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1 Introduction 

1.1 Principle of membrane fusion  
 
Membrane fusion is the process by which two initially separated lipid membranes merge into 

a single continuous bilayer. It is one of the most fundamental processes in life. In fact, without 

it, life would cease to exist (Blumenthal, Clague et al. 2003; Jahn, Lang et al. 2003; Leabu 2006). 

 
Diverse biological processes are dependent on membrane fusion events and at least three 

major types can be distinguished: [1] Cell-cell fusion, a crucial biological event essential for 

fertilization during sexual reproduction and for tissue formation during development. [2] 

Intracellular vesicle fusion, required for assembly and maintenance of organelles, protein 

trafficking and exocytosis. [3] Fusion of pathogens with their host cells, representing a key step 

in cell invasion by enveloped viruses such as herpesviruses, influenza virus or human 

immunodeficiency virus (HIV) (Jahn, Lang et al. 2003; Stein, Primakoff et al. 2004; Martens and 

McMahon 2008; Sapir, Avinoam et al. 2008).  

Despite the diversity of physiological conditions involving membrane fusion, an ordered 

sequence of basic steps appears common in all types of membrane fusion events (Fig. 1) (Jahn, 

Lang et al. 2003). First, close contact between lipid bilayers must be established. This is a high 

energy-demanding process since repulsive hydration forces, which occur between lipid bilayers 

at short separation distances (20 Å/2 nm), need to be overcome (Shemer and Podbilewicz 2003; 

Martens and McMahon 2008; Aeffner, Reusch et al. 2012). Thus, the hydration (water) layer, 

that is associated with the polar lipid head groups, must be removed to allow direct interaction 

between the two lipid bilayers (Rand and Parsegian 1984; Leikin, Parsegian et al. 1993). 

Numerous studies on membrane fusion, including biochemical and structural analyses of 

isolated membranes (Leikina and Chernomordik 2000; Aeffner, Reusch et al. 2012) as well as live 

cell imaging (Zhao, Hamid et al. 2016) have demonstrated that the energy required for this 

process is minimized by the formation of a point-like membrane protrusion (Fig. 1A), which 

transforms into a hemifused, stalk-like intermediate (Fig. 1B). During the hemifusion state, 

which is defined as lipid mixing without content mixing, the outer membrane leaflets of the 

opposed bilayers have merged whereas the inner leaflets remain separate (Chernomordik and 

Kozlov 2005; Chernomordik and Kozlov 2008). According to the widely accepted “stalk-pore 

hypothesis”, the formed stalk expands radially and brings the inner leaflets of the two bilayers 

together. The resulting structure is referred to as hemifusion diaphragm (Fig. 1C) 

(Chernomordik, Kozlov et al. 1995; Kozlovsky, Chernomordik et al. 2002). Lateral tension 
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emerging in the extending hemifusion diaphragm is assumed to promote rupture of the bilayer 

and fusion pore formation. Fusion pore opening and mixing of inner aqueous contents complete 

the fusion process (Fig. 1D) (Kozlovsky, Chernomordik et al. 2002; Mondal Roy and Sarkar 2011). 

Altogether, although fusion of two separate bilayers is thermodynamically favored, several 

energy barriers such as the hydration and electrostatic repulsions between the equally charged 

membrane surfaces, as well as the lateral tension of the lipid bilayer interface, need to be 

overcome for fusion to occur (Chernomordik, Melikyan et al. 1987; Leikin, Parsegian et al. 1993; 

Kozlovsky, Chernomordik et al. 2002; Chernomordik and Kozlov 2003; Chernomordik and Kozlov 

2008; Kielian 2014). Specialized proteins, termed fusion proteins, provide the energy required 

for the membrane fusion process at the appropriate time and place (Chernomordik and Kozlov 

2008; Harrison 2015; Han, Pluhackova et al. 2017). Research on viral fusion protein mediated 

membrane fusion has pioneered the current knowledge on the membrane fusion process in 

general (Hernandez, Hoffman et al. 1996; Harrison 2015).  

 

1.2 Structure and mechanism of viral fusion proteins  
 
The nucleocapsids of enveloped viruses are enclosed by host-derived lipid bilayers 

(Buchmann and Holmes 2015). In order to enter the host cell and initiate an infection, the virion 

envelope must fuse with cellular membranes, leading to release of the viral contents into the 

cytosol. This central fusion event can occur either at the cell surface or, following virus 

internalization, within cellular endocytic compartments (Yamauchi and Helenius 2013; Kielian 

2014; Boulant, Stanifer et al. 2015). To mediate this process, enveloped viruses have evolved 

specialized surface proteins, which are anchored in the viral envelope and termed fusion 

proteins, or fusogens. These proteins are activated once the virus arrives at the surface of the 

host cell or the appropriate intracellular compartment, such as an endosome (Harrison 2015).  

Crystallographic studies of fusion proteins from several viruses have revealed a variety of 

molecular architectures (Bullough, Hughson et al. 1994; Weissenhorn, Dessen et al. 1997; 

Figure 1: Schematic representation of the membrane fusion process following the stalk-pore model. (A) Fusion 

starts from a point-like membrane protrusion minimizing the repulsive forces between the lipid bilayers. (B) The inner 

leaflets fuse to form a stalk-like structure. Expansion of the hemifusion stalk leads to formation of a diaphragm. (C) 

Extension of the diaphragm promotes fusion of the inner leaflets and (D) formation of a fusion pore. Adapted from 

(Ogle, Cascalho et al. 2005). 
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Modis, Ogata et al. 2004; Heldwein, Lou et al. 2006; Roche, Bressanelli et al. 2006; DuBois, Vaney 

et al. 2013; Burke and Heldwein 2015). Despite their vast structural and genetic divergence, 

these proteins seem to catalyze fusion by a common overall mechanism of action (Schibli and 

Weissenhorn 2004; Kielian and Rey 2006; Kadlec, Loureiro et al. 2008; Baquero, Albertini et al. 

2013; Li and Modis 2014; Rey and Lok 2018). Fusion proteins are thought to provide the energy 

to overcome the kinetic barrier to fusion by refolding from a metastable, high-energy prefusion 

form to an energetically more stable postfusion conformation (Kielian and Rey 2006; White, 

Delos et al. 2008; Harrison 2015). Remarkably, to date, all postfusion structures of viral proteins 

reveal a trimeric hairpin conformation (Kielian and Rey 2006; Harrison 2015).  

In general terms, the entry process is thought to require three steps: receptor-binding, 

activation and membrane fusion (Sathiyamoorthy, Chen et al. 2017). Binding of the virus to an 

appropriate cell surface receptor or other host cell factors initiates the membrane fusion 

process. Receptor binding and membrane fusion can be mediated by a single viral protein (e.g., 

Env in retroviruses or HA in orthomyxoviruses) or distributed among multiple proteins (e.g., in 

herpesviruses and paramyxoviruses) (Harrison 2015). For some viruses, the initial interaction 

with the host cell is sufficient to trigger the fusion reaction (Hunter 1997). However, the specific 

fusion trigger depends on the virus. The currently described mechanisms by which viral fusion 

proteins can be triggered are diverse and at least five types of fusion triggers can be 

distinguished: exposure to low pH (Marsh and Helenius 1989; White and Whittaker 2016), 

receptor binding or a combination of receptor binding followed by low pH or other (unknown) 

triggers (Matsuyama, Delos et al. 2004; Moller-Tank and Maury 2015), sequential interaction 

with a receptor and a co-receptor (Wilen, Tilton et al. 2012; Ozorowski, Pallesen et al. 2017), as 

well as receptor binding to a separate attachment protein (Smith, Popa et al. 2009). 

Prior to the fusion triggering signal the viral fusion proteins reside in a metastable high-

energy prefusion state on the viral membrane (Fig. 2A). Upon triggering, they undergo a series 

of conformational rearrangements (Harrison 2015). Previously masked hydrophobic segments, 

termed fusion peptides [FPs] or fusion loops [FLs], are exposed and extended for interactions 

with the opposing target membrane (White, Delos et al. 2008). This results in simultaneous 

anchorage of the extended intermediate in the viral and cellular membrane (Fig. 2B). The 

formation of a trimeric extended intermediate termed “prehairpin” is postulated for all viral 

fusion proteins (Kim, Donald et al. 2011; Kielian 2014; Li and Modis 2014). The prehairpin 

intermediate is unstable and rapidly folds back into an energetically more favorable postfusion 

hairpin conformation (Fig. 2C-D). In this state, the FPs or FLs are positioned at the same end of 

the protein as the transmembrane domain (TMD) (Fig. 2D) (Kielian and Rey 2006). The insertion 

of the fusion segments and the subsequent fold-back process of the extended intermediates 
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drive distortion of the two membranes, resulting in formation of a lipid stalk or hemifusion 

intermediate (Chernomordik and Kozlov 2003; Kozlov, McMahon et al. 2010) (see section 1.1). 

Finally, fusion pore opening, allowing delivery of the viral contents and subsequent infection, is 

thought to require the concerted action of more than one fusion protein trimer. However, the 

number of involved trimers and the nature of interactions between them may vary between 

different viruses and, yet, remains largely elusive for most viruses (Kielian and Rey 2006; Plonsky, 

Kingsley et al. 2008; Harrison 2015). 

On the basis of common pre- and postfusion structural features, viral fusion proteins have 

been classified into three distinct classes (Kielian and Rey 2006; White, Delos et al. 2008). In 

1981, the structure of influenza virus hemagglutinin (HA), the founding member and prototype 

of class I viral fusion proteins, was determined (Wilson, Skehel et al. 1981). Class I fusion 

proteins, which encompass those of retroviruses, orthomyxoviruses, several members of the 

paramyxoviruses, filoviruses, arenaviruses, and coronaviruses are predominantly composed of 

α-helical structures and contain N-terminally located hydrophobic FPs (Lamb and Jardetzky 

2007; Kielian 2014). Both, in the pre- and postfusion state, class I fusion proteins are trimeric 

and contain a central α-helical coiled-coil structure (Schibli and Weissenhorn 2004; 

Weissenhorn, Hinz et al. 2007). Fusogens of class I must be activated (or “primed”) by proteolytic 

cleavage before they can be triggered to induce fusion. Proteolytic cleavage separates the fusion 

protein into a receptor binding and a fusion subunit, whereby the latter contains both the FP 

and the TMD (White and Whittaker 2016). The primed fusion protein can then be triggered by 

acidification within an endosomal compartment, as in the case of influenza HA (Skehel and Wiley 

2000), or by receptor interactions of an attachment protein, leading to exposure of the FPs 

(Harrison 2015).   

Figure 2: Conformational changes in influenza virus hemagglutinin (HA) during membrane fusion. (A) The prefusion 
form. HA resides in a prefusion state on the viral membrane. (B) Extended intermediate. After binding to the receptor 
(not shown) fusion is triggered by low pH. An extended intermediate conformation is generated in which the 
hydrophobic fusion peptides (orange) are extended towards the target membrane. (C) After anchoring into the 
membrane the intermediate folds back into a trimeric hairpin, positioning the transmembrane domains and fusion 
peptides in close proximity. (D) The post-fusion conformation. A fusion pore forms when the fusion peptides and the 
transmembrane domains are positioned adjacent to each other in the same membrane. Adapted from (Wessels and 

Weninger 2009). 
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14 years after the elucidation of the influenza HA structure, the structure of the tick borne 

encephalitis virus fusion protein E was solved, leading to the identification of a novel class II of 

fusion proteins (Rey, Heinz et al. 1995; Kielian 2006). Members of this class are found in 

alphaviruses and flaviviruses, phleboviruses and rubella virus (Kielian 2006; Dessau and Modis 

2013; DuBois, Vaney et al. 2013; Kielian 2014; Halldorsson, Li et al. 2018). In contrast to class I 

fusion proteins, members of the second class are three-domain proteins mainly composed of 

beta-sheets, which contain a fusion peptide located in an internal loop (Modis 2014). Unlike 

class I fusion proteins, their oligomeric state during the fusion process changes from prefusion 

dimers to postfusion trimers (Kielian 2006). Class II fusion proteins are primed for fusion by 

cleavage of a second viral surface protein, which acts as a chaperone, preventing premature 

triggering of the fusogen by low pH (Lobigs and Garoff 1990; Guirakhoo, Heinz et al. 1991; 

Stiasny, Allison et al. 2001).   

Glycoprotein (g)B of herpesviruses (Heldwein, Lou et al. 2006; Backovic, Longnecker et al. 

2009; Burke and Heldwein 2015; Li, Yang et al. 2017; Vallbracht, Brun et al. 2017), the G protein 

of rhabdoviruses (Roche, Bressanelli et al. 2006; Roche, Rey et al. 2007), glycoprotein 64 (gp64) 

of baculoviruses (Kadlec, Loureiro et al. 2008) and thogotovirus Gp (Peng, Zhang et al. 2017) 

possess structural features from both, class I and class II fusion proteins and were therefore 

postulated to define a novel, third class of viral fusion proteins (Steven and Spear 2006; Backovic 

and Jardetzky 2009). The determined three-dimensional structures of the ectodomains of all 

these proteins are proposed to represent postfusion conformations. The Vesicular Stomatitis 

virus (VSV) G protein is the only class III fusion protein for which high-resolution structures of 

both the pre- and postfusion conformation are available (Roche, Bressanelli et al. 2006; Roche, 

Rey et al. 2007; Abou-Hamdan, Belot et al. 2018). The postfusion structures of class III fusion 

proteins reveal trimeric, rod-like molecules. Each of the three protomers is composed of five 

domains, of which three are predominantly made of beta-sheets. The fusion peptides are 

located in an internal loop, characteristic of class II proteins (Backovic and Jardetzky 2009). As a 

hallmark of class I fusion proteins, the postfusion structures of class III proteins contain a central 

trimeric coiled-coil (Steven and Spear 2006). VSV G or baculovirus gp64 are “generalists”, which 

are able to mediate all steps of the fusion reaction on their own. In contrast, herpesvirus gB is 

not able to function alone but requires activation by additional viral surface glycoproteins 

(Cooper and Heldwein 2015). The molecular mechanism of herpesvirus induced membrane 

fusion is remarkably complex and as yet only poorly understood. The components of the 

herpesvirus fusion machinery and the nature of their interplay were intensively studied in this 

thesis and are therefore introduced in the following section. 
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1.3 Herpesvirus induced membrane fusion 
 

1.3.1 The herpesvirus family 

The order Herpesvirales contains enveloped animal viruses with large linear double-stranded 

(ds) deoxyribonucleic acid (DNA) genomes of 125 - 295 kilobase pairs (kbp), encoding between 

70 and 223 proteins (Davison, Eberle et al. 2009; Davison 2010). Ancestors of all herpesviruses 

emerged approximately 180 to 220 million years ago and today more than 100 individual species 

have been discovered, known to infect a wide range of animals “from molluscs to men” 

(McGeoch, Cook et al. 1995; Mettenleiter, Klupp et al. 2009; Davison 2010). Sequence-based 

phylogeny classifies the order Herpesvirales into three families. The best studied family 

Herpesviridae contains viruses infecting mammals, birds and reptiles (Davison 2010). This family 

is further divided into the three subfamilies Alpha-, Beta-, and Gammaherpesvirinae. Members 

of the three families differ, inter alia, in their host range and properties of the life cycle. The 

present thesis focusses on the fusion mechanism of alphaherpesviruses, which, compared to 

beta-, and gammaherpesviruses, have the broadest host range. They are characterized by a 

rapid lytic replication, a pronounced neurotropism and the propensity to establish lifelong 

latency in sensory ganglia (Davison 2010). Alphaherpesviruses include important human 

pathogens such as Herpes simplex virus 1 and 2 (HSV-1/2, Human alphaherpesvirus 1/2) and 

Varicella-zoster virus (VZV, Human alphaherpesvirus 3). Moreover, this subfamily contains 

economically important animal viruses such as Bovine alphaherpesvirus 1 (BoHV-1), Equid 

alphaherpesvirus 1 (EHV-1) and Pseudorabies virus (PRV, Suid alphaherpesvirus 1). Beyond its 

significance as an economically important pathogen, PrV has served as a model for the study of 

alphaherpesvirus biology in natural hosts and in tissue culture (Mettenleiter 1996; Pomeranz, 

Reynolds et al. 2005; Mettenleiter 2008; Mettenleiter, Klupp et al. 2009). Thus, in the present 

thesis PrV was used as a tool to study the molecular mechanism of herpesvirus mediated 

membrane fusion.  

Morphologically, herpes virions are unique and comprise four structurally distinct elements, 

the core, capsid, tegument and envelope (Mettenleiter 2002; Davison, Eberle et al. 2009). The 

core contains the linear dsDNA genome enclosed by an icosahedral (T=16) capsid (Booy, 

Newcomb et al. 1991). Together they form the nucleocapsid, which is embedded in a 

proteinaceous layer, termed tegument (Zhou, Chen et al. 1999). The tegument with the 

nucleocapsid is surrounded by a host cell derived lipid-bilayer, the envelope, containing multiple 

copies of different virus-encoded, and mostly glycosylated proteins (Granzow, Weiland et al. 

1997; Davison, Eberle et al. 2009; Mettenleiter, Klupp et al. 2009). PrV (Mettenleiter 1994; 

Mettenleiter 2008) and HSV (Campadelli-Fiume and Menotti 2007) encode at least 11 different 
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envelope glycoproteins. A specific set of these envelope glycoproteins plays an essential role in 

virus entry.  

 

1.3.2 The alphaherpesvirus fusion machinery 

The entry mechanism utilized by herpesviruses is more complex than the mechanism 

employed by most other enveloped viruses. Whereas the majority of enveloped viruses depend 

on only one or two envelope glycoproteins for entry, herpesviruses require the coordinated 

action of at least three viral envelope glycoproteins. The homotrimeric gB and the heterodimeric 

complex of transmembrane glycoprotein H and anchorless glycoprotein L (gH/gL), constitute the 

“core fusion machinery”, which is conserved throughout the entire Herpesviridae (Eisenberg, 

Atanasiu et al. 2012). This fusion machinery in PrV and most other alphaherpesviruses is 

proposed to be activated by binding of the essential attachment glycoprotein D (gD) to specific 

host cell receptors (Connolly, Whitbeck et al. 2001; Krummenacher, Carfi et al. 2013). These four 

components are thought to orchestrate membrane fusion through a sequential activation 

process (Atanasiu, Saw et al. 2010; Eisenberg, Atanasiu et al. 2012). However, although crystal 

structures are available for all four components, the molecular details of this cascade of events, 

ultimately leading to membrane fusion, remain enigmatic. 

 

1.3.2.1 Receptor-mediated activation of entry by gD 

An initial and reversible interaction of extracellular alphaherpes virions with the target cell is 

established by binding of attachment glycoprotein C (gC) to heparan sulfate moieties of cell 

surface proteoglycans. Although gC mediated attachment is beneficial for productive virus 

infection, it is not essential for the entry process (Mettenleiter 1989; Mettenleiter, Zsak et al. 

1990; Shieh, WuDunn et al. 1992; Karger and Mettenleiter 1993; Laquerre, Argnani et al. 1998). 

In the absence of gC, attachment of HSV-1 to cell surface heparan sulfate can also be mediated 

by gB, which does not apply for BoHV-1 gB (Herold, Visalli et al. 1994; Klupp, Karger et al. 1997). 

The initial interaction by gC or gB is not sufficient for viral entry, but stable binding of gD to an 

appropriate cellular receptor is required (Karger and Mettenleiter 1993; McClain and Fuller 

1994; Spear, Manoj et al. 2006). Alphaherpesviruses have the capacity to bind multiple cell 

surface molecules via gD, partially explaining their broad host range (Spear, Eisenberg et al. 

2000; Li, Lu et al. 2017). The currently described gD receptors include the tumor necrosis factor 

(TNF) receptor-related protein herpesvirus entry mediator (HVEM) (Montgomery, Warner et al. 

1996; Warner, Geraghty et al. 1998; Carfi, Willis et al. 2001), 3-O-sulfonated-heparan sulfate 

(Shukla, Liu et al. 1999) and three members of the immunoglobulin superfamily, namely, the 

poliovirus receptor related protein (HveD; CD155) (Mendelsohn, Wimmer et al. 1989; Geraghty, 
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Krummenacher et al. 1998), nectin-2 (HveB) (Warner, Geraghty et al. 1998) and nectin-1 (HveC) 

(Geraghty, Krummenacher et al. 1998; Di Giovine, Settembre et al. 2011; Li, Lu et al. 2017). 

Nectin-1 is the most broadly used gD receptor mediating entry of PrV, HSV-1, HSV-2 as well as 

BoHV-1 (Spear, Eisenberg et al. 2000; Li, Lu et al. 2017).  

Binding of gD to one of its cellular receptors plays a key role in triggering the membrane 

fusion cascade (Krummenacher, Carfi et al. 2013). The crystal structures of both, the ectodomain 

of unliganded PrV and HSV gD, as well as HSV gD in complex with nectin-1 have been determined 

at high resolution (Carfi, Willis et al. 2001; Krummenacher, Supekar et al. 2005; Di Giovine, 

Settembre et al. 2011; Zhang, Yan et al. 2011; Lu, Zhang et al. 2014; Li, Lu et al. 2017). Structural 

and functional studies support a model in which receptor binding of gD would displace the 

carboxy (C)-terminus of the gD ectodomain, including the so called pro-fusion domain (PFD), 

leading to exposure of the fusion-activating interface of gD. This conformational change in gD 

has been suggested to enable it to interact with gH/gL and trigger gB mediated membrane fusion 

(Connolly, Whitbeck et al. 2001; Fusco, Forghieri et al. 2005; Gallagher, Saw et al. 2013; Fan, 

Longnecker et al. 2014). However, how receptor-activated gD transmits the fusion triggering 

signal to the other glycoproteins remains largely unknown. Functional studies on HSV-1 provide 

indirect evidence for physical and functional interaction between gD and gH/gL ectodomains, 

involving residues located within the gD PFD and the two amino (N)-terminal domains of gH 

(Atanasiu, Whitbeck et al. 2007; Avitabile, Forghieri et al. 2007; Fan, Longnecker et al. 2014; Fan, 

Longnecker et al. 2015).  

During infection within the host, herpesviruses can disseminate by direct spread from an 

infected cell to a non-infected neighboring cell (cell-to-cell spread) (see section 1.4). While the 

requirements for gD receptor interaction in entry of free virions are the same as during 

cell-to-cell spread in HSV (Pertel, Fridberg et al. 2001), direct cell-to-cell spread of PrV, including 

transsynaptic spread in animals, can occur independently of gD (Rauh and Mettenleiter 1991; 

Peeters, de Wind et al. 1992; Mulder, Pol et al. 1996). This phenomenon has been exploited for 

reversion analyses of gD-negative PrV mutants in cell culture (Schmidt, Klupp et al. 1997; 

Schmidt, Gerdts et al. 2001). After passage of cells infected with gD-deleted PrV mutants, gH 

and gB acquired compensatory mutations, which supported efficient gD-independent entry 

(Schmidt, Gerdts et al. 2001). Moreover, mutations in gH and/or gB have also been shown to 

compensate for absence of gD receptors during HSV-1 or BoHV-1 entry and cell-cell fusion in in 

vitro cell fusion assays (Schröder, Linde et al. 1997; Atanasiu, Cairns et al. 2013; Uchida, Chan et 

al. 2013; Gatta, Petrovic et al. 2015; Atanasiu, Saw et al. 2016; Petrovic, Gianni et al. 2017). 

These studies demonstrated that essential functions encoded in gD can be compensated for and, 

thus, implies that gD is not central to the fusion process. Other alphaherpesviruses such as VZV 
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lack a gD homolog (Davison and Scott 1986). In VZV, the receptor binding function is mediated 

by glycoprotein E (Li, Krogmann et al. 2007).  

According to the current model, the proposed direct interaction between gD and gH/gL 

ectodomains leads to conformational changes in the heterodimer, enabling it to activate the 

bona fide fusion protein gB (see Fig. 3) (Atanasiu, Saw et al. 2010; Chowdary, Cairns et al. 2010; 

Eisenberg, Atanasiu et al. 2012; Stampfer and Heldwein 2013; Atanasiu, Saw et al. 2016). 

Although gB has been identified as a class III fusion protein (see section 1.2), it depends on the 

gH/gL complex for fusion. However, the detailed function of the heterodimer is only 

incompletely understood. 

1.3.2.2 Structure and role of the gH/gL complex 

gH is a type I transmembrane protein consisting of a signal peptide, a large N-terminal 

ectodomain and a short cytoplasmic domain (CD). In contrast, gL lacks a membrane anchor and 

is noncovalently associated with the gH ectodomain, forming the heterodimeric gH/gL complex 

(Klupp, Visser et al. 1992; Klupp, Baumeister et al. 1994; Chowdary, Cairns et al. 2010; Matsuura, 

Kirschner et al. 2010; Eisenberg, Atanasiu et al. 2012; Xing, Oliver et al. 2015). Due to its lack of 

a membrane anchor gL is dependent on association with gH for virion incorporation 

(Hutchinson, Browne et al. 1992; Kaye, Gompels et al. 1992; Liu, Gompels et al. 1993; Klupp, 

Baumeister et al. 1994). However, while gL is required for correct folding and transport of gH in 

most herpesviruses, including HSV-1, Epstein-Barr virus (EBV, Human gammaherpesvirus 4), and 

VZV (Roop, Hutchinson et al. 1993; Yaswen, Stephens et al. 1993; Duus and Grose 1996; 

Figure 3: Schematic diagram of the proposed sequential events leading to alphaherpesvirus entry. (1) Binding of gD 
to specific cellular receptors (nectin-1 is shown) initiates the entry process. (2) Receptor binding triggers a 
conformational change in gD enabling it to interact with gH/gL. (3) This interaction leads to a conformational change 
in gH/gL which then interacts with gB to upregulate it into a fusogenic state. This process may involve interaction of 
gB with a cell surface protein, insertion of the gB fusion loops into the opposing lipid membrane and (4) interaction 
between the ectodomains of gH/gL and gB. (5) This converts gB from a pre- to a postfusion form, resulting in fusion 
of the viral envelope with cellular membranes and delivery of the nucleocapsid into the cell. The proteins were drawn 
based on published structures with the corresponding domains. Where prefusion structures were not available, the 
proteins are shown in gray. Adapted from (Eisenberg, Atanasiu et al. 2012). 
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Chowdary, Cairns et al. 2010), it is not essential for gH virion incorporation in PrV, BoHV-4, Murid 

gammaherpesvirus 4, and HSV-2 (Klupp, Fuchs et al. 1997; Cairns, Friedman et al. 2007; Gillet, 

May et al. 2007; Lete, Machiels et al. 2012). Nevertheless, presence of gL is required for 

herpesvirus entry (Klupp, Fuchs et al. 1997; Cairns, Friedman et al. 2007), but its function during 

this process remains largely elusive. HSV-1 gH/gL has been shown to use αvβ6- and αvβ8-

integrins as receptors, regulating the route and timing of infection (Gianni, Salvioli et al. 2013; 

Cooper and Heldwein 2015). In the presence of receptor-bound gD and gB, binding of HSV-1 

gH/gL to integrins has been shown to promote gL dissociation from gH (Gianni, Massaro et al. 

2015). Therefore, gL was hypothesized to act as a regulator of gH preventing its premature 

activation (Gianni, Massaro et al. 2015). Dissociated HSV-1 gL has been recently suggested to 

regulate restoration of the membrane asymmetry after viral entry through binding to 

phospholipid scramblase-1 (Cheshenko, Pierce et al. 2018).   

Although gL is required for entry, gL-deleted PrV is capable of limited cell-to-cell spread, 

which has been used for reversion analysis by repeated passages in cell culture (Klupp and 

Mettenleiter 1999). After several passages a phenotypic revertant, designated PrV-ΔgLPass, was 

isolated, which had regained wild-type like replication properties. Interestingly, instead of wild-

type gH, PrV-ΔgLPass was found to express a gDgH hybrid protein, which lacked the predicted 

gL-interaction domain of gH, and consisted of the N-terminal 271 amino acids (aa) of gD, 

including the receptor binding domain, fused to the C-terminal 590 aa of gH. The gDgH chimera 

was able to substitute for gL, gH and gD in virus entry and cell-cell fusion assays (Klupp and 

Mettenleiter 1999; Klupp, Nixdorf et al. 2000). In contrast to PrV, no gL-negative infectious virus 

mutants have been reported in the Simplexviruses (Cairns, Milne et al. 2003). To understand the 

gH/gL function in more detail, a second PrV mutant, replicating productively without gL, was 

characterized in the present thesis (section 5.2, paper II).  

The gH/gL heterodimer is proposed to play a role in regulation of gB fusogenicity (Roche, 

Bressanelli et al. 2006; Backovic, Longnecker et al. 2009; Backovic, DuBois et al. 2010; Chowdary, 

Cairns et al. 2010; Matsuura, Kirschner et al. 2010; Atanasiu, Cairns et al. 2013; Xing, Oliver et 

al. 2015; Atanasiu, Saw et al. 2016). Physical interactions between HSV gH/gL and gB have been 

suggested using coflotation liposome binding assays (Cairns, Whitbeck et al. 2011) and 

bimolecular fluorescence complementation (BiFC) (Atanasiu, Whitbeck et al. 2007; Avitabile, 

Forghieri et al. 2007; Avitabile, Forghieri et al. 2009). The BiFC studies indicated that HSV-1 gB 

and gH/gL, fused to fragments of fluorescent proteins, interact in transfected cells. However, 

receptor binding of gD was shown to be necessary for the interaction (Atanasiu, Whitbeck et al. 

2007; Avitabile, Forghieri et al. 2007; Avitabile, Forghieri et al. 2009). For membrane fusion, a 
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direct interaction between the ectodomains of gH/gL and gB has been proposed (Atanasiu, Saw 

et al. 2010).  

Despite low gH sequence conservation even within the alphaherpesvirus subfamily, the 

crystal structures of the gH/gL ectodomains of HSV-2 (Chowdary, Cairns et al. 2010), EBV 

(Matsuura, Kirschner et al. 2010), VZV (Xing, Oliver et al. 2015), and of a core fragment of PrV 

gH (Backovic, DuBois et al. 2010) reveal a strikingly similar four-domain organization (Fig. 4) 

(Backovic, DuBois et al. 2010). Although experimental evidence indicate that gH/gL may act as a 

fusion protein (Galdiero, Falanga et al. 2005; Galdiero, Falanga et al. 2007), the structures do 

not resemble any known viral fusion protein.  

The least conserved N-terminal gH domain I (Fig. 4, purple), which was not included in the 

PrV gH-core fragment, has been shown to form tight contacts with gL for HSV-2 and EBV 

(Chowdary, Cairns et al. 2010; Matsuura, Kirschner et al. 2010). The functional importance for 

gL binding and membrane fusion of this structurally uncharacterized domain in PrV gH was 

investigated in this thesis (section 5.3, paper III). 

gH domain II contains two structurally conserved elements. A sheet of five antiparallel beta-

chains termed “fence” (Fig. 4, blue) is connected to a bundle of three α-helices. Due to its 

structural similarities to the N-terminal domain of the eukaryotic fusion proteins syntaxin 1A 

and 6, this 3-helix structure has been designated as syntaxin-like bundle (SLB; Fig. 4, cyan) 

Figure 4: Domain organization of the PrV gH-core fragment (gHc) and comparison to HSV-2 and EBV homologs. The 

molecules were structurally aligned on the SLB (cyan) and are displayed in the same orientation. N- and C-termini are 

labeled. The gH N domain is shown in magenta and gL in pale gray, which together constitute domain I, which is 

missing in PrV gHC. In domain II, the conserved structural elements, fence and SLB, are highlighted in blue and cyan, 

respectively, with the remainder in gray. Domain III is colored in yellow and domain IV in red with the flap highlighted 

in blue. Green numbers mark the four disulfide bonds in PrV gH. The glycans are displayed as sticks. Regions which 

do not have a superposable counterpart in the different structures are colored in dark gray. The integrin binding sites 

in HSV-2 and EBV gH are indicated with red stars. Adapted from (Backovic, DuBois et al. 2010). 
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(Backovic, DuBois et al. 2010). Although this parallel with intracellular vesicle fusion is intriguing, 

there is no evidence for a large conformational change in gH, which would lead to exposure of 

this motif for oligomerization or interaction with membranes (Backovic, DuBois et al. 2010). 

However, the integrity and flexibility of the SLB are relevant for the function of PrV gH in 

membrane fusion (Böhm, Eckroth et al. 2015). gH domains I and II have been proposed to 

functionally interact with gD in HSV-1 (Fan, Longnecker et al. 2015). However, the interaction 

has been suggested to be transient or weak (Atanasiu, Whitbeck et al. 2007; Avitabile, Forghieri 

et al. 2007; Fan, Longnecker et al. 2015).  

Domain III (Fig. 4, yellow) is composed of eight consecutive α-helices comprising a highly 

conserved amino acid stretch (437serine-proline-cysteine439). Cysteine (C) in this stretch is 

involved in the formation of a strictly conserved disulfide bond (in PrV between C439 and C404), 

which has been shown to be important for regulation of membrane fusion (Backovic, DuBois et 

al. 2010; Schröter, Klupp et al. 2014; Möhl, Schröter et al. 2015). Moreover, the gB-binding site 

on gH has been suggested to be located in domain III, since the epitope of neutralizing antibody 

LP11, which blocks interaction of gB with gH/gL and thereby prevents fusion, maps in this region 

(Chowdary, Cairns et al. 2010). However, the exact binding site has not been determined.  

The most conserved region of gH is the membrane proximal domain IV (Fig. 4, red), which 

consists of a beta-sandwich comprising two opposed four-stranded beta-sheets, which are 

connected via a long crossover segment, termed “flap” (Fig. 4, blue) (Backovic, DuBois et al. 

2010). The flap, supported by an asparagine (N)-linked glycan at position 627 in PrV gH, whose 

functional relevance was investigated in this thesis (section 5.5, paper V), covers a conserved 

patch of hydrophobic amino acids. Movement of the flap during a receptor-triggered 

conformational change of gH has been proposed to enable interaction of the underlying 

hydrophobic surface with the viral envelope to promote membrane fusion (Backovic, DuBois et 

al. 2010; Fuchs, Backovic et al. 2012). In line, mutagenesis studies have revealed functional 

relevance (Fuchs, Backovic et al. 2012) but also functional conservation (Böhm, Backovic et al. 

2016) of domain IV between PrV and HSV-1. 

Important roles have also been ascribed to the structurally uncharacterized TMD and the 

short CD of gH (19 aa in PrV; 14 aa in HSV-1). Mutations in the HSV-1 gH TMD, substitution by 

analogous domains from other glycoproteins, or replacement by a lipid-anchor resulted in non-

functional proteins (Harman, Browne et al. 2002; Jones and Geraghty 2004). The CDs of HSV-1, 

VZV and EBV gH have been implicated in regulation of gB fusogenicity (Browne, Bruun et al. 

1996; Harman, Browne et al. 2002; Pasieka, Maresova et al. 2003; Suenaga, Satoh et al. 2010; 

Yang, Arvin et al. 2014; Rogalin and Heldwein 2015; Chen, Jardetzky et al. 2016). Functional 

studies on HSV support a model in which the gH CD would directly interact with the gB CD by 
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acting as a “wedge” to release the fusion restricting gB CD “clamp” (see section 1.3.2.3), allowing 

gB to execute membrane fusion (Rogalin and Heldwein 2015). The gH CD of VZV, however, was 

hypothesized to act as a “gate keeper”, controlling access to functional domains of neighboring 

proteins, thereby e.g., allowing or preventing phosphorylation of the gB CD (Yang, Arvin et al. 

2014). However, despite functional significance of the TMD and CD of gH, a soluble form of HSV-

1 gH, lacking both domains, was able to induce low levels of fusion in a cell-based fusion assay 

(Atanasiu, Saw et al. 2010), whereas this was not observed for EBV (Kirschner, Omerovic et al. 

2006; Rowe, Connolly et al. 2013). The functional relevance of the PrV gH TMD and CD for 

membrane fusion was analyzed in this thesis (section 5.4, paper IV). 

 

1.3.2.3 gB and its role in herpesvirus entry 

Despite the apparent variation in the initial fusion trigger, herpesvirus fusion mechanisms 

converge at the point of gB activation by the gH/gL complex (Cooper and Heldwein 2015). gB is 

the most highly conserved herpesvirus glycoprotein and has been suggested to be the bona fide 

fusion protein due to structural similarities with the otherwise unrelated VSV G (Roche, 

Bressanelli et al. 2006). Together with VSV G (Roche, Bressanelli et al. 2006) and baculovirus 

gp64 (Kadlec, Loureiro et al. 2008) gB has been classified as class III fusion protein (Heldwein, 

Lou et al. 2006; Backovic, Longnecker et al. 2009; Burke and Heldwein 2015; Chandramouli, 

Ciferri et al. 2015; Li, Yang et al. 2017). By comparison with other class III fusion proteins, gB 

appears to contain all features necessary to effect fusion (Cooper and Heldwein 2015), raising 

the legitimate question as to why it is reliant on gH/gL for fusion.  

Herpesvirus gB is a type I transmembrane protein, composed of a large ectodomain, a 

hydrophobic membrane proximal region (MPR), a single-span TMD, and a CD. The crystal 

structures of the postfusion ectodomains of gB of HSV-1 (Heldwein, Lou et al. 2006), EBV 

(Backovic, Longnecker et al. 2009), HCMV (Burke and Heldwein 2015; Chandramouli, Ciferri et 

al. 2015) and PrV (section 5.6, paper VI) (Li, Yang et al. 2017), reveal a spike-like trimer, in which 

each of the three protomers is arranged into a hairpin structure (Fig. 5B). This hairpin 

architecture is common to the postfusion structures of viral fusion proteins from all classes 

(Kielian and Rey 2006).  

The gB postfusion trimer is stabilized by multiple inter-subunit contacts, which are 

established by domains I-V (Fig. 5, blue to red) of each of the three protomers, which twist 

around the equivalent regions of their counterparts (Heldwein, Lou et al. 2006; Backovic and 

Jardetzky 2009; Backovic, Longnecker et al. 2009; Burke and Heldwein 2015; Chandramouli, 

Ciferri et al. 2015; Cooper and Heldwein 2015; Li, Yang et al. 2017; Vallbracht, Brun et al. 2017).  
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Fusion activated gB is thought to undergo large conformational rearrangements unmasking 

the initially buried hydrophobic segments termed fusion loops, for interactions with the target 

membrane. The gB ectodomain contains two putative FLs, which are located in domain I (Fig. 5, 

blue) and exposed at the base of the molecule adjacent to the C-terminus of the ectodomain 

(Fig. 5, black asterisks) (Heldwein, Lou et al. 2006; Backovic, Longnecker et al. 2009; Burke and 

Heldwein 2015; Chandramouli, Ciferri et al. 2015; Li, Yang et al. 2017; Vallbracht, Brun et al. 

2017). Since the amino acid sequences of herpesvirus gB FLs are poorly conserved compared to 

FLs in other class III fusion proteins, their identification was difficult until structural data became 

available. Based on structural homology with the well-defined FLs of the VSV G protein (Sun, 

Belouzard et al. 2008; Baquero, Albertini et al. 2015), the two loops exposed at the tips of the 

crystallized HSV-1 gB ectodomain (Heldwein, Lou et al. 2006) were suggested to form the FLs. 

This hypothesis was confirmed by extensive mutagenesis studies demonstrating the importance 

of several hydrophobic residues within the two loops, as well as polar and charged residues at 

the sides of FL2 for membrane binding and fusion (Hannah, Heldwein et al. 2007; Lin and Spear 

2007; Hannah, Cairns et al. 2009; Maurer, Zeev-Ben-Mordehai et al. 2013). Exposure of the FLs 

in HSV-1 gB has been proposed to be regulated by the MPR (Shelly, Cairns et al. 2012). The 

structure of PrV gB and the molecular details of how its FLs insert into the lipid bilayer were 

investigated in this thesis (section 5.4, paper VI). 

Domain II (Fig. 5, green) adopts a fold reminiscent of the pleckstrin homology (PH) domain. 

This is suggestive of interactions with lipids or proteins (Heldwein, Lou et al. 2006; Eisenberg, 

Atanasiu et al. 2012) since these domains, present in a variety of cellular proteins, allow 

phosphoinositide and peptide binding (Blomberg, Baraldi et al. 1999; Lemmon 2007). This region 

in gB has been suggested to be involved in interaction with gH/gL, since certain monoclonal 

Figure 5: PrV gB ectodomain structure. 

Structure of the PrV gB monomer (A) and  

trimer (B). Ribbon and molecular-surface 

representations are shown. gB 

ectodomains I-V are colored from blue 

(N-terminus) to red (C-terminus). N- and 

C-termini are labeled and domains are 

numbered (I to V). Fusion loops (FL) are 

marked by black asterisks. The orange 

star indicates the putative location of the 

furin cleavage site. MPR: membrane 

proximal region. Adapted from 

(Vallbracht, Brun et al. 2017). 

 

 

 



1 Introduction  15 

 
 

antibodies which bind to this domain (Cairns, Fontana et al. 2014), prevented association with 

gH/gL (Atanasiu, Whitbeck et al. 2010; Eisenberg, Atanasiu et al. 2012). 

In contrast to HSV gB, processing of PrV gB involves proteolytic cleavage by cellular furin, 

whose cleavage site is located in a flexible linker connecting domains II and III (Li, Yang et al. 

2017; Vallbracht, Brun et al. 2017) (Fig. 5A, orange star). However, cleavage of gB by furin is 

dispensable for gB function (Kopp, Blewett et al. 1994; Strive, Borst et al. 2002; Okazaki 2007). 

Domain III contains the prominent, centrally located α-helix, which together with the α-

helices from two other protomers form the trimeric α-helical coiled-coil core, characteristic for 

class III fusion proteins (Backovic and Jardetzky 2009). The central α-helix extends to the top or 

“crown” domain of the molecule, which is formed by domain IV (Fig. 5, orange) (Heldwein, Lou 

et al. 2006; Backovic, Longnecker et al. 2009; Burke and Heldwein 2015; Chandramouli, Ciferri 

et al. 2015; Li, Yang et al. 2017; Vallbracht, Brun et al. 2017). 

Domain V extends from one end of the molecule to the other and packs tightly into the 

groove formed by the other two protomers, resulting in an extensive trimerization interface (Fig 

5, red) (Heldwein, Lou et al. 2006; Backovic and Jardetzky 2009; Vallbracht, Brun et al. 2017). 

The long C-terminal arm of this domain has been shown to pack against the coiled-coil core in 

an antiparallel fashion, forming the so called “coil-arm complex”. This complex is reminiscent of 

the six-helix bundle, which provides the energy for fusion mediated by class I fusion proteins 

(White, Delos et al. 2008). Therefore, the complex has been proposed to perform a similar 

function in HSV gB (Heldwein, Lou et al. 2006; Connolly and Longnecker 2012; Fan, Kopp et al. 

2017). Mutations within the C-terminal arm of domain V reduced fusion activity without 

affecting protein expression and, therefore, were suggested to destabilize the postfusion 

conformation or stabilize the prefusion conformation of gB (Fan, Kopp et al. 2017). 

In contrast to the well characterized postfusion conformation of the gB ectodomain, a high-

resolution structure of the prefusion state has not been obtained yet. Despite extensive effort 

made to destabilize the postfusion trimer (Vitu, Sharma et al. 2013), or to stabilize prefusion gB 

(Silverman, Sharma et al. 2010), soluble forms of the gB ectodomain never adopted a putative 

prefusion conformation (Baquero, Albertini et al. 2015). Therefore, it was hypothesized that 

other regions of gB, such as the MPR, the TMD, and/or the CD, are necessary to establish and 

maintain the metastable prefusion conformation (Vitu, Sharma et al. 2013). Recently, the full-

length HSV-1 gB has been characterized in cell-derived vesicles using electron cryotomography, 

revealing, in addition to the known trimeric postfusion form, a shorter and more condensed 

conformation of gB, possibly representing a putative prefusion conformation (Zeev-Ben-

Mordehai, Vasishtan et al. 2016). In this conformation, the gB FLs have been reported to be 

apart and pointing away from the viral membrane (Zeev-Ben-Mordehai, Vasishtan et al. 2016). 
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In contrast, a second, similarly condensed form of gB has been reported, in which the FLs were 

found to point towards the anchoring membrane (Fontana, Atanasiu et al. 2017). However, 

whether these forms represent gB in an intermediate, or prefusion conformation and whether 

gH/gL is required to maintain gB in its metastable form, remains unclear (Zeev-Ben-Mordehai, 

Vasishtan et al. 2016; Fontana, Atanasiu et al. 2017). 

While the fusogenic function of gB appears to reside in its ectodomain, the adjoining MPR, 

TMD and CD play key roles in the regulation of gB fusogenicity. The TMD and MPR have both 

been shown to be essential for correct folding, transport, and function of HSV-1 gB (Cai, Person 

et al. 1988; Rasile, Ghosh et al. 1993; Gilbert, Ghosh et al. 1994; Zheng, Maidji et al. 1996; Lin 

and Spear 2007; Silverman, Greene et al. 2012). Moreover, the HSV gB TMD has been proposed 

to play an essential role in the later stages of fusion, since replacement by a lipid-anchor resulted 

in fusion arrest at the hemifusion stage (Jones and Geraghty 2004).  

The individually expressed CD of HSV-1 gB forms trimers, which associate stably with lipid 

membranes (Chowdary and Heldwein 2010). Moreover, the presence of a membrane has been 

demonstrated to be required for the trimeric CD to adopt its fully folded conformation 

(Silverman, Greene et al. 2012). Therefore, the ability to stably bind to lipid membranes has 

been proposed to be a key feature of the CD essential for its structural organization and function 

to regulate gB fusogenicity (Chowdary and Heldwein 2010; Silverman, Greene et al. 2012). Only 

recently, the crystal structure of full length HSV-1 gB was determined, demonstrating that the 

MPR, TMD and CD form a trimeric pedestal underneath the ectodomain (Cooper, Georgieva et 

al. 2018). The gB CD was shown to form an intertwined trimer (Cooper, Georgieva et al. 2018), 

which appears to negatively regulate fusion, since both naturally occurring and engineered point 

mutations, truncations, or insertions, were found to enhance the fusion activity of gB of different 

herpesviruses including PrV (Klupp, Nixdorf et al. 2000; Nixdorf, Klupp et al. 2000), HSV (Gage, 

Levine et al. 1993; Foster, Melancon et al. 2001; Diakidi-Kosta, Michailidou et al. 2003; Ruel, 

Zago et al. 2006), VZV (Heineman and Hall 2002), and EBV (Haan, Lee et al. 2001; Garcia, Chen 

et al. 2013; Chen, Jardetzky et al. 2016). Mutations in the gB CD, found to increase gB 

fusogenicity, have been proposed to either act by disrupting the interaction of the CD with the 

membrane or the inter-protomer contacts preventing the CD from adopting its fully folded 

conformation (Chowdary and Heldwein 2010; Cooper, Georgieva et al. 2018). Thus, it was 

hypothesized that the HSV-1 gB CD acts a clamp, which braces against the viral membrane, and 

thereby stabilizes the gB prefusion form (Vitu, Sharma et al. 2013; Cooper and Heldwein 2015; 

Rogalin and Heldwein 2015; Cooper, Georgieva et al. 2018). Overall, fusion mediated by 

alphaherpesviruses is a precisely regulated process in which the CD of gB is apparently of critical 

importance.  
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1.4 Direct viral cell-to-cell spread and in vitro fusion assays 
 
PrV and other herpesviruses, such as HSV, can infect cells via two distinct routes, either 

through attachment and subsequent entry of extracellular virions (cell-free spread) or through 

spread via direct cell-cell contact while remaining cell associated. The latter mode is referred to 

as “direct cell-to-cell spread”, which is mechanistically only poorly understood (Cocchi, Menotti 

et al. 2000; Sattentau 2008; Mothes, Sherer et al. 2010; Miranda-Saksena, Denes et al. 2018). 

Early evidence for direct cell-to-cell spread was the fact that viruses were able to spread in the 

presence of neutralizing antibodies, which completely block the spread of cell-free virus 

(Mothes, Sherer et al. 2010). Thus, by spreading directly from infected to uninfected cells, 

herpesviruses have been proposed to be able to evade immunological, but also biophysical and 

kinetic barriers (Sattentau 2008). 

Several studies using glycoprotein deficient PrV and HSV mutants revealed that the 

mechanisms for entry of free virions and direct cell-to-cell spread are similar, but not identical. 

In PrV the two processes can be clearly separated by the requirements for gD. As noted above 

(section 1.3.2.1), gD deficient virus mutants are not infectious as extracellular particles but 

capable of spreading by cell-cell contact in vitro (Rauh and Mettenleiter 1991; Peeters, de Wind 

et al. 1992). A similar situation has been shown to occur in vivo. Whereas gD is essential for entry 

of PrV, cell-cell spread and also transsynaptic spread of PrV in mice and pigs occurs independent 

of gD (Babic, Mettenleiter et al. 1993; Mulder, Pol et al. 1996). Conversely, PrV and HSV mutants 

lacking the gE/gI complex efficiently enter cells, but are unable to efficiently disseminate by 

direct cell-to-cell spread in vivo (Dingwell, Brunetti et al. 1994; Enquist, Dubin et al. 1994; Kritas, 

Pensaert et al. 1994; Dingwell, Doering et al. 1995; Mulder, Pol et al. 1996; Farnsworth and 

Johnson 2006). The gE/gI complex localizes to cell-cell junctions, favoring the spread of virions 

across these junctions in vitro (Dingwell and Johnson 1998) and in vivo (Dingwell, Brunetti et al. 

1994). It has been hypothesized that gE/gI promotes cell-to-cell spread by binding to unknown 

receptors, which are specific to tight junctions (Johnson, Webb et al. 2001; Polcicova, Goldsmith 

et al. 2005; Farnsworth and Johnson 2006). Like HSV-1 gE, HSV-1 gD accumulates at junctions 

between epithelial cells, where it interacts with nectin-1 (Krummenacher, Baribaud et al. 2003). 

In contrast to PrV, direct cell-to-cell spread of HSV requires gD and a gD receptor (Pertel, 

Fridberg et al. 2001).  

Herpesviruses have evolved at least two mechanisms to spread directly from cell-to-cell. As 

noted above, they can either utilize already existing cell-cell contacts, such as neurological 

synapses or establish a new contact by inducing fusion of two adjacent cells. The latter mode 

could result in formation of multinucleated cells, termed syncytia, or might be restricted to 

localized “microfusion” events, which would allow the maintenance of structural independence 
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of the cells (Sattentau 2008; Zhong, Agosto et al. 2013; Mateo, Generous et al. 2015). The 

existence of small fusion pores between PrV infected neurons has been demonstrated by 

transfer of a low molecular weight dye (McCarthy, Tank et al. 2009). Whereas induction of large 

syncytia is a hallmark of infections with e.g., the extremely cell-associated VZV (Esiri and 

Tomlinson 1972; Litwin, Jackson et al. 1992; Harson and Grose 1995; Pasieka, Maresova et al. 

2004), HSV infection usually does not result in syncytia formation in vivo (Read, Person et al. 

1980). However, some clinical HSV isolates with mutations in several glycoproteins (i.a. gB) have 

been found to form syncytia (Cai, Gu et al. 1988; Baghian, Huang et al. 1993; Engel, Boyer et al. 

1993; Gage, Levine et al. 1993; Diakidi-Kosta, Michailidou et al. 2003).  

Induction of syncytia formation can also be achieved by transiently expressing the relevant 

proteins in susceptible cells in vitro in the absence of infection. Coexpression of the core fusion 

machinery components gB and gH/gL and receptor binding gD of PrV and HSV-1 and 2 has been 

shown to be necessary and sufficient to induce membrane fusion (Turner, Bruun et al. 1998; 

Klupp, Nixdorf et al. 2000; Muggeridge 2000; Fan, Grantham et al. 2002; McShane and 

Longnecker 2005). In contrast to HSV, induction of PrV membrane fusion has been shown to 

occur in the absence of gD (Klupp, Nixdorf et al. 2000). Thus, PrV gD is essential for entry, 

whereas direct cell-to-cell spread occurs efficiently in the absence of gD in vitro and in vivo (Rauh 

and Mettenleiter 1991; Peeters, de Wind et al. 1992; Mulder, Pol et al. 1996). In this regard, the 

transient transfection fusion system more closely resembles cell-to-cell spread than fusion 

during viral entry (Klupp, Nixdorf et al. 2000). In general, transient fusion assays are a useful tool 

to quantitate membrane fusion and to study the herpesvirus induced fusion process in the 

absence of infection. Different fusion assay systems have been developed, in which the 

evaluation or quantitation of fusion activity is often based on counting the number of nuclei 

within a syncytium (Turner, Bruun et al. 1998; Klupp, Nixdorf et al. 2000; Muggeridge 2000; Fan, 

Grantham et al. 2002; McShane and Longnecker 2005). In the present thesis, a transient 

transfection-based fusion assay protocol was established, facilitating evaluation (section 5.1, 

paper I). 
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2 Objectives 

Herpesviruses are ubiquitous pathogens, which establish lifelong infections and cause a 

substantial disease burden (Davison, Eberle et al. 2009). They have been infecting their hosts for 

hundreds of millions of years and still prevention or treatment of herpesvirus infections pose a 

challenge in the 21st century (Field and Vere Hodge 2013). Herpesviruses must traverse the 

host-cell plasma membrane to succeed in infection. To meet this challenge, they have evolved 

specialized surface glycoproteins which mediate fusion of the virion envelope with the cellular 

membrane. The fusion process is mediated by the core fusion machinery, composed of the bona 

fide fusion glycoprotein gB, the presumably gB activating gH/gL heterodimer, and other species-

specific receptor binding proteins like alphaherpesvirus gD (Eisenberg, Atanasiu et al. 2012). 

However, the molecular details of how this complex machinery accomplishes membrane fusion, 

remain enigmatic. Yet, a detailed mechanistic knowledge of this process would be important for 

the development of efficient countermeasures against a variety of diseases. 

The aim of this thesis was three-fold: Firstly, a robust infection-free, transfection-based cell-

fusion assay should be established, which can serve as useful surrogate for viral-cell and cell-cell 

fusion. With the aid of this assay, the requirements and capabilities of the alphaherpesvirus PrV 

fusion machinery components gB, gH/gL and gD to induce fusion should be investigated. 

Despite its identification as a class III fusion protein, herpesvirus gB it not able to mediate 

membrane fusion autonomously but depends on the presence of the gH/gL heterodimer, whose 

detailed function remains largely unknown. Thus, secondly, the function of the essential gH/gL 

complex should be investigated in more detail by using two different approaches, reversion 

analysis and site-directed mutagenesis, to identify regions in gH important for membrane fusion. 

PrV provides the unique opportunity to investigate gH/gL function by reversion analysis of gL-

negative, entry-deficient virus mutants by serial cell-culture passages. A first passaging 

experiment already resulted in isolation of an infectious gL-negative PrV mutant, in which the 

function of gL was compensated by generation of a gDgH hybrid protein (Klupp and Mettenleiter 

1999). Here, a second gL-independently replicating virus mutant designated PrV-∆gLPassB4.1 

should be characterized to understand the requirements for gL-independent infectivity, and 

ultimately to shed more light on gL function, and on the actual role of gH during membrane 

fusion. Interestingly, gH expressed by gL-independently replicating mutants specifies 

compensatory mutations in the predicted gL-binding domain. This structurally uncharacterized 

part of gH should be investigated with respect to its function in membrane fusion. Moreover, it 

should be elucidated which other regions in gH are necessary to induce membrane fusion and 

whether gH needs to be firmly anchored in the membrane to fulfil its role. Thus, the functional 
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roles of the cytoplasmic domain, the transmembrane domain but also the importance of N-

glycans in PrV gH were investigated. 

Thirdly, the structure and function of the bona fide fusion gB of PrV should be investigated 

aiming at understanding the molecular mechanism of how the initial interaction between gB 

and the host cell membrane is established. In detail, it should be determined which amino acids 

in the gB fusion loops are important and, particularly, which properties of these key residues are 

needed to establish gB membrane anchorage and realize membrane fusion. 
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5 Results and discussion 

Herpesviruses must fuse their envelope with the host cell plasma membrane for productive 

infection. Whereas other enveloped viruses can employ only a single protein to mediate the 

fusion process, herpesviruses require the cooperative action of at least three envelope 

glycoproteins for entry and direct viral cell-to-cell spread. The core fusion machinery is 

composed of the bona fide fusion gB, the presumably gB activating gH/gL heterodimer, plus 

other species-specific receptor binding proteins like alphaherpesvirus gD (Eisenberg, Atanasiu 

et al. 2012). However, although crystal structures are available for all four components, the 

molecular details of the fusion mechanism remain as yet elusive. 

In this thesis, the functional relevance of individual components of the essential gH/gL 

complex of the alphaherpesvirus PrV were investigated. The approaches applied in this thesis to 

investigate gH/gL function ranged from single amino acid substitutions, to removal of individual 

domains and deletion of a whole gene (papers II-V). In addition to the functional analysis of the 

fusion regulator gH/gL, the structure and nature of how the bona fide fusion protein gB of PrV 

interacts with membranes to accomplish fusion was investigated in paper VI. As basis to assess 

the fusogenic potential of the PrV entry glycoproteins a robust infection-free, transfection-based 

cell-cell fusion assay was established (paper I). 

 

5.1 Establishment of a transient transfection-based fusion assay for viral fusion 
proteins (Paper I) 
 

Cell-cell fusion assays are a valuable surrogate for all fusion mechanisms. In paper I, an 

improved protocol for an infection-free, transient transfection-based cell-cell fusion assay was 

established and described. The fusion assay is based on the ability of the PrV core fusion 

machinery components, represented by gB and gH/gL, to induce cell-cell fusion in the absence 

of other viral proteins, when expressed in cells in vitro (Klupp, Nixdorf et al. 2000; Nixdorf, Klupp 

et al. 2000). Similar reductionist approaches have been developed for e.g., HSV-1 and 2, which 

are also utilized to quantitate membrane fusion (Turner, Bruun et al. 1998; Muggeridge 2000; 

McShane and Longnecker 2005). Typically, quantitation or evaluation of fusion activity in these 

systems is based on counting the number of nuclei of a formed syncytium, which is a very time 

consuming process. Here, we aimed at optimizing the current protocol by facilitating and 

accelerating the evaluation process. Measurement of fusion activity was facilitated by 

cotransfection of enhanced green fluorescent protein (EGFP), allowing easy visualization of the 

formed syncytia using fluorescence microscopy. To obtain more robust and comparable data, 

important factors like the size and the number of formed syncytia were combined. Thus, 24 h 
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after transfection, the fusion activity was determined by multiplication of the area of cells with 

three or more nuclei with the number of formed syncytia within 10 fields of view (5.5 mm2 each), 

using the computer software NIS-Elements (Nikon, Düsseldorf, Germany). This robust transient 

transfection-based cell-cell fusion assay was utilized to study the ability and requirements of the 

PrV entry glycoproteins to induce membrane fusion (paper II-VI). 

 

5.2 Identification and characterization of compensatory mutations in a novel 
infectious gL-negative mutant PrV-∆gLPassB4.1 (Paper II)  

 
In paper II, the role of the conserved gH/gL complex for membrane fusion was investigated 

by reversion analysis of a gL-deficient PrV mutant. In contrast to the closely related HSV-1 (Fan, 

Lin et al. 2009), PrV gL is dispensable for virion incorporation of gH (Klupp, Fuchs et al. 1997). 

Moreover, gL-deleted PrV is capable of limited cell-to-cell spread in culture (Klupp and 

Mettenleiter 1999). Thus, PrV provides the unique opportunity to investigate gH/gL function by 

reversion analysis of gL-deleted virus mutants by serial cell-culture passages. This approach 

already resulted in a gL-independently replicating PrV mutant, in which the function of gL was 

compensated by formation of a gDgH hybrid protein (Klupp and Mettenleiter 1999). In paper II, 

a second independent experiment was carried out, in which the infectious, gL-independently 

replicating PrV-∆gLPassB4.1 was isolated and subsequently analyzed to identify the 

requirements for its gL-independent infectivity. 

Sequence analysis of the genes encoding the fusion-associated glycoproteins gH, gB, and gD 

revealed mutations in each of them. The mutated genes were cloned into a eukaryotic 

expression vector, and used for the transient transfection-based fusion assay to analyze the 

impact of the different mutations on membrane fusion. 

The mutations in gHB4.1 affected the gL binding domain I (L70P, W103R) and were found to 

be sufficient to compensate for the lack of gL in the fusion assays. Unfortunately, the exact 

location of the mutations and their influence on the gH-structure could not be specified since 

domain I was not included in the PrV-gH crystal structure (Backovic, DuBois et al. 2010). It is 

conceivable that the absence of gL resulted in selection of compensatory mutations in the gL-

interacting domain of gH. However, trans-complementation assays revealed that these two 

mutations are not completely sufficient to compensate for all functions of gL, which was 

reflected by lower final titers. 

Two of the three mutations which had occurred in gBB4.1 (G672R; ΔK883) strongly enhanced 

fusogenicity in the transient transfection fusion assays, which was further augmented by 

truncation of the C-terminal 29 aa of gBB4.1 (gBB4.1008). The fusion enhancing effect of ΔK883 and 

the truncation of the C-terminally cytosolic 29 aa of gB support the idea, that the gB CD 
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negatively regulates fusion (Klupp, Nixdorf et al. 2000; Nixdorf, Klupp et al. 2000; Rogalin and 

Heldwein 2015). Thus, the PrV gB CD may function in a similar manner as proposed for the HSV 

CD, namely by acting as a clamp which braces against the viral or cellular membranes and 

thereby stabilizes the prefusion form (Vitu, Sharma et al. 2013; Cooper and Heldwein 2015; 

Rogalin and Heldwein 2015). Only recently, the crystal structures of the HSV-1 gB TMD and CD 

were solved, indicating that in analogy, K883 in PrV gB is part of a conserved belt of basic aa, 

which was suggested to be involved in interactions of the CD with the membrane (Cooper, 

Georgieva et al. 2018). Possibly, deletion of K883 in gBB4.1 could weaken the interaction of the 

CD with the membrane and, thus, lower the energy required for gB refolding from pre- to 

postfusion conformation. In line, artificially introduced point mutations at the corresponding 

site in HSV-1 gB (K865) led to a hyperfusogenic phenotype (Rogalin and Heldwein 2015), 

indicating a similar function of these aa in the two viruses.  

Although fusion activity of gBB4.1008 was strongly enhanced, gH was still required for 

membrane fusion. In contrast to the cytosolic ΔK883, the second mutation in gBB4.1, resulting in 

the substitution of G at position 672 to R, is located in the “crown” domain IV of PrV gB (see 

section 1.3.2.3, Fig. 5, orange). In addition to the known trimeric postfusion form of gB, a more 

condensed conformation, presumably a prefusion or intermediate form, has been recently 

identified (Zeev-Ben-Mordehai, Vasishtan et al. 2016). In this conformation, domain IV is 

localized to the interior of the gB spike, implying an extensive conformational rearrangement 

during pre- to postfusion transition. Thus, the position and the observed hyperfusogenic effect 

of G672R in PrV gB suggest that this mutation reduces the kinetic energy barrier which must be 

overcome for the movement of domain IV during pre- to postfusion refolding. 

Coexpression of gHB4.1 and gBB4.1 resulted in significantly enhanced gL-independent in vitro 

fusion activity. With respect to the observed synergism between gHB4.1 and gBB4.1 it is conceivable 

that both, gHB4.1 and gBB4.1 represent partially triggered and thus more “fusion prone” molecules, 

which can be further activated without the need for gL. 

Surprisingly, gDB4.1 had a strong dominant negative phenotype and completely abrogated 

fusion in the transient assay, even when hyperfusogenic gHB4.1 and gBB4.1 were coexpressed. This 

finding was unexpected since the PrV gD is not required for membrane fusion in transient fusion 

assays (Klupp, Nixdorf et al. 2000) or during direct viral cell-to-cell spread (Rauh and 

Mettenleiter 1991; Peeters, de Wind et al. 1992; Mulder, Pol et al. 1996). Remarkably, the 

observed inhibitory effect of gDB4.1 could be attributed to a single point mutation resulting in the 

amino acid substitution A106V located in the ectodomain of gDB4.1. Since the interaction 

between gD and gH/gL of the closely related HSV-1 was postulated to be weak or only transient 

(Atanasiu, Whitbeck et al. 2007; Avitabile, Forghieri et al. 2007; Fan, Longnecker et al. 2015), an 
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increase in binding affinity of gDB4.1 to gH, resulting in inability of gH to efficiently activate gB, 

might explain the inhibitory effect of gDB4.1. However, in the recently published crystal structure 

of PrV gD (Li, Lu et al. 2017), alanine at position 106 is not exposed on the surface of the protein 

and the exact molecular mechanism of fusion inhibition by gDB4.1 remains enigmatic. Although 

alanine 106 is conserved in HSV-1 gD, unpublished data revealed that introduction of this 

mutation in HSV gD does not lead to fusion inhibition (Vallbracht et al., unpublished data). This 

finding points to interesting additional differences in gD function between the two 

alphaherpesviruses.  

In conclusion, the data suggest that the absence of gL resulted in selection for mutations in 

gH-domain I, which normally interacts with gL. The mutations in gHB4.1 together with 

hyperfusogenic gBB4.1 allowed for gL-independence but led to an excess fusion, which is 

detrimental to productive virus replication and thus may be counter-regulated by the fusion 

inhibiting mutations in gDB4.1. The appearance of compensatory mutations in the fusion 

machinery components gH, gB and gD, support the notion that the interplay between the 

herpesviral entry glycoproteins to mediate fusion is very tightly regulated. Finally, the results 

demonstrate that, although gL is usually an essential component of the herpesvirus fusion 

machinery, its function can be compensated by mutations in gH (as in gDgH) or in gH plus gB 

(this study). Thus, gL appears not to be central to the fusion process but may have a regulatory 

role.  

 

5.3 Functional relevance of the N-terminal domain of Pseudorabies virus envelope 
glycoprotein H and its interaction with glycoprotein L (Paper III) 
 

In the gL-independently replicating PrV mutants, the N-terminal domain I of gH, including the 

proposed gL-binding site, was either affected by point mutations (see section 5.2, paper II) or 

replaced by the N-terminal part of gD, resulting in a gDgH hybrid protein (Klupp and Mettenleiter 

1999). Therefore, in paper III we aimed at identifying the functional relevance of this structurally 

uncharacterized N-terminal part of gH by introducing a similar in-frame deletion of gH codons 

32 to 97 (gH32/98), as observed for the chimeric gDgH, lacking aa 1 to 96 of gH. gH residues 1 to 

30 are predicted to represent an N-terminal signal peptide and were retained to enable 

translocation of gH into the endoplasmic reticulum (ER). Thus, the engineered gH32/98 was similar 

to the gH-core fragment (aa 107 to 639), whose crystal structure has been solved at high 

resolution (Backovic, DuBois et al. 2010).  

Targeted deletion of the predicted gL-binding domain did not affect expression or processing 

of gH as shown by Western blot analysis of purified virus particles. Whereas gH32/98 was found 

to be efficiently incorporated into virus particles, gL could not be detected, indicating that gH32/98 
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was unable to bind gL. These results corroborate that PrV gH, unlike HSV-1 or VZV gH (Roop, 

Hutchinson et al. 1993; Duus and Grose 1996), does not depend on gL or the gL binding domain 

for virion incorporation, confirming earlier studies (Klupp, Fuchs et al. 1997). Moreover, these 

findings indicate that the N-terminal residues missing in gH32/98 indeed comprise the gL binding 

site of PrV gH, as has been shown for HSV-2 (Chowdary, Cairns et al. 2010) and EBV gH/gL 

(Matsuura, Kirschner et al. 2010). In contrast to gHB4.1 and the chimeric gDgH, which have been 

shown to exhibit wild-type like function in transient fusion assays (Klupp and Mettenleiter 1999; 

Klupp, Nixdorf et al. 2000), gH32/98 was found to be non-functional in the fusion assay and in the 

viral context, as demonstrated by in vitro replication studies after insertion of the mutated gH 

gene into the BAC (bacterial artificial chromosome)-cloned PrV genome. These results suggest 

that the gD moiety in the gDgH hybrid protein may not only provide receptor binding capacity, 

but also is essential for proper function of the gH-core fragment. It is conceivable that the gD 

moiety of gDgH exerts a stabilizing or modulating influence on gH structure, which is normally 

executed by gL and important for interaction with wild-type gB. Strikingly, in the fusion assays 

gH32/98 was able to trigger hyperfusogenic gBB4.1 obtained from the passaged gL-deletion mutant 

PrV-∆gLPassB4.1 described in paper II, indicating that gBB4.1 is adapted to interaction with “gL-

less” gH. In line, gBB4.1 was also able to restore function of gH32/98 in the viral context. Thus, 

simultaneous substitution of gB by gBB4.1 and gH by gH32/98 rescued infectivity and plaque 

formation independent of gL.  

In conclusion, the results demonstrate that gL and the gL-binding domain are not strictly 

required for membrane fusion during virus entry and spread provided that compensatory 

mutations in gH and gB are present. These findings strongly emphasize the notion that a 

functional gH-gB interaction, presumably between their ectodomains, is crucial for the fusion 

process and that gL in the wild-type situation may control complex formation.  

 

5.4 Functional relevance of the transmembrane domain and cytoplasmic tail of the 
Pseudorabies virus glycoprotein H for membrane fusion (Paper IV) 
 

Interactions between gH and gB, in particular between their cytoplasmic domains, have been 

proposed to be important for fusion in HSV-1, VZV and EBV (Browne, Bruun et al. 1996; Harman, 

Browne et al. 2002; Pasieka, Maresova et al. 2003; Suenaga, Satoh et al. 2010; Yang, Arvin et al. 

2014; Rogalin and Heldwein 2015; Chen, Jardetzky et al. 2016). While studies on HSV support a 

model in which the gH CD would directly interact with the gB CD by acting as a “wedge” to 

release the fusion restricting gB CD “clamp” to allow membrane fusion (Rogalin and Heldwein 

2015), the gH CD of VZV was hypothesized to act as a “gatekeeper” to control access to 

functional domains of neighboring proteins, thereby allowing or preventing phosphorylation of 
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the gB CD (Yang, Arvin et al. 2014). However, the studies on the role of the CD and also the TMD 

of gH from different herpesviruses for membrane fusion are partially contradictory. Although an 

important function was ascribed to the TMD and CD of the closely related HSV-1 gH (Harman, 

Browne et al. 2002; Jones and Geraghty 2004), soluble HSV-1 gH/gL lacking the CD and 

membrane anchor, has been found to be sufficient to promote low levels of membrane fusion 

in transient assays (Atanasiu, Saw et al. 2010). In contrast, a soluble form of EBV gH/gL was not 

sufficient to trigger membrane fusion (Kirschner, Omerovic et al. 2006; Rowe, Connolly et al. 

2013). Because of the apparent fundamental differences in the requirement for the gH TMD in 

different herpesviruses, we aimed at determining whether the requirements for fusion 

activation vary for members of different subfamilies or even between the closely related 

alphaherpesviruses HSV-1 and PrV. Thus, in paper IV we elucidated whether the CD of PrV gH is 

essential to promote membrane fusion and whether gH needs to be firmly anchored in the 

membrane to fulfil its role, by generation of C-terminally truncated and soluble gH variants. In 

addition, the PrV gH TMD was substituted by a glycosylphosphatidylinositol (gpi)-anchor and 

different chimeras with substitution of the CD and TMD were generated.  

While approximately half of the PrV gH CD (10 of 19 aa as in PrV gH∆678) was found to be 

sufficient for full function in the fusion assays and trans-complementation of gH-deficient PrV 

(PrV-∆gH), as was observed for HSV-1 (8 of 14 aa) (Rogalin and Heldwein 2015) and EBV gH (4 of 

8 aa) (Chen, Jardetzky et al. 2016), further deletion resulted in a significant reduction in fusion 

activity and complementation of PrV-∆gH. These results point to a regulatory role for the 

membrane proximal part of the PrV gH CD. In different alphaherpesviruses, the membrane 

proximal gH CD residues are partially conserved, comprising a basic residue (K or R; the only 

exception is VZV), followed by two neutral non-aromatic residues (M, V, L) (paper III, Fig. 1, 

page 64). The first two amino acids have been shown to be important for correct trafficing of 

HSV-1 gH, presumably by involvement in lipid interactions in the plasma membrane or the viral 

envelope (Wilson, Davis-Poynter et al. 1994). The CD of type I transmembrane proteins is often 

involved in correct trafficking. Thus, whereas the truncation mutant PrV-gH∆670, retaining only 

the first two membrane proximal residues, was efficiently processed and transported to the cell 

surface, gH∆668 completely lacking the CD, was predominantly detected in its immature form. 

Nevertheless, cell surface expression of this mutant was only slightly reduced and gH∆668 still 

complemented PrV-∆gH to around 10-fold reduced titers. These results demonstrate that the 

PrV gH CD, in contrast to the HSV-1 gH CD (Harman, Browne et al. 2002; Rogalin and Heldwein 

2015), is not required for gH incorporation into the virus envelope to function during entry. 

Since gHΔ670 and gHΔ668 showed reduced in vitro fusion levels the PrV gH CD, although not 

essential, may modulate fusion in a similar manner as proposed for HSV (Rogalin and Heldwein 
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2015). However, it can also not be excluded that truncations in PrV gH may affect the 

conformation of the gH ectodomain, thereby influencing interactions between the gB and gH 

ectodomains, as was shown for C-terminal truncation of EBV gH altering binding of gp42 to the 

gH ectodomain (Yang, Arvin et al. 2014; Rogalin and Heldwein 2015; Chen, Jardetzky et al. 2016). 

Whereas the gH CD was found to be dispensable for gH function during virus infection, 

deletion of the TMD (and CD) or substitution by a lipid-anchor (gH-gpi) or the PrV gD TMD 

resulted in proteins, which were nonfunctional in the cell-cell fusion assays or complementation 

of a gH-negative virus, despite efficient cell surface expression. Thus, membrane anchorage by 

the gH TMD is essential for PrV gH function. Accordingly, studies on the TMD of HSV-1 gH 

revealed that the TMD of HSV-1 gD or other type I membrane proteins such as CD8 and influenza 

HA were not sufficient to functionally substitute for the HSV-1 gH TMD (Harman, Browne et al. 

2002). Interestingly, despite low sequence conservation, we found that the HSV-1 gH TMD could 

functionally substitute for the PrV gH TMD in the fusion assays and in trans-complementation 

of PrV-∆gH, pointing to functional conservation. Together, these data point to specific features 

within the membrane-spanning domain of herpesvirus gH, which are apparently not present in 

e.g., the PrV gD TMD. 

A highly conserved glycine in the HSV-1 gH TMD, which is also present in PrV (aa 812 in HSV-1; 

aa 655 in PrV) is crucial for efficient fusion (Harman, Browne et al. 2002). However, sequence 

analysis revealed that this particular glycine is also present in the PrV gD TMD (aa 362) indicating 

that this residue alone is not sufficient for functional complementation of gH. However, three 

additional aa were found to be conserved between the PrV and HSV-1 gH TMD, which are absent 

from PrV gD. Interestingly, two of them (A808 and S809 in HSV; A651 and S652 in PrV gH) are 

essential for HSV gH function during membrane fusion (Harman, Browne et al. 2002). Since the 

HSV-1 gH TMD can functionally substitute for the corresponding domain in PrV gH, a similar 

significance of these aa for fusion seems likely. Intriguingly, an alpha helical-wheel plot places 

those four residues which are conserved between PrV and HSV-1 gH, on one face of the helix 

(Harman, Browne et al. 2002), suggesting that the gH TMD has an intrinsic property to 

specifically interact with lipids or other molecules in the membrane, involving these residues. In 

influenza HA specific TMD residues are essential for the oligomeric state and function of the 

protein (Kemble, Henis et al. 1993; Melikyan, Lin et al. 1999; Melikyan, Markosyan et al. 2000). 

Moreover, recent studies demonstrated trimeric interactions between isolated TMDs of class I 

and III fusion proteins from a variety of viruses including paramyxoviruses, Ebola virus, influenza 

virus, and rabies virus, suggesting that TMD-TMD interactions could play an important role in 

the fusion process (Smith, Smith et al. 2013; Webb, Smith et al. 2018), possibly, also in 

herpesviruses.  
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While the predicted TMDs of PrV and HSV-1 comprise 21 aa, which is close to the lower limit 

for a transmembrane spanning helix (Harman, Browne et al. 2002), the TMD of gD consists of 23 

aa. Therefore, it cannot be excluded that the difference in length and not the aa composition 

accounts for the nonfunctional phenotype observed with PrV gH containing the gD TMD. 

In summary, in paper IV we could identify the TMD of PrV gH as an essential component of 

the fusion machinery, while the PrV gH CD was found to play a modulatory but non-essential 

role. As observed for EBV (Kirschner, Omerovic et al. 2006), but unlike HSV (Atanasiu, Saw et al. 

2010), soluble forms of PrV gH/gL are unable to trigger gB mediated membrane fusion. Based 

on our findings and previous studies on the closely related HSV-1 gH TMD (Harman, Browne et 

al. 2002), which was able to functionally substitute for the PrV gH TMD, we hypothesize that the 

gH TMD has an intrinsic property to interact with membrane components such as lipids or other 

molecules as a prerequisite for promoting membrane fusion. 

 

5.5 Functional role of N-linked glycosylation in Pseudorabies virus glycoprotein H 
(Paper V) 

 
Many viral envelope proteins are modified by N-linked glycosylation, which is one of the most 

abundant and important posttranslational modifications, known to play major roles in correct 

folding of proteins, their physiochemical properties, intracellular transport and also function 

during entry (Helenius and Aebi 2004; Helle, Vieyres et al. 2010; Lennemann, Walkner et al. 

2015). Inactivation of N-glycosylation sites from envelope proteins of a variety of viruses 

including gB of the closely related HSV-2 (Luo, Hu et al. 2015), has been shown to have a strong 

impact on viral infection. However, little is known about the requirement of herpesvirus gH N-

glycosylation for its function during virus infection. Thus, in the present paper V, the functional 

role of N-linked glycans on PrV gH was systematically investigated. To this end, all five potential 

N-linked glycosylation sites (N77, N162, N542, N604, and N627) were inactivated by introduction 

of conservative amino acid substitutions of N by glutamine (Q) singly or in various combination. 

The proteins were characterized with respect to their in vitro fusion activity. Furthermore, the 

engineered gH genes were inserted into the BAC-cloned PrV genome for investigation of the 

protein expression, maturation, glycosylation state and in vitro replication properties of the 

resulting virus mutants in cell culture. 

Western blot analysis of purified virus particles revealed that all five sites in PrV gH are 

modified by N-linked carbohydrates. gH of a PrV mutant, in which all five glycosylation sites were 

mutated, was no longer sensitive to N-glycosidases and showed a molecular mass as predicted 

for the non-glycosylated precursor protein. This demonstrated that no other larger 

modifications are present in gH, which is in line with earlier reports (Klupp, Visser et al. 1992). 
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While proper N-glycosylation was shown to be critical for correct intracellular trafficking and 

maturation of the core fusion machinery component gB of HSV-2 (Luo, Hu et al. 2015), 

inactivation of most of the glycosylation sites in PrV gH had no effect on protein expression or 

subcellular localization. However, mutation of glycosylation site N627, which is highly conserved 

among the Herpesviridae, severely affected intracellular transport of PrV gH, resulting in ER 

retention and reduced surface expression. Moreover, glycosylation at N627 was found to be 

important for gH function during membrane fusion, since all mutants with inactivation of this 

site were unable to mediate membrane fusion in combination with wild-type gB, gD, and gL. 

Nonetheless, in line with earlier studies, gHN627Q was able to trigger a C-terminally truncated, 

hyperfusogenic variant of gB (gB-008) (Fuchs, Backovic et al. 2012). Since gB-008 is highly 

expressed on the surface of transfected cells due to truncation of an endocytosis motif (Nixdorf, 

Klupp et al. 2000), it is conceivable that smaller amounts of gH are sufficient to trigger 

membrane fusion. 

gHN627Q as well as multiple mutants exhibiting this aa substitution were efficiently 

incorporated into virus particles, suggesting that other viral components may influence the 

intracellular transport of gH during viral infection. EBV and HSV-1 gH for example are highly 

dependent on gL for correct transport and virion incorporation (Hutchinson, Browne et al. 1992; 

Chowdary, Cairns et al. 2010; Matsuura, Kirschner et al. 2010), whereas PrV gH is efficiently 

transported and incorporated into virus particles without gL (paper II-III, (Klupp, Baumeister et 

al. 1994; Klupp and Mettenleiter 1999)). 

Although formation of infectious progeny was barely affected by mutation of N627, in line 

with the observed defect in in vitro fusion activity, N627Q led to a significant decrease in plaque 

sizes, used as a read-out for cell-to-cell spread, and a delay in penetration kinetics, confirming 

previous results (Fuchs, Backovic et al. 2012). N627 is part of a conserved hydrophobic patch in 

domain IV (see section 1.3.2.2, Fig. 4). This hydrophobic patch was suggested to play a role in 

membrane fusion by interacting with the viral envelope after a receptor-triggered 

conformational change of gH (Backovic, DuBois et al. 2010). Therefore, N627 together with the 

“flap” were proposed to partially cover this patch to prevent premature interactions with the 

membrane (Backovic, DuBois et al. 2010; Fuchs, Backovic et al. 2012). Accordingly, N627 was 

found to be important, although non-essential for membrane fusion, indicating that presence 

of the basic “flap” may be sufficient to cover the underlying hydrophobic patch. In line, N-

glycosylation of HSV-1 gH at this site was also shown to be non-essential for gH function 

(Galdiero, Whiteley et al. 1997). Nevertheless, PrV gH trafficking was greatly affected by 

mutation N627Q, which might also contribute to the spreading defects of the corresponding 

recombinants.  
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In addition to N627, glycosylation at PrV-specific N77 was also found to be important in in 

vitro fusion assays and direct viral cell-to-cell spread. Simultaneous inactivation of N77 and N627 

further reduced in vitro fusion activity and cell-to-cell spread as shown by plaque assays. N77 is 

located within the structurally uncharacterized PrV gH domain I, which was shown to be 

important for gL-binding (paper II-III), suggesting that the N-glycan attached at this site may 

modulate interaction between gH and gL. Thus, inactivation of this site may interfere with 

efficient membrane fusion. However, gH/gL binding per se was not impaired as demonstrated 

by Western Blot analysis of purified virus particles, revealing that gL was efficiently incorporated 

into pPrV-gHN77Q particles. Interestingly, in contrast to N77 and N627, removal of N604 was 

found to enhance in vitro fusion activity and cell-to-cell spread. N604 is conserved between 

members of the Varicellovirus genus but is not present in members belonging to the 

Simplexvirus genus (Backovic, DuBois et al. 2010). However, N604 is also located in the most 

conserved gH domain IV. Interestingly, substitution of this domain in PrV gH by the 

corresponding domain of HSV-1 gH resulted in a functional protein, which is capable of activating 

both, PrV and HSV-1 gB, indicating functional conservation and species-specific interactions of 

gH domain IV with gB (Böhm, Backovic et al. 2016). Removal of the carbohydrate at position 

N604 could impact positively on this gH-gB interaction, leading to enhanced fusion activity. 

However, despite the apparent hyperfusogenic phenotype during cell-to-cell spread, 

pPrVgHN604Q exhibited a slight delay in penetration, indicating mechanistic differences 

between membrane fusion during entry of free virus particles and direct viral cell-to-cell spread. 

As outlined above (section 5.2, paper II), this differences in the two fusion events is also 

highlighted by the protein requirements, as presence of PrV gD is essential for entry but 

dispensable for plaque formation (Rauh and Mettenleiter 1991; Peeters, de Wind et al. 1992; 

Klupp, Nixdorf et al. 2000). 

In conclusion, the results demonstrate a modulatory role of N-glycans in proper localization 

and function of PrV gH during membrane fusion. However, even simultaneous inactivation of all 

five N-glycosylation sites did not substantially impair formation of infectious virus particles, 

suggesting a nonessential role for N-glycans in PrV gH for efficient replication. It should be noted, 

however, that N-glycans can function as a “shield” to cover essential viral epitopes protecting 

the virus from antibody-mediated neutralization, as was shown for influenza virus and HIV (Wei, 

Decker et al. 2003; Wanzeck, Boyd et al. 2011). Thus, N-glycans on PrV gH may mask epitopes, 

which can otherwise be targeted by neutralizing antibodies. 
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5.6 Structure function dissection of Pseudorabies virus gB fusion loops (Paper VI) 
 
Within the framework of this thesis it was elaborated that gL and the gL binding domain of 

PrV gH are dispensable for maturation and virion incorporation of gH, and, conditionally, also 

for membrane fusion in transient assays and during viral entry and spread (paper II and III). 

Moreover, it has been demonstrated that PrV gD is not required for membrane fusion in the 

transient assays (paper II, (Klupp, Nixdorf et al. 2000)), reducing the complexity of cell-cell fusion 

from four proteins, as necessary in HSV-1 (Turner, Bruun et al. 1998), to only two proteins in PrV 

(Klupp, Nixdorf et al. 2000). By comparison with other class III fusion proteins, herpesvirus gB 

appears to contain all features necessary to effect fusion (Backovic and Jardetzky 2011), raising 

the question whether gB can be transformed into an autonomous fusion protein. In this context, 

we could show that truncation of the C-terminal 29 aa of the already highly fusogenic gBB4.1 

(gBB4.1008) could even further enhance gB fusogenicity to around 350% when compared to wild-

type gB (paper II). However, even this extremely fusogenic gB was still reliant on activation via 

gH. Thus, hyperfusogenicity per se appears to be insufficient to substitute for activation by gH. 

Interestingly, exposure to heat has been shown to act as a surrogate trigger for gH/gL to activate 

EBV gB (Chesnokova, Ahuja et al. 2014), and several other class III and I fusion proteins (Ruigrok, 

Martin et al. 1986). However, heat-induced fusion has not been reported for HSV gB (Fan, Kopp 

et al. 2017), and elevated temperatures could not trigger PrV gB (Vallbracht et al., unpublished 

data). Other external stimuli which could act as potential triggers, such as low-pH treatment 

were found to induce structural changes in HSV gB, which, however, were unable to trigger 

fusogenicity of HSV gB (Dollery, Delboy et al. 2010; Stampfer, Lou et al. 2010), or PrV gB 

(Vallbracht et al., unpublished data). These findings strongly support the hypothesis that 

structural interactions between gH and gB are essential for gB activation but also raise questions 

regarding the evidence that PrV gB is indeed the actual fusion protein.  

Entry of enveloped viruses relies on the insertion of nonpolar residues, termed fusion 

peptides or fusion loops, of the viral fusion protein into the outer leaflet of the host cell 

membrane (White, Delos et al. 2008). In paper VI the crystal structure of the ectodomain of PrV 

gB was determined at 2.7-Å resolution, revealing a typical class III postfusion trimer, which can 

associate with membranes via its FLs. Despite the structural data available for the ectodomains 

of gB from several herpesviruses, such as HSV-1 (Heldwein, Lou et al. 2006), EBV (Backovic, 

Longnecker et al. 2009) and HCMV (Burke and Heldwein 2015; Chandramouli, Ciferri et al. 2015), 

the molecular details of how gB FLs insert into the lipid bilayer, remained unclear. Thus, based 

on the structural data for PrV gB, we performed functional analyses including liposome binding 

experiments, cell-cell fusion and complementation assays to identify key residues in the gB FLs, 

essential for membrane binding and fusion induction.  
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All class III fusion proteins identified so far utilize bipartite FLs to interact with the target 

membrane (Backovic and Jardetzky 2011). However, despite their structural homology, the 

amino acid sequence of FLs of herpesviruses is only poorly conserved, even within the same 

subfamily. PrV gB was found to contain two putative fusion loops (FL1 and FL2), which are 

exposed at the tip of the molecule in domain I (see section 1.3.2.3., Fig 5, black asterisks). 

Whereas the FL tips of EBV and HCMV gB are predominantly hydrophobic and had to be mutated 

for protein crystallization, since they caused the recombinant ectodomains to aggregate, PrV 

and HSV gB FLs tips are less hydrophobic and the ectodomains form soluble trimers, providing 

the opportunity to crystallize and study them as wild-type forms.  

Liposome flotation assays demonstrated that the PrV wild-type gB ectodomain is able to 

associate with liposomes of different compositions, which could be visualized by cryo-electron 

microscopy (EM), demonstrating that the gB postfusion ectodomain trimers indeed insert into 

the synthetic membranes via domain I containing the FLs. In line, the recombinant ectodomain 

of HSV-1 gB was likewise shown to associate with liposomes via domain I (Hannah, Cairns et al. 

2009). To identify residues in the PrV gB FLs, which are essential for membrane binding and 

fusion, all seven aromatic and hydrophobic residues, present in the PrV gB FLs, were 

systematically substituted to alanine, resulting in replacement of the bulky hydrophobic side 

chain with a methyl group. Additionally, the residues were changed to a different aromatic 

residue with a similar chemical structure to determine whether the residue would insert into 

the more polar interfacial region of the membrane or even deeper into the hydrocarbon core. 

The resulting mutants were tested in liposome coflotation experiments and for their ability to 

mediate membrane fusion in cell-cell fusion assays and to complement a gB-negative PrV 

mutant (Nixdorf, Klupp et al. 2000). Four residues in PrV gB, namely tryptophan (W)187 and 

tyrosine (Y)192, which are located in FL1, as well as phenylalanine (F)275 and Y276, present in 

FL2, were demonstrated to be crucial for liposome binding and for membrane fusion in the 

cellular and viral context, since substitution of these residues to alanine resulted in non-

functional proteins. Interestingly, PrV gB with substitution of Y276 or Y192 to F was able to 

mediate membrane fusion and associated with liposomes, indicating that gB requires bulky, 

aromatic site chains at these positions to retain functionality. Residue F275 in FL2 tolerated 

substitution to W but not to Y, suggesting that the presence of a hydrophilic moiety at this 

position affects functionality. The tolerance for W but not for Y indicates that F275 likely inserts 

more deeply into the membrane core, i.e., deeper than the amphipathic, interfacial region. 

Together with the structural information, the functional data suggest a model in which the side 

chains of PrV gB residues W187, Y192, F275 and Y276 form a continuous hydrophobic and 

electrostatically neutral patch at the surface of the trimeric postfusion spike. Whereas F275 from 
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the tip of FL2 would protrude deeper into the hydrocarbon core, the side chains of W187, Y192, 

and Y276 appear to form an aromatic surface, which would enable insertion into the polar region 

of the membrane, establishing an interfacial rim structure which provides multiple interactions 

with the lipid head groups. Sequence comparison of different alphaherpesvirus gBs reveals that 

residues with similar membrane-partitioning preferences are present at these four positions. 

Thus, residues which correspond to F275 of PrV gB FL2 were found to be hydrophobic (F, W, V, 

and L) in all analyzed sequences, allowing insertion into the hydrocarbon core of the membrane. 

Positions corresponding to W187, Y192, and Y276 are occupied by residues with amphipathic 

side chains (W, Y, and H), which are compatible with insertion into the interfacial region. 

Moreover, the results from functional analyses of PrV gB FLs obtained here are mostly in line 

with reports on the HSV-1 gB FLs (Hannah, Heldwein et al. 2007; Hannah, Cairns et al. 2009). 

Together, these findings indicate that a common mode of gB FL insertion into membranes may 

have evolved within the alphaherpesvirus subfamily. More importantly, structural and sequence 

comparison of alphaherpesvirus gB FLs with those of beta- and gammaherpesviruses suggest 

that the mode of membrane interaction may be similar. Thus, although beta- and 

gammaherpesviruses exhibit more hydrophobic residues at the tips of their FLs, hydrophobic 

residues exposed in FL2 may penetrate into the core of the lipid bilayer, while residues from 

both FL1 and 2 form a rim above, which would insert into the region between the hydrocarbon 

core and the aqueous phase to catalyze the fusion process. 

Not only the amino acids, but also the lipid composition was found to influence the function 

of PrV gB. Binding of PrV gB to liposomes, used as surrogate for a host cell membrane, was highly 

dependent on the presence of cholesterol (CH). For the PrV gB ectodomain to bind, at least 40 % 

CH were required, which correlates with the amount of 30 to 40% CH being present in the 

plasma membrane and secretory vesicles (Lange, Swaisgood et al. 1989). CH has been 

demonstrated to induce lipid curvature, facilitate formation of lipid stalks, and also to stabilize 

fusion pores (Yang, Kreutzberger et al. 2016). The results obtained here for PrV coincide with 

the growing evidence that enveloped viruses, including HSV (Bender, Whitbeck et al. 2003; 

Hannah, Cairns et al. 2009), HIV (Liao, Cimakasky et al. 2001; Yang, Kiessling et al. 2016) and 

Influenza virus (Sun and Whittaker 2003) exploit CH-rich membrane regions to efficiently enter 

host cells.  

In conclusion, this study demonstrated that the PrV gB ectodomain forms a typical class III 

postfusion trimer, which is able to insert into membranes with its FLs in a CH-dependent manner 

via a mode of action, which is likely to be conserved throughout the Herpesviridae family. Finally, 

these findings support the hypothesis that gB is indeed the bona fide fusion protein.  
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6 Summary 

Herpesviruses are a fascinating group of enveloped DNA viruses, which rely on membrane 

fusion for infectious entry and direct cell-to-cell spread. Compared with many other enveloped 

viruses, they utilize a remarkably complex fusion machinery. Three conserved virion proteins, 

the bona fide fusion protein gB, and the presumably gB activating gH/gL heterodimer constitute 

the conserved core fusion machinery and are believed to drive membrane fusion in a cascade-

like fashion. Activation of this cascade in most alphaherpesviruses is proposed to be triggered 

by binding of gD to specific host cell receptors. The molecular details of this fusion process, 

however, remain largely elusive. Yet, a detailed mechanistic knowledge of this process would be 

greatly beneficial for the development of efficient countermeasures against a variety of 

diseases.  

In this thesis, the functional relevance of individual components of the essential gH/gL 

complex of the alphaherpesvirus PrV has been assessed by two different approaches: by 

reversion analysis (paper II) and site-directed mutagenesis (papers III-V). In contrast to other 

herpesviruses, gL-deleted PrV is able to perform limited cell-to-cell spread, providing the unique 

opportunity to passage the entry-deficient virus in cell culture to select for PrV revertants 

capable of infecting cells gL-independently. This approach already resulted in an infectious gL-

negative PrV mutant (PrV-ΔgLPass), in which the function of gL was compensated by formation 

of a gDgH hybrid protein. Here, the requirements for gL-independent infectivity of a second 

independent revertant (PrV-ΔgLPassB4.1), were analyzed. Sequencing of the genes encoding for 

gB, gH and gD, revealed mutations in each of them. By means of a robust infection-free, 

transfection-based cell-cell fusion assay (paper I), we identified two amino acid substitutions in 

the gL-binding domain I of gHB4.1 (L70P, W103R) as sufficient to compensate for lack of gL. Two 

mutations in gB (G672R, ΔK883) were found to enhance fusogenicity, probably by lowering the 

energy, required for gB refolding from pre- to postfusion conformation. Coexpression of gHB4.1 

and gBB4.1 led to an excess fusion, which was completely suppressed by gDB4.1 in the fusion assays. 

This was surprising since PrV gD is normally not required for in vitro fusion or direct viral cell-to-

cell spread, clearly separating this process from fusion during entry, for which PrV gD is essential. 

The fusion inhibiting effect of gDB4.1 could be attributed to a single point mutation resulting in 

an amino acid substitution within the ectodomain (A106V). In conclusion, these results indicated 

that gL is not central to the fusion process, as its function can be compensated for. As found so 

far, gL-independent infectivity can be realized by compensatory mutations in gH (as in PrV-

ΔgLPass) or in gH plus gB (as in PrV-ΔgLPassB4.1). Excessive fusion induced by gHB4.1 and gBB4.1 

was counter-regulated by gDB4.1, indicating that the interplay between these proteins is precisely 
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regulated and further implies that gL and gD, despite being not absolutely essential for the fusion 

process, have important regulatory functions on gH and/or gB. 

Both PrV-∆gLPass mutants had acquired compensatory mutations in gH affecting the 

predicted gL-binding domain I in gH. By construction of an artificial gH32/98, which lacked the 

predicted gL-binding domain and was similar to the recently crystallized gH-core fragment 

present in the gDgH hybrid protein, we identified the N-terminal part of PrV gH as essential for 

gH function during fusion (paper III). gH32/98 was unable to promote fusion of wild-type gB in 

fusion assays and led to a total loss of function in the viral context. These results indicated that 

the gD moiety, present in gDgH, is critical for proper function of the gH-core fragment. We 

hypothesize that the gD moiety may adopt a stabilizing or modulating influence on the gH 

structure, which is normally executed by gL and important for interaction of gH with wild-type 

gB. Remarkably, substitution of wild-type gB by gBB4.1 rescued function of gH32/98 in the cellular 

and viral contexts. These findings suggest that gBB4.1 has been selected for interaction with “gL-

less” gH. In conclusion, these results demonstrated that gL and the gL-binding domain are not 

strictly required for membrane fusion during virus entry and spread but that compensatory 

mutations must be present in gB to restore a fully functional fusion machinery. These results 

strongly support the notion of a functional gH-gB interaction as a prerequisite for membrane 

fusion.   

In addition to the N-terminal domain, we identified the transmembrane domain of PrV gH as 

an essential component of the fusion machinery, while the cytoplasmic domain was 

demonstrated to play a modulatory but nonessential role (paper IV). Whereas truncation or 

substitution of the PrV gH TMD by a gpi-anchor or the analogous sequence from PrV gD rendered 

gH non-functional, the HSV-1 gH TMD was found to functionally substitute for the PrV gH TMD 

in cell-cell fusion and complementation assays. Since residues in the TMD which are conserved 

between HSV and PrV gH but absent in PrV gD, are placed on one face of an α-helical wheel plot, 

we hypothesize that the gH TMD has an intrinsic property to interact with membrane 

components such as lipids or other molecules as a requirement for promoting membrane fusion.  

In a final study focusing on the function of gH, we identified the N-glycosylation sites utilized 

by PrV gH, and determined their individual role in viral infection (paper V). PrV gH was found to 

be modified by N-glycans at five potential glycosylation sites. N-glycans at PrV specific N77 and 

the highly conserved site N627 were found to be critical for efficient membrane fusion in the 

fusion assays, and during viral entry and cell-to-cell spread. N627 was further shown to be crucial 

for proper gH transport and maturation. In contrast, inactivation of N604, conserved in the 

Varicellovirus genus, enhanced in vitro fusion activity and viral cell-to-cell spread. These findings 

demonstrated a role of the N-glycans in proper localization and function of PrV gH.  
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While we were able to demonstrate that gL and gL-binding domain are dispensable for 

membrane fusion, a surrogate trigger for gH to activate gB could not be identified. Thus, despite 

all effort made to transform PrV gB into an autonomous fusion protein e.g., by introduction of 

fusion enhancing mutations into the already highly fusogenic gBB4.1 (gBB4.1008) or exposure to 

external stimuli such as heat or low pH, gH was still required. These results strongly support the 

notion that physical interactions with gH are necessary for triggering gB but also raise questions 

regarding the evidence that PrV gB is the actual fusion protein. The final study presented in this 

thesis (paper VI) provided evidence that gB is indeed the fusogen of PrV. In this study, the crystal 

structure of PrV gB was solved at 2.7 Å resolution, revealing a class III postfusion trimer, which 

is able to bind to membranes via its bipartite fusion loops in a cholesterol-dependent manner. 

By mutagenesis studies we could identify the key residues in the PrV gB FLs, essential for 

membrane binding and fusion in cellular and viral contexts. These residues form a continuous 

hydrophobic patch, compatible with insertion into membranes. Based on the structural and 

functional data combined with comparative analysis with gBs from beta- and 

gammaherpesviruses, we propose for the first time a molecular model on how the initial 

interaction of gB with the target membrane is established, which may be valid not only for 

alphaherpesviruses but for all members of the Herpesviridae family. 

In conclusion, this thesis significantly expanded the current knowledge on the membrane 

fusion mechanism utilized by this fascinating family of viruses. The mutagenesis and structural 

studies yielded critical information on the fusion capabilities and functional requirements of the 

herpesvirus fusion machinery components and their interactions. Moreover, the study provides 

a comprehensive picture of common elements and differences in the fusion process of different 

herpesviruses, particularly on the interactions of gB with the membrane and the functional 

requirements for gH, providing an important basis for future research. 
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