correlation resulting in a 

Spearman’s rank correlation coefficient (ρ) of 0.965 (p < 0.001). The interrater reliability for 

method 1 and method 2 readings as expressed by the ICC was 0.975 (p < 0.001). Further, 

the comparison between method 3 and the two other methods shows worse correlation 

and interrater reliability: the Spearman’s rank correlation coefficients were 0.873 (p < 

0.001) and 0.795 (p < 0.001), respectively. The intraclass correlation coefficients (ICC) 

were 0.54 and 0.505, respectively, neither of which were statistically significant. 

 

 

Fig. 4: Bland–Altman plots of prostate volumes calculated with three different methods (method 1: 

planimetry, method 2: S SVM, and 3: prolate ellipsoid). a method 1 versus method 2, b method 1 

versus method 3, and c method 2 versus method 3 

 

 

Fig. 5: Prostate volume estimation error values (method 1 planimetry, method 2 S SVM, and 

method 3 prolate ellipsoid) were determined. Reference is planimetry measurement 
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The Bland–Altman plot for assessing agreement is also presented in Fig. 4. The mean 

difference between method 1 and method 2 was −0.05 ml. The limits of agreement with 

the 95 % confidence interval were −3.8–3.7 ml, which were small enough to show a good 

agreement between the two volumetric methods. The plot, which compares method 3 and 

the two other methods, shows a worse agreement with mean difference of 8.6 ml (95 % 

confidence interval of 1.0–16.2 ml) and 8.6 ml (95 % confidence intervals were −0.7–18.0 

ml), respectively. The error values in PV estimation for method 2 and method 3 lie in the 

range of −6.2–4.2 ml and −0.08–16.99, respectively. Method 3 significantly 

underestimated PV (Fig. 5). 

II. Discussion 

Benson et al. [16] introduced the term prostate-specific antigen density (PSAD) and 

suggested PSAD to help distinguish between BPH and prostate cancer. Recently, 

Stephan et al. [17] recommended the PSAD, since it can show better performance in 

prostate cancer detection than the percent free PSA. PSAD is calculated by dividing the 

serum prostate-specific antigen level by the PV. Additionally, PV has a significant 

correlation with the serum PSA level and age [3]. Roehrborn et al. [18] revealed an age-

dependent log-linear relationship between PV (resulted from either TRUS or MRI 

modalities) and serum PSA level. Morote et al. [19] predicted PV by free PSA and total 

PSA. Park et al. predicted PV by PSA mass and free PSA mass [20]. Vesely et al., Morote 

et al., and Park.et al. used in their studies the ellipsoid formula with the TRUS modality. 

The assumption of the ellipsoid shape of the prostate can underestimate the PV as shown 

from our results. Improvements in volume assessment based on either TRUS or MRI 

modalities could provide more exact relationship and prediction models. Furthermore, the 

measurement of the PV can be used as both a diagnostic and a treatment response 

monitoring parameter of BPH [3, 21]. 

In our present study, we proposed new pattern recognition-based technique for PV 

calculation. The technique we describe has been developed as post-processing step to 

estimate the prostate volume based on images obtained in the context of a representative 

cohort of the general population. In further clinical applications, our method can also be 

implemented in real-time context and can be integrated in computer-aided diagnosis 

systems. We assume that the volume derived from manual prostate delineation is closest 
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to the actual PV, since it is calculated from the actual prostate shape without any shape 

assumption. We demonstrated that our computerized S SVM-based technique for prostate 

volume calculation was more accurate than prolate ellipse volume calculation. One 

possible reason is the poor correlation between traced prostate length in the MRI image 

(L) and the real prostate length. The PV obtained through our computerized technique had 

a strong correlation between PV obtained using the planimetry method (Spearman’s rank 

correlation coefficient ρ was 0.965); in contrast, the prolate ellipsoid formula revealed 

considerably less correlation (Spearman’s rank correlation coefficient ρ was 0.795). 

Furthermore, the prolate ellipsoid formula compared to planimetry underestimates PV with 

a mean difference (planimetry–prolate ellipsoid) of 8.6 ml (95 % confidence interval 1.0–

16.2 ml). The PV underestimation with the prolate ellipsoid formula has been reported by 

Mac Mahon et al. [22] for the TRUS modality. Moreover, they obtained limits of agreement 

similar to those of our MRI study (95 % confidence interval of −12.4–0.6 ml and mean 

difference prolate ellipsoid–planimetry = −5.9 ml). Note that this comparison was not a 

direct comparison because different databases, and imaging modalities were used. 

Kimura et al. [23] introduced a new PV calculation methodology called biplane planimetry, 

using information of both cross and sagittal sections in TRUS. They reported a volume 

error of −6.6 ± 8.8 ml (mean ± SD) compared with the gold-standard planimetry [23]. Mac 

Mahon et al. [22] suggested an alternative formula based on a bullet shape for PV 

estimation to replace the prolate ellipsoid method for PV estimation in TRUS. The limits of 

agreement between our computerized volumes and the planimetry volumes were −3.8–3.7 

ml, and the mean difference was −0.05 ml. These limits are smaller than the results 

reported by Mac Mahon et al. [22], where the limits between the newly suggested bullet-

shape formula and planimetry volumes were −6.7–9.6 ml, with a mean difference of 1.5. 

Note that all previous comparisons were not direct comparisons because different 

databases and imaging modalities were used. There are several parameters to be 

adjusted in our scheme. They were determined by empirical analysis. 

Al-Rimawi et al. [24] reported that PV estimated using the ellipsoid formula correlates well 

in both TRUS and MRI modalities, but they also reported that MRI gave a significantly 

larger volume than TRUS, which was due to larger values for the cephalocaudal and 

anteroposterior diameters. Weiss et al. [25] found that PV estimation with TRUS and 

endorectal MRI is highly correlated. They also reported differences in average of prostate 



 

  
62 

volume of only 1.7 ml. The higher volume was measured with TRUS. Turkbey et al. [26] 

reported that prostate MRI is able to document age-related changes in prostate zonal 

volumes. Their results suggest a role for MRI in measuring accurate prostate zonal 

volumes. 

One limitation of the present study is the absence of direct comparison between 

planimetry PV measurement resulted from TRUS and MRI, but this was due to ethical 

consent restrictions of the SHIP study. The method was initially developed in the context 

of a population-based cohort. PV assessment based on TRUS is clearly the present 

clinical standard. Prior to integration in any clinical application, our method needs to be 

validated in direct comparison with TRUS modality, which is practical and efficient tool for 

prostate volumetry. 

II. Conclusion 

The increasing need for valid methods for prostate volume estimation leads to demands 

for novel accurate approaches. Computerized prostate volumetry may provide an 

alternative to the present clinically wide spread ellipsoid formula-based method. In this 

study, we developed a method for prostate volumetry applied to MR images by employing 

single-class support-vector machines, a technique recently introduced into the field of 

pattern recognition. Prostate volumes obtained by our technique agreed excellently with 

the reference (planimetry) method. The promising results with respect to accuracy indicate 

considerable potential in clinical application, but further validation against TRUS modality 

is still required. 
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