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Tag der Promotion: 22.01.2019



Contents

A Introduction 5
1. History and overview 5
2. First examples: new rep-tiles 8
3. Basic concepts 13

B The main concepts and procedures 17
4. Graph-directed IFS 17
5. Bounding balls 22
6. Neighbor graphs 26

C Algebraic iterated function systems 37
7. Lifting algebraic IFS to rational ones 37
8. Projection of IFS 45
9. Examples of rational forms 54

D Invariants of GIFS attractors 63
10. Hausdorff measure and dimension 64
11. Moments 67

E Notes on the IFStile program 71
12. The language of IFStile 71
13. Using the IFStile package 75
14. The creator module 80

Bibliography 83

3



4 CONTENTS

Publications related to this thesis

(1) C. Bandt, D. Mekhontsev and A. Tetenov, A single fractal pinwheel tile,
Proc. Amer. Math. Soc., 146:1271–1285, 2018.

(2) C. Bandt and D. Mekhontsev, Elementary fractal geometry. New relatives
of the Sierpinski gasket, Chaos: An Interdisciplinary Journal of Nonlinear
Science., 28(6):063104, 2018.

(3) M. Samuel, D. Mekhontsev and A. Tetenov, On dendrites generated by
symmetric polygonal systems: The case of regular polygons. In Internat.
Conf. on Advances in Math. Sciences 2017, Trends in Mathematics (Book
1), 17-25, Springer, 2019.



A Introduction

1. History and overview

The present thesis subsumes many years of work. From 1999 to 2010, the au-
thor developed the program IFS Builder together with Alexey Kravchenko. It was
designed to study iterated function systems (IFS) in two and three dimensions. It
could draw self-similar and self-affine attractors generated by IFS, construct new
fractals by modifying old ones, and study their geometrical properties by visual in-
spection. From 2009 to 2015, I developed another package Fractracer, which focused
on IFS with nonlinear maps and included better algorithms for polygonization and
three-dimensional representation. Here we are concerned with the latest package
IFStile which was presented 2016 in the web and is presently available as version
1.8.1.4 for free download at ifstile.com [Mek18].

Self-affine tilings and fractals have found a lot of attention in recent years. Math-
ematical papers on various types of self-affine tiles come from different fields, like
discrete geometry, algebraic number theory, dynamical systems, and theoretical
computer science. A strong motivation came from physics with the discovery of
quasicrystals by Shechtman et al. in 1984 which won the 2011 Nobel prize in chem-
istry. The best-known model of quasicrystals, the quasiperiodic tilings designed
by Penrose, precluded the discovery of the materials by more than 10 years. See
[GS87, Sen95, Rad99] for an introduction and [BG13, BG17] for a recent rig-
orous approach to aperiodic tilings, and the tiling encyclopedia [Fre18] for a large
collection of geometrically defined examples.

IFStile can be helpful for research in all these fields. The package considers self-
affine tilings as a particular perfect case of self-affine fractals, and thus is particularly
relevant for fractal geometry. Many experts study tilings and fractals for their own
sake. Their beauty has attracted a large non-mathematical audience. Among others,
several artists have been using IFStile.

The new package offers improved graphic procedures of its predecessors. How-
ever, it has a much greater functionality. It can construct and search large families
of self-similar tiles and fractals, and analyze them automatically in different ways. A
lot of new examples with extraordinary properties were found by computer search.
A few examples are shown in Section 2 before we go into technical details. Many
others can be found at ifstile.com, and in the papers [BMT18, BM18] in the
appendix.

Various novel algorithms had to be developed for the IFStile package. Procedures
had to be optimized in order to mathematically construct up to several thousand
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6 A INTRODUCTION

fractals per second and at the same time analyze their properties. The purpose of
this thesis is to give a first rigorous account of various mathematical concepts and
methods underlying these algorithms.

Basic notions are given in Section 3. The main subject of this thesis is the
class of graph-directed iterated function systems (GIFS) of affine maps in Euclidean
space Rd which fulfill the open set condition. This class together with some basic
tools is introduced in Section 4. A central theme is the automatic check of open set
condition and finite type property described in Chapter B. The method of bounding
balls, which seems new for GIFS, is used for controlling the size of fractals and
their pieces. An algorithm for the calculation of all neighbor maps seems also new
in the general case of GIFS, similarity mappings with different factors, and affine
mappings. When there are only finitely many proper neighbor maps, we say that
the GIFS has finite type.

Calculations with IFStile are rigorous and very fast due to the use of integer
arithmetics. Numerical approximation is also possible. It is applied only when the
data input consists of real numbers. The majority of interesting tiles and fractals
in the literature, however, is given by algebraic numbers. Certain self-similar tiles
must be given by Perron numbers, as shown by Kenyon and Solomyak [KS10], see
also [Ken96, Kwa16, Thu89]. If the mappings contain only algebraic numbers,
they can be lifted to maps with rational coefficients in a higher-dimensional space,
and all computations can be performed very fast with exact integer arithmetics.
Then they can be projected down again to appropriate eigenspaces of operators.
The corresponding techniques of linear algebra, which differ a bit from the cut-and-
project method often used for quasiperiodic tilings [BG13, BG17], are presented
in Chapter C.

In particular it will be explained that finite type tilings and fractals do organize in
families. Each family is characterized by an algebraic expansion map, a compatible
symmetry group of matrices with algebraic entries, and a graph structure for the
IFS. Once this family is defined, the IFStile package can search for all instances of
the family, varying the symmetry maps and integer translation vectors, and checking
the finite type condition.

The neighbor graph is a starting point to determine many properties and in-
variants which code the geometric appearance of the fractals. Among others, such
properties are required to automatically detect isomorphic GIFS during a search.
We determine Hausdorff dimension of both sets and their various boundary sets,
and also relative Hausdorff measures in the respective dimension as well as some of
their moments. Combinatorial invariants are derived from the neighbor graph of the
IFS. All this will be discussed in Chapter D.

The last chapter contains a brief manual of the IFStile package and the descrip-
tion of some of its features. Great effort was done to save the user of IFStile from
calculations with lots of coordinates and coefficients of mappings. The program
comes with a special language, introduced after the basic definitions in Section 12.
It provides a convenient notation of the GIFS and their generated families by both
the user and the computer. The program is able to fill gaps in the initial data
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and find the right fractals by random search. The creator module, described in the
last section, allows to construct fractals by only prescribing dimension and graph
structure, without providing any detail information.

The appendix contains three papers which are based on the use of IFStile. The
fractal pinwheel is a simple self-similar tile with fractal boundaries and irrational
rotations involved. The new Sierpinski relatives are unusual fractals which were
found with IFStile by taking the well-known Sierpinski triangle as initial dataset.
For the study of fractal trees related to polygons, the use of program was also crucial.
Many other applications seem to be possible.

This thesis is only a first step towards a more careful computer-assisted math-
ematical analysis of tilings and fractals. Time constraints did not allow for a dis-
cussion of all mathematical features implemented in IFStile. There are many open
problems, and a lot of mathematical experiments have to be performed. I strongly
hope that the description of the program and the verification of its mathematical
correctness will motivate researchers to use IFStile as a standard tool.

I thank my advisor Prof. Christoph Bandt for inviting me for one-month visits at
Greifswald university in spring 2017, spring 2018, and autumn 2018, for accepting me
as a PhD student, and for many discussions and suggestions concerning this thesis.
I gratefully acknowledge the financial support of Deutsche Forschungsgemeinschaft,
project Ba 1332/11-1.
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2. First examples: new rep-tiles

A closed set A with non-empty interior in plane or space is called a rep-m tile
[Gar63, Gol64, Ban91, GS87] if there are sets A1, A2, ..., Am congruent to A, such
that different sets Ai, Aj have no common interior points, and a similarity mapping
g with

(1) g(A) = A1 ∪ A2... ∪ Am .

Figure 1. rep-4 tiles on the plane.

For the plane, plenty of rep-m tiles are known for every m. Figure 1 shows three
examples for m = 4 and g(x) = 2x. The congruence maps hi which transform A to
Ai have the form hi(x) = qi(x) + ti where ti is a vector with integer coordinates and
qi is a symmetry map of the unit square (with vertices (±1,±1) and centre zero).
It is custom to take A = A1 so that h1 is the identity map.

In three-dimensional space, there are few rep-m tiles for m < 8 [MS11, Ban10].
Even for m = 8, not too many examples are known. Some are shown in Figure 2.
The regular tetrahedron or octahedron is not a rep-m tile.

Figure 2. Cube, Notched cube [HR00] and Hill tetrahedron [Hil95].

Again, the similarity map is g(x) = 2x, and the congruence maps have the form
hi(x) = qi(x) + ti where ti denotes an integer translation and qi a symmetry map of
the unit cube with center 0. If this family of maps is given to the IFStile program,
and a search is started, many thousand examples are found within minutes. Most
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of them have a fairly intricate structure but some are also polyhedra and can be
understood by eyesight. Figure 3 shows three examples which seem to be new.

Figure 3. Some new polyhedral tiles with connected interior.

Figure 4. New polyhedral rep-8 tile with a hole.

A few years ago, it was not so clear whether rep-m tiles can have holes. In [FS10]
an example with m = 24 was given, in [CT16] a more sophisticated and interesting
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example with very large m. Figure 4 shows one of several polyhedral rep-8 tiles with
a hole which was found by the program.

Since three-dimensional fractal structure is difficult to visualize in a single static
picture, we shall mainly confine ourselves to two-dimensional figures in this thesis.
Even for the simple family of Figure 1, the program finds lots of interesting fractal
modifications. In Figure 5 we see a tile which is homeomorphic to a disc, so its
boundary is topologically a circle. However, the length of the boundary, defined as
one-dimensional Hausdorff measure, is infinite. This can be proved by the methods
described in Chapter D. Boundary dimension and measure belong to the standard
properties which are determined by the IFStile program for each example.

Figure 5. Reptile with infinite border of dimension 1.

The following tile is not a topological disc but still has a fairly simple structure.
Its interior consists of two components. The closures of these interior components
have an interval in common.

Figure 6. Tile with incomparable factors 1/3 and 2/3.
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This tile is not a rep-tile since the pieces are not congruent, only similar to each
other. Self-similar and self-affine tiles are defined in the next section. The factors
1/3 and 2/3 are not rationally related on logarithmic scale, and it seems difficult to
find such tilings, except for trivial cases like a square or triangle.

Figure 7. Fractal pinwheel.

The fractal pinwheel tile from Figure 7 with statistical circular symmetry [Fre08]
was found using a computer search[BMT18] [Ven12]. It is an analogue of the well-
known Pinwheel tile [Rad94] with a fractal boundary.

We finish this section with a self-similar topological disc with five pieces of two
different sizes which I termed “bird”. Here we have two sizes of pieces. The sim-
ilarity ratio between the whole and the pieces is r1 = 1/3 and r2 = 1/

√
3. Since

log r1/ log r2 = 2, the factors are rationally related on logarithmic scale. It is known
that in such cases the factors must be algebraic numbers [Ken96, KS10, Kwa16],
and the framework developed in Chapter C will cover such examples while Figure 6
goes beyond this class.

There is a great variety of other tiles found by IFStile. Some of them are shown
as a gallery on the web page ifstile.com. This thesis is devoted to the theory
which underlies the program.

ifstile.com
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Figure 8. “Bird” tile with factors 1/3 and 1/
√

3.
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3. Basic concepts

3.1. Metric geometry. We recall some definitions which apply to an arbitrary
metric space X. In our case, X will be the Euclidean space Rd, or sometimes Cd.
Let ‖x− y‖ denote the Euclidean distance between two points x, y. For any S ⊂ X
and x ∈ X, the distance between S and x is written as

‖x− S‖= inf
y∈S
‖x− y‖ .

For ε > 0 the open ε-neighborhood of S is

U(S, ε) = {x ∈ Rd : ‖x− S‖< ε} .

For S = {x}, this is the open ball with center x and radius ε. For the closed ball with
center x and radius r we write B(x, r). Closure and interior of a set S are denoted
by S and int S, respectively. The diameter of a set S is

diam (S) = sup
x,y∈S
‖x− y‖ .

For subsets S, T ⊂ X the Hausdorff distance between S and T is

dH(S, T ) = max{sup
s∈S

inf
t∈T
‖s− t‖, sup

t∈T
inf
s∈S
‖s− t‖} .

3.2. Matrices and affine maps. When x ∈ Rd is considered as a vector V, it
will be a column vector, and V (i) denotes the ith coordinate for 1 ≤ i ≤ d. The
elements of a matrix A are written A(i, j). LetMd denote the set of square matrices
with d rows and columns. The identity matrix from Md is called Id.

For A ∈ Md the spectrum is denoted by sp(A), the spectral radius is denoted
by ρ(A). An affine map on Rd has the form

f(x) = Ax+ b with A ∈Md and b ∈ Rd .

For any affine map f we define

‖f‖= sup
x,y∈X

‖f(x)− f(y)‖
‖x− y‖

= sup
x∈X\{0}

‖Ax‖
‖x‖

= ‖A‖=
√
ρ(ATA)

We call f a contraction if ‖A‖< 1. If f is invertible we write f−1 for the inverse
of f . The determinant of an affine map f(x) = Ax + b is the determinant of the
matrix A. Define

r(f) = |det(f)|1/d .
For any affine maps f1 and f2 we have the following property.

r(f1f2) = r(f1)r(f2)

The map f is called a similarity map with factor r = r(f) > 0 if

‖f(x)− f(y)‖ = r · ‖x− y‖ for all x, y ∈ Rd .

This means that A = rB where B is an orthogonal matrix.
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3.3. Iterated function systems. A finite set F of affine maps is called an
iterated function system or IFS:

(2) F = {f1, ..., fm} with fk(x) = akx+ bk , ak ∈Md , bk ∈ Rd

An IFS is called contractive if there is an integer N > 0 that every composition
of the maps from F of length N is contractive: ‖fk1fk2 ...fkN‖< 1.

A compact and non-empty set C ⊂ Rd is called attractor if it is a solution of
the following equation:

(3) C = f1(C) ∪ f2(C) ∪ ... ∪ fm(C) .

Proposition 1 (Hutchinson’s theorem [Hut81], cf. [Bar93, Fal14]). Any
contractive IFS has unique attractor.

The attractor C will also be called a self-affine set, or self-similar set when all
fk are similarity maps. This was the case for the rep-tiles in the section above.
Equation (1) is a special case of equation (3), with C = A and fk(x) = g−1hk(x),
where hk is the congruence map transforming A into Ak.

3.4. Tilings and open set condition. An important property of an IFS F is
the open set condition, briefly OSC: there exists a non-empty open set U ⊂ Rd such
that

(4) f(U) ⊂ U and f(U) ∩ f ′(U) = ∅ for f, f ′ ∈ F , f 6= f ′ .

When the OSC is fulfilled, then the attractor C of F has a nice structure. In
particular, when C has non-empty interior and OSC holds then C is a tile. That
means that

Rd = C1 ∪ C2 ∪ C3 ∪ ...
where each Cj = hj(C) is a copy of C by some affine map hj, and the intersection
Cj∩Ck of any two different copies has empty interior. The rep-tiles of the preceding
section are examples of tiles. Since for a rep-m tile with a expanding similarity
map g, all fk are similarity maps with the same contraction factor, the Cj are all
congruent to C. However, in this thesis we shall consider much more general tilings.
We can always imagine that tilings can be obtained by magnifying the structure of
C in the vicinity of an interior point of C.

3.5. The Levy curve. We conclude this chapter with a well-known example
shown in Figure 9. It is in fact a rep-2 tile but this fact was not so obvious even for
the great probabilist Paul Levy who discovered it. In (3) we have m = 2, and the
mappings are f1 = g−1h1, f2 = h2g

−1 where

g(x) =

(
1− 1

1 1

)
· x , h1(x) = x+

(
0

1

)
, h2(x) =

(
0− 1

1 0

)
· x+

(
−1

0

)
.

This representation of fk by expanding integer matrix and congruence mappings hk
is used for many examples analyzed by the IFStile package. The Levy curve fulfills
the OSC and is a tile, but its structure is very complicated. Only after 2000, the
dimension of its boundary was calculated as 1.97... With IFStile, structure and
boundary of such examples can now be determined within milliseconds.
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Figure 9. Levy curve: a rep-2 tile with complicated boundary.

Figure 10. Zoomed Levy curve with interior components.





B The main concepts and procedures

4. Graph-directed IFS

4.1. A GIFS dragon. In Figure 11 you see an interesting ”dragon” with sets
C1 and C2 that consist of smaller copies of each other.

f1(C1)

f2(C2) f4(C1)

f3(C1)

f5(C2)

Figure 11. GIFS dragon C1 and C2.

This can be expressed by the following equations:

C1 = f1(C1) ∪ f2(C2)

C2 = f3(C1) ∪ f4(C1) ∪ f5(C2)

g =

(
1 −1
1 1

)
s =

(
0 −1
1 0

)
f1(x) = g−1(x)

f2(x) = g−2s(x+ [1,−1])

f3(x) = g−1(x+ [1, 0])

f4(x) = g−1s3(x+ [0, 1])

f5(x) = g−1s2(x+ [0, 2])

It turns out that this GIFS has the same integer-valued expansion matrix and
the same symmetry group as Twindragon, Heighway dragon, the and Levy Curve
in Figure 9.

Another way to describe the sets C1 and C2 is the graph from Figure 12 below.

17
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C1 C2f1

f2

f3

f4

f5

Figure 12. Graph of the dragons.

4.2. Definition. The graph from Figure 12 has the following features:

(1) All edges have a direction (directed graph).
(2) All edges are labeled by affine maps on Rd (labeled graph).
(3) Two vertices can be connected by multiple edges (multigraph).
(4) Every vertex have at least one outgoing edge.
(5) An edge can connect a vertex to itself.

A graph with vertices {1, ..., n} that fulfills the above properties is called a graph-
directed IFS or GIFS. The case of an ordinary IFS corresponds to a graph with one
vertex.

We use adjacency lists of outgoing edges to represent a GIFS: for every vertex
i = 1, ..., n we define a non-empty set Qi as a list of pairs (f, j) where each pair

corresponds to exactly one directed edge i
f−→ j from the vertex i to the vertex j

labeled by the affine map f .
We denote by φ(G) the set of all affine maps that are used to label edges in a

GIFS G:

(5) φ(G) = {f | (f, j) ∈ Qi for some i, j ∈ {1, ..., n} }
A vector of compact and non-empty sets (C1, C2, ..., Cn) where Ci ⊂ Rd is an

attractor of G if the sets fulfill the following equations:

(6) Ci =
⋃

(f,j)∈Qi

f(Cj) i = 1...n

Theorem 2 (Mauldin and Williams [MW88]). Let G be a GIFS. If ‖f‖< 1 for
all f ∈ φ(G) then there is a unique attractor.

Like for an ordinary IFS (4), a GIFS fulfills open set condition if there exist
non-empty open sets U1, ..., Un, Ui ⊂ Rd such that

(7)
⋃

(f,j)∈Qi

f(Uj) ⊂ Ui i = 1...n

and the union in (7) is disjoint. Although we usually do not require the OSC, all
examples in the paper fulfill it.

Define the following set of maps:

(8) φ∗(G) = {f1f2...fm | there is a path i1
f1−→ i2

f2−→ i3 ... im
fm−→ im+1 in G}

We assume that φ∗(G) contains the identity map that corresponds to the path of
length zero. For ordinary IFS φ∗(G) is a semigroup generated by the maps from
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φ(G). Usually, φ∗(G) is used to describe the small subcopies of attractors Ci which
appear as “parts of parts” on level 2,3,... Since we generally study maps with
different contraction ratios, we shall not speak about levels, but about uniform
subdivisions. This will be explained below.

Let T be some rectangular matrix. We denote by TG and GT the GIFS which
are obtained from G by replacing all maps f ∈ φ(G) by compositions Tf and fT
respectively (if they are defined). If all maps from φ(G) are invertible and every
vertex has at least one incoming edge, then we can define G−1 as a GIFS that is
obtained by reversing the direction of every edge in G and replacing all label maps
f ∈ φ(G) by f−1.

Definition 3. Two GIFS G and G′ are isomorphic if there is an invertible
matrix T such that TG = G′T .

If (C1, ..., Cn) is the attractor of G then (TC1, ..., TCn) is the attractor of TGT
−1.

4.3. Uniform subdivisions. Considering (6) as a system of equations, we can
substitute the definition of any Cj in any place where it occurs on the right side.
This corresponds to the replacement of some edge (f, j) ∈ Qi starting at vertex i
by the edges {(fg, k)| (g, k) ∈ Qj}. We call this operation an elementary edge
subdivision. It produces a new GIFS with the same vertices, but with other
outgoing edges Q′i for the vertex i. We can do such substitutions several times in
any order, and, by construction, all new GIFS have the same attractor as the original
one.

For every vertex i of G we now define an infinite sequence of special edge subdi-
visions that we call uniform:

Q0
i , Q

1
i , Q

2
i , ...

Every Qr
i is a set of pairs (f, j) where f ∈ φ∗(G) and j = 1, ..., n is a vertex. Define

Q0
i = {(i, Id)} and Q1

i = Qi and denote

‖Qr
i‖= max

(f,k)∈Qri
‖f‖

Then Qr+1
i is obtained from the previous Qr

i by replacing ”the biggest edges”: every
(f, j) ∈ Qr

i with ‖f‖= ‖Qr
i‖ will be replaced by pairs (f · f1, j1), (f · f2, j2), ... where

(fs, js) ∈ Qj.

Proposition 4. We can replace Qi in the definition of the attractor (23) with
Qr
i for any r ≥ 1.

Proof. The replacement of the biggest edges is a series of elementary edge
subdivisions that preserve the attractors. �

Definition 5. A GIFS is called contractive if there is an integer N > 0 such
that ‖QN

i ‖< 1 for any vertex i. In other words, there are only finitely many maps f
in φ∗(G) with ‖f‖≥ 1.

A contractive GIFS always has a unique attractor. This follows from Proposition
4 and Theorem 2. In this case

(9) lim
r→∞
‖Qr

i‖= 0
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Figure 13. Uniform subdivisions of the Ammann hexagon (Section 7.4).

Although some non-contractive GIFS have a unique attractor, in this work we are
only interested in attractors of contractive GIFS. In practice it is useful to have a
constructive way to verify that a GIFS is not contractive.

Proposition 6. If there is a vertex i, 1 ≤ i ≤ n and an integer N > 0 such
that (f, i) ∈ QN

i and |det(f)|≥ 1 then the GIFS is not contractive.

Proof. (f, i) ∈ QN
i means that there is a loop in the graph defined byQN

1 , ..., Q
N
n ,

and this loop is labeled by f with |det(f)|≥ 1. If we continue to subdivide Qi, we will
get an increasing sequence N = N1 < N2 < .... with (fk, i) ∈ QNk

i and |det(fk)|≥ 1
which contradicts Definition 5. �

For any contractive GIFS we define the ε-subdivision using (9):

(10) Qi(ε) = Qs
i where ‖Qs

i‖≤ ε and ‖Qr
i‖> ε for any r < s.

So for every vertex i

(11) lim
ε→0
‖Qi(ε)‖= 0

4.4. Strongly connected components. GIFS that we can usually find in
mathematical works have relatively simple structure. In particular, there is a di-
rected path between any vertices. Such GIFS are called strongly connected. But
when we start to work with intersections and boundaries of attractors which can
be also described as GIFS, we immediately get huge exotic graphs. As explained in
Section 6.8, the GIFS of intersections for the dragons in Figure 11 is not strongly
connected. Such features of the boundary GIFS carry a lot of useful topological
information about the attractor itself. This is one of the reasons why we consider
the most general case of GIFS.

We call a subset of the vertex set V of a graph G a strongly-connected com-
ponent if there is a directed path between any two vertices of the subset. Each
vertex that does not have a directed path to itself is also considered as a component.
Then the vertex set V is a disjoint union V = V1 ∪ V2... ∪ Vs of strongly connected
components [CLRS09]. Vertices from different components do not belong to any
directed cycle of edges. We can define a directed acyclic graph (DAG) with vertices
1, 2, ..., s, by connecting vertices i and j of the DAG with an edge iff there is a
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directed path from some vertex in Vi to some vertex in Vj. We can assume that
numeration of the components agrees with topological sorting of the DAG. That
is, if there is a path from component Vi to Vj then i ≥ j. Finally we can label all
vertices of G by component index:

(12) ψi = j ⇔ i ∈ Vj i = 1, ..., n

By definition, we have the following properties for ψ1, ..., ψn:

(1) If there is a directed path from i to j then ψi ≥ ψj.
(2) ψi = ψj only if i and j belong to the same directed cycle of G.
(3) 1 = ψ1 ≤ ψ2 ≤ ... ≤ ψn for some numeration of vertices of G.

8[ψ8 = 4] 7[ψ7 = 3]

6[ψ6 = 3]

5[ψ5 = 2] 4[ψ4 = 2]

3[ψ3 = 2]2[ψ2 = 1] 1[ψ1 = 1]

Figure 14. Graph with 4 components.

In Figure 14 we can see a graph with the vertices V = {1, ..., 8} and components
V1 = {1, 2} (green), V2 = {3, 4, 5} (blue), V3 = {6, 7} (black), V4 = {8} (red). The
vertices 1 and 2 have minimal component index ψ1 = ψ2 = 1 because there are no
paths from them to any other component. The vertex 8 forms its own component
with maximal index ψ8 = 4.

4.5. Substitution tiles. Many examples in this paper are substitution tiles.
According to [Fre05], a strongly connected GIFS G can be considered as a tile
substitution if all Ci have non-empty interior, the interiors of the components f(Cj)
in (6) do not intersect, and there is a linear expanding map Q in Rd such that Qf
is an isometry for any f ∈ φ(G). The map Q is called an inflation factor [Fre18].
It is easy to see that such GIFS fulfill the OSC (7) if we take interiors of Ci as open
sets Ui. Note that not every tile can be considered as a substitution tile, see Figure
6.
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5. Bounding balls

5.1. Overview and motivation. The method of bounding balls is an ex-
tremely useful tool for analyzing GIFS. We use it for the basic question whether
a GIFS is contractive, which can be non-trivial even for ordinary IFS. Bounding
balls have to be constructed in such cases to verify that the attractor exists. Fur-
thermore, bounding balls will be used

(1) for effectively drawing and zooming attractors,
(2) for the calculation of the neighbor graph in Section 6,
(3) for computing some attractor invariants like diameters (cf. Chapter D).

Let (C1, ..., Cn) be the attractor of G. We call a ball Bi = B(xi, ri) bounding
ball of Ci if Ci ⊂ Bi. Obviously, bounding balls for a GIFS exist if and only if
the attractor exists. Let r∗i be the minimal radius of a bounding ball of Ci. Given
a system (B1, ...Bn) of bounding balls of the attractor, the defect of the system
is the maximum of the ratios ri/r

∗
i for i = 1, ..., n. The computing time of many

algorithms greatly depends on the defect. On the other side, we need too much time
to calculate ideal minimal bounding balls. Usually it is a good idea to have balls
that have defect strictly greater than one, but less than some constant like 3/2.

Our algorithm consists of several stages. At the first stage we check the existence
of attractors and calculate preliminary bounding balls without estimates for the
defect. At the second stage we calculate bounding boxes with prescribed precision.
Then we switch to enclosing balls for the boxes and further decreasing their radii.

We present the algorithm for an arbitrary GIFS. For the case of ordinary self-
similar sets, similar estimates were done by several authors in the 1990s. For GIFS,
we have to proceed inductively, using the definition of the component index. We
can calculate bounding balls for sets with lower index independently on sets with
higher index, so we start from the sets with index 1, then do calculations for sets
with index 2 and so on. This allows us to use already defined balls from the previous
steps. We denote the current component index by ψ.

5.2. Centers of the balls. At first we calculate some point of every set Ci and
use it as the center of a bounding ball Bi. If some vertex j belongs to a directed
cycle in G labeled by fi1 , fi2 , ..., fis then the fixed point of the composition xj =
fi1fi2 ...fis(xj) must be contained in Cj. By the definition of the component index,
every set Cj with ψj = 1 belongs to some directed cycle. So we can always calculate
at least one point for such set. Induction is used to define the centers for vertices
with higher component index. If a vertex j with ψj > 1 does not belong to a directed
cycle, there must be a directed path from j to some vertex k with lower component
index ψk < ψj, such that Cj ⊇ fi1fi2 ...fis(Ck). From previous steps we already have
a center xk ∈ Ck, so we can define xj = fi2 ...fis(xk) ∈ Cj.

5.3. Radius of the balls and attractor existence. We begin by creating
a uniform subdivisions Qi(ε) (see Definition 10) for all i with ψi = ψ and some
0 < ε < 1.
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(13) Ci =
⋃

(f,j)∈Qi(ε)

f(Cj) i = 1...n

To create the subdivisions we iteratively use Procedure 4.3. If it fails (that means
that number of maps in some Qm

i is greater than some prescribed constant), then
we state that the GIFS is not contractive, the attractor does not exist and interrupt
the procedure.

At this stage we need only rough estimates for the balls, so we use ε = 1/2. Also
we use the same radius r for all sets with the same component index: ri = rj = r if
ψi = ψj = ψ.

For every i with ψi = ψ and every (f, j) ∈ Qi(ε) we require f(Bj) ⊂ Bi, that is

(14) ‖f(xj)− xi‖+‖f‖r ≤ r if ψi = ψj

(15) ‖f(xj)− xi‖+‖f‖rj ≤ r if ψi > ψj

So we have

(16) r ≥ ‖f(xj)− xi‖
1− ‖f‖

if ψi = ψj

Since rj is already determined at this step and ‖f‖≤ ε we can define

(17) r = max(R1, R2)

where

(18) R1 = max{‖f(xj)− xi‖
1− ε

: (f, j) ∈ Qi(ε), ψi = ψ = ψj}

(19) R2 = max{‖f(xj)− xi‖+‖f‖rj : (f, j) ∈ Qi(ε), ψi = ψ > ψj}

5.4. Bounding boxes. Bounding balls that are found in the previous step can
be arbitrarily greater than minimal balls. But we can use them to calculate minimal
bounding boxes with required precision. At this stage we can already verify that
an attractor exists.

For any ε > 0 define a finite set of images of the centers of the bounding balls

hi(ε) =
⋃

(f,j)∈Qi(ε)

f(xj)

Let

Ri(ε) = max
(f,j)∈Qi(ε)

‖f‖rj .

Then Ri(ε) converges to zero when ε tends to zero. We define the union of the balls
around the points of hi(ε)

Hi(ε) =
⋃

x∈hi(ε)

B(x,Ri(ε))
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Proposition 7. hi(ε) and Hi(ε) are lower and upper estimates of the attractor
set Ci for every i = 1, ..., n. More precisely,

hi(ε) ⊂ Ci ⊂ Hi(ε) and dH(hi(ε), Hi(ε)) ≤ Ri(ε)

Consequently,
lim
ε→0

dH(hi(ε), Ci) = lim
ε→0

dH(Hi(ε), Ci) = 0 .

�

For every S ⊂ Rd, the minimal box with sides parallel to the axis that contains
S is called Box (S). We define this box by two vectors u, v ∈ Rd

Box (S) = {z ∈ Rd | u(k) ≤ z(k) ≤ v(k), for k = 1, ..., d}
with u(k) = inf{z(k) | z ∈ S} and v(k) = sup{z(k) | z ∈ S} .

There is a simple inequality between diameters of the minimal bounding box and
ball.

Proposition 8. Let R be the radius of the minimal ball that contains S ⊂ Rd.
Then

(20) diam (Box (S)) ≥ 2R ≥ diam (Box (S))/
√
d

Proof. The left inequality comes from the fact that the ball with radius 1
2

diamS and midpoint in the center of Box (S) contains S. The right inequality holds
since 2R ≥ v(k)− u(k) for k = 1, .., d. �

Proposition 9. If diam (Ci) > 0 for some 1 ≤ i ≤ n then for any δ > 0 there
is an ε > 0 such that

(21) 1 ≤ diam (Box (Hi(ε)))

diam (Box (hi(ε)))
≤ 1 + δ

Proof. From Proposition 7 we have

diam (Box (Hi(ε)) ≥ diam (Box (hi(ε))

diam (Box (Hi(ε)), diam (Box (hi(ε))
ε→0−−→ diam (Box (Ci)) > 0

�

Since hi(ε) is a finite set that can be calculated by computer we can use the
recursive construction of uniform subdivisions to get ε(δ).

5.5. Improved balls. Let B′i(ε) ⊃ Ci be the enclosed ball around Box (Hi(ε))
with radius

r′i = diam (Box (Hi(ε)))/2

Then from (20) and (21) we have

2r′i
diam (Box (Ci))

≤ 1 + δ

2r′i

2r∗i
√
d
≤ 1 + δ
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Proposition 10. For every δ there is a uniform subdivision Qi(ε) such that the

corresponding bounding balls B′i(ε) are at most
√
d(1+δ) times greater than minimal

ones:
r′i ≤ r∗i

√
d(1 + δ)

�

To reduce B′i further without changing centers, we can use procedure similar to
the preliminary radius calculation (5.3). On Figure 15 we use uniform subdivision
Q1(

1
4
) of the equilateral Sierpinski triangle (9.1) to decrease the initial black ball to

the red one.
Remarks. Attractors with diam (Ci) = 0 must be considered separately, they

can be easily detected from the graph structure and fixed points of the maps from
φ∗(G).

Figure 15. Ball refinement.
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6. Neighbor graphs

6.1. Motivation. The most important tool that we use for GIFS analysis is
the neighbor graph. A concept of neighbors is widely used in the literature [IRI92,
SW99, ST03]. If a finite neighbor graph exists, we can determine many properties
of the attractor.

(1) We can check the open set condition.
(2) We can express the boundary of the tile by a GIFS.
(3) In the self-similar case we can calculate the Hausdorff dimension of the

boundary.
(4) We can check whether the attractor is connected.
(5) We can determine various affine invariants, discussed in Chapter D.

The intersection of any two pieces of attractor (C1, ...Cn) of GIFS G can be
expressed as f(Ci) ∩ g(Cj) for some f, g ∈ φ∗(G). It is easy to see, that there are
usually infinite number of such intersections. The main trick is a standardization:
instead of f(Ci)∩ g(Cj) we use ”zoom” by f−1 and consider Ci∩ f−1g(Cj). Also we
use uniform subdivisions (see 4.3). For many GIFS it gives only a finite number
of intersections through the all levels. A triples (Ci, Cj, f

−1g) correspond to the
vertices of neighbor graph, and relative maps f−1g between pieces will be called
neighbor maps. All intersections inherit the hierarchical structure of the attractor,
so we have the opportunity to express every intersection in the same manner as we
express attractors of GIFS.

6.2. The neighbors of the GIFS dragon. To demonstrate the neighbor
graph concept, we use the GIFS dragon shown in Figure 11 from Section 4. Fig-
ure 16 shows a uniform subdivision of the attractor C2 with smaller pieces. In the
picture we can see a periodic pattern and different intersections between pieces. It
seems that there are only few types of intersections, and we will not get new types
if we further subdivide the attractor. Figure 17 shows all such types.
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Figure 16. Second dragon subdivison.

Figure 17. Dragon’s neighbors
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6.3. Construction of the neighbor graph of the GIFS dragon. We can
see the hierarchical structure of intersections in Figure 18 where some part of the
neighbor graph is shown graphically. The following list describes some steps in the
construction of this graph, illustrated by corresponding numbers in the figure.

(1) We start from the left of the diagram with label 1 - the top left intersection
in Figure 17.

(2) 1→ D1 We divide the blue piece into three parts - red, blue and yellow.
(3) D1 → E1 The green piece f4(C1) does not intersect the yellow piece. Empty

intersections will not be in the neighbor graph.
(4) D1 → 2 The blue piece f3(C1) intersects the yellow piece, so we can con-

tinue. We don’t have this intersection in Figure 17 because sizes of the
pieces are very different.

(5) 2→ D2 Now we divide the big yellow piece into two parts - yellow and red.
(6) D2 → 5 The red piece equals f2(C2) and intersects the blue piece. We

continue along f2.
(7) 5→ D3 We divide the big red piece into 3 parts - blue, red and green.

(8) D3 → 1′ The blue piece is f5(C2) and intersects the yellow piece. Now we
can see that pieces in the new intersection have exactly the same relative
position as in the the first intersection!

(9) We have intersections labeled by 3 and 7, so we should continue to divide
them further. This part of the diagram is not shown.

(10) After a finite number of steps we will see that there are no elements to
divide, and all intersections from Figure 17 are in the diagram.

The complete neighbor graph with 33 vertices is given in Table 1. All edges
are labeled by maps f1, ..., f5. Each line in Table 1 corresponds to one type of
intersection. For example, consider the second line: the third column v2 = (1, 2, h2)
means that v2 = C1 ∩ h2(C2), the last column (v2, v10, f1), (v2, v11, f2) means that
v2 = f1(v10) ∪ f2(v11).
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1 D1

E1

2

3

...

D2 4

5D3

6E2

7

E3 E4

1′

blue

f3

f4
f5

continue

yellow f1

f2

red

yellow

f1

f2

continue

f3
f4

f5

same

Figure 18. Part of the neighbors subdivision diagram.
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|det|≤ 1 map vertex edges
+ h1 = f−13 f4 v1 = (1, 1, h1) (v1, v9, f1)
+ h2 = f−13 f5 v2 = (1, 2, h2) (v2, v10, f1), (v2, v11, f2)
+ h3 = f−14 f3 v3 = (1, 1, h3) (v3, v12, f1), (v3, v13, f2)
+ h4 = f−14 f5 v4 = (1, 2, h4) (v4, v14, f2)
+ h5 = f−15 f3 v5 = (2, 1, h5) (v5, v15, f5)
+ h6 = f−15 f4 v6 = (2, 1, h6) (v6, v16, f3), (v6, v8, f5)
+ h7 = f−11 f2 v7 = (1, 2, h7) (v7, v17, f2)
- h8 = f−12 f1 v8 = (2, 1, h8) (v8, v18, f5)
- h9 = f−11 h1 v9 = (1, 1, h9) (v9, v1, f4), (v9, v19, f5)
- h10 = f−11 h2 v10 = (1, 2, h10) (v10, v20, f3)
- h11 = f−12 h2 v11 = (2, 2, h11) (v11, v21, f3)
- h12 = f−11 h3 v12 = (1, 1, h12) (v12, v3, f4)
- h13 = f−12 h3 v13 = (2, 1, h13) (v13, v15, f4)
- h14 = f−12 h4 v14 = (2, 2, h14) (v14, v22, f1), (v14, v17, f3)
- h15 = f−15 h5 v15 = (2, 1, h15) (v15, v23, f4), (v15, v24, f5)
- h16 = f−13 h6 v16 = (1, 1, h16) (v16, v25, f5)
- h17 = f−12 h7 v17 = (2, 2, h17) (v17, v26, f3)
+ h18 = h8f2 v18 = (2, 2, h18) (v18, v26, f5)
+ h19 = h9f2 v19 = (1, 2, h19) (v19, v20, f1), (v19, v21, f2)
+ h20 = h10f5 v20 = (1, 2, h20) (v20, v27, f2)
- h21 = h11f5 v21 = (2, 2, h21) (v21, v5, f2)
- h22 = h14f3 v22 = (2, 1, h22) (v22, v28, f5)
+ h23 = h15f1 v23 = (2, 1, h23) (v23, v16, f4), (v23, v22, f5)
+ h24 = h15f2 v24 = (2, 2, h24) (v24, v2, f4)
+ h25 = h16f2 v25 = (1, 2, h25) (v25, v29, f2)
+ h26 = h17f5 v26 = (2, 2, h26) (v26, v30, f3), (v26, v31, f4)
- h27 = f−12 h20 v27 = (2, 2, h27) (v27, v22, f2), (v27, v29, f3)
+ h28 = h22f2 v28 = (2, 2, h28) (v28, v4, f3)
- h29 = f−12 h25 v29 = (2, 2, h29) (v29, v6, f1)
- h30 = f−13 h26 v30 = (1, 2, h30) (v30, v32, f1), (v30, v3, f2)
- h31 = f−14 h26 v31 = (1, 2, h31) (v31, v1, f1), (v31, v32, f2)
+ h32 = h30f3 v32 = (1, 1, h32) (v32, v33, f1)
- h33 = f−11 h32 v33 = (1, 1, h33) (v33, v32, f4)

Table 1. Complete neighbor graph of the dragon GIFS
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6.4. Formal definition of the neighbor graph. Let G be a contractive GIFS
in Rd with the attractor (C1, ...Cn) and adjacency lists Q1, ..., Qn. We additionally
assume that all f ∈ φ(G) are invertible. The procedure below defines a neighbor
graph N(G).

We denote the set of potential neighbor maps as

F× = {f−1g | f, g ∈ φ∗(G), 1/M ≤ |det(f−1g)|≤M}.
where

(22) M =
maxg∈φ∗(G)|det(g)|
minf∈φ(G)|det(f)|

We can see from Definition 5 that 1 ≤M <∞.
The name ‘neighbor map’ will be reserved for those maps f−1g ∈ F× for which

there are pieces f(Ci) and g(Cj) inside Ck for some i, j, k which do intersect:

Ck ⊃ f(Ci) ∩ g(Cj) 6= ∅ .
The maps f and g with f−1g ∈ F× have approximately the same determinant

(up to constant M), so we are only interested in those neighbors that have an
approximately equal size.

We define an increasing sequence of directed graphs (Vm, Em), m = 1, 2, ..., so
Vm ⊂ Vm+1 and Em ⊂ Em+1. Vertices in every Vm are distinct triples (i, j, h) for
some i, j ∈ {1, ..., n} and h ∈ F×. They correspond to intersections Ci ∩ h(Cj).
Edges in Em are labeled by maps f ∈ φ(G) as in the original GIFS. We represent

Em as a set of triples (v1, v2, f) = v1
f−→ v2 where v1, v2 ∈ Vm and f ∈ φ(G).

The first graph (V1, E1) does not have edges, so E1 = ∅. Vertices V1 correspond
to the first level intersections within any of the attractors Ck :

V1 =
n⋃
k=1

{(i, j, f−1g) | (i, f), (j, g) ∈ Qk, (i, f) 6= (j, g), f(Ci) ∩ g(Cj) 6= ∅}

Let Um ⊂ Vm denote the set of vertices without outgoing edges that was added
in step m. So U1 = V1 and for m > 1

Um = {u ∈ Vm \ Vm−1 | (u, v, h) /∈ Em for any v ∈ Vm and h ∈ F×)}
Suppose that (Vm, Em) is already constructed. If Um = ∅ then we stop, and

call the graph N(G) = (Vm, Em) the neighbor graph. Otherwise we construct the
next graph (Vm+1, Em+1) by adding outgoing edges with corresponding new or old
vertices to every v = (i, j, h) ∈ Vm ∩ Um = Um in the following way.

(1) If |det(h)|≤ 1 then for every (f, k) ∈ Qi with Ck ∩ f−1h(Cj) 6= ∅ we add
the vertex v′ = (k, j, f−1h) (if it does not exist yet), and the edge (v, v′, f).

(2) If |det(h)|> 1 then for every (f, k) ∈ Qj with Ci ∩ hf(Ck) 6= ∅ we add the
vertex v′ = (i, k, hf) (if it does not exist yet), and the edge (v, v′, f).

In both cases if h belongs F×, then a new map (f−1h or hf) will belong to F×

too (22).

Definition 11. [BM09] A GIFS has finite type if it has a finite neighbor
graph.
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Definition 12. A GIFS has an exact overlap if the above procedure generates
a vertex of the form (i, i, Id) for some i = 1, ..., n.

Definition 13. A map h ∈ F× from any vertex (i, j, h) of the neighbor graph
is called a neighbor map.

Remarks.

(1) There are non-finite type GIFS, so a finite neighbor graph does not always
exist. Since (Vm, Em) is an increasing sequence we can define an infinite
neighbor graph as (

⋃
m Vm,

⋃
mEm). Even in this case it is possible to find

each exact overlap in a finite number of steps.
(2) A neighbor graph can be very large: for the Levy curve in Figure 9 it has

about 100 vertices. It is easy to produce examples with arbitrary large
neighbor graphs even in R1.

(3) If the neighbor graph is empty then there are no first level intersections, so
every set of the attractor is a subset of Cantor set.

(4) A finite type strongly connected GIFS without exact overlaps fulfills the
open set condition [BG92, BM09, ME05].

6.5. Properties.

Proposition 14. Let N be a neighbor graph. If a vertex (i, j, h) belongs to
V (N) and det(h) = 1 then a vertex (j, i, h−1) is also a vertex of V (N).

Proposition 15. For any neighbor graph there is an integer constant M > 0
such that any directed path of length M contains vertices (i1, j1, h1) and (i2, j2, h2)
with |det(h1)|≤ 1 and |det(h2)|> 1.

Proof. During the construction, if some map h ⊂ F× has |det(h)|≤ 1 then we
sequentially multiply it from the left by some f−1i ∈ φ(G). Since the attractor exists,
at some step the product h′ = f−1im , ..., f

−1
i1
h will have |det(h′)|> 1. The length m

of the sequence cannot be arbitrary large since that would contradict Proposition
6. �

Proposition 16 (Neighbor graphs of isomorphic GIFS). Let G and G′ be iso-
morphic GIFS: TG = G′T . Then N(G′) can be obtained from N(G) by replacing
labels f on all edges by TfT−1 and replacing neighbor maps h in all vertices by
ThT−1.

Proof. The maps f and TfT−1 have the same determinant, so all steps in the
neighbor graph procedures for G and G′ are the same (up to affine isomorphism). �

6.6. Extended neighbor graph. In practice it is useful to extend the proce-
dure in 6.4 by replacing attractors C1, ..., Cn by larger sets B1, ..., Bn ⊂ Rd.

Definition 17. The graph produced by the procedure in Section 6.4 for sets
B1, ...Bn ⊂ Rd is called extended neighbor graph and denoted N(G,B1, ...Bn).

Proposition 18. Let G be a GIFS with attractor (C1, ..., Cn), and Ci ⊂ Bi

for some compact sets B1, ...Bn ⊂ Rd. Then the neighbor graph N(G) exists iff



6. NEIGHBOR GRAPHS 33

N(G,B1, ...Bn) exists. N(G) is a subgraph of N(G,B1, ...Bn) and can be obtained
from it by removing all vertices that do not lead to any cycle.

Proof. Denote N = N(G) and NB = N(G,B1, ...Bn) The only difference be-
tween the procedures that generate NB and N are conditions like Bk ∩ h(Bj) = ∅
for h ∈ F×. Since Ci ⊂ Bi for all i, we have Ck ∩ h(Cj) ⊂ Bk ∩ h(Bj). So if the
procedure creates a new edge for N then a corresponding edge will be created for
NB. This proves that N is a subgraph of NB.

Consider any vertex v = (i, j, h) ∈ V (N) of NB without outgoing edges and let
|det(h)|≤ 1. By the definition it means that Bk∩f−1h(Bj) = ∅ for every (f, k) ∈ Qi,
so B2

i ∩ h(B2
j ) = ∅ where

(23) B2
i =

⋃
(f,k)∈Qi

f(Bk) i = 1...n

We have Ci ⊂ B2
i ⊂ Bi, and the extended neighbor graph for B2

i is strictly smaller
than NB. If we continue this way, at some stage we will get an extended neighbor
graph where every vertex has outgoing edges. This will be N . �

6.7. Computation. Proposition 18 gives us a practical method to compute
neighbor graphs. We can create the extended neighbor graph for bounding balls
B1, ..., Bn of the attractors to compute N(G,B1, ...Bn) and then remove appropriate
vertices. We have to prescribe a constant that limits the number of vertices in the
extended neighbor graph to ensure that the procedure in Section 6.4 will stop after
a finite number of steps.

6.8. GIFS of intersections. [AL11, DKV00, Gil86]
A neighbor graph N = N(G) can be used to create another GIFS G′ that has

attractors equal to all possible standardized intersections of the comparable pieces
in the attractors of G. The procedure is as follows:

(1) The graph G′ has the same vertices and edges as N .
(2) The labels on edges are the same for N and G, except for the case when

v = (i, j, h) ∈ V (N) and |det(h)|> 1. In this case we replace the labels for
all outgoing edges of v with the identity map: (v, v′, f) => (v, v′, Id).

(3) As a simplification, we can exclude all vertices with |det(h)|> 1 by sub-
stituting their definitions to other sets. This will remove edges labeled by
identity maps.

Below we can see the result of the procedure applied to Table 1 for our dragon.
Each Di corresponds to vi in the table. It is easy to see that the graph G′ is not
strongly connected, and the intersection D32 = C1 ∩ h33(C1) is just a point.
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D1 = f1(D1) ∪ f1(D19)

D2 = f1(D20) ∪ f2(D5)

D3 = f1(D3) ∪ f2(D23) ∪ f2(D24)

D4 = f2(D28) ∪ f2(D26)

D5 = f5(D23) ∪ f5(D24)

D6 = f3(D25) ∪ f5(D18)

D7 = f2(D26)

D18 = f5(D26)

D19 = f1(D20) ∪ f2(D5)

D20 = f2(D28) ∪ f2(D6)

D23 = f4(D25) ∪ f5(D28)

D24 = f4(D2)

D25 = f2(D6)

D26 = f3(D32) ∪ f3(D3) ∪ f4(D1) ∪ f4(D32)

D28 = f3(D4)

D32 = f1(D32)

6.9. Dynamical boundary. [Mor99] Elements of the vertex set V (N) of a
neighbor graphN from Section 6.4 are triples (i, j, h) that correspond to intersections
Ci ∩ h(Cj). Define a dynamical boundary of the set Ci as

(24) ∂Ci =
⋃

(i,j,h)∈V (N)

Ci ∩ h(Cj) i = 1, ..., n

In the tiling case, when the GIFS fulfills the OSC and all Ci have non-empty
interior, the dynamical boundary of any Ci coincides with its topological boundary.
In the fractal case, the boundaries are different. For example, the dynamical bound-
ary of the Sierpinski triangle 9.1 is just three points. Note that Equation (24) can
be used even with an infinite neighbor graph if we consider the closure of the union.
Let G′ be the GIFS of intersections for G. Since every element of the union in (24)
is some component of the attractor of G′, we can express ∂Ci as a union of such
components (Figure 19).
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Figure 19. C2 boundary D5 ∪D6 ∪D18 ∪D23 ∪D24 ∪D26 ∪D28

Figure 20. C2 neighborhood h5C1 ∪ h6C1 ∪ h18C2 ∪ h23C1 ∪ h24C2 ∪
h26C2 ∪ h28C2





C Algebraic iterated function systems

7. Lifting algebraic IFS to rational ones

7.1. Rational and algebraic iterated function systems. Iterated function
systems are considered in Rd or Cd. We needed the topological completeness of the
underlying field to define attractors as compact sets. In this section, however, we
shall consider functions with coefficients in Q or in an algebraic field. They play a
crucial role for the IFStile package. Calculations with real data involve numerical
errors, but calculations with rational or algebraic numbers can be done without any
error.

A number β ∈ C is called algebraic if there is a non-zero polynomial

(25) p(z) = a0 + a1z + ...an−1z
n−1 + anz

n

with integer coefficients ak and p(β) = 0. The minimal degree of such a polynomial
is called the degree of β. The algebraic closure of Q is A = {z ∈ C | z is algebraic}. It
is well-known that A is a subfield of C. By definition, an algebraic field is a subfield
of A.

Definition 19 (Rational and algebraic IFS). Let F = {f1, ..., fm} be an affine
iterated function system in Rd or Cd with fk(x) = akx+bk . If all coefficients ak(i, j)
and bk(j) are rational numbers, we call F a rational IFS or IFS in Qd. (In the
complex case, real and imaginary parts must be in Q.) If the ak(i, j) and bk(j) are
all contained in an algebraic field H over Q, we call the IFS algebraic.

Note that this definition applies to any GIFS G by considering φ(G) as an IFS.
Moreover, we can confine ourselves to finite extensions of the rational numbers since
an IFS contains only finitely many coefficients.

Essentially all examples of self-affine tiles and fractals in the literature are defined
with rational or algebraic numbers. So it is not a serious restriction to assume that
all numbers in the definition of an IFS are algebraic. Below we show that we can
replace an algebraic IFS in any dimension by a rational IFS in higher dimension.
The use of rational numbers is essential for computer work. Integer arithmetic
makes it possible to perform accurate calculations. Although IFStile can do numeric
approximations, its essential feature is the exact determination of the neighbor graph
of an IFS. Beside that, integer calculations are also much faster than calculations
with real numbers. Actually, rational representation of tiles was considered by many
authors, sometimes implicitly: [Ban91, Ban97, BG97, Gel97, Gel94, LW96,
LLR, Lor12, Rau82]. We modify the known results in such a way that they fit
our setting.

37
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7.2. The lifting lemma for IFS. Our goal is to replace an algebraic IFS in
low-dimensional space by a rational IFS in higher dimension.

Definition 20 (Rational representation of an IFS). Let F = {f1, ..., fm} be
an IFS on Cd. A rational representation of F is a pair (Q,U) where

(i) Q = {q1, ..., qm} is a rational IFS on QD,
(ii) U : QD → Cd is a linear map given by a d×D-matrix,
(iii) Uqk = fkU for k = 1, ...,m.

Minimal possible dimension D is called algebraic dimension of F .

It is well-known that accurate calculations with algebraic numbers over Q can
be performed as matrix calculations in some vector space QD. All computer algebra
packages work in this way. So the following proposition is not surprising. We provide
a proof to indicate how algebraic IFS can be used in IFStile, and how the dimension
will increase when different algebraic numbers are involved. The procedure is closely
related with the Minkowski embedding, see [BG13, 3.4].

Proposition 21. Every algebraic IFS on Cd has a rational representation.

Proof. Let F = {fk(x) = akx+ bk |k = 1, ...,m} be an algebraic IFS on Cd, and
let H be the finite set of all coefficients ak(i, j) and bk(j) of the mappings fk, k =
1, ..,m. Let H be the field which is generated by H over Q. Since H contains only
algebraic numbers, H is a finite algebraic field extension of Q. Thus H, considered
as a vector space over Q, must have finite dimension N.

Let S be a basis of this rational vector space. Typically, S contains 1, the
irrational numbers of H, their powers and products of these powers. If β is an
algebraic number of degree n, only powers β, β2, ..., βn−1 need be considered. Since
p(β) = 0, for the minimal polynomial of β, of the form (25), the number βn can be
expressed as

(26) βn = −−1

an
· (a0 + a1β + ...an−1β

n−1)

Each coefficient bk(j) or ak(i, j) of the original IFS is now represented as a vector

b̂k(j) or âk(i, j) in the N -dimensional rational vector space H, as a linear combination
of basis vectors.

We now consider d-dimensional vectors v = (v1, ..., vd) with entries vj ∈ H. They
are generated by basis vectors (s, 0, ..0), (0, s, 0..0), ..., (0..0, s) with s ∈ S. This new

basis Ŝ has Nd vectors and generate the N × d-dimensional rational vector space
Hd = QD with D = Nd. The IFS Q will now be constructed on this space. We set

qk(v) = âkv + b̂k for k = 1, ...,m.

Entries of QD, like v, will be column vectors. The translation vector is simply
defined as b̂k = (b̂k(1), ..., b̂k(d))′. The columns of the matrix âk have the form∑d

i=1 âk(i, j) · ŝ(i), where ŝ is a basis vector in Ŝ, thus one component ŝ(i) is a vector
s ∈ S and all other components are zero. Since product and sum is calculated in
the algebraic field H, however, we must take care of the relation (26), and similar
relations for products of the h. This will be demonstrated in the examples.
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The map U is defined for basis vectors ŝ ∈ Ŝ and extended linearly to QD.
The vector (0, s, 0..0) ∈ Hd is mapped to (0, s, 0..0) ∈ Cd, and similar for the other
basis vectors. In fact, each s ∈ S belongs to C. This construction guarantees that
Uqk(ŝ) = fkU(ŝ) holds for basis vectors ŝ, and hence for all vectors in QD. �

Remark. The statement also holds for IFS on Rd where all algebraic numbers
involved in F must be real. Our examples will be mostly in the complex plane,
however, and will involve complex algebraic numbers. Note that the real dimension
of the vector space Cd is 2d. We also assume that F has full rank in the sense that
there is no real hyperplane invariant under all maps fk. In that case D cannot be
smaller than 2d by property (iii), and the proof indicates that D is usually much
larger.

7.3. The viper tile. Three examples will demonstrate how lifting works in
detail. They are taken from the tiling encyclopedia [Fre18] where they are presented
with geometric substitutions. Their algebraic description requires some calculation,
however. I thank C. Bandt for discussions and for providing details. Our first
example shows that D = 2d is possible.

Each triangle can be divided into 9 = 3× 3 congruent subtriangles in a checker-
board pattern. We take an isosceles triangle with side lengths a = b and c = a/2.
Then four of the small triangles form a rhomb. Reflection of this rhomb at one of
its diagonals yields a new subdivision of the triangle, shown in Figure 21. Due to
the symmetry of the triangle, we will find a generating IFS which contains no re-
flections. The rotation angles are irrational since the angle α = β in the big triangle
fulfills cosα = 1

4
. Tilings of the whole plane generated by this IFS have the property

that the sides of small triangles show a dense set of directions in [0, 2π] (statistical
circular symmetry, see [Fre08, Rad94]).

Figure 21. A simple algebraic tile with rational representation of
the same dimension.
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To analyse this construction, we introduce coordinates such that the triangle is
in the upper half-plane, its tip is at zero, and one side is the segment [0, 6] on the
real axis, as shown in Figure 21. The small triangle with vertex zero has as other
vertices the number 2 and the complex number 2 + t where t = − cosα + i sinα =
(−1 + i ·

√
15)/4. Obviously, t is a algebraic number: it is a root of t2 + 1

2
t+ 1. The

IFS is now defined by the maps fk which send the big triangle into the small ones:
We write

fk(z) = g−1hk(z) where g(z) = 3z

and the hk are translations or rotations. The hk map the small triangle with vertex
0 to the other small triangles,

h1 = id, h2(z) = z + 2, h3(z) = z + 4, h4(z) = z + 2 + t, h5(z) = −z + 4 + t.

The rotations by angles π − α and −α around the origin are r(z) = tz and −r(z),
respectively. Thus we can complete our algebraic IFS:

h6(z) = −tz+ 4 + 2t, h7(z) = tz+ 5 +
1

2
t, h8(z) = −tz+ 5 +

5

2
t, h9(z) = tz+ 6 + t.

Now we construct a rational representation. We have H = Q(t), and since t is qua-
dratic, our vector space basis is S = {1, t}. The complex map g(z) = 3z corresponds
to the linear map ĝ(x) =

(
3 0
0 3

)
x on Q2. The rotation r(z) = tz is expressed by the

matrix R =
(
0 −1
1 −1/2

)
with respect to the basis S. The first column containing the

image of 1 is t = 0 · 1 + 1 · t, the second column comes from r(t) = t2 = −1− 1
2
· t.

The translation vectors are expressed with respect to the basis S. They are columns,
like x =

(
x1
x2

)
, written as rows with square brackets.

ĥ1 = id, ĥ2(x) = x+[2, 0], ĥ3(x) = x+[4, 0], ĥ4(x) = x+[2, 1], ĥ5(x) = −x+[4, 1],

ĥ6(x) = −Rx+[4, 2], ĥ7(x) = Rx+[5, 1
2
], ĥ8(x) = −Rx+[5, 5

2
], ĥ9(x) = Rx+[6, 1].

Figure 22. The rational representation generates a self-affine tile only.
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The rational IFS now is G = {ĝ−1ĥk = 1
3
· ĥk |k = 1, ...,m}. The mapping

U : Q2 → C is defined by U(x) = (1, t) · x = x1 + tx2. Property (iii) follows from
UR = (t,−1− t/2) = tU where the equation for t is used.

Note that R is not an orthogonal matrix. So the rational IFS, considered on R2,
will not generate a self-similar set. In Figure 22, the turned small triangles have
no right angle. For instance, ((5, 1

2
) − (4, 2)) · ([6, 1] − [4, 0]) = −1

2
6= 0. This can

be corrected by adapting the angle between the basic vectors so that the ’elliptic
rotation’ R becomes a Euclidean rotation.

7.4. The Ammann hexagon. This example is one of the best-known self-
similar tiles [GS87, Fre18]. As Figure 23 shows, it consists of two pieces. If
the similarity ratio for the larger part is t, the ratio for the smaller part is t2.
Since area scales with the square of the similarity ratio, and the two parts do not
overlap, we have t2 + t4 = 1. Moreover, the expansive map g transforming the larger
part to the whole must be a rotation around 90o composed with a homothety with
factor ρ = 1/t. Obviously, ρ is the root of the golden number, or Fibonacci number
(1 +

√
5)/2. If we take the fixed point of g as origin of the complex plane, we have

g(z) = iρz.

Figure 23. The Ammann hexagon is a well-known self-similar tile.
From the landmark points one can easily determine the contraction
maps.

Geometric arguments show that this fixed point is the intersection of two diago-
nals of the hexagon, and lies on the extensions of two sides of the small hexagon, as
indicated in Figure 23. We have g(ak) = ak+1 and g(bk) = bk+1 for k = 1, 2, 3, and
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g(b) = b1. If we fix the origin and put b = i, then b1 = −ρ and b3 = ρ3 are on the
real axis.

Now we determine the contraction maps for the equation A = f1(A) ∪ f2(A).
We have f1(z) = g−1(z). The map g−2 transforms A into a small hexagon which has
vertices a1, a2, and b3. This hexagon has to be reflected at the real axis and shifted
by the vector −ρ3 + i in order to coincide with the hexagon f2(A). Thus

f2(z) = r · g−2(z)− ρ3 + i

where the reflection r(z) = z is the complex conjugation.
The minimal polynomial for β = iρ is p(x) = x4 + x2 − 1. So the dimension for

the rational representation of this IFS is D = 4, and {1, β, β2, β3} is taken as basis
of the vector space Q4 which represents our algebraic field Q(β). Our expansion map
g(z) = βz is given by the linear map C on Q4 with C(βk) = βk+1 for k = 0, 1, 2 and
C(β3) = β4 = 1 − β2. The matrix of this map is the companion matrix of p which
will be introduced in the next section.

It is important that the reflection map r contained in f2 can also be lifted to a
rational linear map on Q4. For the basis vectors we have r(1) = 1, r(β2) = β2, since
β2 is real, and r(β) = −β, r(β3) = −β3 since these numbers are imaginary. The
matrix R of this map is a diagonal matrix with entries 1,-1,1,-1.

The translation vector −ρ3 + i is not in Q(β) and thus cannot be lifted to a
vector in Q4. However, this is not a problem since many other translation vectors
yield isomorphic Ammann hexagons. We also prefer the form f2(z) = g−2(r(z) + v)
with a translation vector v ∈ Q4. No calculation is needed - the IFStile finder will
automatically determine appropriate vectors v from the matrices C and R. As we
show in the next section, the package will also find many other tiles which are
related to the Ammann hexagon. Self-similar triangles from this same family were
considered in detail in [DvO00].

7.5. The self-similar chord quadrangle. A slightly more complicated exam-
ple with three pieces is shown in Figure 24. The contraction factors are t, t2, t3 for
some t. Thus the areas of the pieces are u = t2, u2 = t4 and u3 = t6 times the area
of the whole quadrangle, which yields the equation u3 + u2 + u = 1, with solution
u ≈ 0.5437 and t ≈ 0.7374. The number 1/u ≈ 1.8393 is sometimes called tribonacci
constant.

This quadrangle is one instance of a continuous family of self-similar sets. It is
distinguished by the finite type condition and special geometric properties [Fre18].
There are two opposite right angles, and two of the sides of the quadrangle have
equal length. We check how this coincides with the similarity relations. If b denotes
the vertical side of the whole quadrangle A, the corresponding sides of the pieces
are tb, t2b, and t3b which is the the shortest side of A. Thus the short sides of the
pieces are t4b, t5b and t6b, respectively, and their opposite sides are t−3 larger, as
in A. The characteristic equation for u = t2 says that the baseline side has length
b = t2b+ t4b+ t6b.

Now we determine an algebraic IFS for A, which is considered as part of an angle
α with vertex 0 in the complex plane. Let q(z) denote a reflection which interchanges
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Figure 24. The self-similar chord quadrangle with three pieces.

the legs of this angle, composed with a homothety with factor t and center 0. Then
q maps the large piece of A into the middle piece, and the middle piece into the
small piece. Moreover, if we rotate A clockwise by a right angle around its lower
right vertex, the image r(A) fits into the angle and will be mapped by q onto the
large piece of A. Thus we have the equation

A = q · r(A) ∪ q2 · r(A) ∪ q3 · r(A) .

Assuming that the rotation center is point 1 in our coordinate system, we note the
formula for r. In terms of the angle α, the formula of q is also standard:

(27) r(z) = −iz + 1 + i and q(z) = t · (cosα + i sinα)z .

It remains to express cosα by algebraic numbers. To this end, imagine that in
Figure 24 a sequence of smaller and smaller quadrangles is extended to the left up
to 0. Their sides on [0, 1] form two geometric sequences with factor t2 and initial
terms t4b and t2b. Thus

tanα =
b

t2b+ t4b+ ...+ t4b+ t6b+ ...
=

1− t2

t2 + t4
.

On the other leg of the angle we also have two geometric sequences of intervals, with
initial terms tb and t5b. We divide the length of the two sums in order to obtain
cosα. Again, b cancels. We get

cosα =
(t2 + t4)/(1− t2)
(t+ t5)/(1− t2)

=
t+ t3

1 + t4
and sinα = cosα tanα =

1− t2

t+ t5
.

We insert this in (27) and replace t2 by u.

(28) q(z) =

(
u+ u2

1 + u2
+ i · 1− u

1 + u2

)
z =

(
u2

1− u
+ i · u

1 + u

)
z .
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The second form comes from the identity 1
1+u2

= u
1−u2 which is a consequence of the

tribonacci equation.
Now we start with the lifting. We need two algebraic numbers, i and u. The

complex number i is needed for the rotation r only, but this is eesential as we shall
see in the next section. Thus we have to take the algebraic field Q(i, u) with degree
6 over Q. Thus D = 6 is the dimension of the vector space H in Proposition 21.
The standard basis is S = {1, u, u2, i, iu, iu2} . The rotation r in (27) can directly
be lifted to an affine map on H with integer coefficients:

R(x) =

(
03 I3
−I3 03

)
· x+ (1, 0, 0, 1, 0, 0)′ , with x = (x1, ..., x6)

′ ,

where 03 denotes the 3× 3 zero matrix. The conjugation map k(z) = z is lifted to
the reflection matrix K which has entries (1, 1, 1,−1,−1,−1) on the diagonal and

zeros outside. It remains to lift the multiplication by v = u2

1−u + i · u
1+u

in (28) to a
matrix acting on H.

Note that H is a ring with multiplication inherited from Q(i, u). Since u is an
algebraic unit (the constant term of its minimal polynomial is 1), Q(i, u) and hence H
is even a field. For the lifting of v, we must first express 1

1−u and 1
1+u

as multiplication

with a polynomial of u. We put 1
1+u

= a+bu+cu2 and determine the values of a, b, c

by comparing coefficients in the equation 1 = (1 + u)(a+ bu+ cu2). The result is

1

1 + u
=

1

2
· (1 + u2) and

1

1− u
=

1

2
· (3 + 2u+ u2) .

With these formulas and the characteristic equation u3 = 1− u− u2 we determine
the image vector of each base vector in S under multiplication with v. These vectors
form the columns of the following matrix V which is the lifting of multiplication
with v to H.

(29) V =
1

2
·


1 1 1 1 1 −1
2 0 0 0 0 2
1 1 −1 1 −1 1
−1 −1 1 1 1 1
0 0 −2 2 0 0
−1 1 −1 1 1 −1


The lifting of q corresponds to the matrix V K. The lifting of the maps qjr, j = 1, 2, 3
in the IFS of A is now immediate.
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8. Projection of IFS

In this section we take another look on algebraic IFS from a higher dimensional
point of view. Our goal is to define an algebraic IFS using rational data only, which
are needed for processing by computer algebra techniques. Moreover, rational data
are usually small, which is important for maintaining IFS databases.

The IFStile package performs the neighbor graph calculation and the search for
new examples in a high-dimensional rational space where we have an integer lattice
to perform a random walk. The search procedure produces rational IFS directly.

As we can see from Section 7, it is always possible to create a rational represen-
tation (Q,U) of an algebraic IFS, but such representation relies on the non-rational
matrix U . Moreover, it is not sufficient to have Q and U since many different al-
gebraic IFS correspond to them. Below we show how we can get an algebraic IFS
from a rational one and additional integer data. A similar technique is used in
computer algebra systems, where an algebraic number is defined by the minimal
polynomial and some additional information that separates the number from its
conjugates [Str97].

8.1. Basic definitions. Let A ∈ Md be some matrix, we consider it as linear
operator in Rd. Denote the kernel (null space) and range (image) of A as

ker(A) = {x ∈ Rd| A(x) = 0}, ran(A) = A(Rd)

Let X ⊂ Rd be some linear subspace. We will denote by A|X : X → A(X) the
restriction of A to X. Obviously, the restriction is a linear operator.

A linear subspace X is called an invariant subspace for A, or, A-invariant, if
AX ⊂ X. In this case A|X transform X to X and sp(A|X) ⊂ sp(A).

The following properties [GLR06, 1.1] will be important for us:

(1) ker(A) and ran(A) are invariant subspaces for A.
(2) ker(A)⊗ ran(A) = Rd.

A matrix P ∈ Md is called a projector if P 2 = P . It is easy to see that the
matrix 1− P is a projector too, and

(30) ker(P ) = ran(1− P ), ran(P ) = ker(1− P ).

For any two complementary subspaces X1, X2 ⊂ Rd, X1 ⊗ X2 = Rd there is a
unique projector P ∈Md that fulfills [GLR06, Theorem 1.5.1]

ran(P ) = X1, ker(P ) = X2.

Theorem 22 (Projector decomposition).
Let P be a projector in RD, and R be a D×d matrix with columns that form a basis
in ran(P ). Then there is a unique d×D matrix L that fulfills:

P = RL, LR = 1

Conversely, if R is a D× d matrix and L is a d×D matrix, LR = 1, then P = RL
is a projector.
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Proof. Let Q be a d×D matrix with rows that form a basis in the orthogonal
complement of ker(P ). According to [BR14, 7.16]

P = RL, where L = (QR)−1Q

Obviously LR = (QR)−1QR = 1. If L′ is any d × D matrix, with P = RL′ and
L′R = 1, then

P = RL′ = RL => LRL′ = LRL => L′ = L.

If R and L are any matrices with appropriate sizes and LR = 1, then (RL)2 =
R(LR)L = RL, so P = RL is a projector. �

Proposition 23. Let A,P ∈MD, and P is a projector. Then

(1) ran(P ) = ker(1− P ) is invariant for A iff (1− P )AP = 0
(2) ker(P ) = ran(1− P ) is invariant for A iff PA(1− P ) = 0

Proof. The first statement is [GLR06, 1.5.5]. The second statement is the
first one applied to the projector P ′ = 1− P . �

Definition 24. Let U ⊂ MD be a set of matrices. A projector P ∈ MD is
called a common projector for U , if ker(P ) is a common invariant subspace for
all matrices from U , or, according to Proposition 23, PA(1−P ) = 0 for any A ∈ U .
A projector is common for a GIFS G if it is common for the linear parts of the maps
from φ(G).

8.2. Projected GIFS. Let Q = {q1, ..., qn} be an IFS in RD where qi(x) =
Ai(x) + ti. Let P be a common projector for {A1, ..., An} and P = RL be the
decomposition from Theorem 22 for some basis in ran(P ).

Define new IFS F = {f1, ..., fn} in Rd where d = dim(ran(P )).

(31) fi(x) = LAiR(x) + Lti

For the new IFS we have the following important property (3):

(32) Lqi = fiL for i = 1, ..., n

Indeed, since PAi(1 − P ) = 0 we have: 0 = RLAi(1 − RL) = LAi(1 − RL) or
LAi = LAiRL. So Lqi = LAi(x) + Lti = LAiRL(x) + Lti = fiL.

If we take another projector decomposition P = R′L′, then R′ = RT and L′ =
T−1L. In this case we get another IFS F ′

(33) f ′i(x) = T−1LAiRT (x) + T−1Lti

It is easy to see, that Tf ′i = fiT , so F and F ′ are isomorphic.

Definition 25 (Projected GIFS). Let G be a GIFS and P = RL a decomposi-
tion of a common projector for G. Then G′ = LGR is called a projected GIFS.

Corollary 26. To define (up to isomorphism) a projected GIFS we only need
a common projector for the linear parts of the maps.

Definition 27 (Family of algebraic GIFS).
The following data define a family of algebraic GIFS:
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(1) A GIFS G with edges labeled by square rational matrices: M = φ(G) =
{M1, ...,Mn}.

(2) A symmetry group S of rational matrices for M : MiS = SMi

(3) A common projector P for M and S.

The family consists of all GIFS that can be obtained from G by replacing every map
Mi ∈ φ(G) by fi(x) = LsiMiR(x) + Lti where si ∈ S, ti ∈ QD and P = RL
is a projector decomposition. Since (33), the projector defines the family up to
isomorphism.

8.3. Defining a projector from rational data. Now consider the situation
when we have a rational IFS. According to Corollary 26 we only need a common
projector to describe a projected IFS. In the general case, the projector can be
represented by its matrix, but in practice the matrix cannot be used directly for a
mathematically correct description because it has non-rational entries. One way to
define a projector by rational data is a subspace matrix.

Definition 28. Let P ∈ MD be a projector, P 2 = P . A matrix A ∈ MD is
called a subspace matrix for P if

(1) AP = PA.
(2) sp(A|kerP ) ∩ sp(A|ranP ) = ∅.

According to Proposition 23, the equation AP = PA means that ker(P ) and
ran(P ) are A-invariant, so sp(A|kerP )∪sp(A|ranP ) ⊂ sp(A). Since ker(P )⊗ran(P ) =
RD, we have the stronger equality:

(34) sp(A|kerP ) ∪ sp(A|ranP ) = sp(A)

So, the projector P divides sp(A) into two disjoint sets.
Let

sp+(A) = {λ ∈ sp(A) | Imλ ≥ 0}.
Since the matrix A is real, Definition 28 and (34) are equivalent to

(35) sp+(A|kerP ) ∩ sp+(A|ranP ) = ∅ sp+(A|kerP ) ∪ sp+(A|ranP ) = sp+(A)

According to [GLR06, Theorem 12.2.1], for every λ ∈ sp+(A) there is the A-
invariant root subspace Xλ and for every A-invariant subspace M :

(36) M =
⊗
{M ∩Xλ | λ ∈ sp+(A)}

Using (36) and Definition 28, we get

ker(P ) =
⊗
{Xλ | λ ∈ sp+(A|kerP )},

ran(P ) =
⊗
{Xλ | λ ∈ sp+(A|ranP )},

Since ker(P ) and ran(P ) completely define the projector, we have the following
statement:

Corollary 29. A projector P can be completely defined by a subspace matrix
A and the subset of its eigenvalues sp+(A|ranP ) ⊂ sp+(A).
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If a subspace matrix A is rational, we only need a way to specify any subset
of sp+(A) using integer data. Usually, the eigenvalues of A are not rational, so we
cannot use them directly. Instead, we can sort eigenvalues by some order, and then
use their integer indices to create a list of indices. Thus, we define the ordered
sequence of eigenvalues:

(37) ξ1, ..., ξm ∈ sp+(A), Im ξj ≥ 0

For definiteness we use the order by decreasing modulus, and by decreasing real
parts if the moduli are equal. So for any successive ξj, ξj+1:

(38) |ξj+1|< |ξj| or |ξj+1|= |ξj| and Re ξj+1 ≤ Re ξj

Proposition 30. A projector P is completely defined by a subspace matrix A
and the list of integer indices:

(39) Λ(A,P ) = {l ∈ Z | ξl ∈ sp+(A|ranP )}.

In the following rational subspace matrices play a key role, and we shall discuss
ways to define them. First we see how we can modify one subspace matrix to get
other ones.

Proposition 31 (Properties of subspace matrices). Let A ∈MD be a subspace
matrix for projector P , then

(1) For any invertible T ∈ MD, the matrix A′ = TAT−1 is a subspace matrix
for the projector P ′ = TPT−1 and Λ(A,P ) = Λ(A′, P ′).

(2) The matrix A is a subspace matrix for the projector 1− P and

Λ(A, 1− P ) = {1, ...,#sp+(A)} \ Λ(A,P )

Proof. The first statement follows from the fact that the eigenvalues of A and
A′ are the same and A′P ′ = P ′A′. The second one follows from the equation
A(1− P ) = (1− P )A, (30) and (35). �

The first property shows that we can always use an integer subspace matrix
instead of a rational one. The second property shows that if there is an isomorphism
T between two rational IFS: Q′T = TQ, then we can use a subspace matrix A of Q
to create the subspace matrix TAT−1 for Q′.

The following is a key concept for the IFStile package. It specifies those GIFS
which are defined only by rationals.

Definition 32 (Rational form of an algebraic GIFS). Up to isomorphism, the
following data completely define an algebraic GIFS.

(1) A rational GIFS G in QD.
(2) A rational subspace matrix A ∈MD for a common projector P of φ(G).
(3) A list of integer indices Λ(A,P ).

We call it a rational form of PG.
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8.4. The real Jordan decomposition. Although any subspace matrix defines
the projector, we need the decomposition in Theorem 22 to create an instance of the
projected IFS (31). The most natural way to create such decomposition is to use the
real Jordan form of the subspace matrix. In other words, we use the eigenvectors of
the subspace matrix as the basis of the range of the projector.

According to [GLR06, Theorem 12.2.2], every real matrix A ∈ MD can be
transformed into the block-diagonal real Jordan form:

(40) J = TAT−1 =


J1 0 . . . 0
0 J2 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . Jw



Js =


Cs 0 . . . 0 0
I Cs . . . 0 0
. . . . . . . . . . . . . . . . . . . .
0 0 . . . Cs 0
0 0 . . . I Cs


Every cell Js corresponds to some eigenvalue λ ∈ sp+(A), and

Cs = λ for real λ

Cs =

(
Reλ −Imλ
Imλ Reλ

)
for complex λ

We can suppose that the order of the blocks J1, ..., Jw in (40) agrees with (38). So
J1 corresponds to an eigenvalue with maximal module. If A is rational, then J is
always algebraic, and we can choose an algebraic T .

Let A be a subspace matrix for the projector P . The columns of T−1 that
correspond to the blocks Js for the eigenvalues sp+(ran(P )) form a basis in ran(P ).
We can use this basis to uniquely define the projector decomposition P = RL. It is
easy to see that the matrix L is formed from the corresponding rows of T .

8.5. Companion matrix. Rational companion matrices provide a useful tool
to describe algebraic IFS. The following will be discussed below:

(1) A companion matrix is defined by a small amount of data.
(2) There is a unique way to transform a companion matrix to the real Jordan

form.
(3) Any rational matrix is similar to some rational block-companion matrix.
(4) There are special matrices that have common invariant subspaces with com-

panion matrices.

Definition 33 (Monic polynomial). A polynomial p(x) = a0 + a1x + ... +
ad−1x

d−1 + anx
d is called monic if an = 1.
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Definition 34 (Companion matrix). The companion matrix of the monic
polynomial p(x) = a0 + a1x+ ...+ ad−1x

d−1 + xd is a square matrix defined as:

C(p) =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
. . . . . . . . . . . .
0 0 . . . 1 −ad−1


The eigenvalues of the matrix C are exactly the roots of the polynomial p.
Many algebraic IFS examples use some companion matrix as a subspace matrix.

We consider the uniquely defined real Jordan form of the companion matrix in order
to get an explicit algebraic IFS from a rational one.

Let λi, ..., λm be all eigenvalues of the companion matrix C ∈Md with algebraic
multiplicities d1, ..., dm, so

∑m
i=1 di = d. If all eigenvalues are distinct (di = 1) then

C can be diagonalized using the Vandermonde matrix:

J = V CV −1

where

V =


1 λ1 λ21 . . . λd−11

1 λ2 λ22 . . . λd−12

1 λ3 λ23 . . . λd−13

. . . . . . . . .
. . . . . .

1 λd λ2d . . . λd−1n


When C has eigenvalue λi with di > 1, we can use the confluent Vandermonde

matrix [BG06] to transform C to get (8.5). For such eigenvalues, V has di corre-
sponding rows:

(41) V =


. . . . . . . . . . . . . . . . . .
1 λi λ2i λ3i . . . λd−1i

0 1 2λi 3λ2i . . . (d− 1)λd−2i

. . . . . . . . . . . . . . . . . .


where each row is a derivative of the previous one.

To transform a companion matrix to the real Jordan form, we need the real
confluent Vandermonde matrix VR. Every complex pair λi and λi with Imλi > 0
has 2di corresponding rows:

VR =


. . . . . . . . . . . . . . . . . .
1 Reλi Reλ2i Reλ3i . . . Reλd−1i

0 Imλi Imλ2i Imλ3i ) . . . Imλd−1i

0 1 Re 2λi Re 3λ2i . . . Re (n− 1)λd−2i

0 0 Im 2λi Im 3λ2i . . . Im (n− 1)λd−2i

. . . . . . . . . . . . . . . . . .


The following theorem shows that, up to IFS isomorphism, we can always use a

rational block-companion matrix as a subspace matrix:
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Theorem 35 (Frobenius normal form). [Gan60, p. 149]
Let A ∈ Md be a rational matrix. Then there are rational matrices B ∈ Md and
T ∈Md, that

B = TAT−1 =


C1 0 . . . 0
0 C2 . . . 0
. . . . . . . . . . . . . . . . .
0 0 . . . Cm


where C1, ..., Cm are rational companion matrices.

Let Q = {q1, ..., qn} be a rational IFS with a rational subspace matrix A. Let
B = TAT−1 be a block-companion Frobenius normal form of A with a rational T .
According to Proposition 31, the matrix B is a subspace matrix for the rational IFS
F = TQT−1 that is isomorphic to Q.

Definition 36 (Rational normal form of an algebraic IFS).
A rational form as in Definition 32 is normal if the subspace matrix is a block-
companion matrix, and the rational space has minimal possible dimension.

8.6. Matrices with common invariant subspace. To produce new algebraic
IFS examples, we describe families of rational matrices that have a common invariant
subspace. The following proposition gives some methods:

Proposition 37. [GLR06, Proposition 1.4.1] Let the matrix A ∈Md have an
invariant subspace X ⊂ Rd, so A(X) ⊂ X. Then

(1) If A is invertible then A−1(X) ⊂ X.
(2) If B(X) ⊂ X then (A+B)(X) ⊂ X and (AB)(X) ⊂ X.
(3) If p(x) is a polynomial and A′ = p(A) then A′(X) ⊂ X.

�

Companion matrices give us less trivial explicit examples.

Definition 38. A polynomial p(x) = a0 + ... + anx
n is called palindromic if

ai = an−i for i = 0, ..., n or, equivalently, p(x) = xnp(1/x)

Theorem 39. [Con16, Theorem 1.1] Let z ∈ A be an algebraic rotation of the
complex plane: |z|= 1. Then the minimal polynomial for z is palindromic and has
even degree.

In the case of rational rotations when |zn|= 1 for some integer n > 0, the minimal
palindromic polynomial p(z) = 0 is called cyclotomic.

Definition 40. The following matrix χd ∈Md is called the exchange matrix:

χd =


0 0 . . . 0 1
. . . . . . . . . . . . . . .
0 1 . . . 0 0
1 0 . . . 0 0


It is easy to see that χ2

d = Id.
The exchange matrix is closely related with some companion matrices.
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Proposition 41. Let C ∈ Md be a companion matrix for some monic palin-
dromic polynomial. Then

(Cχd)
2 = (χdC)2 = Id

Proof.

CχdC =


0 . . . 0 0 a20
0 . . . 0 1 a0a1 − ad−1
0 . . . 1 0 a0a2 − ad−2

. . . . . . . . . . . . . .
1 . . . 0 0 a0ad−1 − a1


If a0 = 1 and ad−k = ak for any k, then CχdC = χd. �

When we use a palindromic companion matrix as a subspace matrix for pro-
jecting to R2, we can use the exchange matrix to represent reflections of the plane.
Another way to represent reflections is to use the following block-diagonal matrix:

τd =


1 0 . . . 0 0
0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 −1


Proposition 42. Let C ∈ Md be a companion matrix for polynomial p(x) =

a0 + a2x
2 + ...+ xn of even degree with ak = 0 for all odd k. Then

Cτd = −τdC

8.7. An algebraic IFS constructed explicitly from a rational one. We
consider the Ammann hexagon constructed in Section 7.4 as example for the lift-
ing procedure. We start from the rational normal form in Q4 and then create an
algebraic projected IFS.

A =


0 0 0 1
1 0 0 0
0 1 0 −1
0 0 1 0

 U =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


Matrix A is used as a subspace matrix, and {1, 2} are indices of eigenvalues A

that define common projector for A and U (Definition 32).
Let Q = {q1, q2} be a the following rational IFS:

q1(x) = −A−2U(x) q2(x) = A−1(−x+ t)

t = (0,−1,−1,−1)

Matrix A is a companion matrix for the polynomial −1 + x2 + x4 that has 4
roots:

λ1.2 = ±iρ
and

λ3.4 = ±1/ρ
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where

ρ =

√
1

2

(√
5 + 1

)
≈ 1.272

The Vandermonde matrix is 
1 iρ −ρ2 −iρ3
1 −iρ −ρ2 iρ3

1 ρ−1 ρ−2 ρ−3

1 −ρ−1 ρ−2 −ρ−3


The real Vandermonde matrix T is

T =


1 0 −ρ2 0
0 ρ 0 −ρ3
1 ρ−1 ρ−2 ρ−3

1 −ρ−1 ρ−2 −ρ−3

 T−1 =
1

1 + ρ4


1 0 ρ4/2 ρ4/2
0 1/ρ ρ5/2 −ρ5/2
−ρ2 0 ρ2/2 ρ2/2

0 −ρ ρ3/2 −ρ3/2


The real Jordan form is

J =


0 −ρ 0 0
ρ 0 0 0
0 0 1/ρ 0
0 0 0 −1/ρ


Now we can define RL decomposition of the projector. We use λ1.2 roots, so the
matrix L should be constructed from the first two rows of T and the matrix R should
be constructed from the first two columns of T−1:

L =

(
1 0 −ρ2 0
0 ρ 0 −ρ3

)

R =
1

1 + ρ4


1 0
0 1/ρ
−ρ2 0

0 −ρ


Finally we have the following equations for the attractor:

C = f1(C) ∪ f2(C)

Where
f1(x) = −Â−2Û(x)

f2(x) = Â−1(−x+ t̂)

Â = LAR =

(
0 −ρ
ρ 0

)
Û = LUR =

(
1 0
0 −1

)
t̂ = Lt = (ρ2,−ρ+ ρ3)
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9. Examples of rational forms

In this section we show additional examples of the rational representation of
some algebraic IFS. Rational forms of the viper tile, Ammann hexagon and Chord
quadrangle were constructed in Section 7. An algebraic representation of the fol-
lowing examples can be obtained by a procedure similar to Section 8.7. The first
two examples are fractals, the others are tiles.

9.1. The Sierpinski triangle. This is a well-known rational IFS (algebraic
dimension is 2).

g(A) = h1(A) ∪ h2(A) ∪ h3(A)

h1(x) = x+ [0, 0]

h2(x) = x+ [1, 0]

h3(x) = x+ [0, 1]

g = 2I =

(
2 0
0 2

)

9.2. McWorter’s pentadendrite. [Edg90, p.197], [Rid18] This is a self-
similar curve with pentagonal symmetry group and connected exterior. It was
discovered by McWorter as an L-system fractal.

gA =
6⋃
i=1

hi(A)

s = C(1− x+ x2 − x3 + x4)

g = 3− s+ s2 − s3

h1(x) = x+ [0, 0, 0, 0]

h2(x) = s2(x+ [0, 0, 0,−1])

h3(x) = x+ [1, 0, 1, 0]

h4(x) = s6(x+ [−2, 1,−2, 2])

h5(x) = s8(x+ [−1, 1, 1, 0])

h6(x) = x+ [2,−1, 1,−1]

The matrix s with index 1 can be used to identify the projector (Definition 32).
There is another overlapping attractor in the complementary plane (with index 2).

Since s is a companion matrix for the cyclotomic polynomial Φ10(x) = x4−x3 +
x2 − x+ 1 = 0, after projecting it becomes a rotation by π

5
.
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The Hausdorff dimension of the set is equal to 2 log(6)/ log(6+
√

5) = 1.69953985....
The intersections of pieces are either singletons or Jordan curves similar to the curve
gB = h2(B) ∪ h3(B) ∪ h5(B) with dim(B) = 2 log(3)/ log(6 +

√
5) = 1.042068....

9.3. Golden 2334 triangle. This is a self-similar isosceles triangle with an
infinite symmetry group. It could be new, some related examples based on the
golden mean can be found in [Fre18].

g4A = g2h1(A) ∪ gh2(A) ∪ gh3(A) ∪ h4(A)

s = C(x4 − 3x3 + 3x2 − 3x+ 1)

g = −1 + s

h1 = −s(x+ [0, 0, 0, 0])

h2 = −s(x+ [1,−1, 0, 0])

h3 = s(x+ [−1, 1,−1, 0])

h4 = s2(x+ [1,−1, 2,−1])

The matrix s with index 1 can be used to identify the projector (Definition 32).
After projecting, the matrix s represents an algebraic number that corresponds to an
irrational rotation (≈ 79◦). The rotation cannot be rational because the polynomial
x4 − 3x3 + 3x2 − 3x + 1 is palindromic but not cyclotomic, see Definition 38. The

matrix −g2s−1 is a scaling by τ =
√
5+1
2

.

Figure 25. Tiling produced by Golden 2334 triangle.
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9.4. Robinson triangles. [GS87, Fig.10.3.14] This is a well-known example
that produces an aperiodic plane tiling. It consists of two isosceles triangles A1

(with angles 36 and 108) and A2 (with angles 36 and 72).

A1 = f1(A1) ∪ f2(A1) ∪ f3(A2)

A2 = f4(A1) ∪ f5(A2)

A1 =

f1A1 f2A1

f3A2

A2 =

f5A2 f4A1

A1 A2

f1

f2
f3

f4

f5

The yellow triangles f2(A1) and f4(A1) are obtained by orientation-reversing

maps f2 and f4. All the maps f1, ..., f5 are similitudes with the same factor τ =
√
5−1
2

.
The rational representation is

gA1 = h1(A1) ∪ h2(A1) ∪ h3(A2)

gA2 = h4(A1) ∪ h5(A2)

s = C(x4 − x3 + x2 − x+ 1)

r = χ4

g = s− s4

h1 = s4(x+ [−1, 0,−1, 0])

h2 = s2r(x+ [−1, 0, 0, 0])

h3 = s9(x+ [0, 0, 0, 0])

h4 = s6r(x+ [0,−1, 0,−1])

h5 = s3(x+ [1,−1, 0,−1])

The matrix s with index 1 can be used to identify the projector (Definition 32).
The symmetry group is the same as for the Pentadendrite (9.2). After projecting,
the matrix r is a reflection generated by the exchange matrix (Definition 40) and g

is a scaling by τ =
√
5+1
2

.



9. EXAMPLES OF RATIONAL FORMS 57

9.5. Rauzy fractal. [Rau82] This is a well-known tile associated with the
tribonacci constant. It has a fractal boundary. The scaling factors of the maps are
the same as for the chord quadrangle from Section 7.5.

g3A = g2h1(A) ∪ gh2(A) ∪ h3(A)

g = C(−1 + x+ x2 + x3)

h1(x) = x+ [0, 0, 0]

h2(x) = x+ [0, 1, 0]

h3(x) = x+ [0, 1, 1]

The matrix g with index 1 can be used to identify the projector (Definition 32).

9.6. Danzer’s ABCK tetrahedra. ([BG13, 6.7.1],[Fre14]) This example
shows a rational representation in Q6 for the aperiodic ABCK tiles in R3 with
icosahedral symmetry group. This is a natural extension of the Robinson triangles
to the third dimension. Moreover, it has the same inflation factor τ . Instead of two
triangles, we have 4 tetrahedra with names A,B,C,K.

Figure 26. Danzer’s ABCK tiles.

The table of the rational maps below was obtained by reversing numeric data
from [Pao18]. The numeric data were obtained from the geometric description from
[Fre14]. Then the tiling property was checked by the IFStile package which found
1909 different neighbor types.

We use 3 generators of the icosahedral group (with 120 elements): a, b, c, where
a2 = b3 = 1 and c = −1 (see [BG13, Appendix A]).

a =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

 b =


0 −1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0


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Figure 27. ’A’ tetrahedron subdivision.

There are two mutually orthogonal 3-dimensional subspaces X,X ′ ⊂ Q6 = X ⊗
X ′, both invariant under a, b, c. There is an integer matrix q with q(x) =

√
5x for

any x ∈ X and q(x) = −
√

5x for any x ∈ X ′.

q =


0 1 1 −1 1 1
1 0 1 −1 −1 −1
1 1 0 1 1 −1
−1 −1 1 0 1 −1
1 −1 1 1 0 1
1 −1 −1 −1 1 0


The projected IFS corresponds to X. It is easy to see that the matrix g = 1

2
(q+1)

is an expansion on X with the factor τ =
√
5+1
2

The GIFS with 4 vertices and 25 edges has the following representation.

gA = h0(B) ∪ h1(B) ∪ h2(B) ∪ h3(C) ∪ h4(C)∪
h5(K) ∪ h6(K) ∪ h7(K) ∪ h8(K) ∪ h9(K) ∪ h10(K)

gB = h11(B) ∪ h12(B) ∪ h13(C) ∪ h14(K) ∪ h15(K) ∪ h16(K) ∪ h17(K)

gC = h18(A) ∪ h19(C) ∪ h20(C) ∪ h21(K) ∪ h22(K)

gK = h23(B) ∪ h24(K)

Where hi(x) = si(x+ ti) and
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s0 = b2abac t0 = [−1,−1,−2,−1,−1, 1]
s1 = a t1 = [−2,−1,−1, 1,−1,−1]
s2 = bacb2abab2a t2 = [−2,−1,−1, 1,−1,−1]
s3 = c t3 = [−1, 0,−1, 0,−1, 0]
s4 = bab2abab2 t4 = [−1, 0,−1, 0,−1, 0]
s5 = babab2ab2c t5 = [1, 0, 1, 0, 1, 0]
s6 = ab t6 = [1, 1, 1,−1, 0,−1]
s7 = abab2aba t7 = [−1,−1,−1, 0, 0, 0]
s8 = b2acbab t8 = [−1, 0,−1,−1,−1,−1]
s9 = baba t9 = [−1, 0,−1,−1,−1,−1]
s10 = acbab2ab t10 = [−1,−1,−1, 0, 0, 0]
s11 = b2abac t11 = [−1,−1,−2,−1,−1, 1]
s12 = a t12 = [−2,−1,−1, 1,−1,−1]
s13 = c t13 = [−1, 0,−1, 0,−1, 0]
s14 = babab2ab2c t14 = [1, 0, 1, 0, 1, 0]
s15 = ab t15 = [1, 1, 1,−1, 0,−1]
s16 = abab2aba t16 = [−1,−1,−1, 0, 0, 0]
s17 = b2acbab t17 = [−1, 0,−1,−1,−1,−1]
s18 = babc t18 = [−1, 0,−1, 0,−1, 0]
s19 = acb t19 = [−1, 0,−1, 0,−1, 0]
s20 = babab2ab2 t20 = [−1, 0,−1, 0,−1, 0]
s21 = 1 t21 = [1, 0, 1, 0, 1, 0]
s22 = b2ab2cabab t22 = [−1,−1,−1, 0, 0, 0]
s23 = c t23 = [−1, 0,−1, 0,−1, 0]
s24 = ab2abab t24 = [0, 0, 0,−1, 0, 0]

Now we define a subspace matrix. Let

dx = I6 + abab2abab2ab, dy = I6 + a, dz = I6 + b2abab2abab2.

These matrices dx, dy, dz have three eigenvalues (2, 0, 0) with eigenvectors from X
and three other eigenvalues (2, 0, 0) with eigenvectors from X ′. Let vx, vy, vz be some
integers. Define matrices mx = vxqdx, my = vyqdy and mz = vzqdz. The sum mx +

my+mz has eigenvalues (2vx
√

5, 2vy
√

5, 2vz
√

5) onX and (−2vx
√

5,−2vy
√

5,−2vz
√

5)
on X ′. For our example we can use vx = 3, vy = 2, vz = 1, and the integer subspace
matrix d

d = mx +my +mz = q(3dx + 2dy + dz)

The matrix d has six distinct eigenvalues (6
√

5,−6
√

5, 4
√

5,−4
√

5, 2
√

5,−2
√

5),
positive for X, and negative for X ′. So X can be identified by the indices 1, 3, 5.

There are many other tiles with icosahedral symmetry group. In Figure 28 we
can see <ABCK> tile [KPSZ94, Fre14] with a fractal boundary of dimension
≈ 2.4543526 (see Section 10.5).
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Figure 28. <ABCK> tile.

9.7. Quaquaversal tiling. [CR98] This rep-8 tile is an analog of the Pinwheel
tile [Rad94] in three dimensions. It produces a non-periodic tiling of R3. The
orientations of small pieces of the tile, considered as unit vectors, form a dense set
on the three-dimensional sphere. In the original paper [CR98, Sec.4], there is a
statement that the number of different neighbors for the tiling is finite. The IFStile
package found that there are exactly 1291 neighbors.

Figure 29. Quaquaversal tiling.

The symmetry group is dense in SO(3). It can be generated by the following
rotations (by 90 and 60 degrees).
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a′ =

0 −1 0
1 0 0
0 0 1

 b′ =

1 0 0
0 cos(π/3) − sin(π/3)
0 sin(π/3) cos(π/3)


The rational representation of the generators can be obtained by applying the

scheme from Proposition 21:

a =


0 −1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 1

 b =


1 0 0 0 0 0
0 1/2 0 0 0 −3/2
0 0 1/2 0 3/2 0
0 0 0 1 0 0
0 0 −1/2 0 1/2 0
0 1/2 0 0 0 1/2


It is easy to see, that a4 = b6 = 1. The tile has a rational representation in Q6

and can be expressed as:

2A =
8⋃
i=1

hi(A)

h1 = x+ [1, 0, 0, 0, 0, 1]

h2 = x+ [1, 1, 0, 0, 0, 0]

h3 = x+ [0, 0, 0, 0, 0, 1]

h4 = a3(x+ [−1, 1, 0, 0, 0, 0])

h5 = a3b3(x+ [−1,−2, 0, 0, 0,−1])

h6 = a2b3(x+ [−1, 0, 0, 0, 0,−1])

h7 = b4(x+ [0,−1, 0, 0, 0, 0])

h8 = b4a2(x+ [−1, 1, 0, 0, 0, 0])

There are two 3-dimensional subspaces X,X ′ ⊂ Q6 = X ⊗X ′. Both X and X ′

are invariant under a and b. The projected IFS corresponds to X. As a subspace
matrix we can use the following matrix:

q =


0 0 0 9 0 0
0 0 0 0 6 0
0 0 0 0 0 3
3 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0


The indices 1, 3, 5 identify the common projector, see Definition 40.





D Invariants of GIFS attractors

The search for new fractals can provide thousands or even millions of new ex-
amples within a short time, depending on the GIFS family. For relatives of the
Sierpinski gasket, considered in our paper [BM18], two seconds are sufficient to get
thousand examples with open set condition. For tilings, the search is usually slower.
For some families, as for instance Rauzy fractals (ex. 9.5), only few examples seem
to exist.

It is necessary to let the computer screen large sets of examples, since visual
inspection is too time-consuming. Various invariants have to be calculated for each
dataset. This allows to improve the database in different ways:

(1) The whole database can be ordered with respect to appropriate invariants.
(2) Bad examples, characterized by extreme values of certain invariants, can

be excluded.
(3) Good examples, characterized by values of the invariants in certain pre-

scribed intervals, can be selected.

The term ‘invariant’ is used with respect to isomorphism of GIFS by affine maps or
by similarity maps, introduced in Definition 3. We discussed some aspects of the
isomorphism in the last section of the paper on Sierpinski relatives in the appendix.
There we defined conjugacy, and a focus was set on keeping only one element of every
conjugacy class in the database. Here we just consider invariants as properties or
numerical descriptors of the GIFS. Of course we should define them in such a way
that isomorphic GIFS are assigned the same number.

In the IFStile program, quite a few descriptors are implemented:

(1) Hausdorff dimension and measure of the attractor,
(2) Hausdorff dimension and measure of the boundary of the attractor,
(3) the structure of the neighbor graph,
(4) moments of Hausdorff measure on the attractor,
(5) diameters of the attractor,
(6) number of orientations of pieces.

While the structure of the neighbor graph was considered above, Hausdorff measure
and dimension of sets and boundary sets will be considered in Section 10. Moments
will be considered in Section 11. We have no time to discuss the last two properties.
One can also think about calculating the number and structure of the extreme points
of the attractor, which is also an affine invariant of the GIFS.
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10. Hausdorff measure and dimension

10.1. Definition. For any α ≥ 0 and any Borel S ⊂ Rd the α-dimensional
Hausdorff measure of S is [Fed69, 2.10.2]

Hα(S) = lim
δ→0

inf{
∑
i

(diamUi)
α | S ⊂

⋃
i

Ui, diamUi < δ}

The Hausdorff dimension of set S is:

dim(S) = inf
β>0
{Hβ(S) = 0}

It is easy to see, that for any similitude T in Rd with the similarity factor r = r(T )

(42) Hα(TS) = rαHα(S)

10.2. Ordinary IFS case. Consider an ordinary IFS in Rd with the attractor
C ⊂ Rd

(43) C = f1(C) ∪ f2(C) ∪ ... ∪ fm(C) .

where f1, ...fm are similitudes with factors r1, ..., rm. Suppose that for some α ≥ 0

(44) 0 < Hα(C) <∞
and for any 1 ≤ i, j ≤ m, i 6= j

(45) Hα(fi(C) ∩ fj(C)) = 0

Then from (42), (43), (44) and (45) we have:

Hα(C) = rα1H
α(C) + ...+ rαmH

α(C)

(46) 1 = rα1 + ...+ rαm

An unique solution α of (46) is called the similarity dimension of IFS.
If an IFS fulfills the open set condition, then equations (44), (45) hold [Hut81]

for the Hausdorff dimension of the attractor. It means that the Hausdorff dimension
is equal to the similarity dimension. Although we can easily calculate α, the exact
value of Hα(A) is not known for such simple examples as the Sierpinski gasket. Even
if an IFS does not satisfy the open set condition, it is still possible to find Hausdorff
dimension in the finite type case [NW01, Zer96, HLR03].

10.3. Strongly connected GIFS case. Let G be a GIFS in Rd with attractors
C1, ...Cn and adjacency lists Q1, ..., Qn:

(47) Ci =
⋃

(f,j)∈Qi

f(Cj) i = 1...n

Like before, we assume that all f ∈ φ(G) are similitudes and suppose that for some
α ≥ 0

(48) 0 <
∑
i

Hα(Ci) <∞

and for any i = 1, ..., n and any different (f1, j1), (f2, j2) ∈ Qi

(49) Hα(f1(Cj1) ∩ f2(Cj2)) = 0, and 0 < Hα(Ci) <∞
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Then from (42), (47), (48) and (49) we have:

(50) Hα(Ci) =
∑

(f,j)∈Qi

rα(f)Hα(Cj) i = 1...n

For strongly connected graph G, we can show (using Perron-Frobenius theory)
that there is an unique α ≥ 0 and a positive eigenvector (µ1, ..., µn) corresponding
to the eigenvalue 1, that

(51) µi =
∑

(f,j)∈Qi

rα(f)µj, µi > 0 i = 1...n

Additionally supposing that

(52)
∑
i

µi = 1

we can uniquely define the vector (µ1, ..., µn). We call µi a relative measure of Ci
and we call α a similarity dimension of G.

Now we suppose that a GIFS fulfills the open set condition. In this case the
similarity dimension is equal to the Hausdorff dimension of the attractors and (48)
holds [MW88]. According to (50) and (51) there is a constant w > 0 that

(53) µi = wHα(Ci) i = 1...n

In practice it is very difficult to calculate the constant w.

10.4. General GIFS case. The case of general GIFS is more interesting. Even
in the OSC case, sets from different strongly connected components can have dif-
ferent Hausdorff dimensions, and some sets with dimension α can have infinite
α−Hausdorff measure.

Let G be a GIFS in Rd with attractors C1, ...Cn and adjacency lists Q1, ..., Qn

and assume that all f ∈ φ(G) are invertible. As in 4.4 we suppose that for every
vi ∈ V (G) the vertex component index 1 ≤ ψi ≤M defined, where M is the number
of strongly connected components.

For every component k of the graph we formally define three values that we call
internal dimension γk, external dimension γk and dimension αk. For every vertex
vi of the graph we define two values that we call internal measure ρi and measure
µi. Internal measures and dimension for a component are calculated by removing
all the edges that lead to other components, and conversely, external dimension is
calculated by removing all edges that lead from outside the component. Dimension
αk and measures µi are calculated by combining internal and external values.

For self-similar GIFS that fulfill OSC, the value αk is equal to the Hausdorff
dimension of the attractors of the component k and the values µi of the component
k are proportional to the αk-dimensional Hausdorff measure of the set i.

Consider some strongly connected component m of the graph G, 1 ≤ m ≤ M .
We define the internal dimension γm of the component and the internal measure
ρi ≥ 0 for every vertex vi in the component. If a component does not have directed
cycles (that means it has exactly one vertex vi), we define γm = −1 and ρi = 0. If
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a component has directed cycles then γm and ρi for all vertexes of the component
(ψi = m) can be obtained from the following system of (non-linear) equations:

(54)
∑
ψi=m

ρi = 1

(55) ρi =
∑

(f,j)∈Qi

{ρjrγm(f) | ψj = m} for all i with ψi = m

If the attractors exist, the solution always exists and is unique (see Section 10.3).
In (54) we sum over all vertices of the component. In (55) we sum over all edges

that lead from a vertex of the component to the component.
Now we can define a measure µi for every vertex vi, the dimension αm and

the external dimension γm for every component of the graph G. We start from
the component m = 1. According to 4.4 this component does not have edges that
lead to another component. So we simply define α1 = γ1 = γ1 and µi = ρi for all
sets of the component (that have ψi = 1). If we already have defined αk and γk for
all k < m, we can define αm and γm.

γm = max
ψi=m

max
(f,j)∈Qi

{γk | k = ψj, ψj < m)}

αm = max{γm, γm}
Now we define the measure for all sets of the component m:

(1) If γm > γm then

µi = ρi =
∑

(f,j)∈Qi

{ρjrγm(f) | ψj = m}

(2) If γm < γm then

µi =
∑

(f,j)∈Qi

{µjrαm(f) | αψj = αm}

(3) If γm = γm then
µi =∞

Finally, combining the cases of the definition of µi, we can get the following
equation:

(56) µi =
∑

(f,j)∈Qi

{µjrαψi (f) | αψj = αψi}

Moreover, the equation (56) holds for any uniform subdivision Qi(ε) (4.3).
Now we can define the self-affine measure on every attractor Ci with µi < ∞.

We denote it by the same symbol µi:

(57) µi(B) =
∑

(f,j)∈Qi

{rαψi (f)µj(f
−1(B)) | αψj = αψi}, for any B ⊂ Ci

If the GIFS fulfills the open set condition and all f ∈ φ(G) are similitudes, then
for every component m the dimension αm is the Hausdorff dimension and there is a
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constant wm > 0 that for all sets of the component their measure are proportional
to Hausdorff measure:

(58) µi(B) = wmH
α(B ∩ Ci)

Proposition 43. Corresponding attractors of isomorphic GIFS G and G′ have
the same measures. Corresponding strongly connected components have the same
dimension.

Proof. This directly follows from the fact that our definition uses determinants
that coincide for similar GIFS. �

It is easy to see, that all GIFS from the same family (see Definition 27) have the
same corresponding dimensions and relative measures.

10.5. Examples. Consider the GIFS dragon from Figure 11.

C1 = f1(C1) ∪ f2(C2)

C2 = f3(C1) ∪ f4(C1) ∪ f5(C2)

Let ri = r(fi), so r1 = r3 = r4 = r5 = 1/
√

2, r2 = 1/2
Applying (54) and (55), we obtain the following equations

µ1 = rα1µ1 + rα2µ2

µ2 = rα3µ1 + rα4µ1 + rα5µ2

µ1 + µ2 = 1

with a unique solution α = 2 and µ1 = 1/3, µ2 = 2/3.
A similar calculation for the dimension of the boundary in Figure 19 gives α =

2 log(x)
log(2)

≈ 1.267 where x7 − 2x6 + x5 − x4 + 2x3 − x2 − 2 = 0.

Calculations can be performed using the IFStile package. They can be done
numerically or analytically by computing rational polynomial coefficients.

A strongly connected part of the boundary GIFS for the three-dimensional
<ABCK> tile in Figure 28 have 72 vertices. The calculation gives

dim(∂<ABCK>) =
log(x)

log(τ)
≈ 2.4543526

where τ =
√
5+1
2

and x5 − 4x4 + 3x3 − x2 − 2x− 3 = 0.

11. Moments

Moments are widely used to distinguish shapes of two- and three-dimensional ob-
jects [Hu62, SF11]. The main idea is to use moments to construct expressions that
are invariant under similitudes (or even more general maps like affine or projective).
Applications include image (2D) and mesh (3D) processing [DP06]. Self-affine sets
have a very specific equation (57) for the measure distribution, that allow the exact
computation of moments of any order. For our purpose, the most useful are second
order moments, since they have relatively low computational cost.
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Definition 44. For any measure µ in Rd and integers p1, p2, ..pd ≥ 0 the number

(59) M(p1, p2, ..., pd) =

∫
xp11 x

p2
2 ...x

pd
d dµ

is called a moment of order p1 + ...+ pd.

The mass of the measure the moment of order zero:

(60) µ(Rd) = M(0, 0, ..., 0) =

∫
dµ

11.1. Moments of first order. We can use the zero and first order moments
to compute the center of mass c(µ) ∈ Rd of a measure µ:

(61) c(µ) =
1

µ(Rd)

∫
x dµ

As an example, consider the simplest case of an ordinary IFS:

(62) C = f1(C) ∪ ... ∪ fn(C)

In this case, equations (58) and (61) give

(63) c = rα(f1)f1(c) + ...+ rα(fn)fn(c)

where α is the similarity dimension (46).

11.2. Moments of second order. The Euler tensor of a measure µ in Rd can
be represented by the matrix E(µ) ∈Md:

(64) E(µ) =

∫
x · xTdµ

As we can see, the entries of the matrix E(µ) are exactly the moments of order 2.

11.3. Calculation. The recursive nature of Equation (57) gives us a method
to calculate moments without integrating. Moreover, it is possible to calculate the
first and the second order moments at once using an extended matrix.

For any affine map f = Ax + b in Rd define the extended matrix L(f) ∈ Md+1

as a block matrix:

L(f) =

(
A b
0T 1

)
It is easy to see, that L(f−1) = L−1(f) and L(f1f2) = L(f1)L(f2) for any affine

f1 and f2.
Applying [DP06, Theorem 3.3] for (57) and (64) we can define the extended

Euler tensor Ei ∈Md+1 for all attractors Ci with µi <∞

Ei =
∑

(f,j)∈Qi

{µjL(f)EjL
T (f) | αψj = αψi}

Ei(d+ 1, d+ 1) = 1

This system of equations has a unique solution. All matrices Ei are symmetric and
can be expressed in block form:
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Ei =

(
Pi Xi

XT
i 1

)
where Pi ∈Md and Xi ∈ Rd is the center of mass of the attractor Ci.

Now we can define the central Euler tensors Mi ∈ Md by moving the center
of mass to the origin:

Mi = Pi −XiX
T
i

It is easy to see that for probability measure, the matrix Mi is the covariance
matrix:

(65) Mi =

∫
(x− c(µ))(x− c(µ))Tdµi

All matrices Mi are self-adjoint and can be expressed in the eigenvalue decom-
position form:

Mi = Vidiag (Ii)V
−1
i

where Ii ∈ Rd is a vector with non-negative non-decreasing entries: 0 ≤ Ii(k) ≤
Ii(k+ 1) for all k = 1, ..., d. For a probability measure, Ii denotes the variance along
principal axises.

Proposition 45. Let C,C ′ be a finite measure attractors of two self-similar
GIFS that fulfill the open set condition. If C ′ = T (C) for some similitude T then

I ′i/I
′
d = Ii/Id

Proof. Because of the open set condition, the measures µi and µ′i are pro-
portional to the positive and finite Hdim(C). Substituting C ′ = T (C) into (65) we
directly get our statement. �

We can use Proposition 45 to distinguish two attractors by comparing normed
vectors I for both of them. In Rd this gives us d− 1 invariant real numbers for each
attractor.

11.4. Examples. Consider the following well-known rep-4 tiles.

The value I1/I2 is equal to 1 for the square, 17
41

for the middle figure and 7
15

for
the chair on the right. For the 3D Notched cube of Figure 2, calculation gives
I = (145

217
, 1, 1)





E Notes on the IFStile program

The thesis focussed on mathematical foundations for the main procedures of the
IFStile package. In this last chapter I shall give some comments on the implemen-
tation of the algorithms, and on other features of the package which were developed
for the comfort of the mathematical user. We start with the language that has
specifically developed for the program.

12. The language of IFStile

12.1. Robinson triangle. We start with the IFStile definition of the Robinson
triangle. The file contains the matrices g, s and r, the maps h1,..., h5 and the
equations for the triangles A1 and A2 as described in the example 9.4. Green lines
are comments and are not part of the definition.

@@version 3
#t h i s i s a b l o c k i d e n t i f i e r f o r Robinson t r i a n g l e
@G
#user−d e f i n e name o f the b l o c k
$n=Robinson t r i a n g l e
#dimension o f the r a t i o n a l space
$dim=4
#s − subspace matrix , 0 − index o f the e i g e n p l a n e
$subspace=s 0
#companion 4∗4−matrix − r o t a t i o n by p i /5
s=$companion ([1 ,−1 ,1 ,−1])
#exchange 4∗4−matrix − r e f l e c t i o n
r=$exchange ( )
#expansion matrix ( go lden r a t i o )
g=s−s ˆ4
#f i v e i s o m e t r i e s in the e i g e n p l a n e
h1=s ˆ4∗( [−1 ,0 ,−1 ,0])
h2=s ˆ2∗ r ∗ ( [ −1 ,0 , 0 , 0 ] )
h3=s ˆ 9∗ ( [ 0 , 0 , 0 , 0 ] )
h4=s ˆ6∗ r ∗( [0 ,−1 ,0 ,−1])
h5=s ˆ3∗( [1 ,−1 ,0 ,−1])
#e q u a t i o n s f o r the A1 and A2 t r i a n g l e s
A1=gˆ−1∗(h1∗A1 | h2∗A1 | h3∗A2)
A2=gˆ−1∗(h4∗A1 | h5∗A2)

71
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12.2. The family concept. As explained in Definition 27, IFStile usually con-
siders fractals and tiles as instances of families. The family fixes the rational space
dimension, projection to the algebraic space, graph structure of the self-similar equa-
tions, expansion, and symmetry group. Each instance is obtained by a choice of
symmetries and translations. Given the family, the search function of IFStile will
find random examples which fulfill the OSC criteria. The Robinson triangle was
found in this way. Below you see the family description and in the last block the
specification of the maps hi .

@@version 3

#b l o c k G with the f a m i l y d e f i n i t i o n :
@G
$dim=4
$subspace=s 0
s=$companion ([1 ,−1 ,1 ,−1])
r=$exchange ( )
g=s−s ˆ4
#semigroup genera ted by s and r
&T=$semigroup ( [ s , r ] )
#a c c e p t a b l e i s o m e t r i e s o f the f a m i l y
#r o t a t i o n s , r e f l e c t i o n s , i n t e g e r t r a n s l a t i o n s
&Q=T∗ $vector (0 )
h1=Q
h2=Q
h3=Q
h4=Q
h5=Q
A0=gˆ−1∗(h1∗A0 | h2∗A0 | h3∗A1)
A1=gˆ−1∗(h4∗A0 | h5∗A1)

#Robinson t r i a n g l e b l o c k t h a t
#i n h e r i t s d e f i n i t i o n s from ’G’ b l o c k :
@:G
$n=Robinson t r i a n g l e s
h1=s ˆ4∗( [−1 ,0 ,−1 ,0])
h2=s ˆ2∗ r ∗ ( [ −1 ,0 , 0 , 0 ] )
h3=s ˆ 9∗ ( [ 0 , 0 , 0 , 0 ] )
h4=s ˆ6∗ r ∗( [0 ,−1 ,0 ,−1])
h5=s ˆ3∗( [1 ,−1 ,0 ,−1])

As in the previous file we define maps h1, ..., h5, but instead of concrete affine
maps we use the macro Q that describes some abstract maps. Any such map is
equal to a composition of some element of the semigroup T generated by the rota-
tion matrix s and the reflection matrix r and and integer 4D-translation ($vector
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keyword). The second block describes the concrete instance - the Robinson triangle.
It inherits all definitions from the previous block (except for h1, ..., h5 maps). We
can use this family description together with the ”Finder” module to find other tiles
from the family.

12.3. Files.

AIFS is a text format for representation of the iterated function systems.
Any .aifs file consists of an arbitrary number of blocks (even millions).
Usually each block corresponds to a family or a particular IFS.
Every file starts with @@version 3 string.
One file can include another one using the command @@import file to include.ext

with a relative path.
Every block starts with @ID:ParentID, where ID and ParentID are the unique

identifiers of the block and its parent block.
ID can be empty if we do not refer to the block from elsewhere.
ParentID can be empty if the block has no parent.
A block can use all definitions from its parent, and can override some of them.
It is possible to call one block from another one as a function by ID. In that

case the first variables in the called block are replaced by arguments, and the last
variable is used as return value.

12.4. Blocks.

To perform calculation with numbers and affine maps it is possible to use ordi-
nary operations like +,−, ∗, /,∧ and brackets.

For numbers ’sin’, ’cos’, ’tan’, ’asin’, ’acos’, ’atan’, ’exp’, ’log’, ’floor’, ’ceil’, ’arg’
are defined.

Also ’if’ function defined: if(cond, val1, val2) is equivalent to (cond > 0)?val1 :
val2 in C-like languages.

A variable with name beginning with ’$’ is considered as built-in variable and
has a special meaning.

A variable with name beginning with ’&’ is considered as substitution, it is
recalculated in every place where it is used.

12.5. Identifiers.

An identifier is a case-sensitive string that denotes a variable, an operator or a
block.

An identifier can consist of symbols [a-z], [A-Z], [0-9] and ” ”, but cannot start
with a digit.

Identifiers beginning with $ and & symbols have a special meaning.

12.6. Vectors.
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Like in many other languages, [a1, a2, .., an] defines the vector of elements (a1, a2, .., an).
We can access to the elements of a vector using square brackets, so if v = [a1, a2, .., an],
then a1 can be accessed as v[0], and an = v[n− 1].

A vector of appropriate length can be automatically converted to a matrix or to
a translation.

12.7. Affine maps. When $dim=n, the following definitions of maps in Rn are
available:

[t1, t2, .., tn] - translation:


x′1
x′2
· · ·
x′n

 =


x1 + t1
x2 + t2
· · ·

xn + tn


[a11, a12, ..., a1n, ..., an1, an2, .., ann] - square matrix:
x′1
x′2
· · ·
x′n

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
an1 an2 · · · ann



x1
x2
· · ·
xn


$companion([a0, a1, a2, ..an−1]) - the companion matrix (Definition 34) for the

polynomial a0 + a1x+ ...+ an−1x
n−1 + xn.

$exchange() - the exchange matrix n× n (Definition 40).

12.8. Templates.
Templates allow to describe entire sets of affine maps together with a random distri-
bution that can be used in the search procedure and in the editor window. Templates
can be used in the same places where affine maps appear: within compositions,
unions, etc.

$semigroup([g1, g2, ..., gm], T ) - element of the semigroup (possibly infinite)
generated by the affine maps g1, g2, ..., gm. T - [optional, for infinite semigroups]
$integer that represents normal distribution for the length of compositions of the
generators.

$vector(L, T ) - vector of numbers, L - length of the vector, L = 0 means
L = $dim. T - [optional] type and a random distribution for the vector entries:
$integer or $real.

$number(T ) - real or integer number. T - [optional] type and a random distri-
bution of the number: $integer or $real.

$real(a, b), $integer(a, b) - type and uniform distribution for real or integer
numbers from a to b.

$real(v), $integer(v) - type and (half-)normal distribution for real or integer
numbers.
|v| - variance.
if v < 0 then distribution is normal.
if v > 0 then distribution is half-normal.
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12.9. Operators.

f1∗f2∗..∗fn - composition of the maps (or operators) x => f1(f2(..(fn(x)..)). For
example, 2∗ [1, 0] corresponds to 2(x+[1, 0]), and [1, 0]∗2 corresponds to 2x+[1, 0].

S1|S2|..|Sm - union of the sets (or operators) S1 ∪ S2 ∪ ... ∪ Sm. For example,
(f1|f2) ∗ S means f1(A) ∪ f2(A).

f∧n - composition f with itself n times f(f(f(...)))
f∧ − 1 - inverse map f−1

$e - empty set ∅
$i - identity map

12.10. Special variables.

$dim = d - dimension of the rational space. All affine maps must have dimension
equal d.

$subspace = s i1 i2 i3 ... - defines the projection from the rational to the algebraic
space (where the attractor lives). The first argument is an identifier of the subspace
matrix (Definition 28). The other arguments are the indices (zero-based) of the
eigenvalues of the subspace matrix that define the image of the projector (Definition
30).

13. Using the IFStile package

Figure 30. IFSTile user interface.

On Figure 30 we can see the IFStile user interface, that consist of

(1) the main menu
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(2) the toolbar with icons
(3) the main window with rendered attractor(s)
(4) the tool window that can contain different contents (IFS List, Finder, etc)
(5) the status bar with context-sensitive information.

13.1. The built-in examples. The simplest way to start working with the
package is to use the built-in examples, that can be opened by clicking the ”Star”
button in the toolbar or by using the menu item ”File → Open example”. Every
entry in the list represents a family of GIFS and can contain many examples.

13.2. IFS List Editor/Viewer. This window will be displayed after the user
opens a file (using File → Open menu item) or chooses some example. Also it can
be opened from the menu (View → IFS List). The window displays the contents of
the current file and every list entry corresponds to some GIFS.
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If the user selects an element, the package immediately begins to build the at-
tractor (the progress will be shown in the status bar). It is possible to sort elements
by clicking the head of any column. The user can check/uncheck any element by
clicking the first column. It is possible to remove checked elements, invert check
marks, and sort by checked state.

If the user clicks the ”Columns” button, the following window will be opened:

The user can choose visible columns, sort order for the columns, and set up a filter to
see only specific elements. It is possible to separately specify the filtering properties
for searching and displaying.

13.3. The finder. This window can be opened using the menu item ”View
→ Finder” or by clicking the ”Binoculars” toolbar icon. The module allows to
find GIFS that fulfill OSC using a family description. The algorithm performs
random walk by mutating integer parameters of the GIFS maps. The scheme can
be described in the following way:

(1) Select a random ”seed” entry in the currently loaded list (or only from the
checked elements).

(2) Change several affine maps - those ones that was defined using $semi-
group, $vector or $number keywords.

(3) Ignore GIFS if it is a duplicate or does not fulfill the OSC.
(4) Compute many numeric characteristics of the attractor (like the boundary

dimension) and ignore GIFS if some properties are out of range.
(5) Add the new entry to the list and continue search.
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There are many useful parameters that control the search, for instance.

(1) max bdim - The maximum acceptable dimension of the boundary.
(2) complexity - Describes how big can the neighbors graph be.
(3) log variance - Logarithm of the variance for the normal distribution for

$semigroup, $vector or $number templates (if the last optional param-
eter is omitted).

(4) var maps - Describes how many maps can be changed at once to get new
GIFS from the seed.

(5) domain - Describes which subset of the whole list can be used to select the
seed.

13.4. Console and reports. It is possible to see a lot of information about
the currently selected GIFS using the console window.

Among others, we can see

(1) The Hausdorff dimension of the attractor.
(2) The diameters.
(3) The relative Hausdorff measure.
(4) The moments.
(5) The bounding balls.
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13.5. Attractor rendering.

To choose a fragment of the attractor that we need we can use the ”Location”
window. Another way to change a fragment is to use mouse selection of the area of
interest.

To control resolution, brightness and other rendering parameters, we can use the
”Rendering” window:

To change colors of the attractor, we can use the ”Palette” window:
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14. The creator module

The creator module is a very interesting tool, also from the mathematical view-
point. The creator module can be used to create/find a family of IFS using the sub-
stitution matrix [BG13, Definition 4.2.] only. Then the module will find the char-
acteristic polynomial of an appropriate inflation, and compatible symmetry groups.
In a second stage we can use the Finder module to search for instances.

Figure 31. Creator user interface.

On Figure 31 we can see that the user had entered the string ”2a.b-a.b” that
corresponds to the substitution matrix of the Robinson triangle. The string means
that there are two sets in the GIFS: a and b. The set ”a” is equal ”2a.b”, that
means that it consists from two smaller copies of itself and one smaller copy of the
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set ”b”. The set ”b” is equal ”a.b”, that means that it consists of one smaller copy
of the set ”a” and one smaller copy of itself (see 9.4).

We can see that the module was able to find several families of GIFS that have
the same substitution matrix. The Robinson triangle belongs to the ”C10” family
that means it has a rotation symmetry group of order 10. The polynomial p(x) =
−x3 +x2 + 1 means that expanding matrix on the plane corresponds to the complex
number p(eπi/5).

The user can control the maximal dimension of the rational space, the Hausdorff
dimension of the target GIFS (2 for plane tilings), the search radius for polynomial
coefficients and other parameters.
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2003.
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