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Chapter 1

Introduction

Controlled nuclear fusion of hydrogen isotopes in a plasma promises to provide a nearly
inexhaustible source of energy and high environmental safety as compared to nuclear
fission. The most favourable fusion reaction is the one between deuterium and tritium

D + T −→ 4He + n + 17.6 MeV,

which provides the highest yield of energy. In order to reach ignition conditions, where
the fusion born α-particles heat the plasma sufficiently strong to compensate for the
heat losses, the plasma must be heated up to temperatures of T ≥ 10 keV and must
be confined long enough to satisfy the Lawson criterium [1]

nτE > 1.5 × 1020s/m3,

where τE is the energy confinement time (the ratio of heating power to energy loss
rate) and n the plasma density.

The most advanced approach towards the achievement of relevant fusion reactor pa-
rameters is the confinement of the plasma in a closed, toroidal magnetic field with
twisted, helical field lines. Two different concepts are currently pursued that differ
in the way the magnetic field is created. The Tokamak is an axisymmetric device
that creates a strong toroidal field with large external coils. The necessary poloidal
field component is generated by toroidal currents induced by a transformer, with the
plasma forming the secondary winding. This does not allow steady-state operation
because of the alternating current requirement in the transformer. Intense research is
performed on alternative schemes to drive current in Tokamak plasmas. The second
class of magnetic confinement devices is the Stellarator, where the helical magnetic
field is generated completely by external coils. Stellarators are therefore independent
of permanently flowing plasma currents, but, in contrast to tokamaks, they are not
axisymmetric.

The performance of todays fusion experiments is not only limited by technical con-
straints. The sources of free energy available in bounded plasmas with strong gradi-
ents are commonly tapped by instabilities that degrade the confinement of particles

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Prediction of the fraction of redistributed energetic α particles caused by
Alfvén eigenmodes in optimized stellarators. Taken from Ref [11].

and energy. One of the most important type of instabilities are Alfvén eigenmodes,
which are still subject to extensive studies.

Alfvén waves were discovered by Hannes Alfvén in the 1940’s, a pioneer in the physics of
charged fluids [2, 3]. Besides being observed in astronomical and laboratory plasmas,
they dominate much of the low-frequency dynamics in fusion plasmas. The Alfvén
wave describes a basic oscillation between plasma kinetic energy and magnetic field
energy. The most familiar example is the shear Alfvén wave, characterized by ”field line
bending”, that is analogous to a wave travelling along a massive string. It propagates
along the magnetic field lines at the Alfvén velocity,

vA =
B√
µ0ρ

,

where ρ is the plasma mass density and B the magnetic field strength. Alfvén waves in
fusion plasmas constitute a continuous spectrum of stable waves [4] that were originally
not considered to be a thread. This changed suddenly when it was realized that the
continuous spectrum has gaps [5, 6] in which discrete, only weakly damped eigenmodes
can exist [7–9]. The gap formation is caused by the symmetry breaking associated
with magnetic field inhomogeneities over a magnetic surface. Because stellarators, in
contrast to tokamaks, do not have toroidal symmetry, an even larger number of gaps
exists here [10].

The high Alfvén velocity of vA ∼ 106 m/s allows resonant interaction with Alfvén
eigenmodes only for energetic particles created either by plasma heating sources or by
fusion reactions. Destabilization of Alfvén eigenmodes by fast ions was predicted and
observed in fusion plasmas [9, 12–14] as well as enhanced transport and, eventually,
energetic particle losses [11, 15, 16]. The latter is of special importance because the
energetic particles are needed to heat the bulk plasma. Their premature removal can
cause a significant degradation of the plasma performance. A rough estimate of the
expected fraction of fusion born α particles that are radially redistributed by resonant
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interaction with Alfvén eigenmodes, which is based on worst case arguments, predicts
that more than 35% can be transported away from the resonance region (Fig. 1.1).
There it was assumed that all particles, which are in resonance with the wave, are
immediately redistributed. On the other hand, in a fusion reactor a controlled wave-
particle interaction could provide a way to remove the helium ”ash” from the plasma
after the α particles have slowed down.

This thesis intends to study Alfvén eigenmodes in neutral beam heated, high-density
and low-temperature discharges of the W7-AS stellarator, that was operated succes-
sully from 1988 – 2002 [17, 18]. Studies of Alfvénic instabilities have been done previ-
ously [19–24]. In these studies, the common appearance of the so-called Global Alfvén
Eigenmodes with frequencies of 15 − 40 kHz in the presence of neutral beam injec-
tion (NBI) heating was reported. The eigenmode structure was mostly inferred from a
tomographic reconstruction of the soft X-Ray emissions from the plasma [21], or by an-
alyzing the phase differences between spatially distribution magnetic pickup (Mirnov)
coils [25]. In order to obtain growth rates and saturation levels, numerical simulations
were performed using Tokamak codes and toroidally averaged equilibria. Since that
time, W7-AS was upgraded a lot. Noteworthy are e.g. the installation of an island
divertor, the change from balanced to unbalanced NBI and permanent diagnostic im-
provements. These changes paved the way towards stable discharges with increased
density and plasma energy. It seems therefore necessary to revisit the properties of
Alfvén eigenmodes under the new discharge conditions.

One goal of the present thesis is to rigorously identify Alfvén instabilities in as many
different discharges as possible. The identification will be done by direct comparison
of observed mode numbers and frequencies to the shear Alfvén spectrum, the mode
numbers will be inferred from the Mirnov diagnostic that allows one to obtain informa-
tion about both, poloidal and toroidal mode number simultaneously. The parameter
scan should reveal parameter limits and instability thresholds for the various types of
Alfvén eigenmodes. A second goal of this thesis is to look for correlations between
eigenmodes and fast ion losses to uncover the most dangerous instabilities.

The thesis is structured as follows: Chapter 2 presents a review of the most important
topics of stellarator theory, including magnetic field topology, single particle dynam-
ics and the ideal magnetohydrodynamic (MHD) fluid model. Chapter 3 intimately
describes the ideal MHD spectrum of Alfvén waves and eigenmodes, ending with the
inclusion of kinetic effects to describe wave-particle interactions and modifications of
the ideal MHD spectrum. In Chapter 4 the W7-AS device is presented. An overview
is given of the diagnostic setup and the numerical tools that have been used in this
thesis. A special focus is put on the newly developed tool to analyze the Mirnov data
with high accuracy and sensitivity. Chapter 5 presents the analysis procedure applied
to each observed Alfvén eigenmode, using one of the studied discharges as example.
This is followed by the collected results of all analyzed cases. In Chapter 6 the results
are discussed and conclusions are drawn, Chapter 7 gives a summary.
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Chapter 2

Principles of magnetic plasma
confinement

This chapter is to review some aspects of the theory of plasmas in strong magnetic
fields, especially in toroidal fusion devices. The physical aspects in these devices can
be described quite conveniently if one is able to hide the complexity of the magnetic
field structure in those devices behind a special choice of curvilinear coordinate systems
in which the magnetic field lines appear as straight lines. The topology of the magnetic
field in toroidal fusion devices can be conveniently described in those coordinates, so
they are presented first.

After having laid these foundations, the particle behaviour in magnetic fusion devices is
addressed. The particle-orbit theory is an excellent tool to derive the forces on particles
and corresponding drifts and can be used to explain the classical and neoclassical radial
transport of particles and energy. To handle the whole plasma as a many-body system
kinetic theory needs to be applied. It describes the plasma as ensembles of particle
species in terms of their distribution functions. The evolution of the distribution func-
tions is governed by a kinetic equation. The kinetic theory, however, is too complex to
be conveniently used to derive global plasma parameters which are obtained as velocity
moments of the distribution functions. A set of simpler fluid equations are obtained by
taking the moments of the kinetic equation, the magnetohydrodynamic (MHD) equa-
tions. They are commonly used to self-consistently calculate magnetic fields and radial
plasma profiles. This MHD equilibrium is described in another section of this chapter.

5



6 CHAPTER 2. PRINCIPLES OF MAGNETIC PLASMA CONFINEMENT

2.1 Magnetic Field Topology in Toroidal Fusion De-

vices

2.1.1 Magnetic Field Lines

A magnetic field line is, by definition, a curve whose tangent is in every point parallel
to the magnetic field vector B. This definition can be cast in mathematical form. Let
R be a position vector from the origin to a point on the field line, R follows the curve.
Then dR is a vector that is tangent to the field line. The equation of a magnetic field
line is:

B = c dR ⇐⇒ B1

du1
=

B2

du2
=

B3

du3
= c ⇐⇒ B × dR = 0, (2.1)

where c is a constant. In the expression in the middle of Eq. (2.1) both vectors, B
and R, have been expanded in contravariant components. If the field line is considered
to be parameterized by the length l along the curve where l is assumed to increase in
the direction in which B points, dR/dl is a unit vector parallel to the magnetic field,
denoted by b = B/B. A comparison with (2.1) yields c = B/dl for the constant and
the equation of a magnetic field line reads to be

B

dl
=

B1

du1
=

B2

du2
=

B3

du3
=

B · ∇u1

du1
=

B · ∇u2

du2
=

B · ∇u3

du3
. (2.2)

2.1.2 Magnetic Field Line Curvature, Pressure and Tension

Consider the dot product of b with itself. Because b is a unit vector, b ·b = 1. Hence,

d(b · b)

dl
=

db

dl
· b + b · db

dl
= 0

which can only be satisfied if b · (db/dl) = 0 and, therefore, db/dl is perpendicular to
the tangent vector b. The curvature vector κ is defined by the relation

db

dl

∣

∣

∣

∣

along b

≡ κn̂ ≡ 1

Rc
n̂ ≡ κ. (2.3)

Here, n̂ is the unit vector normal to the field line that points towards the center of
the curvature, κ is the curvature and Rc is the local curvature radius. The directional
derivative d/dl|along b is equal to the dot product of b with ∇:

d

dl

∣

∣

∣

∣

along b

≡ b · ∇ ≡ ∂

∂l
(2.4)

By comparing the last two expressions, one finds another expression for κ which is
commonly used:

κ = (b · ∇)b = b · ∇b (2.5)



2.1. MAGNETIC FIELD TOPOLOGY 7

which is the dot product of a vector b with a dyad ∇b

In a current carrying medium in the presence of a magnetic field, the force density
(force per unit volume) is given by:

f =
dF

dV
= J × B.

However, since the current density J can be written as the curl of the magnetic field,
µ0J = ∇× B, the force density can be recast in terms of B only:

f =
1

µ0
(∇× B) ×B =

1

µ0
(B · ∇)B − 1

2µ0
∇B2. (2.6)

In (2.6) the first term in the last expression, B · ∇B/µ0, is related to the field line
curvature via

ftension =
1

µ0
(B · ∇)B =

B2

µ0
κ. (2.7)

It represents a force on the field line that is directed to the center of the curvature and
thus tries to reduce field line bending. Due to this force the field line behaves like an
elastic chord that is subject to a tension B2/µ0. Therefore this force is called magnetic
tension. The second term, −∇B2/2µ0, can be identified with a pressure force density
−∇p where the magnetic pressure is given by

pmag =
B2

2µ0
. (2.8)

2.1.3 Flux Surfaces

The motion of charged particles in magnetic fields is governed by the electromagnetic
force

F = q(E + v ×B),

where E and B are the electric and magnetic field, respectively, q is the particle charge
and v is the particle velocity. If no electric field is present, the only force on the
particle is q(v×B). The resulting acceleration is perpendicular to both, the magnetic
field direction and the current particle velocity. The particle orbit is described by
the equation of motion. For simplicity, cartesian coordinates and B = (0, 0, B)T are
assumed.

ẍ =
qB

m
ẏ = ωLẏ ÿ = −qB

m
ẋ = −ωLẋ z̈ = 0 (2.9)

As can be seen easily, in homogeneous fields the particle will move in a circle (or gyrate)
around the field line in the plane perpendicular to the magnetic field with the cyclotron,
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Figure 2.1: Simple toroidal field with-
out rotational transform. Black lines
indicate magnetic field lines.

Figure 2.2: Toroidal field with rota-
tional transform. Black lines indicate
magnetic field lines.

gyro or Larmor frequency ωL = q|B|/m. The radius of this circle, the Larmor radius
rL = m|v⊥|/q|B|, depends on the speed of the particle perpendicular to the magnetic
field.

The work done on the particle by the magnetic field is

W =

∫

F · dx = q

∫

(v × B) · dx = q

∫

(v ×B) · v dt ≡ 0

because F ⊥ v. Consequently, the particle energy stays constant. We can summarize
the findings in the following picture: Charged particles in a homogeneous magnetic
field move with constant velocity along the field lines while they gyrate around them.

This leads one to a simple idea to confine a plasma inside a magnetic field: If one would
take a homogeneous, cylindrical magnetic field and bend that into a torus as shown
in Fig. 2.1, the result is a finite volume from which no open field lines escape. Any
particle following the field lines should stay confined within the magnetic field. The
real situation is, however, not quite as simple since the magnetic field in such a toroidal
configuration is not homogeneous. As will be shown in chapter 2.2, the gyration of a
particle in a magnetic field gradient gives rise to a drift v∇B and the motion along
bent field lines causes another drift vκ of the guiding centers out of the confinement
region. An additional poloidal field component solves the problem. It lets the field lines
”spiral” around the torus as indicated in Fig. 2.2 and the particles will pass alternating
regions where the drift points into and out of the confinement region, respectively, and
cancels in average.

The slope of the field lines is measured by the rotational transform  ι. Approximately,
it equals the number of poloidal transits m of the field line around the torus divided by
the number of toroidal transits n before the field line closes upon itself. A more rigorous
definition will be given later. But usually, the field lines are not closed. Instead, they
ergodically cover a twodimensional surface. Any such surface that is ergodically traced
out by a field line is called a magnetic surface, also called an irrational surface because
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on these surfaces,  ι approaches an irrational value in the limit n → ∞. Let dS be a
surface element of a magnetic surface. Due to the construction of the surface, dS·B = 0
is satisfied everywhere on the surface. An important consequence of this relation is that
the magnetic flux enclosed by the magnetic surface is constant. This is the reason for
another synonym for magnetic surfaces, namely flux surfaces.

The magnetic field in toroidal fusion devices consists of a set of nested flux surfaces, each
traced out by non-closing field lines. Between these magnetic surfaces one can define
surfaces that contain field lines that close upon themselves after several transits around
the torus. Because  ι is a rational number on these surfaces, they are called rational
magnetic surfaces. The innermost flux surface has a zero volume and is degenerate. It
is called the magnetic axis.

The existence of nested flux surfaces can be guaranteed in devices with a symmetry axis,
i.e. axisymmetric tokamaks and helically symmetric stellarators. Strictly speaking, it
must be possible to find a set of canonical coordinates with an ignorable coordinate.
The equation of a field line (2.2) can be cast in Hamiltonian form and Kolmogorov-
Arnold-Moser (K.A.M.) theory assures the existence of perfect, closed and nested flux
surfaces. K.A.M. theory also guarantees the existence of a set (of non-zero measure) of
invariant surfaces in the presence of small perturbations (i.e. manufacturing errors) [26,
27]. Between these ”good surfaces” exists a possibly dense set of surfaces which open
up into ergodic regions or magnetic islands, where field lines behave chaotically and
ergodically fill an entire non-zero volume. However, even these regions are absolutely
confined if they have a good K.A.M. surface on either side.

2.1.4 Magnetic Flux Coordinates

The magnetic field topology suggests a certain choice of curvilinear coordinates. By
convention, the first (radial) coordinate labels the magnetic surfaces. The other two
coordinates span a coordinate mesh that completely covers the flux surface and are
usually, though not always, associated with angles.

Any quantity ρ that satisfies B · ∇ρ = 0 and is strictly monotonically increasing away
from the magnetic axis can be used as radial coordinate. The first condition simply
states that ρ = const spans a surface that is parallel to B everywhere. The second
condition is necessary to have the coordinate single-valued and that the coordinate
system is right-handed. The constraint ∇ρ = 0 at the magnetic axis can be used to
ensure that ρ is well behaved and continuous at the magnetic axis. There are four
quantities that are commonly used:

1. the enclosed volume V ,

2. the enclosed toroidal flux Ψtor,

3. the normalized (toroidal) flux s = Ψtor/Ψ
a
tor that is zero at the magnetic axis and

equals unity at the plasma boundary, and
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Figure 2.3: Simple toroidal coordinates r, θ, φ. Here, r is a flux surface label, θ is the
poloidal angle and φ is the toroidal angle.

4. the effective radius r = a
√
s, where a is the effective minor radius.

Though the ideal MHD force balance, ∇p = J×B, ensures that B ·∇p = 0, the plasma
pressure cannot be used as flux surface label because it need not be single valued, as
in the case of hollow pressure profiles, and it generally increases towards the magnetic
axis which would result in a left-handed coordinate system.

Toroidal flux coordinates are a set of poloidal and toroidal angles θf and φf chosen such
that the equation of a field line is the equation of a straight line in those coordinates. It
is common to say that magnetic field lines appear as straight lines in (θf , φf). To locate
a point in space it is sufficient to identify the flux surface on which the point lies and
then to construct coordinate curves on that flux surface with the required properties.
This, however, does not yet describe a coordinate system. As stated in Appendix A.2,
it is necessary to know the coordinate surfaces completely which in turn requires that
B is known everywhere. One usually starts by constructing a simple, or elementary,
coordinate system (ρ, θ, φ) as seen in Fig. 2.3. It is assumed that B = B(ρ, θ, φ)
is known as a function of the elementary angle coordinates. The functions θ(R) and
φ(R) are multiple-valued functions because a certain point on a flux surface is described
the angle coordinates θ + 2πm and φ + 2πn where m,n are arbitrary integers. The
gradients, however, must be single-valued functions and therefore periodic in θ and φ.

When B is written in its contravariant components, B = Bρeρ + Bθeθ + Bφeφ with
Bi ≡ B · ∇ui, it can be seen immediately that Bρ = B · ∇ρ ≡ 0 because B lies in the
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flux surface. Hence,

B = Bθeθ +Bφeφ =
√
gBθ(∇φ×∇ρ) +

√
gBφ(∇ρ×∇θ) (2.10)

where
√
g = [∇ρ · (∇θ × ∇φ)]−1 is the Jacobian which is supposed to be a known,

single-valued function of (ρ, θ, φ). The two components Bθ and Bφ are not indepentent
of each other, as can be seen from ∇ · B = 0:

∂

∂θ
(
√
gBθ) +

∂

∂φ
(
√
gBφ) = 0, (2.11)

which suggests that Bθ and Bφ are derived from a single function ν = ν(ρ, θ, φ):

Bθ = − 1√
g

∂ν

∂φ
Bφ =

1√
g

∂ν

∂θ
. (2.12)

The gradient of ν is given by ∇ν = (∂ν/∂ρ)∇ρ + (∂ν/∂θ)∇θ + (∂ν/∂φ)∇φ. Remem-
bering that ∇ρ×∇ρ ≡ 0, Eq. (2.10) can be rewritten as

B =
√
gBθ(∇φ×∇ρ) +

√
gBφ(∇ρ×∇θ)

= ∇ρ×
(

∂ν

∂θ
∇θ +

∂ν

∂φ
∇φ
)

(2.13)

= ∇ρ×∇ν.

This equation can be used to determine which form ν must have. The dependence of
ν on ρ is not important because the cross product with ∇ρ cancels this term. B is
a physical quantity and thus must be periodic in (θ, φ) to be single-valued. It is not
required that ν is single-valued, but ∇ρ×∇ν must be. If ν is periodic in θ and φ, ∇ν
and ∇ρ×∇ν will be as well. The only non-periodic (secular) terms that ν may have
must be linear in θ and φ, otherwise ∇ν would contain terms containing θ or φ which
remain after the cross product with ∇ρ. The most general form for ν is

ν(ρ, θ, φ) = a(ρ) θ + b(ρ)φ+ ν̃(ρ, θ, φ). (2.14)

Here, ν̃ is the periodic part of ν. Because Bθ, Bφ and
√
g are known functions of ρ,

the dependence of ν on ρ is fixed. The ρ dependence of a(ρ) and b(ρ) can be found
from (2.14) by looking at the toroidal flux and the poloidal ribbon flux inside the flux
surface

Ψtor =
1

2π

∫∫∫

V

B · ∇φ d3R Ψr
pol =

1

2π

∫∫∫

V

B · ∇θ d3R, (2.15)

where d3R =
√
g dρ dθ dφ. The derivative with respect to ρ is

Ψ̇tor =
dΨtor

dρ
=

1

2π

∫∫ 2π

0

dθ dφ
√
g B · ∇φ =

1

2π

∫∫ 2π

0

dθ dφ
∂ν

∂θ

=
1

2π

∫∫ 2π

0

dθ dφ

(

a(ρ) +
∂ν̃

∂θ

)

= 2π a(ρ) (2.16a)
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Ψ̇r
pol =

dΨr
pol

dρ
=

1

2π

∫∫ 2π

0

dθ dφ
√
g B · ∇θ =

1

2π

∫∫ 2π

0

dθ dφ
∂ν

∂φ

=
1

2π

∫∫ 2π

0

dθ dφ

(

−b(ρ) +
∂ν̃

∂φ

)

= −2π b(ρ) (2.16b)

Here, (2.12) and (2.14) have been used as well as the fact that the integrals containing
∂ν̃/∂θ and ∂ν̃/∂φ vanish because ν̃ is periodic in θ and φ. Hence, ν becomes

ν(ρ, θ, φ) =
1

2π
(Ψ̇torθ − Ψ̇r

polφ) + ν̃(ρ, θ, φ). (2.17)

If ν̃ happens to be constant on a flux surface (or zero), the coordinates (θ, φ) are
already flux coordinates because in this case the equation of a field line (2.2) in these
coordinates is the equation of a straight line, Ψ̇torθ − Ψ̇r

polφ = const.. Otherwise one
can perform a change of variables to eliminate ν̃:

θf = θ +
2πν̃

Ψ̇tor

, φf = φ or (2.18a)

φf = φ− 2πν̃

Ψ̇r
pol

, θf = θ. (2.18b)

The contravariant components of B in the new coordinates are given by Bρ = 0,
Bθf = Ψ̇r

pol/2π
√
gf and Bφf = Ψ̇tor/2π

√
gf . With these relations given, the rotational

transform  ι can be rigorously defined as the slope of the field lines in flux coordinates:

 ι(ρ) =
dθf

dφf

=
Bθf

Bφf
=

Ψ̇r
pol

Ψ̇tor

. (2.19)

The new angle coordinates (θf , φf) are not uniquely determined. If (θ′f , φ
′
f) are sup-

posed to be given by

θ′f = θf + Ψ̇r
polG(ρ, θf , φf), φ′

f = φf + Ψ̇torG(ρ, θf , φf), (2.20)

where G is an arbitrary periodic function, these coordinates are proper straight field
line coordinates, too, as can be shown by substitution. This freedom can be used to
further deform the angle coordinates to make expressions look simpler. Boozer [28]
uses the freedom to form a set of magnetic coordinates that have the property that the
Jacobian is a function of

√
g ∼ 1/B2, where the proportionality factor is a constant

on flux surfaces. This simple Jacobian has made Boozer’s coordinates very popular.
They are explained in detail in Appendix B.

2.2 Particle Dynamics in Fusion Plasmas

In high-temperature fusion plasmas the mean free path for collisions between particles is
very large and the orbits in between the collisions are subject to the forces of averaged
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magnetic and electric fields only, generated by external sources and by long-range
interactions between the particles. In order to understand the plasma confinement in
magnetic fields it is necessary to first understand the unperturbed orbits of charged
particles. The orbits are described by the equation of motion:

F =
dp

dt
= q(E + v × B) + Kext. (2.21)

Here, p is the particle momentum, E and B are the electric and magnetic field, re-
spectively, v is the particle velocity and Kext is an external force. In a homogeneous
magnetic field, without electric field and external force, the particle moves freely and
with constant speed along the field lines and gyrates around them in the plane per-
pendicular to the magnetic field. For many applications it is sufficient to neglect the
gyrational motion and assume that the particle moves along a virtual line in the center
of the gyro-orbit, the guiding center.

The circulating charged particle produces a small current and therefore an additional
magnetic field. This field is opposite to the external magnetic field and weakens it.
The effect is characterized by the magnetic moment of the particle

µ = −mv
2
⊥

2B
b = −1

2
mv2

⊥

B

B2
(2.22)

The magnetic moment grows linearly with the particle energy perpendicular to the
magnetic field, is independent of the particle charge, and is directed opposite to the
external magnetic field. It is important to note that without collisions the magnetic
moment is conserved if the magnetic field B varies slowly along the particle orbit
compared to the oscillarory gyrational motion, in other words, the magnetic moment
is an adiabatic invariant. In magnetic fusion devices the magnetic moment can be
considered as a constant for thermal particles in nearly all cases of interest because
the strong magnetic field makes the gyro-radii so small that the field variation over the
gyro-radius is negligible.

2.2.1 Radial Particle Drifts

A charged particle is confined in a magnetic field if it is not subject to drifts perpen-
dicular to the magnetic field. At first a general expression for the drift velocity caused
by a force is derived. Starting from eq. (2.21), acceleration terms due to electric fields
and the particle gyration are neglected, the particle is taken to be force-free, F = 0
and only the components ⊥ B are considered:

0 = K⊥ + q(vD × B)⊥. (2.23)

Here, K is an accelerating force. This equation describes the drift velocity vD of the
guiding center of particles caused by force K, which is perpendicular to K and B:

vD =
K × B

qB2
(2.24)
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This equation states that only forces with a component perpendicular to B can cause
cross-field drifts and that the direction of the drift can be different for electrons and
ions.

2.2.1.1 E × B drift

Charged particles are accelerated in electric fields which exert a force FE = qE on
the particle. If the electric field is purely parallel to the magnetic field, E ‖ B, the
particle will be accelerated along the magnetic field and no cross-field drift occurs.
If the electric field is perpendicular to the magnetic field, eq. (2.24) can be used to
determine the E× B drift velocity vE×B:

vE×B =
E ×B

B2
. (2.25)

This drift does not depend on mass or charge of the particles and is therefore the same
for ions and electrons.

2.2.1.2 Drift in Inhomogeneous Magnetic Fields

The orbit of a gyrating particle has a constant curvature if it moves in a homogeneous
field, it moves on a closed circle in the plane ⊥ B. If the magnetic field in which
the particle moves has gradients perpendicular to the field direction, ∇B ⊥ B, the
curvature of the gyro-orbit depends on the gyro angle and is no longer constant. The
orbit is not closed anymore and in average, the particle drifts into a direction which
is perpendicular to both, ∇B and B, as indicated in Fig. 2.4. The drift velocity
can be approximated if we replace the gyrating particle by a dipole magnet with the
same magnetic moment µ. In inhomogeneous fields, this magnet experiences a force
K∇B = µ∇⊥B which is substituted into Eq. (2.24):

v∇B =
K∇⊥B ×B

qB2
= −µ∇⊥B ×B

qB2
=
mv2

⊥

2B
· B×∇⊥B

qB2
. (2.26)

This drift depends on particle mass and particle charge. In a magnetic field without
rotational transform electrons and ions drift vertically away into different direction,
producing charge separation and a strong electric field, which will in turn cause a
radial E ×B-drift across the magnetic field and out of the confinement region.

2.2.1.3 Curvature Drift

If the particle moves along bent magnetic field lines it will experience a centrifugal force
caused by particle inertia and the field line curvature κ given by eq. (2.5). The force
depends on the velocity parallel to the magnetic field, Kκ = −mv2

‖κ. The expression
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Figure 2.4: Effect of gradients ∇B ⊥
B: gyration orbits are not closed any-
more, ions (red) and electrons (blue)
start drifting in opposite directions.

Figure 2.5: Drift orbit of charged par-
ticles in a helical field. The displace-
ment is caused by permanent ∇B and
κ drifts which cancel in average.

for κ can be further modified to give κ = (b ·∇)b = ∇b−b(b ·∇b) = ∇⊥b = ∇⊥B/B.
Inserting this expression into eq. (2.24) yields

vκ =
Kκ ×B

qB2
=
mv2

‖

B
· B ×∇⊥B

qB2
. (2.27)

Again, this vertical drift depends on particle mass and charge, leads to charge separa-
tion and produces electric fields. The resulting E×B drift will transport the particles
radially out of the confinement region.

2.2.1.4 Drift Surfaces

Because of the curvature and the ∇B drifts, a simple toroidal magnetic field does
not confine a plasma. It was soon discovered that the addition of a poloidal field
component can stop the particles from drifting away. This makes the field lines spiral
helically around the torus and the particles are led alternatingly through regions where
the vertical drift points into and out of the confinement region, respectively. Thus
the particles stay confined on poloidally and toroidally closed surfaces. Due to the
permanent drift, however, the drift surface is displaced with respect to the magnetic
surface as indicated in Fig. (2.5). The displacement is of the order [29]

δD ∼ r

R
· rL,θ = ǫ · rL,θ, (2.28)
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where ǫ = r/R is the local inverse aspect ratio whereas the poloidal Larmor radius rL,θ

is defined as:

rL,θ =
mv

|q|Bθ

The drift surface displacement δD depends on the particle energy via rL,θ. For thermal
particles δD is usually small enough to be neglected, but for highly energetic particles
that are born near the plasma boundary the displacement can become so large that
these are lost during their first orbit.

2.2.2 Trapped and Passing Particles

The energy of a charged particle E = m(v‖ + v⊥)2/2 is conserved along its orbit,
the magnetic moment µ = mv2

⊥/2B is an adiabatic invariant which will be taken to
be constant in the following. One can now consider the effect of a gradient of B
parallel to the magnetic field. If the particle moves into regions with higher field, the
conservation of the magnetic moment requires that the velocity perpendicular to B
grows accordingly

v2
⊥

B
= const.

Conservation of energy requires that (v‖ + v⊥)2 = const. Hence, the particle will be
accelerated perpendicular to B and slowed down along the field. If B becomes so strong
that E−µB = 0, all particle energy is transfered to the gyration and the particle motion
along the magnetic field stops and is reversed. This is called the magnetic mirror effect.

Assuming a simple magnetic field

B =





0
Bθ(r)
B0



 ·
(

1 − r

R
cos θ

)

in the elementary toroidal coordinates introduced in Fig. (2.3), it is easily seen that
all particles for which E/[B0(1 + r/R)] < µ < E/[B0(1 − r/R)] holds are mirrored at
some poloidal angle θm. They cannot perform a full poloidal transit around the torus
and remain in the range −θm ≤ θ ≤ θm. Such particles are referred to as trapped
particles, and on any magnetic surface r = const they constitute a fraction ∼

√

2r/R
of all particles of an isotropic distribution. All other particles, referred to as passing
particles, circulate around the torus poloidally as well as toroidally, with a parallel
velocity v‖ being modulated by the magnetic field variation but which does not change
sign. Fig. 2.6 shows the orbit of a trapped particle, a so called ”banana orbit”. Trapped
particles stay indeed confined on the low field side of the torus where they are mirrored
between points with the same field strength. The slow precession in toroidal direction
is also caused by the drifts. The width of the banana is an important parameter in
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Figure 2.6: ”Banana” orbit of a trapped particle in 3D and a projection onto the
poloidal (r, z)-plane. The particle is being reflected at a certain magnetic field strength.
The drifts cause the excursions from the flux surface and the toroidal precession of the
particle.

neoclassical transport theory because it determines the step size in a random walk
model. It is approximately given by [29]

δB ∼
√
ǫ · rL,θ. (2.29)

A comparison with Eq. (2.28) yields that the banana width is a factor
√
ǫ larger than

the drift surface displacement. As in the case of the drift surface displacement for
passing particles, the banana width of trapped particles depends on the particle energy.
This means of course that energetic trapped particles are more easily lost than passing
particles.

In stellarators the magnetic field strength also varies toroidally. If a particle is trapped
in a narrow toroidal mirror, it stays at approximately the same poloidal position and
cannot profit from the drift ”compensation” due to the helical field. Hence, these deeply
trapped particles are lost almost immediately. In velocity space (v‖, v⊥) the region from
which the particles are lost forms a cone, accordingly named loss cone.

While the kinetic energy of a particle is a constant of motion, its associated magnetic
moment is an adiabatic invariant, which is also well conserved in fusion plasmas. From
these two constants, a parameter can be derived that describes whether a particle is
trapped or not. Remembering that µB ≡ E⊥ is the particles perpendicular kinetic
energy, passing particles have

E − µBmax ≡ E‖ > 0

at the point of the highest magnetic field along their orbit. Trapped particles are
reflected before this point and E − µBmax = 0 describes the trapping boundary. A
different parameter that is commonly used is the pitch χ = v‖/v. A particle with a
small pitch χ ≈ 0 has small parallel velocity compared to the perpendicular velocity
v⊥ =

√

1 − p2 · v and is likely to be trapped. The trapping boundary again depends
on Bmax. This definition, however, is not exact and suffers from v‖ and therefore the
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pitch not being a constant of motion. It is meaningful only after averaging along the
particle orbit.

2.3 Magnetohydrodynamics

A complete description of a fusion plasma as a many-particle system can in general
be done using kinetic theory. In this framework, the plasma is described in terms of
distribution functions fi = fi(x,p) which measure the number of particles of species i
at position x having the momentum p. All macroscopic quantities (pressure, currents,
temperatures, densities, . . . ) of species i can be calculated as velocity moments of the
distribution function fi. The evolution of the distribution function is described by a
kinetic equation, in the case of plasma physics the Vlasov equation is used:

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0. (2.30)

It is obtained by inserting the Lorentz force directly into Boltzmann’s equation. This
general approach provides a fairly complete description of collisionless plasmas, but
inherits a vast complexity.

A fusion plasma has several properties that make it possible to describe it approxi-
mately with much simpler models:

• quasineutrality: ne =
∑

i niZi in each volume much larger than the Debye sphere;

• the bulk plasma on a flux surface is in thermal equilibrium;

• the plasma is strongly magnetized, i.e., the particles can move freely only along
magnetic field lines and the gyro-radii are much smaller than typical scale lengths;

• the plasma has almost no electrical resistivity.

The local thermal equilibrium guarantees that the plasma can be suitably described by
macroscopic plasma parameters such as density, pressure, and average velocity which
are obtained as the moments of the distribution function. Relations between these
quantities can be obtained by taking the moments of the Vlasov equation accordingly.
This procedure is shown in many textbooks on plasma physics, e.g. [30], and is not
repeated here. Upon taking the zeroth-order moment, the equation of continuity is
obtained. The first-order moment results in a force balance equation that describes the
conservation of momentum. One usually stops after taking the second-order moment,
from which the conservation of energy is derived. The set of equations is not closed:
Each equation contains quantities which have to be derived from the next higher-order
moment. In fact, the set of equations has to be closed at some point by using an
approximation for the missing quantity.
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The moment equations have a form similar to the equations which describe a conducting
fluid immersed in a magnetic field. Consequently, the described approach is known
as ”magnetohydrodynamic” (MHD) description. Quasineutrality relates the ion- and
electron density to each other and allows one to consider the plasma as a single fluid.
In the approximation of infinite conductivity the ”ideal MHD” equations read

∂ρ

∂t
+ ∇ · (ρv) = 0 (mass continuity)

ρ
dv

dt
+ ∇p− J × B = 0 (force balance)

E + v × B = 0 (ideal Ohm’s law)

d

dt

(

p

ργ

)

= 0 (adiabatic eq. of state) (2.31)

∇ · B = 0 (no magnetic monopoles)

∇× B − µ0J = 0 (Ampère’s law)

∇×E +
∂B

∂t
= 0 (Faraday’s law)

Here, p is the pressure, ρ the mass density, v the fluid velocity, γ the adiabaticity index,
J the current density, and d/dt = ∂/∂t + (v · ∇) is the convectional derivative. The
electric and magnetic fields, E and B, consist of externally applied fields and averaged
internal fields arising from long-range interactions between the plasma particles.

A lot of physics has been discarded in the derivation of the ideal MHD equations. Due
to the assumptions made, these equations not valid on time and length scales where
the single particle motion becomes important. The requirements on the collisionality
of the plasma are quite strict: the plasma has to be collisional enough to ensure a local
thermal equilibrium and uncollisional enough that electric resistivity is negligible. Still,
the ideal MHD model provides a powerful framework to describe global properties of
the plasma and is used to determine the equilibrium and its linear stability.

2.3.1 MHD equilibria

The ideal MHD model is commonly employed to calculate a selfconsistent solution of
the model (2.31) at finite plasma pressures, called equilibrium. This is needed because,
according to the force balance equation, the presence of pressure gradients generates
currents flowing in the plasma which modify the vacuum magnetic field until a stable
configuration is obtained. One is usually interested in stationary equilibria where v = 0
because these are most stable. Any equilibrium flow is an additional source of energy
which may be tapped by instabilities. The magnetostatic equations are found from



20 CHAPTER 2. PRINCIPLES OF MAGNETIC PLASMA CONFINEMENT

(2.31) by setting v = 0. One obtains

J ×B = ∇p
∇×B = µ0J (2.32)

∇ · B = 0

For axisymmetric toroidal equilibria it is possible to derive an equilibrium equation
that must be satisfied by any such plasma. A suitable choice of coordinates is the
cylindrical (R, φ, z)-coordinate system where φ is the toroidal angle, R is the radius
and z the height along the major axis of the torus. Writing out ∇·B in these coordinates
yields

∇ ·B =
1

R

∂(RBR)

∂R
+
∂Bz

∂z
+

1

R

∂Bφ

∂φ
= 0. (2.33)

∂/∂φ = 0 due to axisymmetry and hence B = B(R, z) only and within a poloidal plane
the components of B can be written in terms of a flux function Ψ

RBR =
∂Ψ

∂z
RBz = −∂Ψ

∂R
or B =

1

R
∇Ψ × êφ +Bφêφ. (2.34)

The plasma current can now be calculated using Ampère’s law and the obtained mag-
netic field

µ0J =
1

R
∇(RBφ) × êφ − 1

R
∆∗ψêφ, (2.35)

where ∆∗ is the Laplace operator in these coordinates. The force balance equation
J × B = ∇p states that B · ∇p = 0 and therefore magnetic field lines lie on isobaric
surfaces, or p = p(Ψ). Furthermore, J·∇p = 0 from which can be derived that J = J(Ψ)
alone. After some further manipulation one obtains the Lüst-Schlüter-Grad-Shafranov
equation as

∆∗Ψ = −µ0R
2dp(Ψ)

dΨ
− µ2

0F (Ψ)
dF (Ψ)

dΨ
(2.36)

where F (Ψ) ≡ RBφ/µ0. This is a second order elliptic partial differential equation
for calculating the equilibrium in terms of the magnetic flux. To find a solution,
the pressure p and the current function F have to be prescribed as some physically
reasonable distribution of the flux Ψ along with suitable boundary conditions. After
having determined the spatial distribution of the magnetic flux Ψ(R, z), the other
quantities like poloidal and toroidal magnetic field, current and pressure can be found
as functions of R and z. Shafranov has given a simple solution of this equation starting
from the linear ansatz p(Ψ) ∼ Ψ and F (Ψ) = F0:

Ψ(R, z) =
R2

R4
0

(2R2
0 −R2 − 4a2z2),
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Figure 2.7: Solution of an axisymmet-
ric toroidal equilibrium with circular
cross sections including Shafranov shift Figure 2.8: Plasma elongation to re-

duce the Shafranov shift

where R0 and a are constants. An example gives Fig. 2.7 where contours of constant
Ψ are shown which correspond to flux surfaces. This figure also indicates the so-called
Shafranov shift, a general property of toroidal equilibria. The shift of the inner flux
surfaces w.r.t. the outer ones is generated by equilibrium currents in the following
way: The equilibrium current density J can be written in components parallel and
perpendicular to B,

J = J‖ + J⊥ = (J · B)
B

B2
− ∇p× B

B2
.

The perpendicular component J⊥ is called the diamagnetic current and depends on the
pressure gradient. The parallel current is called Pfirsch-Schlüter current and is linked
to the diamagnetic current via ∇ · J = ∇ · (J‖ + J⊥) = 0. From this one obtains:

∇ · J‖ = −∇ · J⊥ = 2J⊥ · ∇ lnB. (2.37)

Eq. (2.37) states that the Pfirsch-Schlüter currents are determined by two factors:
firstly by the diamagnetic currents that depend on the pressure gradient, and secondly
by the poloidal variation of B = |B|. The toroidal component of the Pfirsch-Schlüter
currents has a different sign on high-field side and low-field side of the torus and creates
an additional magnetic field that shifts the inner flux surfaces towards the low-field side.
The Shafranov shift limits the stability of the equilibrium towards high central plasma
pressures. In order to reduce the Shafranov shift, ∆B = Bmax−Bmin has to be reduced.
By observing that B ∼ 1/R for toroidal magnetic fields, one way to achieve this goal
is a non-circular shaping of flux surfaces as in Fig. 2.8. This is the reason why in most
magnetic fusion devices, tokamaks as well as stellarators, the flux surfaces have elliptic
or D-shaped cross sections.
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For general three-dimensional equilbria it is not possible to find a simplified equilibrium
condition such as Eq. (2.36). The common way to calculate an equilibrium in this case
is to employ a variational principle. Besides the prescription of pressure and current
profiles, an initial value for the spatial distribution of the magnetic flux Ψ(R, φ, z) is
needed as well. This configuration is then varied until the residual MHD forces vanish
or the MHD energy functional is minimized. An example of a W7-AS equilibrium is
shown in Fig. 2.9

2.3.2 Stability of MHD Equilibria

Another purpose for which the ideal MHD model is commonly utilized is to test whether
an equilibrium is stable to small perturbations, and hence to determine whether the
equilibrium will persist or ultimately be destroyed. The MHD model allows only per-
turbations that grow exponentially or stable waves that propagate through the plasma.

The MHD equations are nonlinear partial differential equations. In order to make
them more amendable to stability analysis, it is reasonable to linearize them about a
stationary equilibrium by writing all quantities Q as Q(x, t) = Q0(x) + ǫQ̃(x, t), where
the subscript 0 denotes the equilibrium value, Q̃ is the perturbation and ǫ a smallness
parameter. All terms of order ǫ2 and higher are neglected. The linearized equations are
obtained by setting ǫ = 1. It is customary to introduce the fluid displacement vector
ξ defined by

v =
∂ξ

∂t
.

Because a stationary equilibrium was assumed (v0 = 0), ξ clearly is a first order
quantity in ǫ. The linearized set of ideal MHD equations then reads

∂ρ̃

∂t
+ ∇ · (ρ0ṽ) = 0

ρ0
∂2ξ

∂t2
+ ∇p̃− J̃ × B0 − J0 × B̃ = 0

Ẽ + ṽ × B0 = 0
∂p̃

∂t
+ ṽ · ∇p0 + γp0∇ · ṽ = 0 (2.38)

∇ · B̃ = 0

∇× B̃− µ0J̃ = 0

∇× Ẽ +
∂B̃

∂t
= 0

The linearized Ohm’s and Ampère’s law can be used to eliminate J̃ and Ẽ. The
resulting equations can be used to elimitate B̃ and p̃ from the force balance equation.
The result is a equation of motion for the fluid displacement vector ξ:

ρ0
∂2ξ

∂t2
= F(ξ), (2.39)
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(a) Variation of |B| (blue: small, red: high fields).
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Figure 2.9: MHD equilibrium for W7-
AS shot #56723 at t = 0.230s. (a)
shows the variation of the magnetic
field strength on the flux surface, (b)
and (c) show the toroidal variation of
the plasma cross section along with the
vessel (red) and in-vessel components
(green), and (d) shows the radial dis-
tribution of β and  ι.
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where F(ξ) is the MHD force operator

F(ξ) ≡ ∇(γ p0∇ · ξ + ξ · ∇p0)

+
1

µ0

{(∇×∇× (ξ ×B0)) + (∇×B0) × [∇× (ξ × B0)]} . (2.40)

The stability analysis can be done in several ways using this force operator. The
first method is the application of the energy principle: If the equilibrium is stable, the
change in potential energy due to a displacement of the plasma by ξ should be positive.
If the equilibrium is unstable, the potential energy of the plasma can be lowered by
displacing it. The change in potential energy can be calculated from the work required
to displace the plasma:

δW = −1

2

∫

ξ · F(ξ)dτ.

If δW is positive for all allowable displacements, the equilibrium is stable. If δW is
negative for some allowable displacements, the equilibrium is unstable.

A different way of analyzing the stability of an equilibrium is the normal mode method.
Here the ansatz ξ(x, t) = ξ(x)·exp(−iωt) is made for the displacement. Doing a Fourier
transform of eq. (2.39) in time, an eigenvalue equation is obtained

−ρ0ω
2ξ = F(ξ)

with ω2 as eigenvalue and ξ as eigenfunction. F is a hermitian as well as self-adjoint
operator and hence, all eigenvalues ω2 are real. The square root of ω2 can be written
as a complex number:

√
ω2 = ωr + iγ, where ωr is the eigenfrequency and γ the growth

rate of the perturbation. The condition ω2 = 0 marks the transition between stable,
purely propagating waves with γ = 0 and unstable, purely growing solutions with
ωr = 0. A mixture of both, e.g. growing or damped oscillations, is not possible. In
addition to the frequency or growth rate, the eigenfunction and therefore the structure
of the perturbation is known as well.



Chapter 3

Alfvén Waves, -continua and
Eigenmodes

Alfvén waves and Alfvén eigenmodes constitute the marginally stable part of the spec-
trum, e.g. ω2 > 0, of the ideal MHD force operator F, Eq. (2.40). In ideal MHD,
they correspond to purely oscillating phenomena, Re(ω) > 0, with constant amplitude,
Im(ω) = 0, which can roughly be divided into compressional and uncompressional
waves. This chapter reviews the properties of the spectrum of uncompressional shear
Alfvén waves in fusion devices. Due to the enormous amount of literature available on
this topic, the focus is put on selected issues only.

It is the complexity of F that makes it very difficult to analyze the force operator
directly. Resolving the Alfvén wave spectrum in full detail in three-dimensional ge-
ometry requires to employ numerical codes. It is therefore common to investigate the
properties of the spectrum in several approximations with increasing complexity, mak-
ing analytical progress whereever possible – a procedure that gives insight into the
physical origin of various aspects even if the derived expressions describe the situation
only qualitatively.

This chapter follows the same procedure. Sec. 3.1 reviews the continuous Alfvén wave
spectrum. At first, the dispersion relations of compressional and uncompressional
Alfvén waves are derived in an infinite, homogeneous and magnetized plasma. Follow-
ing this, the influence of plasma inhomogeneities and symmetry breaking in toroidal
geometries on the shear Alfvén wave spectrum will be shown. Besides the continu-
ous spectrum of localized waves, the ideal MHD force operator also contains a discrete
spectrum of extended shear Alfvén eigenmodes in bounded plasmas that are considered
in section 3.2.

As outlined above, the ideal MHD equations are obtained as velocity moments of the
kinetic Vlasov equation. Consequently, details of the particle motion and the parti-
cle distribution functions that describe the energy exchange between plasma particles
and waves have been averaged out, resulting in the prediction that Alfvén eigenmodes
are marginally stable in ideal MHD theory. Section 3.3 deals with the implications

25
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of reintroducing kinetic effects. The perturbative extension of the ideal MHD model
to include the self-consistent evolution of the particle distribution function under the
influence of an electromagnetic wave (i.e. a shear Alfvén eigenmode) results in ex-
pressions from which the growth and damping rates of ideal MHD instabilities can
be inferred. The topic of enhanced radial particle transport caused by shear Alfvén
eigenmodes is treated only qualitatively, mainly because detailed theoretical studies are
still missing. Apart from rough estimates based on worst case assumptions, numerical
simulations for three-dimensional geometry are currently being developed. Finally, the
modification of the shear Alfvén wave spectrum in the presence of kinetic effects is
illustrated.

3.1 Alfvén Waves and Alfvén Continua

3.1.1 Waves in an infinite, homogeneous plasma

The simplest case to consider is an infinite plasma without gradients. The configuration
is described by the following equations:

ρ = ρ0,

v = 0,

p = p0,

B = B0 = B0ez,

J = 0,

where ρ0, p0 and B0 are constants. Upon substituting the above expressions into the
linearized ideal MHD equations, Eq. (2.38), following the normal mode approach with
f(x, t) = f0 · ei(k·x−ωt) for any generic perturbed quantity f , and solving for the com-
ponents of the perturbed velocity ṽ = (ṽx, ṽy, ṽz), it follows that

(ω2 − k2
‖v

2
A)ṽx = 0,

(ω2 − k2
⊥v

2
s − k2v2

A)ṽy −k⊥k‖v2
s ṽz = 0,

−k⊥k‖v2
s ṽy +(ω2 − k2

‖v
2
s)ṽz = 0,

(3.1)

where vA ≡
√

B2
0/µ0ρ0 is the Alfvén velocity, vs ≡

√

γp0/ρ0 is the sound velocity, and
k2 = k2

‖ + k2
⊥. The dispersion relation ω(k) is obtained solving this system of linear

equations. One obtains three branches:

ω2 = ω2
A = k2

‖v
2
A, (3.2)

ω2 =
1

2
k2(v2

A + v2
s)
(

1 ±
√

1 − α2
)

, (3.3)

with

α2 =
4k2

‖

k2

v2
Av

2
s

(v2
A + v2

s)2
.
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The first branch, Eq. (3.2), describes a wave known as shear Alfvén wave. It does not
depend on k⊥ and corresponds to a purely transverse wave with the perturbed magnetic
field being parallel to the perturbed velocity and perpendicular to the equilibrium
magnetic field B0. The wave travels along the magnetic field lines with a velocity
vA = vA · B0/B0. The group velocity is equal to the phase velocity and the fluid
element oscillates in phase with the magnetic field line that behaves as a massive
string under tension. The motion is incompressible and, hence, density and pressure
perturbations are zero. The shear Alfvén wave can be thought as an oscillation between
perpendicular plasma kinetic energy and the potential energy required to bend the field
lines.

The second and third branches, Eq. (3.3), are called magneto-acoustic or magnetosonic
waves. They depend on both, parallel and perpendicular components of the wave
vector, and produce a compression of the magnetic field and a pressure perturbation.
Since 0 < α2 < 1, each of the waves corresponds to a purely oscillating solution. The
fast magnetosonic wave corresponds to the plus sign in front of the square root term
in (3.3) and has a frequency ω2 = ω2

f which is always larger than the Alfvén frequency,
ω2

A < ω2
f . In the case β ≪ 1 it reduces to the compressional Alfvén wave with

ω2
f ≈ (k2

⊥ + k2
‖)v2

A,

where the fluid oscillates almost perpendicular to the magnetic field and the compres-
sion is dominated by magnetic field compression.

The slow magnetosonic wave corresponds to the minus sign in eq. ( 3.3). The frequency
ω2 = ω2

s is always less than the Alfvén frequency. In the limit β ≪ 1 it reduces to the
sound wave with the dispersion relation

ω2
s ≈ k2

‖v
2
s .

Here, the oscillation is mostly parallel to the magnetic field and is dominated by fluid
compression. It results from the balance between plasma inertia and the plasma com-
pression in the force balance.

It can be shown that the incompressible shear Alfvén waves are the ones that are
most easily driven unstable [31]. The work done by an arbitrary displacement of
the plasma to compress the fluid is always positive, corresponding to an increase in
potential energy which makes the plasma more stable. Another way to show the greater
stability of compressional Alfén waves is by interpreting the terms k‖vA and k⊥vA as
effective spring constants, in analogy to a harmonic oscillator [32]. A larger spring
constant implies a greater ability of the plasma to maintain its state under external

perturbations. Because k‖ <
√

k2
‖ + k2

⊥, the shear Alfvén waves are easier to excite

in the presence of sources of free energy than compressional Alfvén waves. Another
important difference between both wave types is related to the group velocity, which
is along B0 for shear Alfvén waves and mostly across the magnetic field for the latter,
because in the systems of interest k‖ ≪ k⊥ always holds.
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3.1.2 Inhomogeneous plasma slab

A confined plasma is always characterized by spatial inhomogeneities. In this section,
the simplest case of an inhomogeneous plasma, a one-dimensional slab with a straight
magnetic field is studied. The equilibrium quantities are assumed to vary only along
the x-direction, ρ0 = ρ0(x), p0 = p0(x),B0 = B0(x) = B0,y(x)ey + B0,z(x)ez. The
equilibrium condition can be found from the force balance using Ampère’s law to
substitute the current:

d

dx

(

p0 +
B2

0

2µ0

)

= 0.

Any perturbed quantity is assumed to have the form f = f0 exp[i(kyy + kzz − ωt)].
Moreover, it is convenient to choose a set of coordinates based on the directions par-
allel and perpendicular to B0 by defining e‖ ≡ B0/B0 and e⊥ = e‖ × ex. In these
coordinates, k‖ = (kyB0,y + kzB0,z)/B0 and k⊥ = (kyB0,z − kzB0,y)/B0. After some
manipulation it’s possible to obtain the following wave equation for ξx [33]:

d

dx

(

B2
0DAα

′

α′k2
⊥ −DA

dξx
dx

)

− B2
0DAξx = 0. (3.4)

Here, DA ≡ ω2/v2
A − k2

‖ is the local shear Alfvén propagator and

α′ = 1 +
γβω2

2ω2 − γβk2
‖v

2
A

,

where β = 2µ0p0/B
2
0 is the plasma beta. Eq. (3.4) again describes the three branches

already studied in the previous section which are now coupled by equilibrium in-
homogeneities. This equation and, hence, its solution is singular at points where
B2

0DAα
′ = 0, corresponding to the appearance of two continuous spectra:

ω2 = ω2
A(x) = k2

‖(x)v2
A(x), (3.5)

ω2 = ω2
s(x) =

v2
s(x)k2

‖(x)

1 + v2
s(x)/v2

A(x)
. (3.6)

The origin of the singularities can be explained by a resonant excitation of the shear
Alfvén waves [34]. Shear and compressional Alfvén waves are coupled in eq. (3.4). The
compressional waves transport their energy mostly across the magnetic field and pile
it up at positions where the shear Alfvén spectrum can be resonantly excited. The
singularities are a signature of the breakdown of the ideal MHD model. In fact, it is
the absence of an energy dissipation mechanism for shear Alfvén waves in ideal MHD
that leads to the long-term singular behaviour of the shear Alfvén eigenfunctions.

Shear Alfvén waves become local plasma oscillations due to the plasma inhomogeneities.
If one assumes a wave with a certain wave vector k, the component k‖ parallel to B0(x)
depends on x as does the Alfvén velocity vA(x) and thereby the frequency ωA (see
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Figure 3.1: Continuous spectra of shear Alfvén waves. Colours indicate different wave
branches, each having a distinct wave vector k.

Fig. 3.1). This gives rise to an interesting damping mechanism called phase mixing :
If the time-asymptotic behaviour of a spatially extended velocity perturbation v(x) is
studied [34], it is seen that the amplitude of the vx-component decays as 1/t whereas
the other components oscillate with constant amplitude. Due to the inhomogeneities,
each fluid element along the inhomogeneity oscillates at its own shear Alfvén frequency,
loosing coherence with the motion of the adjacent fluid elements. An initially smooth
and extended perturbation changes in time and looses phase coherence along x, quali-
tatively explaining the name ”phase mixing”.

Finally, it has to be pointed out that the shear Alfvén wave spectrum is degenerate,
which is a consequence of the fact that the dispersion relation depends on k‖ alone. At
each position x it is possible to find waves with distinct k1 6= k2 that have k‖,1(x) =
±k‖,2(x) and, therefore, ω2

A,1(x) = ω2
A,2(x).

3.1.3 Shear Alfvén Continuum in Cylindrical Geometry

The simplest plasma equilibrium is a pressureless (p0 = 0) screw pinch. A screw
pinch of length 2πR0 is characterized by a magnetic field B0 = (0, B0θ(r), B0z(r))

T ,
where (r, θ, z) is a cylindrical coordinate system. It is an one-dimensional equilibrium
similar to the sheared slab, the only new feature is the presence of a finite magnetic
field curvature. It is mainly of relevance as an approximation to a large aspect-ratio
tokamak.

From now on, sound and compressional Alfvén waves and their coupling to the shear
Alfvén wave spectrum will be neglected, an assumption that allows some simplifica-
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tions. Because shear Alfvén waves are purely transversal, magnetic field perturbation
is perpendicular to the equilibrium field only, B̃‖ = 0, or in terms of the magnetic vec-

tor potential Ã⊥ = 0 which allows to write Ã = Ãb. In the ideal MHD limit, parallel
electric fields are not allowed, i.e. Ẽ‖ = 0. Using these approximations, it is possi-

ble to express the perturbed electromagnetic field through a single, scalar potential Φ̃
(assuming that it varies as exp(−iωt) in time):

Ẽ = −∇⊥Φ̃, B̃ = ∇× Ã = ∇× (Ãb) =
1

iω
∇× (∇‖Φ̃b). (3.7)

Here, the definitions ∇⊥ = ∇− b∇‖ and ∇‖ = b · ∇ have been used.

The cylindrical geometry suggests to take shear Alfvén oscillations of the scalar poten-
tial in form of a suitable Fourier series:

Φ̃(r, θ, z, t) =
∑

m,n

ei(mθ−nz/R0) · Φ̃m,n(r, t).

With these prerequisites the description of shear Alfvén waves reduces to an infinite set
of uncoupled, second-order partial differential equations for individual (m,n)-branches
[35]

1

r2

∂

∂r

[

r3(m ι − n)2 + r3R
2
0

v2
A

∂2

∂t2

]

∂

∂r

(

Φ̃m,n(r, t)

r

)

= 0, (3.8)

where  ι =  ι(r) = R0B0θ(r)/[rB0z] is the rotational transform. The solutions of (3.8)
are

Φ̃m,n(r, t) ∼ exp[−iωA(r)t], (3.9a)

ω2
A(r) ≡ v2

A(r)(m ι(r) − n)2

R2
0

= v2
A(r)k2

‖(r), (3.9b)

where k‖ ≡ (m ι − n)/R0 has been defined. The solutions are similar to the sheared
slab case, i.e. local plasma oscillations that form a frequency continuum. To see this,
consider the dispersion relation (3.9b). For a fixed branch Φ̃m,n, the frequency ωA

varies continuously with the radius due to the dependence of vA and  ι on r.

The cylindrical spectrum is degenerate as well: The dispersion relation has two solu-
tions at radial positions r∗ where  ι(r∗) is a rational number. In this case it is always
possible to solve the equation k‖(m1, n1, r∗) = −k‖(m2, n2, r∗) for integer values of
m1, m2, n1 and n2, respectively, which means that the dispersion relations of two dif-
ferent shear Alfvén wave branches Φ̃m1,n1

and Φ̃m2,n2
intersect at r∗ as indicated in

Fig. 3.2. For given mode numbers (m1, n1) and (m2, n2) the radial position r∗ at which
the branches intersect is determined by the condition

 ι∗ =  ι(r∗) =
n1 + n2

m1 +m2

. (3.10)
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Figure 3.2: Two different Alfvén wave
branches which cross at a radial po-
sition where the intersection condition
Eq. (3.10) is satisfied.
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Figure 3.3: Alfvén wave branches which
are coupled by toroidicity to break up
and reconnect. Colors indicate the wave
branch in the cylindrical limit ǫ(10) → 0.

Hence, two shear Alfvén wave branches in cylindrical geometry will intersect if the
corresponding value of  ι∗ is reached at some radius inside the plasma. The frequency
at the intersection point is given by a relation that does not depend on (m1, n1) and
(m2, n2) individually, but only on their differences:

ωA( ι∗) = |(m2 −m1) ι∗ − (n2 − n1)| vA

2R0

. (3.11)

3.1.4 Continuous Spectrum in Toroidal Geometry

In the cylindrical case the equilibrium was characterized by a constant magnetic field
strength B = |B| on a flux surface r = const. This cannot be achieved in toroidal ge-
ometry. Even in the simplest case of a toroidal equilibrium with circular cross sections,
the toroidal magnetic field generated by the external coil set will vary as 1/R inside
the plasma, where R is the distance from the major axis of the torus. Consequently, B
is not constant on any flux surface. Plasma shaping further complicates the symmetry
properties of B by introducing additional variations. While tokamaks have axisymmet-
ric equilibria (the toroidal angle is the ignorable coordinate) and there B = B(s, θ) is
a function of the poloidal angle variable θ only, stellarators commonly have a variation
of B in toroidal direction as well, B = B(s, θ, φ). The symmetry-breaking leads to new
features in the spectrum of shear Alfvén waves.
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To proceed with the analysis, it is necessary to specify the equilibrium magnetic field
strength in a form suitable for further treatment. It is common to expand the magnetic
field strength in a series of the form

B = B̄h, h = 1 +
∑

µ,ν

ǫ
(µν)
B (s) cos(µθ − νNφ). (3.12)

Here, B̄ is the average magnetic field on the magnetic axis and µ, ν are integers. N is the
number of identical field periods in stellarators, and (s, θ, φ) the magnetic coordinates
with s = Ψ/Ψa being the normalized magnetic flux. It is possible to relate the Fourier
coefficients in Eq. (3.12) to the flux surface shape. The (µ, ν) = (1, 0) harmonic is
caused by toroidicity as explained above, the (2, 0) harmonic is caused by an overall
vertical elongation (ellipticity) of the plasma, and the (3, 0) harmonic by triangularity.
All other harmonics with ν = 0 are generated by additional deviations from circular
plasma cross sections and are possible in tokamaks as well as in stellarators. In the
latter, harmonics with ν 6= 0 are present as well: the (0, ν > 0) are called mirror
harmonics (purely toroidal variations), while the (µ > 0, ν > 0) terms are called helical
harmonics.

If, again, perturbations of the form

Φ̃(s, θ, φ, t) =
∑

m,n

Φm,n(s) exp[i(mθ − nφ− ωt)]

are assumed and a Fourier transform in θ and φ is applied, the resulting differential
equations that describe Φ̃mn do no longer decouple. To show this, consider the following
equation describing shear Alfvén waves in a current free, optimized stellarator in Boozer
coordinates (neglecting the effects of plasma pressure on the equilibrium magnetic
field), that has been derived in Ref. [10]:

∑

m,n

[

L̂
∂

∂xi

(

gisk′‖ + k‖g
ij ∂

∂xj
− ihk2

‖b
i

)

−ω2R0
∂

∂xi

1

v̄2
Ah

4

(

igij ∂

∂xi
+ hbik‖

)]

· Φ̃m,n exp[i(mθ − nφ− ωt)] = 0.

Here, xi = s, θ, φ, gij are the contravariant metric coefficients, and v̄A = B̄/
√
µ0ρ0 is the

mean Alfvén velocity. This equation is a three-dimensional equation. The dependence
on θ and φ arises not only due to the Fourier coefficients of B (contained in h), but also
from the metric coefficients which are themselves functions of B and can be expanded in
a Fourier series similar to (3.12), yielding coefficients ǫ

(µν)
g . If furthermore the coupling

parameters ǫ are assumed to be small, the equation can be simplified to an infinite set
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of coupled second-order differential equations similar to Eq. (3.8):

0 =
∂

∂r
r3

(

ω2

v̄2
A

− k2
m,n

)

∂Em,n

∂r
+ Qm,nEm,n (3.13)

+
∑

µ,ν

∂

∂r
r3

[

ω2

v̄2
A

(

ǫ
(µν)
g

2
− 2ǫ

(µν)
B

)

− km,nkm+µ,n+Nν
ǫ
(µν)
g

2

]

∂Em+µ,n+Nν

∂r

+
∑

µ,ν

∂

∂r
r3

[

ω2

v̄2
A

(

ǫ
(µν)
g

2
− 2ǫ

(µν)
B

)

− km,nkm−µ,n−Nν
ǫ
(µν)
g

2

]

∂Em−µ,n−Nν

∂r
,

where

km,n = k‖(m,n), Em,n =
Φ̃m,n

r
, Qm,n = r

(

ω2

v̄2
A

− k2
m,n

)

(1−m2)+r2 ∂

∂r

(

ω2

v̄2
A

)

,

and r ∼ √
s. If the cylindrical case is recovered by setting ǫ

(µν)
g,B = 0, the equations (3.13)

decouple and the cylindrical result is obtained that two different Alfvén wave branches
(m,n) and (m+ µ, n+Nν) intersect at radial positions r∗ and at frequencies ω where

 ι∗ =  ι(r∗) =
2n+ Nν

2m+ µ
, ω(µν)

∗ = ω(µν)( ι∗) = |µ ι∗ −Nν| v̄A

2R0
. (3.14)

The formerly independent (m,n) and (m+µ, n+Nν) branches split up in the presence
of a finite ǫ(µν) and reconnect as indicated in Fig. 3.3. The frequency gap that appears
has a minimum width of ∼ ǫ(µν) near the intersection point. Because this happens
simultaneously for all (m,n) at different radial locations, a radially extended frequency
gap opens up. ( ι∗ depends on m and n whereas ω(µν) does not!) The gap frequency
ω(µν) varies with the plasma radius through  ι and vA. However, no continuum branch
can cross this gap because an arbitrary cylindrical branch ω = ωm,n( ι) will necessarily
meet another branch ω = ωm±µ,n±Nν( ι) and reconnect. Consequently, the shear Alfvén
dispersion relation ω2

A = k2
‖v

2
A has no solution inside the gap.

If more than just one coupling coefficient is present, a gap opens for each of these. If the
ǫ(µν) are not small, an interaction between different gaps is possible. This usually means
that especially wide gaps shift the adjacent gaps in frequency. Also, the formation of
secondary or higher order gaps is possible. Even if ǫ(µν) = 0 the branches (m,n) and
(m+µ, n+Nν) can be coupled provided that two (or more) other coupling parameters
ǫ(µ1ν1), ǫ(µ2ν2) are large, and ν = ν1 + ν2 and µ = µ1 +µ2, respectively. Fig. 3.4 presents
the Alfvén wave continuum calculated for a typical W7-AS discharge using the COBRA
code (Sec. 4.4.2). Besides the usual (µ, 0)-gaps known in tokamaks, the figure shows
that in stellarators gaps with ν 6= 0 are possible and can even be significantly larger,
e.g. the extremely wide helicity-induced (2, 1) gap which is caused by the rotating
helicity of the plasma cross section.
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Figure 3.4: Alfvén continuum calculated numerically for a typical W7-AS discharge.
The black dots indicate the Alfvén continuum calculated by a scan in k‖ and r/a. The
absence of the dots is an indication for the formation of gaps. The most important
gaps have been colored for better identification.

3.2 Alfvén Eigenmodes

In laboratory plasmas, Alfvén waves are difficult to excite because sufficient energy is
needed to bend the field lines. Moreover, in a sheared magnetic field, Alfvén waves are
characterized by a continuous spectrum and become highly localized oscillations at the
flux surface where the local dispersion relation ω2 = k2

‖v
2
A is fulfilled. If any radially

extended perturbation happens to excite the continuous shear Alfén wave spectrum, it
will suffer from strong continuum damping by the phase mixing phenomenon.

This is the reason that Alfvén instabilities were not considered to be a thread to fusion
plasmas until it was discovered that the Alfvén continuum has gaps [5, 6, 12, 13]. It
was soon realized that in these gaps a discrete spectrum of Alfvén instabilities with
possibly well-behaved, non-singular radial eigenfunctions exists [7, 9], the so called
Alfvén Eigenmodes (AEs). These AEs do not necessarily intersect the shear Alfvén
continuum and therefore may be weakly damped.

3.2.1 Global Alfvén Eigenmodes (GAEs)

The existence of the GAE can already be established in cylindrical geometry with a
sheared magnetic field as in the screw pinch (Sec. 3.1.3). A necessary condition for the
existence of the GAE is that the dispersion relation of a continuum branch ω2

A(r) has
a minimum at some radial position rext, where dω2

A/dr = 0 as indicated in Fig. 3.5.
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Figure 3.5: Alfvén continuum with an extremal point (minimum) at rext. Below the
continuum Global Alfvén Eigenmodes can exist.

In Refs. [32, 36] it has been shown that by expanding the shear Alfvén wave equation
around rext and applying a Fourier transform in r, a Schrödinger-like equation is ob-
tained that supports bound as well as continuous solutions. The continuous solutions
in Fourier space correspond to the strongly localized shear Alfvén waves, while the
solutions that are localized in Fourier space correspond to radially extended solutions
in real space.

The fact that these eigenmodes can extend over a large fraction of the plasma radius
has earned them the name Global Alfvén Eigenmodes (GAEs). They have a frequency
slightly below the minimum of the shear Alfvén continuum (cf. Fig. 3.5) and do not
suffer from continuum damping. It should be noted that they do not, at no point in
the plasma, obey the shear Alfvén dispersion relation. GAEs are difficult to excite in
tokamaks because toroidicity and the relatively high magnetic shear ŝ = d ι/dr have
a stabilizing effect on these modes. They are, however, often observed in low-shear
discharges as possible in W7-AS [21] in the presence of neutral beam heating.

3.2.2 Gap Modes

Near the degenerate intersection point  ι∗(m,n, µ, ν), Eq. (3.14) of two cylindrical
branches (m,n) and (m+µ, n+ν), which is resolved by the coupling of these branches,
the wave equations for both branches can be shown to have a new type of solution with
discrete eigenvalues ω2 that lie inside the (µ, ν)-gap in the continuous shear Alfvén wave
spectrum. This was demonstrated for the first time in Ref. [8] in the high-n and in
Ref. [7] in the low -n approximation for the toroidicity-induced coupling in tokamaks.
Assuming only one dominant pair of coupling numbers (µ, ν), the radial eigenfunctions
are centered around the intersection point  ι∗ and have a width |m∆ ι| ∼ ǫ(µ,ν) [35],
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where ∆ ι =  ι(r)−  ι∗. Thus, the solutions become very localized around r∗ for high m,
but low shear can significantly enhance their width.

The new solution describes an eigenmode which is formed by the coupling of at least
two harmonics inside the continuum gap (gap mode). The radial extension of the
eigenmode can be further enhanced by the coupling to more harmonics according to
the scheme (m,n) + (m + µ, n + µ) → (m + µ, n + ν) + (m + 2µ, n + 2ν). Whether
or not this coupling is possible depends, among others, on the profile of  ι because it is
required that the intersection points  ι∗(m,n, µ, ν) and  ι∗(m + µ, n + ν, µ, ν) are close
enough to allow the radial eigenfunctions to overlap. This effectively limits the number
of coupled harmonics in low-shear devices.

Historically, the gap modes were assigned names that indicate the geometric origin of
their existence. The (1, 0) coupling is caused by toroidicity, hence the name toroidicity-
induced Alfvén eigenmode (TAE), the continuum gap in which the mode exists is called
TAE gap. Ellipticity causes the (2, 0) coupling and the corresponding gap mode is
termed ellipticity-induced Alfvén eigenmode (EAE), giving the name EAE gap for the
(2, 0) continuum gap. All other tokamak-like gap modes and continuum gaps with
ν = 0 are named noncircularity-induced (NAEµν). In stellarators, B varies in toroidal
direction as well, creating additional gaps for which ν 6= 0. In case of helical variations
of B where both, µ and ν are 6= 0 the name helicity-induced (HAEµν) is used, whereas
purely toroidal variations, which cause toroidal mirror fields, are named mirror-induced
(MAE0ν).

Near the cylindrical intersection point r∗, the gap modes are inside the continuum
gap but they are radially extended and have a constant frequency throughout the
plasma. It can happen that at some other radial location r0, they obey the local shear
Alfvén wave dispersion relation ω2 = k2

‖(r0)v
2
A(r0). In this case they can resonantly

excite the Alfvén continuum and suffer from strong continuum damping. Otherwise
the gap modes are only weakly damped and can be destabilized by a suitable driving
mechanism.

3.3 Beyond Ideal MHD

3.3.1 Wave Drive and Damping

The power transfer between particles and electromagnetic waves is obtained by taking
the time derivative of the work E =

∫

Fds done on the particle by the Lorentz force:

dE
dt

= e(v‖ · Ẽ‖ + v⊥ · Ẽ⊥) + µp · ∂B̃
∂t
, (3.15)

where Ẽ and B̃ are the electric and magnetic field associated with the wave, respec-
tively, and E is the particle energy. Assuming that Ẽ and B̃ vary as ∼ exp(ik ·x− iωt)
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and integrating (3.15), it is seen that in average a non-vanishing energy exchange be-
tween wave and particle is only possible if the resonance condition v ≈ vph is satisfied
(vph is the phase velocity of the wave). Shear Alfvén waves and eigenmodes propagate
along the magnetic field lines with the Alfvén velocity vA, hence fast particles can
resonantly interact with these waves if they have longitudinal velocities vres

‖ ≈ vA.

The parallel electric field is always Ẽ‖ = 0 in the ideal MHD approximation. Even

if kinetic effects such as finite resistivity are included, the ratio v‖Ẽ‖/(v⊥Ẽ⊥) ≪ 1 so

that the term containing Ẽ‖ can be neglected [11]. If one considers only well circulating
particles where v‖ ≫ v⊥, the third term in (3.15) can be neglected because µp → 0 for

these particles and usually B̃/B0 < 10−3 for Alfvén eigenmodes. This leaves ev⊥ ·Ẽ⊥ as
the dominant term. After averaging over the fast gyro-motion of the particle, retaining
the guiding center drift only (see Sec. 2.2), and assuming vanishing radial transport,
this becomes

dE
dt

= evD · Ẽ⊥.

Thus, the energy exchange between fast, circulating ions (as produced by the neu-
tral beam injection at W7-AS) and AEs is dominated by the periodic cross-field drift
velocity vd. There is a subtle implication in the dependence of the wave-particle in-
teraction on the drift velocity: Because the particles are confined on drift surfaces,
that are displaced from the flux surfaces to which the modes are aligned, the particle
”feels” a periodic modulation of the wave amplitude and phase through which it can
interact with the mode itself. This sideband excitation creates additional resonances
which allow a significant wave-particle interaction even for particles with v‖ < vA as
seen in the modified resonance condition [11]:

vres
‖

vA
=

[

1 ± 2
µD  ι−NνD

µ ι−Nν

]−1

sgn(kmn). (3.16)

Here, µD and νD are the Fourier coefficients of vD which are related to the Fourier
coefficients of the magnetic field, (µ, ν) are the coupling numbers of the AE, and kmn =
k‖(m,n) = (m ι − n)/R0 is the parallel wave number of one of the AE harmonics. If
all dominant fourier harmonics (µD, νD) are substituted into (3.16) one after the other,
the complete list of possible resonances is obtained.

The eigenvalues ω2 of the ideal MHD force balance operator in the normal mode ap-
proach are real (see Sec. 2.3.2). Therefore all Alfvén waves are marginally stable in
this theory. In order to derive an expression for the energy exchange between wave and
particles, kinetic effects have to be included. In the following, two theoretical models
are presented that perturbatively apply a kinetic correction to the ideal MHD model
based on the drift-kinetic approximation, i.e., neglecting the fast gyro-motion of the
particles and considering the drift of guiding centers only as described in section 2.2.
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3.3.1.1 Perturbative, Local Approach

By identifying (ev) with a current carried by a particle, observing that in ideal MHD
Alfvén waves are marginally stable, and neglecting µp∂B̃/∂t, Eq. (3.15) can be written
as

∫

d3x J̃ · Ẽ = 0,

where the integral is taken over the entire plasma volume. This equation describes
the energy exchange between the whole plasma and the wave in ideal MHD. Now, a
perturbative approach is applied as described in [11]. Assuming that a small population
of energetic particles α is present, the current can be written as J̃ = J̃MHD + J̃α. Here,
J̃MHD is the wave-induced current in ideal MHD, and J̃α is that of the energetic ions.
Using the fact that for ideal-MHD Alfvén waves Ẽ‖ = 0 and B̃‖ = 0 one can write

Ã⊥ = 0 and Ẽ = −∇⊥Φ̃ which is assumed to depend on time as ∼ exp(−iωt). If the
wave frequency ω is presented as ω = ω0 + δω, the equation

∫

d3x J̃MHD · ∇Φ̃ = 0

determines the ideal MHD eigenfrequency ω0. For the perturbative approach to be
valid, δω ≪ ω0 should hold. For the growth rate γ = Im ω is obtained

γ = −Im

∫

d3x J̃α
⊥ · ∇⊥Φ̃

∫

d3x (∂J̃MHD/∂ω0) · ∇Φ̃
. (3.17)

The energetic particle current is calculated from the distribution function of the fast
particles, which can be calculated as the solution of the linearized Valsov equation by
the method of characteristics and be written as follows:

f̃ = − e

mα

∫ t

t0

dτ
(

Ẽ + v × B̃
)

· ∂f0

∂v
, (3.18)

where f0 is the equilibrium distribution function and v(t) = dr(t)/dt are determined by
the equation of motion of the particles. Instead of using spatial coordinates, it is more
convenient to use the constants of motion of the particles as independent variables for
the distribution function. Assuming only well circulating particles where v‖ ≈ const.
and neglecting the Larmor rotation, the constants of motion and adiabatic invariants
are the particle energy E , the magnetic moment µp, and the toroidal canonical mo-
mentum. The additional assumption of small particle orbit width allows one to use
the radial coordinate r instead of the toroidal canonical momentum. In many practical
applications the particle trapping parameter λ = µpB̄/E , related to the particle pitch
by λ = 1 − χ2, is easier accessible than µp. Here, B̄ is the averaged magnetic field
on the magnetic axis. In these coordinates, considering only the resonance part of f̃
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and using the drift-kinetic approximation, v = v‖ + vD, Eq. (3.18) can be simplified
to give:

f̃(t) =
e

mα
Π̂f0

∫ ∞

0

dt′ vD(t− t′) · ∇Φ̃(t− t′), (3.19)

where Π̂ is a differential operator given by

Π̂ = mα
∂

∂E − mαλ

E
∂

∂λ
+

n

ωωc ι

1

r

∂

∂r
(3.20)

and ωc is the particle gyro frequency. To proceed, all important quantities are expressed
in Fourier series according to

X̃ =
∑

m,n

Xmn(r) exp(imθ − inφ − iωt),

B0 = B̄

[

1 +
∑

µ,ν

ǫ
(µν)
B (r) cos(µθ −Nνφ)

]

,

vD =
∑

p,s

up,s(r) exp(ipθ + isφ).

All indices, m,n, µ, ν, p and s are integers. Assuming that the particle stays on flux
surfaces allows the simplification r(t) = const. and the approximation of the time
dependence of the particle position as

θ(t′) = θ(t) + ωθ · (t′ − t), φ(t′) = φ(t) + ωφ · (t′ − t).

Here, ωθ and ωφ are the frequencies of the poloidal and toroidal particle rotation,
respectively. This gives for the energetic ion distribution function:

f̃mn = − ie

mα

Π̂f0

∑

p,s

ups · ∇Φ̃mn

Ωps
mn

exp(ipθ + isφ), (3.21)

where Ωps
mn = ω − (p + m)ωθ − (s − n)ωφ. Now the wave-induced energetic particle

current is given as the velocity moment over the distribution function,

jαmn = e

∫

d3v(v‖ + vD)fmn.

After some algebra and in the limit of well-localized modes and that only two essential
harmonics are present, the authors of Ref. [11] arrive at the following expression for
the growth rate:

γ =
2π2e2v2

A(r∗)

mα

∫

d3vΠ̂f0

∑

p,s

|ups|2
δ(v‖ − vres

‖ )

|kps
mn|

, (3.22)
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where r∗ is the radius around which the mode is localized,

kps
mn = [(m+ p) ι− (n− s)]/R0,

and the resonant longitudinal velocity is

vres
‖ = ω/kps

mn (3.23)

Eq. (3.22) contains the differential operator Π̂ which consists of three terms: The
first term, mα∂/∂E , is usually stabilizing because ∂f/∂E is usually negative. This
collisionless damping is also known as Landau damping. However, if positive velocity
gradients are present in the distribution function, they can strongly drive instabilities.
Experiments performed in W7-AS with radial NBI indicate that if the positive gradients
are strongly localized in space, they are likely to drive ion cyclotron instabilities with
frequencies in the MHz range [37]. Only spatially extended positive velocity gradients
are expected to contribute significantly to the mode drive via the term containing
∂f/∂E , but the creation of such gradients requires that the energetic particles cross a
loss cone during their slowing-down. If the fast ion distribution function is isotropic,
the second term of Π̂ vanishes but it can contribute to the growth rate of eigenmodes
in case of strongly anisotropic NBI heating. The third term containing ∂/∂r gives the
largest contribution to the growth rate in most cases. It describes the influence of
the spatial (radial) inhomogeneity of the distribution function on the stability of an
eigenmode. The magnitude of the interaction is given by the ratio of the diamagnetic
drift frequency ω∗α to the mode frequency:

ω∗α

ω0

=
nv2

α

 ιrω0ωcα

· ∂ ln(nα)

∂r
, (3.24)

where n is the toroidal mode number, vα is the characteristic speed of the energetic
particles, ωcα is their cyclotron frequency, and ∂ ln(nα)/∂r is the density gradient scale
length. This term describes both, damping and drive of a mode, depending on the
sign of the mode numbers. Because the density decreases with r, modes with n < 0
are destabilized if B > 0. When the field is reversed, ω∗ changes sign with ωcα. The
diamagnetic drift frequency grows linearly with n and therefore favours modes with
large mode numbers.

In the derivation of Eq. (3.22) it was assumed that the mode is strongly localized around
the surface r = r∗. This approximation is justified even for modes with a rather wide
extend if the magnetic shear is small and the density profile is flat, which is usually
the case in optimized stellarators. On the other hand, the authors of Ref. [11] admit
that the applicability of the approximation of only two dominant harmonics is likely
to be violated due to strong multimode coupling where more than just one ǫ(µν) is
responsible for coupling of additional harmonics to the eigenmode. The approximation
of energetic, well-circulating ions with v‖ ≫ v⊥ that was explicitely made use of in
the derivation of the growth rate further limits the applicability of the expression to
cases with tangential NBI, which is, however, no restriction at W7-AS. If the same
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formalism is employed to calculate the damping by the bulk plasma, only the Landau
damping by electrons and ions which are in resonance with the mode is covered – the
growth of the instability will probably be overestimated. Recently, the theory has been
generalized to take into account the finite width of eigenmodes and the effects of finite
Larmor radii and finite B‖ [38].

3.3.1.2 Kinetic MHD

The second approach generalizes the ideal MHD force balance to take into account
kinetic effects and is described in Ref. [39]. The use of a scalar plasma pressure implies
distribution functions that are isotropic on flux surfaces, dropping this assumption
requires to represent the pressure with a tensor

∇ ·↔−P = −ρdv

dt
+ J × B. (3.25)

Respecting the privileged direction imposed by the magnetic field by expansion in com-
ponents parallel and perpendicular to b = B/B, the pressure tensor can approximately
be written as

↔−
P = p⊥

↔−
I + (p‖ − p⊥)bb

with

p‖ =
∑

x=e,i,α

∫

d3v mxv
2
‖fx, p⊥ =

∑

x=e,i,α

∫

d3v µBfx,

where fx is the distribution of species x, e stands for plasma electrons, i for thermal
ions, α for the fast particle species, and µB is the particle energy perpendicular to b.
After linearizing, the first-order part of

↔−
P is given by

↔−̃
P =

∑

x=e,i,α

∫

d3v [µB
↔−
I + (mxv

2
‖ −µB)bb]f̃x + [(mxv

2
‖ −µB)(b̃b + bb̃)]f0,x (3.26)

In the following, it is assumed that all perturbed quantities vary in time as ∼ exp(−iωt).
The energy change due to the perturbation can be calculated from the linearized,
first-order force balance (3.25) by multiplying it with the complex conjugate of the
displacement vector ξ and integrating over the plasma volume (only displacements
perpendicular to the equilibrium magnetic field are allowed, in accordance with ideal
MHD). The result can be written in terms of three individual contributions:

δWkin = δWmag + δWp, (3.27a)

where the individual contributions are given by:

δWkin =
ω2

2

∫

d3x ρ|ξ⊥|2, (3.27b)
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δWmag =
1

2

∫

d3x |B̃|2 − B̃ · (ξ∗
⊥ × J0), (3.27c)

δWp =
1

2

∫

d3x ξ∗ · (∇ ·
↔−̃
P e) + ξ∗ · (∇ ·

↔−̃
P i) + ξ∗ · (∇ ·

↔−̃
Pα). (3.27d)

Here, δWkin describes the change in the kinetic energy of the system due to the per-
turbation, the change in magnetic energy, δWmag, is identical to the ideal MHD con-
tribution to the perturbed magnetic energy, and all kinetic effects are embedded in
δWp. If this term is considered to be small, i.e. δWp ≪ δWmag, the growth rate can be
calculated perturbatively:

∆ω + iγ ≈ 1

2

δWp(ω0)

δWmag
· ω0 (3.28)

In this approach, each particle species contributes separately to the growth and damp-
ing of the mode. The task is now to find an expression for the perturbed distribution
function. The author of Ref. [39, 40] uses a drift-kinetic equation. Furthermore, only
ideal MHD perturbations are assumed (E‖ = 0) and radial particle drifts are neglected.
In order to avoid following the 3D particle orbits explicitely, a technique developed by
Rewoldt at al. [41] is used where the particles are assumed to move along field lines,
feeling a bounce or transit averaged drift only. The resulting expressions give the
perturbed distribution function f̃ in terms of f0 and the perturbed fields – they are
different for passing and trapped particles because of the integration over the different
particle orbits. The resonance frequencies correspond to characteristic frequencies of
the particle orbits: transit and bounce frequencies and their harmonics, and transit or
bounce average drifts of the guiding centers including the sideband resonances given
by eq. (3.16). In Boozer coordinates the contribution of a single particle species x to
the energy integral (3.27) is found to be [40]

δWx =
π

m2
x

{ ∑

σ

1

}∫

ds

∫

dφ

∫

dµdE
(

−
∫

dθ

|v‖|
√
gB

)

×
∑

m,n

m′,n′

∞
∑

p=−∞

e−i 2π
N

(n′−n)φ

(

∂f0,x

∂E

)

µ

× ω − 2π( n
N
J −mI)ω∗

m
〈

ωθ
d

〉

+ n
N

〈

ωφ
d

〉

+

{

σ(p+ nq)ωt

p ωb

}

− ω

×L̃m′n′Mm′n′

pn · L̃mnMmn
pn , (3.29)

where the particle Lagrangian L̃ = −(mxv
2
‖ − µB)ξ⊥ · κ + µB∇ · ξ⊥ describes the

particle guiding-center motion,

Mm′n′

pn =

{

〈exp [2πi(m′ + n′q)θ′′ − i(p + nq)ωtt
′′]〉

〈

e2πi(m′−n′q)θ′′
[

cos2
(

π
2
p
)

cos(pωbt
′′) − i sin2

(

π
2
p
)

sin(pωbt
′′)
]〉

}
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q =  ι−1, 〈· · · 〉 denotes the transit or bounce average along particle orbits [t′′ = t′′(θ′′)],
p denotes the Fourier harmonics of bounce or transit frequencies, ωt (ωb) is the tran-
sit (bounce) frequency for passing (trapped) particles, I and J are the toroidal and
poloidal plasma current, respectively, and the upper term in {. . .} has to be used for
passing particles whereas the lower term is suitable for trapped particles. The reduced
diamagnetic drift frequency is given by

ω∗ = − 1

Ze
√
gB2

∂fx/∂s

∂fx/∂E
.

Eq. (3.29) contains, similar to eq. (3.22), terms ∼ ∂f/∂s and ∼ ∂f/∂E that are ex-
pected to behave equivalently. In contrast to the local approach, the particle motion
is less approximate, a fact that leads to additional resonances at the particle transit or
bounce frequencies that can enhance drive or damping.

Once the displacement ξ(x), the ideal MHD eigenfrequency of the mode ω0 and the
distribution functions f0 for all species are known, Eq. (3.28) can be solved numerically
to obtain the effective growth rate of the instability. It includes the finite radial ex-
tend of eigenmodes as well as the different characteristics of the orbits of trapped and
passing particles – providing a more profound description of the effective linear growth
and damping rate than the local approach. Still, this approach is perturbative and,
strictly speaking, valid only in the limit of small perturbations and energetic particle
populations.

3.3.2 Wave-Induced Transport

Wave-particle interactions have been treated in a linear perturbative approach in the
last section. This is useful to determine the linear growth rate which indicates whether
an eigenmode is stable or unstable under given conditions. But it does not describe
wave amplitude saturation or the radial redistribution of particles in the presence of
a wave with finite amplitude, effects that are observed in all fusion experiments. Full
non-linear and self-consistent calculations of wave-particle interactions are required to
solve this task.

Due to the complexity of the problem, analytical predictions and simple numerical
models of the effect of a wave on the particle distribution function result mostly in qual-
itative arguments. Numerical simulations of the full non-linear problem that describe
the temporal evolution of particle distribution functions as well as mode amplitude
and frequencies have been done for tokamaks and successfully compared to the exper-
iment (e.g. [42, 43]). But excessive use of the axisymmetry of tokamak configurations
had to be made to reduce the dimensionality of the problem and make it numerically
tractable. Comparable simulations are just becoming available for stellarators due to
increasing computing power and advanced numerical schemes [44, 45].

Because systematic non-linear studies of wave-particle interactions in stellarators are
still lacking, the following discussion of wave-induced particle transport will only name
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the most important physical effects that are expected. These effects can be roughly
divided into two classes: (I) resonant transport that affects particles which move in
resonance with the wave, and (II) non-resonant transport that affects other particles
as well by perturbations of their orbital motion.

3.3.2.1 Resonant Transport

Particles that are in resonance with an instability can drive it if they provide a source
of free energy that can be tapped by the instability. The most important are strong
spatial gradients and deviations from a local Maxwellian distribution function. This
implies, of course, that if energy is transferred from the particles to the wave, the
energy source is drained until a stable configuration is achieved.

In case of instabilities driven by spatial gradients this means that the gradients are
reduced. Steep radial gradients in the distribution of energetic particles are a common
phenomenon in fusion devices. The effect of Alfvén eigenmodes on the distribution
function is a radial redistribution of the resonant particles within the region where the
mode is localized to reduce the local gradient. If the mode is localized near the plasma
edge, the energetic ions can be expelled from the plasma.

An alternate mechanism for the resonant transport affects passing particles that are
close to the trapping boundary. If they are in resonance with the mode and transfer
parallel energy to it, they can become trapped and possibly leave the plasma on large
banana orbits. In either case, the amount of particle losses is expected to scale linearly
with the mode amplitude [15, 16].

3.3.2.2 Non-Resonant Transport

In contrast to the losses by resonant interaction with the instability, enhanced transport
caused by Alfvén eigenmodes is also possible for particles that are not in resonance with
the mode. Several responsible mechanisms can be identified [14]:

• The displacement of flux surfaces associated with the mode causes the fast ion to
move radially by the same amount. This can potentially increase the step size in
a random walk model of diffusion as in classical or neoclassical transport theory.
However, this effect is considered to be negligible.

• Alfvénic activity can cause a stochastization of magnetic field lines (destruction
of magnetic surfaces) if the amplitude of the perturbation is sufficiently strong.
In this case the radial transport is caused by the parallel motion of particles along
stochastic field lines. After the stochasticity threshold has been overcome, the
particle transport is expected to scale as (B̃/B0)2 [42].

• The periodic perturbation causes additional resonances between the complex or-
bital motion of the particle and the spatial structure of the mode field. Again, a
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large amplitude perturbation of B̃/B ∼ 10−3 is required for the effect to become
important [16].

3.3.3 Kinetic Modifications of the Alfvén Wave Spectrum

3.3.3.1 Kinetic Alfvén Waves

The singularities that appear in Eq. (3.4) are a sign that the ideal MHD model breaks
down when very short scale perturbations are excited. On these short scales it is
expected that charge separation effects and, hence, finite parallel electric field pertur-
bations Ẽ‖ become important due to, e.g., finite ion Larmor radius effects, small but
finite electron inertia, as well as finite plasma resistivity and viscosity. All these effects
can be included in a finite, complex valued conductivity in Ohm’s law which means
dropping the ideal MHD assumption. In the presence of finite Ẽ‖, additional effects
can also be expected from wave-particle interactions such as viscous, collisional, or
Landau damping of waves by electrons and ions. If such ”kinetic” effects are included,
it is possible to show that the wave equation is modified to include a fourth-order term
like [34, 35]

4ω2∇⊥ρ
2
k∇⊥ξx, (3.30)
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δe and δi are the electron and ion damping contributions, respectively, and ρi is the
ion Larmor radius. This equation is valid provided the relations me/mi ≪ βe ≪ 1
and k2
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i ≪ 1 hold. The term containing the fourth-order derivative removes the

singulatities near the resonant layer. In fact, the modified wave equation describes the
conversion of a long-wavelength shear Alfvén wave to a short-wavelength kinetic Alfvén
wave (KAW) near the resonant layer, that transports the energy across the magnetic
field away from the resonance and is eventually absorbed by the background plasma.
The dispersion relation for KAWs is [46]:
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If the fourth order term is small, it dominates the wave equation only near the position
where the second order term vanishes. If the kinetic effects become large, they can
modify the Alfvén wave spectrum considerably. A possible consequence is a shift of
the frequencies of shear Alfvén eigenmodes into the continuum.

The same considerations hold qualitatively in toroidal devices. In addition, due to
KAW coupling, similar to shear Alfvén wave coupling, a countable infinity of new Ki-
netic Alfvén Eigenmodes (KAEs) emerges with frequencies just above the continuum
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gaps [47] that replace the continuous spectrum. The granularity of the KAE spectrum
becomes visible when observed with a resolution capable to detect kinetic effects. Re-
cently, KAEs have been shown to exist in stellarators similar to the Wendelstein-line
[48].

3.3.3.2 Energetic Particle Modes

In the presence of sufficiently strong fast-particle drive, yet another Alfvén eigenmode
emerges that is, correspondingly, called Energetic Particle Mode (EPM). Their exis-
tence has been shown analytically for tokamaks [49–51] and requires that the energetic
particle dynamics are included nonperturbatively, i.e. on the same footing as the bulk
plasma dynamics. In stellarators, energetic particle modes are expected as well, with
similar features as in tokamaks.

EPMs are predicted to emerge from the KAE dispersion relation as additional shear
Alfvén instability if the fast-particle drive exceeds the local continuum damping. These
modes can, therefore, be characterized as forced oscillations of the plasma with frequen-
cies close to characteristic frequencies of the fast particle motion, e.g. transit, bounce
or precession frequencies, and inside the shear Alfvén continuum. Consequently, the
instability is characterized by a threshold. In the case of tokamaks it has been shown
that the three types of shear Alfvén eigenmodes, ideal MHD gap modes, KAEs and
EPMs, occur under different experimental conditions [49]. Gap modes are a threshold-
less instability and can be destabilized by a perturbatively small population of energetic
particles. They always constitute the most unstable shear Alfvén eigenmode if they
do not suffer from continuum damping due to the variation of the gap frequency with
the radial plasma profiles. If the drive by the energetic ions is sufficiently strong to
overcome the continuum damping, EPMs are expected to be the strongest instability.
KAEs become the most important instability only if the TAE is strongly damped by
the continuum and the threshold for EPM excitation is not exceeded. However, KAEs
are never strongly instable, recalling that strongly driven KAEs merge into the EPM
branch.

From linear analytical calculations [51, 52] as well as numerical simulations [53] of
EPMs it is known that the real part of the EPM eigenfrequency strongly depends on
detailed characteristics of the energetic ion distribution function. Frequency chirping
and conversions between EPMs, KAEs and gap modes are expected in the presence
of non-linear wave-particle interactions and changes in the background plasma. The
radial eigenfunctions of the most unstable EPMs are localized at radial positions where
the particle drive is strongest. Frequency chirping on slow time scales is associated with
changes in the thermal bulk plasma and can happen for gap modes as well as for EPMs,
while chirping on short time scales characteristic for fast-ion redistribution due to
strong wave-particle interactions is predicted exclusively for EPMs. Frequencies inside
the shear Alfvén continuum, the different radial localization as well as the frequency
chirping are hints that sometimes allow to distinguish between gap modes and EPMs
in experimental observations of Alfvénic activity.



Chapter 4

Experimental and numerical tools

4.1 The W7-AS device

The Wendelstein 7 - Advanced Stellarator was operated from 1988 to 2002 at the
Institute for Plasma Physics (IPP) in Garching, Germany. It is a five-period stellarator.
The enormous flexibility in the vacuum magnetic field configuration and plasma heating
scenarios have made the device being a full success. The mission of W7-AS included:
[54]

• demonstrate the generation of a confining magnetic field with modular coils,

• demonstrate the success of partial stellarator optimization,

• study the plasma confinement properties of a currentless stellarator,

• develop suitable heating scenarios,

• develop and study of the island divertor concept.

Several operation modes with improved plasma confinement were discovered at W7-AS:

H-Mode in stellarators: High confinement mode with edge transport barrier at the
plasma boundary,

OC-Mode: Optimum Confinement mode with negative radial electric fields in the
gradient region,

HDH-Mode: High Density H-Mode with good energy confinement and low impurity
accumulation simultaneously at high densities.

Fig. 4.1 shows a picture of the W7-AS device surrounded by diagnostic and heating
equipment. Tab. 4.2 lists some important device parameters.

47
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Figure 4.1: Photo showing the W7-AS stellarator and diagnostic/heating equipment.

The vacuum magnetic field in W7-AS is produced by coil systems shown schematically
in Fig. 4.2. W7-AS is a partially optimized low shear stellarator with five identical field
periods and is shaped like a pentagon. The main field is generated by non-planar mod-
ular field coils which generate toroidal and poloidal field components simultaneously.
These coils alone produce a field of up to 2.5 Tesla with a fixed rotational transform

 ι ∼ 0.4 and almost no magnetic shear d ι/dr. Additional planar toroidal field coils are
used to change  ι in the range from about 0.3 ≤  ι ≤ 0.6. At low  ι, the shear is slightly
negative, at high  ι it becomes more and more positive. A small vertical field gener-
ated by the vertical field coils controls the horizontal position of the plasma column
to compensate the Shafranov shift. The ohmic (OH) transformator is used to either
compensate toroidal currents (such as the bootstrap current) to zero for a net current
free operation, or to induce substantial tokamak-like currents in order to increase the
magnetic shear and to study current-driven plasma instabilities. An additional set of
larger non-planar coils located in the corners of the pentagon introduces even more
flexibility. They allow to increase the magnetic field at the corners and modify the
mirror ratio of the toroidal magnetic mirrors. Not shown in Fig. 4.2 are the control
coils, two coils per period that were used to control the size of natural magnetic islands
present in the vacuum magnetic field for large  ι values.
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Figure 4.2: W7-AS magnetic field coils. MF: modular field, TF: toroidal field, VF:
vertical field, OH: Ohmic heating, NI: neutral beam injection.

Diagnostic Type Quantities measured

Interferometers optical, µwave line integrated electron density
Electron Cyclotron
Emission (ECE)

electron temperature, fluctua-
tions

Thomson Scattering Ruby and Nd:YAG electron density and temperature
Neutral Particle Ana-
lyzer (NPA)

ion concentrations and tempera-
ture, impurities

Bolometer radiation power
Soft X-Ray Cameras electron temperature, impurities,

fluctuations, tomography
Spectrometers densities, temperatures, impuri-

ties
Hα Camera neutral gas density, particle

fluxes, divertor strike lines
Diamagnetic Loop plasma energy content
Rogowski Coil plasma currents
Mirnov Probes magnetic fluctuations
Ion Loss Probe (EFIP) escaping energetic ions
Diagnostic Atom Beams e.g. Lithium beam edge plasma density
Langmuir Probes plasma parameters and fluctua-

tions in the divertor region

Table 4.1: Selection of diagnosics at W7-AS.
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Figure 4.3: Heating and diagnostic systems installed at W7-AS. Not all available di-
agnostics are shown.

Several diagnostics were installed at W7-AS to monitor the plasma. Table 4.1 illustrates
the diagnostic possibilities, even though it is not complete. For plasma heating, neutral
beam injection (NBI) and electron cyclotron resonance heating (ECRH) were used. The
NBI system consisted of two beamlines with four sources of 0.5 MW each that were set
up for balanced (co- and counter) tangential injection. Later, the setup was changed
for unbalanced injection (Fig. 4.4). The injected, highly energetic neutral particles are
ionized either collisionally or by charge exchange reactions and heat the bulk plasma
by thermalization. The ECRH system had five sources with 70/140 GHz and 0.5
MW power each. ECRH was used for (local) plasma heating, local electron cyclotron
current drive (ECCD), and electron heat transport studies (by power modulation).
Also, experiments using the OXB conversion to convert electron cyclotron waves to
electrostatic Bernstein waves, for which no upper cutoff density exists, were performed.

4.2 Diagnostics

This section deals with diagnostics that were installed at W7-AS. The focus will only
be on those diagnostics that have been used in the data analysis. After giving a short
overview of the physical basis, the setup at W7-AS will be explained.
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Device

type Advanced Stellarator
coil system modular coils
symmetry m = 5
rotational transform  ι 1 0.3 ≤  ι ≤ 0.6
major radius R m 2.0
minor radius a m a ≤ 0.2
fuel gas 1H or 2H (D)
first wall materials TiC, tungsten, (boronized) carbon
wall conditioning methods carbonization, boronization,

He glow discharge

Magnetic field

toroidal field at coils T 3.5
toroidal field at axis T 2.5
field ripple, ∆B/B 1 0.09 on axis

0.3 on LCMS
magnetic well 1 −0.015 . . . 0.01

Heating

ECRH 70 GHz 1 x 0.5 MW (3s)
140 GHz 1 x 0.3 MW (1s)
140 GHz 3 x 0.6 MW (1s)

NBI tangential 8 x 0.5 MW (≤ 1s)
radial moderate power only

Operational Limits
Quantity Limit B0 [T]  ιa ne [m−3] Te [eV] PNBI[MW] PECRH

ne 4.0 · 1020 2.5 0.55 350 2.4
Te 6.8 keV 2.5 0.34 2.0 · 1019 2 MW
Ti 1.8 keV 2.5 0.345 5.0 · 1019 1.3
〈β〉 3.4% 0.9 0.5 2.0 · 1020 2.8
τE 0.06s 2.5 0.345 1.1 · 1020 0.33
neTiτE 5.0 · 1021 2.5 0.345 1.1 · 1020 0.33

eVsm−3

Table 4.2: Some important properties of the W7-AS device.
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Figure 4.4: NBI beamline setup at the end of W7-AS operation. The former counter-
injecting beamline was moved to perform co-injection as well. The radial injector was
mainly used for diagnostic purposes.

Probes Sample rate Cross section [cm2] Length [cm]

MIR-1, Type 1 333 kHz 3.60 2.1
MIR-1, Type 2 333 kHz 3.20 3.2
MIR-1, Type 3 333 kHz 3.20 2.1
MIR-3, MIR-5 1 MHz 5.94 3.6

Table 4.3: Important properties of the Mirnov probes at W7-AS.

4.2.1 Mirnov Diagnostic

The Mirnov diagnostic consists of a set of spatially distributed coils that measure
magnetic fluctuations dB/dt. The coils cannot be immersed into the hot plasma, they
are usually mounted to the vessel wall. To shield the coils from stray radiation and
hot particle fluxes, they are embedded in a steel tube.

The recorded time traces yield information about spatially extended, periodic magnetic
field fluctuations in the plasma. At W7-AS, three poloidal arrays of MIRNOV probes
were installed, called MIR-1, MIR-3, and MIR-5. Their spatial distribution is shown
in Fig. 4.5 and some important properties are compiled in Tab. 4.3. All probes are
setup to measure fluctuations of the poloidal field component. In the MIR-1 array,
three different types of coils were used, all coils in arrays MIR-3 and MIR-5 are of the
same type. The MIR-1 array could be operated independently of the fast probes in
arrays MIR-3 and MIR-5.

The probes in the MIR-1 array have a good inductance L as well as a rather large
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Figure 4.5: Mirnov probe setup at W7-AS. The black line indicates the vessel contour,
the blue lines are flux surfaces from a sample configuration, the numbered probes are
shown in red.

Figure 4.6: Equivalent circuit of the MIR-1 probe, connection cable, and housing tube
to calculate the transfer function.

Figure 4.7: Comparison of analytical transfer function with the measured one for each
type of MIR-1 probes. The top row shows the amplitude of the transfer function,
the bottom row shows the phase shift. Solid line: analytical model according to the
equivalent circuit. Triangles: measurements performed on 04. Aug. 1998.
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capacity C. Therefore, they behave like LC resonance circuits with a resonance fre-
quency near 200 kHz that is slightly different for each probe type. Furthermore, long
connection cables without impedance converters shift the resonance frequency towards
70-120 kHz. Near the resonance frequency, the amplitude of the induced voltage in-
creases significantly and the phase between exciting signal and induced voltage jumps
gradually from 0 to ±π. This phase shift can be corrected if the complex transfer func-
tion of the measurement setup is known. Earlier attempts to correct the data resulted
in an analytical model for the transfer function, based on the equivalent circuit shown
in Fig. 4.6, that agreed well with measurements performed while the vessel was opened
for maintenance in 1998 as shown in Fig. 4.7.

In order to validate the phase and amplitude corrections, the inverse transfer func-
tion was applied to measured time traces containing broadband fluctuations that are
commonly observed in ECRH heated plasmas. The same fluctuations, recorded by the
fast Mirnov probes of the nearby MIR-5 array at equivalent poloidal positions, were
taken as a reference. It was assumed that the spectral properties of the fluctuations
are similar. Fig. 4.8 shows the FFT spectra of the MIR-1 data with and without cor-
rections along with the reference MIR-5 spectra. The resonance is clearly seen in the
uncorrected data. The spectra of phase and amplitude corrected probe signals show
that the amplitude is overcompensated by orders of magnitude near the resonance (the
analytical transfer function diverges at that point). Furthermore, there is a mismatch
in the resonance frequencies between analytical model and plasma system for each coil
type. Since the agreement between measurement and model is quite good without
plasma, the only explanation is that the presence of the plasma shifts the resonance
frequencies as well. This indicates that the plasma must be included in the equivalent
circuit for the probe setup (Fig. 4.6). The simple assumption that the plasma acts
as an additional mutual inductance does not result in a consistent compensation of
the shift for all probes simultaneously. It therefore seems to be impossible to apply
proper phase and amplitude corrections to the MIR-1 array. Moreover, because the
resonance frequencies differ in the range from 70 - 120 kHz between the probe types,
the time traces measured with different probe types will have a different phase shift in
this frequency range. This renders the MIR-1 probes useless for a proper eigenmode
analysis in the frequency range beyond 70 kHz.

There were discharges where the plasma in W7-AS was created by a 900 MHz HF
source instead of ECRH. In those cases, the MIR-3 time traces show occasional data
losses for at least some of the MIR-3 probes which are mounted near the HF launcher.
This problem is probably related to HF pickup and a corresponding failure of the DAC
hardware. It could be improved but not fully avoided by the installation of HF filters.
Affected are the time traces before t ≈ 0.25 s, a manual inspection of the time traces
is required if eigenmodes in this time range are analyzed.
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Figure 4.8: Application of the inverse transfer function to measured fluctuations for
a probe of each type in the MIR-1 probe array. Top row: FFT of unmodified data;
middle row: FFT of corrected data using the inverse transfer function; bottom row:
spectrum of nearby fast probes at equivalent poloidal positions.
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4.2.2 Plasma parameter diagnostics

The spatial temperature and density profiles of the plasma species are of great impor-
tance for any attempt to understand the plasma. In the following section an overview
of the diagnostics is given which were used to obtain and validate the profiles.

4.2.2.1 Thomson Scattering

When a strong, linearly polarized, monochromatic electromagnetic wave is indicent
on a charged particle, the electric field of the wave exerts a force on the particle and
sets it in motion. Since the field of the wave is periodic in time, so is the motion of
the particle. Thus, the particle is permanently accelerated and, consequently, emits
radiation. This process can be interpreted as a scattering of the incident wave. If the
charged particle in question is an electron, the process is called Thomson scattering.
If the particle is in rest, the frequency of the scattered wave is the same as that of the
incident wave. Otherwise, the Doppler effect will detune the emitted frequency. This
can be used to infer the electron velocity distribution function from the spectral shape
of the scattered light, the intensity of the scattered light is proportional to the electron
density. The Thomson scattering cross section

σThomson =
8π

3

(

e2

4πε0mec2

)2

= 6.65 · 10−29m2

is very small. To gain a usable signal amplitude in measurements, enormous wave
amplitudes (as those of intense laser beams) are needed.

At W7-AS, two Thomson scattering systems were installed. One system was equipped
with a Ruby laser that could emit a single pulse per discharge. For time resolved
electron density and temperature profiles, a second system using a Nd:YAG laser with
a pulse length of 10ns and a repetition rate of 20ms was installed. The experimental
setup is shown in Fig. 4.9. The laser light is chosen to traverse the plasma vertically
near the elliptical plane to gain high spatial resolution with respect to the flux surfaces.
16 sight lines observe scattering volumes with a vertical extend of δz = 2.5cm. The
vertical separation between the observation volumes is ∆z = 4.0cm. The scattered
light is projected onto polychomators that split the light into three frequency compo-
nents. Each spatial channel is equipped with its own polychromator box. Basically one
polychromator box consists of three interference filters that allow the scattered light to
transmit in a certain wavelength range. The electron temperature can be estimated by
fitting a Maxwellian velocity distribution integrated over the spectral sensitivity of each
polychromator channel through these three points. At W7-AS, Bayesian probability
theory is used to evaluate the electron temperature and density from the measurements
including forward modelling of measured data and calibration measurements [55].

The spectral sensitivity of the polychromator channels was optimized for an electron
temperature in the keV range. Most of the discharges that were analyzed in the
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Figure 4.9: The Nd:YAG Thomson scattering system at W7-AS, including signal de-
tection and processing. IF: interference filter, Det: detector (avalanche diode), Pol:
polarizer. δz is the extend of the scattering volume.

scope of the present thesis, however, have electron temperatures well below 1 keV.
For low temperatures, the signal of at least the outmost spectral channel becomes
very small and the reconstructed temperature has a large uncertainty. Systematic
errors in the calibration further complicate the situation. While the profile shape is
well reproduced, the magnitudes of density and temperature are not. Therefore, the
estimated profiles need to be further validated with other diagnostics that are known
to produce reasonable results.

4.2.2.2 Diamagnetic loop

The diamagnetic loop serves to measure the energy content of the plasma. It consists of
a loop surrounding the plasma poloidally and the induced voltage is a measure for the
change of the toroidal magnetic flux. One or more ”compensation loops” measure the
change of toroidal flux outside the plasma. The difference between them is the change
of flux induced by the plasma, which is related to the energy content of the plasma.
This change is usually negative which indicates that the plasma reduces the toroidal
magnetic flux, i.e., the plasma is diamagnetic, hence the name of the diagnostic. For a
screw pinch of length 2πR and radius a, the total change in toroidal magnetic flux by
the plasma energy and toroidal currents is given by [56]

∆Φtor = − µ0W

3πRB0
+
µ2

0I
2
tor

8πB0
+
πµ0 ιvac

R

∫ a

0

jtor(r)r
3dr, (4.1)
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Figure 4.10: Diamagnetic loops at W7-AS. The loop named Dia1 is located in the
φ = 15◦ plane, the second loop in the φ = 36◦ plane.

where W = 4π2R · 3/2
∫

r · p(r)dr is the total plasma energy, Itor the net toroidal
current and jtor(r) the toroidal current density. The last term describes the influence
of the current density profile. Due to the factor r3 inside the integral, only the current
densities near the plasma edge contribute significantly. If the net toroidal plasma
current and the current density profile are known, the kinetic energy of the plasma can
be reconstructed from the measured diamagnetic energy.

Fig. 4.10 shows the setup of the diamagnetic loops at W7-AS. The loop named ”Dia1”
is accompanied by two compensation coils, all three are installed inside the vessel. The
second loop has no compensation coils and is mounted to the outside of the torus. The
three-dimensional geometry of W7-AS has an influence on the probe signals such that
Eq. (4.1) does not hold. Interpretation of measured data is, nevertheless, possible by
forward modelling of the probe signals based on the full 3D geometry in the form of
free-boundary MHD equilibra [57].

4.2.2.3 Soft X-ray electron temperature measurements

At W7-AS, a set of three different soft X-Ray diagnosticcs was installed [58]. The
first diagnostic system with two cameras was equipped with a huge variety of different
filters for the incident photon energy and was used to measure line radiation emitted
by impurity ions to determine the effective charge number Zeff and to trace the ra-
dial impurity transport. The second system with a lower number of sight lines was
used as a monitor for the electron temperature. The third system named ”MiniSoX”
consists of a total of 320 sight lines covering the whole discharge cross section. It
allows for tomographic reconstruction of the plasma equilibrium and even the radial
and poloidal mode structure of low-frequency Alfvén- and MHD Eigenmodes. Fig. 4.11
shows schematics of all three camera systems.

There are three major contributions to the total soft X-Ray emission of a hot plasma.
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(a) (b) (c)

Figure 4.11: The three soft X-Ray diagnostic systems installed at W7-AS: (a) flexible
impurity monitoring system; (b) Te monitor system; (c) MiniSoX system for tomo-
graphic reconstructions.

The first component is the bremsstrahlung that is emitted by electrons that are ac-
celerated in the Coulomb field of the ions. The spectral power density depends on
the electron temperature as dP/dω ∼ exp(−h̄ω/kBTe). The second important part is
the radiation emitted by electron-ion recombination processes. The free electrons that
are captured into bound states have no discrete energy spectrum, the recombination
emission forms a continuous spectrum as well. The third component is the discrete line
radiation emitted by plasma impurities.

The dependence of the spectral power density of the bremsstrahlung on the electron
temperature can be used to derive electron temperature from soft X-Ray emission
measurements. Two detectors with different absorber foils that are opaque for pho-
tons below a certain energy observe the electromagnetic radiation of the same plasma
volume in the spectral ranges ω1 . . .∞ and ω2 . . .∞, respectively. The ratio of the in-
tensities measured in both spectral ranges is compared to model calculations to deduce
the electron temperature. Line radiation by low-Z impurities (e.g. boron, carbon) is
suppressed by choosing appropriate filters that absorbe these photons. The remaining
intensity is weak due to the exp(−h̄ω/kbTe) decay, but this can partially be compen-
sated by choosing larger detectors and reducing the spatial resolution. Line radiation
by medium-Z impurities like iron or tungsten can be included into the model if the
impurity species mix is known from spectroscopic measurements. In W7-AS, the cen-
tral electron temperatures by X-Ray analysis usually agree well to ECE measurements.
X-Ray analysis is especially valuable in the high density regime where ECE is in the
cut-off regime.



60 CHAPTER 4. EXPERIMENTAL AND NUMERICAL TOOLS

Figure 4.12: Schematic of the fast ion
loss detector.

Figure 4.13: Schematic of side and top
view of the probe operation. The gyro-
radius (energy) of a particle determines
if it can pass the two apertures 1 and
2, and how far from aperture 2 it will
strike the scintillator in point 3. The
pitch angle determines where the par-
ticle will strike along the orthogonal di-
rection of the scintillator.

4.2.3 Fast Ion Loss Detector

A fast ion loss probe, called EFIP (Escaping Fast Ion Probe), based on a ZnS scintillator
plate was installed on W7-AS, too [59]. The schematic of the diagnostic setup is
shown in Fig. 4.12. The probe is located at a position where, according to guiding-
center calculations, the larges flux of energetic ions is expected. It was mounted to a
manipulator that allows the probe to be varyingly positioned from 27 cm below the
midplane to 40 cm below the midplane (the location of the vessel wall).

Energetic ions that are able to enter the probe through two apertures (see Fig. 4.13)
strike the scintillator at a position that is determined by their gyro radius (energy) and
their pitch χ = v‖/v. The image of the light pattern on the scintillator is transferred
through an optical system to a set of detectors that allow the spatial distribution and
the total intensity of the light to be recorded. The details of the light pattern excited
by the ions depends on the dimensions of the apertures, their position relative to the
scintillator, and the orientation of the probe with respect to the ambient magnetic
field. The W7-AS probe has, in fact, two sets of entrance apertures that allow one to
measure co- and counterpassing ion losses simultaneously.

Interpretation of the spatial light pattern is possible by numerical simulation for a
given magnetic field configuration. The striking points of particles on the scintillator
are determined by the gyro radius and pitch angle only, which allows the generation of
a mapping between (E , χ) and locations on the scintillator as shown in Fig. 4.14. The
light was simultaneously recorded by a CCD camera, which gives an output image of
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Figure 4.14: Pitch angle and energy maps for typical W7-AS discharge conditions.
Shown is the scintillator outline, the aperture sets and the maps for co- and counter-
passing ions. Only the counter coordinate grid is annotated with values. The numbered
circles indicate regions on the scintillator to which the PMTs are sensitive.

128 × 128 pixels each 100 ms, and a set of 15 photomultipliers (PMTs) that observe
different regions on the scintillator and are digitized with a rate of 4 kHz.

4.3 Mirnov Data Analysis

In this section, the tools for analyzing the Mirnov probe data are discussed. It covers
advanced tools for harmonic analysis of one- and multidimensional datasets to ob-
tain time-resolved frequency spectra as well as time-resolved frequency-mode number
spectra from the sampled data.

The best way to check if some interesting coherent mode activity is present in the
data is to look at the time-resolved frequency spectrum of the signals measured by
individual probes. These can be calculated very fast with great accuracy by means of
continuous wavelet transform.

All the standard tools for multi-dimensional harmonic analysis fail in the case of Mirnov
data obtained on W7-AS and many other stellarators, mainly because the probes can-
not be evenly spaced. Even worse, the probes at W7-AS are sampled with different
sample rates. Thus the temporal datapoint spacing is uneven as well as the spatial
spacing between probes. The mode number analysis is done using a newly developed
technique based on the Lomb periodogram. It basically is a straightforward, multi-
dimensional extension of Lomb’s original periodogram definition [60]. It is well suited
for the case of unevenly sampled datapoints. Like multi-dimensional fourier transform,
it analyses the available temporal and spatial data at the same time – giving maximum
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confidence in the analysis results.

4.3.1 Continuous wavelet transform

The history of wavelet analysis started early in the 20th century. The goal was to
develop a tool for highly time-resolved spectral analysis of datasets. Several appli-
cations exist: Signal coding, data compression and reconstruction, data filtering, or
time-resolved frequency and power spectra. The term ”wavelet” is due to Morlet and
Grossman in the early 1980s. They used the french word ”ondelette” which means ”lit-
tle wave”. Wavelet transforms have become a standard technique in signal processing
and this topic is covered in many text books [61–63].

Wavelet transform refers to the representation of a signal in terms of a finite length
(or fast decaying), oscillatory waveform called the ”mother wavelet”. This waveform
is scaled and translated in time and ”compared” to the signal. Wavelet transforms are
broadly classified into discrete wavelet transform (DWT) and continuous wavelet trans-
form (CWT). Basically the difference between these two is that the continuous wavelet
transform operates over all possible translations and scales, whereas the discrete wavelet
transform uses only a specific subset of scales and translations that make the resulting
wavelets bi-orthogonal. Every wavelet transform can be considered as a frequency-time
representation of the signal and therefore is related to harmonic analysis. Furthermore,
the continuous wavelet transform is subject to Heisenberg’s uncertainty principle. In
the following, only the CWT will be presented.

4.3.1.1 The Mother Wavelet

The mother wavelet function ψ(t) must be continuous and has to satisfy the following
conditions:

1.
∫

|ψ(t)|2dt = 1 normalized

2.
∫

|ψ(t)|dt <∞ bounded

3.
∫

ψ(t)dt = 0 zero mean

4.
∫

tMψ(t)dt = 0 M vanishing moments

The last condition is useful in many applications. For the application, the mother
wavelet is scaled by a factor a (frequency) and translated by a shift b in time to give

ψa,b(t) =
1√
a
· φ
(

t− b

a

)

.

Given the conditions above and this scaling rule, it can be shown that the wavelets
ψa,b(t) are localized in both, time and frequency domain. The width of the wavelet in
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Figure 4.15: The Morlet wavelet.

frequency domain, ∆f , and in time domain, ∆t, satisfies the condition ∆f · ∆t ≥ C,
which is Heisenberg’s uncertainty principle. Several mother wavelets exist with different
properties. For a frequency analysis, Morlet’s wavelet is the best to one use.

4.3.1.2 The Morlet Wavelet

The Morlet wavelet, named after Jean Morlet, was introduced by Goupillaud, Gross-
mann and Morlet in 1984 [64, 65]. It is a constant κσ subtracted from a plane wave
and multiplied with a Gaussian window, as shown in Fig. 4.15.

ψσ(t) =
Cσ

π1/4e−t2/2
·
(

eiσt − κσ

)

(4.2)

κσ = e−σ2/2

Cσ =
1√

1 + e−σ2 − 2e−3σ2/4

By the Gaussian envelope, this wavelet is well localized in both, time and frequency
domain. The additional parameter σ specifies the number of harmonic oscillations
within the window and allows a tradeoff between frequency and time resolution. Con-
ventionally, σ > 5 is used to avoid problems due to the small temporal extend at very
low σ. The frequency uncertainty becomes very large at such small σ.

4.3.1.3 Calculation of the Wavelet Transform

When calculating a complete wavelet transform, one first has to define a grid in time-
frequency space on which the transform is to be calculated. The number of output
points in frequency and time domain can be freely chosen. The ranges are, however,
limited by the available data. The scanning frequency should not exceed the Nyquist
frequency fNy = 1/2fs where fs is the sample frequency. For each point (ti, fj) in the
output array, the wavelet at appropriate scale a = 1/2πf and time shift b = ti − t0
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is calculated and convolved with the data. The convolution can be done in two ways:
Either, the convolution is calculated directly in the time domain. This can be quite
efficient if one remembers that the wavelet is localized in time. Most of the wavelet will
be (nearly) equal to zero and can safely be neglected. Then the convolution covers only
a moderate amount of datapoints which is further reduced with increasing scanning
frequency because of the better localization in time domain. Another acceleration can
be achieved when the data is evenly sampled. Then the wavelet needs to be calculated
only once for each scanning frequency, the shift in time can be done by simply shifting
the indices. On the other hand, the convolution theorem can be used:

a⊗ b =

∫

a(t− τ) · b(τ)dτ = F−1(F(a) · F∗(b))

where F denotes the Fast Fourier Transform (FFT) and F∗ is the complex conjugate of
F . This procedure requires the data to be evenly sampled because the FFT algorithm
is used. At each scanning frequency, three fourier transforms of the size of the dataset
have to be calculated.

4.3.2 Lomb periodogram analysis

The harmonic analysis of unevenly sampled data can be done by evaluating the discrete
version of the fourier integral explicitely (periodogram analysis, see e.g. [66]), but this
has several drawbacks: First of all, it includes numerous computationally expensive
evaluations of sine and cosine functions. And secondly, the obtained spectrum has
no well-defined statistical properties. The latter means that if a peak is observed in
the spectrum, it is impossible to tell whether the peak results from a periodic signal
in the data at that frequency, or is caused by a signal at a different frequency due
to spectral leakage or noise in the data. In the case of evenly spaced datapoints the
sampling theorem along with the orthogonality of different frequency components (in
infinitely sampled datasets) guarantees the relevance of any given peak in the spectrum.
Nevertheless, the periodogram analysis is a good approximation to the spectrum that
would have been obtained by least-squares fitting sine and cosine waves to the data.

In 1976, the Australian astronomer Lomb proposed a slight modification to the classical
periodogram definition that makes the statistical behaviour of the periodogram equal
to that obtained in the case of evenly spaced data [60]. The Lomb periodogram P for
a dataset (ti, yi), i = 1 . . .N gives a power spectrum and is defined as

P (ω) =
1

2σ2

{

[
∑

i(yi − ȳ) cosω(ti − τ)]2
∑

i cos2 ω(ti − τ)
+

[
∑

i(yi − ȳ) cosω(ti − τ)]2
∑

i cos2 ω(ti − τ)

}

(4.3)

where ω is the scanning frequency, σ is the standard deviation, and ȳ the mean value
of the dataset. The parameter τ makes the periodogram invariant to time translations
and is given by

τ : tan(2πτ) =

∑

i sin 2ωti
∑

i cos 2ωti
(4.4)
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Lomb has shown that his periodogram is exactly equivalent to a least-squares fit of the
data to the model

y = a sin(ωt− τ) + b cos(ωt− τ) + εi.

However, the spectrum is no direct measure for the amplitude of a periodic signal [67].
At each frequency ω, a sine and cosine wave are fitted to the data yi yielding coefficients
a(ω) and b(ω) such that the sum of squared residuals

∑

ε2
i is minimized. Quantities

proportional to the variances of the amplitude coefficients var(a) and var(b) are also
computed. The periodogram (4.3) can be written as

P (ω) =
a2 + b2

var(a2 + b2)
=

a2

var(a)
+

b2

var(b)
,

which states that P is a relative measure of the signal amplitude compared to the
variance of that amplitude. The covariance cov(a, b) can be omitted because the time
shift τ renders the sine and cosine functions orthogonal over time domain so that a
and b are uncorrelated.

The statistical properties of the Lomb periodogram have been thoroughly investigated
[67, 68]. For evenly spaced datapoints P (ω) is proportional to the spectrum obtained
by discrete fourier transform (DFT) or Welch’s periodogram. For unevenly spaced
datapoints it was shown [69] that for a peak of height z the ”false alarm probability”
(the probability that a peak of height z could be caused by pure gaussian noise) is

P (> z) = 1 − (1 − e−z)M ≈Me−z (4.5)

where M is the number of independent frequencies scanned. It is very difficult to
actually calculate M for a given datapoint distribution. Numerical simulations show
that M is nearly identical with the number of datapoints N if the datapoints are
evenly spaced and N frequencies in the Nyquist range are scanned [70]. The equivalent
of the Nyquist set of frequencies {ωk} for N non-evenly spaced datapoints can be
defined as the set of frequencies obtained by a discrete Fourier analysis of N evenly
spaced datapoints between t1 and tN , where the zero frequency component ω0 is usually
excluded in periodogram analysis. Therefore, {ωk} = {±2πk/(tN−t1) ; k = 1 . . .N/2−
1}. Equivalently, the Nyquist frequency is given by ωk=N/2. For uneven spacing and
a random datapoint distribution, the number of independent frequencies is not much
different from the case of even spacing. M may differ significantly, however, if the
datapoints are ”clumped” in groups of nearly regular size.

Several enhancements result from uneven datapoint spacing. Aliasing effects are re-
duced which makes it possible to detect frequencies well above the Nyquist frequency
without significant alias peaks below. Oversampling, that means scanning additional
frequencies between the ones given by the Nyquist set of frequencies, could also make
sense. Quantitatively, the enhancements depend on the datapoint distribution – the
best results are obtained for truely random spacing.
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4.3.2.1 Multidimensional extension of the Lomb periodogram

The most general ansatz for a (possibly weakly nonlinear) propagating wave pattern is
a series expansion in plane-wave basis functions:

f(x, t) =
∑

j

Aj exp[i(kjx − ωt)] (4.6)

Now consider a system that is topologically equivalent to a two-dimensional torus.
Periodic boundary conditions suggest a change of space to angle coordinates and a
parameterization of the wave vector by mode numbers. In poloidal direction we use
θ and m for the angle coordinate and the corresponding mode number, respectively,
while in toroidal direction these quantities will be called φ and n. Rewriting Eq. (4.6)
with this choice of variables yields

f(θ, φ, t) =
∑

m,n

Am,n exp[i(mθ − nφ− ωt)]. (4.7)

The signs in front of the spatial terms in the phase argument of the exponential function
depend on the definition of the positive propagation directions in the experiment under
consideration. Note that for strongly nonlinear modes, the series expansion (4.7) may
not converge sufficiently fast. Then the number of harmonics required to correctly
resemble the mode structure can become larger than the number of harmonics that
can be unambiguously identified in experiment.

One can now consider a number of probes at positions (θj , φj) that yield the data
points (tij , yij), where i is the time index and j denotes a probe number, respectively.
We make no assumptions about the probe spacing or the sample rates of individual
probes. It is then possible to use the Lomb periodogram to check for the probability
that a certain harmonic with mode numbers (m,n) at frequency ω is present in the
measured data. This can be done by replacing all occurences of ωti in (4.3, 4.4) by the
more complex phase argument

pij = mθj − nφj − ωtij . (4.8)

We then have

P3d(m,n, ω) =
1

2σ2











[

∑

i,j(yij − ȳ) cos(pij − ωτ)
]2

∑

i,j cos2(pij − ωτ)

+

[

∑

i,j(yij − ȳ) sin(pij − ωτ)
]2

∑

i,j sin2(pij − ωτ)











(4.9)

It is important to note that this straightforward extension does not change the sta-
tistical properties of the Lomb periodogram. In addition to that, because a single,
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spatio-temporal model is fitted to all available data, resulting advantages are effective
reduction of noise and maximum confidence in the obtained power spectra.

Experimentally observed eigenmodes are often non-stationary. Effects that are com-
monly observed include frequency sweeping and bursting modes. Thus it is vital to
have a time-resolved analysis method at hand. In order to introduce time resolution
to the Lomb periodogram, the same technique known from wavelet analysis is used.
A window with a frequency-dependent width is applied to the dataset to reduce the
analysis to a narrow time interval only. Time resolution is achieved by moving this
window over the dataset. The impact of window functions and data weights on the
Lomb periodogram has been discussed by Scargle [69]. The window is a two parameter
family of functions Wt0,ω(t) with the analysis frequency and time as parameters. The
time-resolved Lomb periodogram is given as:

P4d(m,n, ω, t0) =
1

2σ2 ·∑i,j Wω,t0(tij)
×











[

∑

ij y
∗
ij(ω, t0) cos(pij − ωτ)

]2

∑

i,j cos2(pij − ωτ)

+

[

∑

i,j y
∗
ij(ω, t0) sin(pij − ωτ)

]2

∑

i,j sin2(pij − ωτ)











(4.10)

where

y∗ij(ω, t0) = (yij − ȳ) ·Wω,t0(tij).

The window function should have the same translation and scaling properties as a
mother wavelet. It has to be kept in mind that the window function can influence the
spectral properties. Suitable windows are well localized in both, frequency and time
domain. Choosing a non-localized window can lead to spectral leakage and thereby
the formation of side lobes in the spectrum. Tests with a gaussian and a rectangular
window have been performed to study the impact of the window shape. No significant
spectral leakage could be observed in tests with the rectangular window and a realistic
datapoint distribution. Hence, it seems reasonable to employ the rectangular window
in all subsequent analyses.

In order to apply the mode number analysis to W7-AS Mirnov data, it is required
that the probe positions are given in magnetic coordinates. The mapping procedure is
discussed in section 5.1.3.

4.3.2.2 Sensitivity studies with surrogate data

The extended Lomb periodogram has been subject to extensive tests which address two
purposes. On one hand, it has to be made sure that the extended Lomb periodogram
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Probe Pol. mode number range Tor. mode number range

MIR-1 m = -7 .. 7 -
MIR-35 m = -4 .. 4 n: even/uneven
MIR-1 + MIR-35 m = -7 .. 7 n = -2 .. 2

Table 4.4: Effective Nyquist mode numbers calculated for the W7-AS Mirnov probe
setup

gives the expected results. This can be done by studying the response to well known
input data. On the other hand, no such relationship like the Nyquist theorem exists
between datapoint spacing and mode number resolution of the harmonic analysis. The
performance of the periodogram analysis has to be studied numerically for any situation
considered. The following tests were performed with artificially generated datasets for
the Mirnov probe setup at W7-AS.

Effective Nyquist mode numbers: In order to determine the effective Nyquist
mode numbers for the Mirnov probe setup at W7-AS, test datasets with a wave having
increasing mode number were prepared and analyzed until an alias peak with a smaller
mode number was found. At W7-AS, the fast Mirnov probes (arrays MIR-3 and MIR-
5, 1 MHz) have been used routinely only in a late stage of the experiment and for a
long time, only the poloidal MIR-1 array was available. Therefore, the Nyquist mode
number analysis has been done for MIR-1 and MIR-35 separately as well as combined.
The test function used was:

fm,n,ω(θ, φ, t) = sin(mθ − nφ− ωt)

The effective Nyquist mode numbers that have been found are summarized in Tab. 4.4.

Resolution of multiple harmonics: Test datasets containing more than one har-
monic have been prepared. Three different situations were studied: Different fre-
quencies and mode numbers, same mode structure but different frequencies, and same
frequency but different mode numbers. The test function used was:

f(θ, φ, t) = fm1,n1,ω1
(θ, φ, t) + fm2,n2,ω2

(θ, φ, t) + . . .

All the test cases could be correctly analyzed with all input harmonics resolved indi-
vidually. An example is shown in Fig. 4.16. There, five different harmonics have been
prepared which are all correctly resolved and separated from each others. This example
contains harmonics at the same frequency but with different mode numbers, and such
with the same mode numbers but different frequencies.

Effect of noise: The effect of noise on the analysis results has been tested with two
different noise models. The first model is the well known additive or amplitude noise

fm,n,ω(θ, φ, t) = R + sin(mθ − nφ− ωt),
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Figure 4.16: Resolution of multiple harmonics within a single signal. Five input har-
monics were prepared, slightly asymmetrical in the mode numbers, which are all re-
solved unambiguously.

the second noise model used is phase noise

fm,n,ω(θ, φ, t) = sin(mθ − nφ− ωt+R).

The noise term R represents white noise (gaussian random variate with zero mean and
a standard deviation σ that equals the noise amplitude).

In Fig. 4.17 the magnitude of the expected peak in the spectrum is shown as a function
of the noise amplitude for both noise models. Higher noise amplitudes result in lower
detection amplitudes which is equivalent to an increase of the probability that this
peak could be caused by the gaussian noise present in the data. The exponential decay
in case of the amplitude noise fits nicely to the statistical model given by Eq. (4.5).
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Figure 4.17: Effect of the noise level on the magnitude of an expected peak in the
spectrum for both noise models.
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Figure 4.18: Effect of ballooning on the spectrum obtained by the Lomb periodogram.

The deviation from an exponential decay seen in the case of phase noise results from
the fact that the noise term enters in a non-linear fashion.

Effect of ballooning: Ballooning is an effect that is frequently observed in toroidal
fusion devices. It means that the amplitude of a perturbation on the inside of the torus
(high field side) is much smaller than on the outside (low field side). To study how
ballooning effects the obtained spectrum, the following test function was used:

fm,n,ω(θ, φ, t) = 10g(θ) · sin(mθ − nφ− ωt)

where

g(θ) =
−a sin2 θ/2

1 − a sin2 θ/2

It has been found that the peak amplitude drops slowly due to the ballooning effect
(cf. Fig. 4.18) and that with increasing ”ballooning parameter” a the mode number
peak is broadened. Still, the broadening is significant only for large values of a.

4.3.2.3 Tests with experimental data

Having shown that the extended Lomb periodogram works as expected for artificial
data, the capability of handling real experimental data still remains to be proved.

In some W7-AS shots, low-frequency MHD activity is observed that strongly affects
large parts of the plasma. These pressure driven Eigenmodes induce large amplitude
Mirnov signals with almost no noise. Thus they can easily and reliably be analyzed
with other techniques. The goal is to determine the mode numbers with alternate
methods and to compare the results to the Lomb periodogram.
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Figure 4.19: Wavelet analysis of W7-
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Figure 4.20: Mode number spectrum
obtained by Lomb periodogram analy-
sis for #56723, t = 0.24 − 0.25.

W7-AS discharge #56723 contains strong Mirnov activity at a frequency of about
4.5kHz (see Fig. 4.19). The Lomb periodogram analysis Fig. 4.20 predicts mode num-
bers (m,n) = (3, 1) for the observed activity. The equally strong peak observed at
(m,n) = (3,−3) is due to spatial aliasing in n. Fig. 4.21 shows a part of the corre-
sponding (low-pass filtered) raw data recorded by the MIR-1 array. The space-time
diagram displays the time evolution of the amplitude measured by the MIR-1 probes
along a poloidal circumference. The average slope of the wavefronts indicates a m = 3
mode structure, explicitly exposed in the polar diagram. The same data inspection
yields a toroidal mode number n = 1. The visible result is further supported by a
phase difference analysis. Here, cross correlation functions for adjacent probes have
been calculated. Using the known frequency it is possible to translate the time lag at
the point of maximum correlation to a phase difference between the probes. The sum
of all phase differences along a circumference equals the number of wave periods and
the mode was estimated to be (m,n) = (3, 1) within numerical accuracy.

The origin of the discontinuities of the phase fronts in Fig. 4.21 can be explained by a
forward simulation of the expected probe data. A dense set of helical current filaments
with the same helicity as the eigenmode to simulate is put on the corresponding flux
surface. The current distribution between the filaments is chosen to match a plane wave
with the eigenmodes mode numbers (m,n) in magnetic coordinates, and Biot-Savart’s
law is used to calculate the perturbed magnetic field where needed. As time progresses,
the current distribution is updated to simulate mode propagation and frequency. The
magnetic field vector at the probe position is projected onto the probes normal direction
of the probe cross-section and the time derivative of the projection gives the simulated
probe signal. Fig. 4.22 shows the simulation result for W7-AS discharge #56723. The
shape of the wave fronts is fairly well reproduced, including the sudden phase jumps
near θ = 2 and θ = 4. These are found to originate from the top and bottom regions
of the plasma where the strong curvature deforms the eigenmodes magnetic field. It
can also be seen that the poloidal magnetic angle θ is compressed on the inside of the
torus and expanded on the outside.
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4.4 Numerical codes

4.4.1 Equilibrium reconstruction and magnetic coordinate trans-

forms

For reconstructing the plasma equilibrium, the VMEC2000 code (Variational Moments
Equibrium Code) is used [71, 72]. It is a full 3D, free boundary code that solves for a
plasma equilibrium by minimizing the MHD energy functional

Wp =

∫

V

(

B2

2µ0
+ p

)

dV.

The VMEC code requires the vacuum magnetic field, experimentally determined pres-
sure and current profiles, and an initial guess of magnetic axis and the last closed flux
surface (LCFS) as input parameters. It starts by building suitable magnetic surfaces
in the vacuum magnetic field and in each iteration the geometry of the flux surfaces
is varied until the resulting MHD force on the surfaces drops to zero within specified
accuracy.

From the resulting plasma equilibrium, VMEC writes the Fourier coefficients of the
magnetic flux surfaces and B components in VMEC coordinates to an output file
along with radial profiles of important plasma parameters like β and  ι. The resulting
equilibrium is not yet suitable in many cases. Manual variation of certain free parame-
ters between different VMEC runs is often required to make the equilibrium consistent
with other experimental boundary conditions. This task is solved automatically by the
STELLOPT code [73]. It takes the boundary conditions and uses VMEC iteratively in
a nonlinear least-squares solver of Levenberg-Marquardt type to adopt the equilibrium
to the boundary conditions. In VMEC runs for W7-AS, the usual requirements are
that the plasma extends to the limiting structures (divertor) and that kinetic energy
of the plasma is consistent with the measured diamagnetic energy. The plasma size
can be controlled by changing the toroidal magnetic flux inside the LCFS which is a
free parameter to VMEC2000. Furthermore, STELLOPT rescales the pressure profile
to vary the plasma energy.

VMEC coordinates are no magnetic coordinates, an additional transformation is re-
quired to get these. In all subsequent calculations, Boozer coordinates [28] are used.
The transformation is done using two separate tools for different purposes. Most theory
codes use output of the ”Mapping90” code [74] that provides the fourier coefficients of
flux surfaces, metric coefficients and other quantities in Boozer coordinates. On the
other hand, simple transforms between Boozer and real space coordinates can be done
with less information. The BOOZ XFORM program, that is a part of STELLOPT,
provides the Fourier coefficients of flux surfaces and |B| much faster.

The coordinate transform between Boozer and real space coordinates is done using the
MCONF (Magnetic CONFiguration) package by Turkin [75]. Transforms from Boozer
coordinates to real space coordinates are quite fast. The Fourier coefficients of the
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real space variables with respect to the Boozer coordinate angles are given. Only the
evaluation of a Fourier series for each spatial coordinate is needed. The back transform
is not given explicitely and, therefore, more difficult – it is done by solving for those
magnetic coordinates that, transformed to real space, match the given ones. This is
efficiently implemented in MCONF using Newton’s method.

4.4.2 Alfvén continuum calculation

The code COBRA (COntinuum BRanches of Alfvén waves) [10] is intended for cal-
culations of the Alfvén continuum in tokamaks and stellarators. It solves the follow-
ing equation of the Alfvén continuum in Boozer coordinates, which is derived from
Eq. (3.13)

L̂
(

gssL̂Φ
)

+
ω2

ω2
A0

gssg̃Φ = 0 (4.11)

where Φ is the wave function, ω is the frequency, gss = gss(s, θ, φ) = |∇Ψ|2 is a
component of the contravariant metric tensor in Boozer coordinates (s, θ, φ), Ψ is the
toroidal magnetic flux, L̂ = ∂

∂φ
+  ι

∂
∂θ

is a differential operator along magnetic field

lines, g̃ = g(s, θ, φ)/g0 is the metric tensor determinant, g0 = 〈
√

g(s = 0)〉2, 〈. . .〉 =
∮

dφ(. . .)/2π, ωA0
is the characteristic Alfvén frequency at the magnetic axis. This

equation describes a local Alfvén resonance on an isolated flux surface. It only includes
differentiation within the flux surface with the radial coordinate s as parameter. As s
is varied, the Alfvén continuum branches appear.

The code uses Fourier expansion of the problem. Rewriting (4.11) with Fourier coeffi-
cients for Φ, gss, g̃gss and truncating the Fourier expansion yields a finite-dimensional
generalized eigenvalue problem that is solved by the code. A significant amount of
the work done by the code deals with minimization of the truncation effects on the
obtained solution.

The code has three modes of operation. The first mode is a simple continuum scan
in the (r, ω) plane by solving the eigenvalue problem at several radial positions for
many different values of the wave vector k̃ in a certain interval k̃1 ≤ k̃ ≤ k̃2. Thus the
user obtains a general picture of the Alfvén continuum with all important gaps and
continuum regions at once. The second mode calculates the boundaries of a continuum
gap determined by the user by specifying the coupling numbers. This mode is important
because it easily enables the user to identify the origin of gaps. The third mode of
operation calculates the frequency ω(s) for a continuum branch characterized by the
mode numbers (m,n).

4.4.3 Calculation of the fast ion distribution function

Fast ions can provide a drive for Alfvén eigenmodes. In W7-AS, fast ions are produced
by the heating systems of which NBI is capable of creating non-Maxwellian fast ion
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populations. To recover the fast ion distribution as best as possible, two steps are
necessary – the first step is the determination of the ”birth profile”, in a second step
the ”slowing down” distribution is calculated.

As the energetic neutral particles traverse the plasma, a certain fraction of them is
ionized. The most important reactions are (X and Y denote atomic species):

X + Y + → X+ + Y charge exchange
X + Y + → X+ + Y + + e− ion collisional ionization
X + e− → X+ + 2e− electron collisional ionization

The NEUTRALBEAM code by Werner [76] uses Monte-Carlo techniques to simulate
the ionization of test particles. The ionization reactions are modelled with measured
plasma profiles and realistic atomic cross section data. It is assumed that plasma tem-
perature and density are constant on flux surfaces and that the bulk plasma species
have Maxwellian distribution functions. The code is capable of handling realistic parti-
cle source and vessel geometries. It was extended to also include equilibrium magnetic
fields. As a result one obtains radially resolved power deposition and birth profiles.
The birth profiles are further resolved by the ions orientation to the magnetic field, i.e.
the pitch χ. Typically, 105 . . . 106 injected particles are needed for smooth profiles.

In order to get the fast ion distribution function, the thermalization process of the newly
born fast ions (slowing down) needs to be modelled. The routine DFNBI by Maßberg
[77] is used for this purpose. It calculates the full (thermal + fast) ion distribution
function, both the particle and energy balance are taken into account. More than one
background ion component may be specified. Charge exchange losses are calculated
in the presence of a neutral gas density. The code assumes an isotropic background
plasma and hence cannot be used to model a global slowing down distribution function.
It is, however, a suitable approximation to the slowing down on an isolated flux surface.
The routine will be used to calculate a local slowing down distribution on each flux
surface using the radially resolved birth profiles obtained from Monte-Carlo ionization.

The isotropic part of the distribution is calculated using the linearized Fokker-Planck
equation (FPE) with NBI source, charge exchange and thermal loss term. The particle
balance is satisfied iteratively in the first inhomogeneous solution of the FPE. Then
the power transfer to the background plasma components is estimated in the second
inhomogeneous solution to satisfy the energy balance. Finally, a homogeneous solution
is added to give the specified beam particle density. The anisotropic contribution is
estimated using Maxwellians for Rosenbluth’s potentials. Legendre polynomial expan-
sion is used for the distribution function, the corresponding differential equations in
velocity are solved indepenently. The velocity grid has the highest resolution for very
small velocities as well as close to the three injection energies.

The result of this calculation is a stationary distribution function f(s, v, χ) for all, ther-
mal and fast ions, that is isotropic in space on any given flux surface but anisotropic in
velocity. Once the full ion distribution function is calculated, the usual statistical tools
(moments of the distribution function) can be used to extract macroscopic quantities
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like temperature, density, pressure, current, . . . The loss terms have the side-effect
of modifying the thermal background distribution, making it slightly non-Maxwellian.
Consequently, no clear separation between thermal and fast ion distribution functions
is possible. If a Maxwellian thermal background is substracted from the full ion distri-
bution function, the resulting fast ion distribution function is not positive-semidefinite
anymore. In order to proceed it is, nevertheless, assumed that the thermal ion distribu-
tion is Maxwellian and statistical fast-ion quantities determined by velocity moments
M(n, f) =

∫

vnf(v)d3v of the distribution function are assumed in the form:

M(n, ffast) = M(n, ffull) −M(n, fth) = M(n, ffull − fth),

where fth is a Maxwellian distribution function for temperature T and density n of the
thermal bulk ions.

4.4.4 Growth rate calculation

To get an estimate of the linear growth rate of a gap mode, the local perturbative
model, Eq. (3.22), has been implemented in the LGRO code (Local GROwth) by
Könies [40]. The code considers only two coupled harmonics, the radial location of the
eigenmode as well as the frequency are taken as given by Eq. (3.14). For convenience,
the Fourier harmonics of the periodic drift velocity, ups, are expressed as functions of the
magnetic field strength, Bµν . Experience shows that only the largest Bµν coefficients
need to be considered to obtain the most unstable eigenmodes. The inclusion of more
coefficients leads to additional resonances between wave and particles with the side
effect of destabilizing an increasing number of eigenmodes.

The code carries out the velocity integral for electrons, thermal ions and fast ions
separately to highlight the contributions of each particle species. It is noted again that
the local model was derived assuming well-circulating particles only and that trapped
particle effects are neglected. Thermal electrons and ions are taken to be analytical
Maxwellian distributions with densities and temperatures given by the equilibrium
reconstruction. The fast particle contribution is calculated using the NBI slowing
down distribution, where a Maxwellian thermal ion distribution is subtracted. Bicubic
splines are used to represent the numerical data and obtain smooth derivatives inside
the flux surface, whereas linear interpolation in the radial coordinate is found to be
sufficient.

In addition, a code named CAS3D-K solving the global, kinetic MHD approach,
Eqs. (3.28, 3.29), exists [40]. Besides the distribution functions of electrons, ther-
mal and fast ions, it requires knowledge of the radial eigenfunctions of all coupled
harmonics that form the eigenmode. These can be calculated with codes like CAS3D3
[78, 79] or BOA [10]. At the time of writing, CAS3D-K does not yet take advantage
of the anisotropic distribution functions obtained from slowing-down modelling. How-
ever, previous results assuming an isotropic distribution of fast particles indicate that
both models give qualitatively similar results for W7-AS [80]. The magnitudes of lin-
ear growth and damping rates obtained from LGRO are very approximate due to the
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various approximations in the theoretical model and show large differences compared
to CAS3D-K results, but the relative magnitudes of the various contributions are fairly
well reproduced.
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Chapter 5

Experimental Results

5.1 Data Analysis

The identification of Alfvén eigenmodes in stellarators is a complex issue and requires
the incorporation of data from different diagnostics as well as the employment of dif-
ferent numerical codes. The main topics of this thesis can be cast in three questions:
(I) Which modes are observed? (II) Is their instability predicted by current 3D models
of wave-particle interaction? (III) Is confinement degradation observed? The scheme
that was applied for data analysis and mode identification to answer these questions is
shown in Fig. 5.1. Once the MHD equilibrium is reconstructed from discharge parame-
ters and measured data, the calculation of the Alfvén continuum is straightforward. It
is needed for the identification of experimentally observed AE instabilities and involves
comparing predicted gap modes to observed mode numbers and frequencies. The next
step is to model the fast ion distribution function as a pre-requisite for the calculation
of the theoretically predicted growth rate of the instability. The second goal of this
thesis is to study of AE-induced energetic particle losses. The time traces of EFIP
photomultipliers are compared to the evolution of the wave amplitude for this purpose.

The reconstruction of the MHD equilibrium is an essential step in the analysis and all
subsequent steps depend on it. This has several reasons:

• The equilibrium describes the magnetic topology and thus determines the mag-
netic flux coordinates.

• The radial profiles of important plasma parameters, e.g. β(r),  ι(r), are deter-
mined by the MHD equilibrium. The structure of the Alfvén continuum, from
which the mode numbers and frequencies of expected Alfvén eigenmodes are
derived, depends sensitively on the shape of these profiles.

• The MHD equilibrium describes the variation of the magnetic field strength on
flux surfaces that affects the structure of the Alfvén continuum and the expected
resonances between waves and particles.

79
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Figure 5.1: Data analysis scheme used for mode identification and stability prediction.
Yellow indicates measured data stored in databases and shotfiles, red indicates that
the use of numerical codes is involved.

• Information about the magnetic field direction, the shape of flux surfaces as
well as radial density and temperature profiles of the bulk plasma are required
to model the radially resolved, anisotropic velocity distribution function of the
energetic particle population.

Due to the importance of the MHD equilibrium, special care is needed in this step. It
is a consequence of the success of W7-AS operation that regimes of plasma parameters
were achieved that have not been thought of in its design phase. This is especially true
for the experiments close to the beta limit in the late phase of the experiments, from
which all of the considered discharges are taken. In these regimes, the diagnostics are
operating at their very limits and suffer from large uncertainties [81], making a careful
data validation necessary.

In the remainder of this section, the data analysis procedure is explained in more detail
using W7-AS dischage #54154 as example. This shot is from the high-β program at
half the possible magnetic field strength B = −1.25 T and is one of the few studied
discharges with uncompensated plasma current. It has been chosen because it gives
insight into typical problems that appear. Some Mirnov activity occurs during the
startup phase, but no Mirnov data besides the monitor signal is available in the time
range t = 100 . . . 150 ms where the activity is strongest and correlated with changes in
the NBI power. Another mode is present at t ≈ 200 ms. Fig. 5.2 shows the time traces
of the most important plasma parameters, while in Fig. 5.3 the frequency spectrum in
the time window where the activity occurs is seen.
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Figure 5.2: Time traces of Mirnov amplitude, plasma energy, line-integrated den-
sity, electron temperature, and heating power for W7-AS shot #54154.
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Figure 5.3: Wavelet transform of the
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#54154.

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

j to
r [

A
/m

2 ]

r/a [1]

Figure 5.4: Default current density
profile used for the equilibrium recon-
struction.



82 CHAPTER 5. EXPERIMENTAL RESULTS

5.1.1 Data Availability

The presence of Mirnov data from different poloidal and toroidal positions is required
for a successful analysis of poloidal and toroidal mode numbers. Due to the resonances
in the MIR-1 probes, they can only be used for frequencies below ≈ 70 kHz. The
activity observed in shot #54154 is near 40 kHz, so it is possible to include MIR-1
data in the mode number analysis which is available from t = 0.20 . . . 0.53 s. The other
poloidal probe arrays, MIR-3 and MIR-5, have continuously sampled data in the time
range t = 0.21 . . . 0.27 s. Data loss in MIR-3 time traces due to the 900 MHz startup
heating is not observed. The available Mirnov data allows a mode number analysis
only for the tail of the mode in the time range t = 0.21 . . . 0.22 s.

Besides the Mirnov data, the plasma parameters are of major importance for the equi-
librium reconstruction. The shape of the density and temperature profiles is determined
from the Nd:YAG Thomson scattering diagnostic that delivers the profiles with a repi-
tition rate of 50 ms. The nearest time points for shot #54154 are t1 = 0.18 s and
t2 = 0.23 s. The raw profiles for both time instants are shown in Fig. 5.5. Usually,
the density and temperature profiles are interpolated in time to be able to reconstruct
the equilibrium at a time where the Mirnov indicates the presence of an eigenmode is
present. The density profile at t = 0.18 s errornously vanishes at z = −22 cm and
has an invalid value at z = 26 cm, such that after dropping these values, no informa-
tion about the density and, consequently, the pressure near the plasma edge remains.
Therefore, only the profile at t = 0.23 s can be used in the equilibrium reconstruction.

Due to the calibration error in the YAG Thomson system [55], a manual validation
of the profiles is required. On W7-AS, several optical and microwave interferometers
were installed, all with different lines of sight. Depending on the chord length inside
the plasma and the plasma density, the interferometers suffer from fringe jumps and
cut-offs and cannot be used reliably for the density calibration, as seen in Fig. 5.2.
The innermost channel of the soft X-ray diagnostic provides a reliable estimate of
the central electron temperature T SX

e that can be used to calibrate YAG Thomson
temperature profile. The density calibration is done afterwards, using the diamagnetic
energy Wdia(φ = 36◦) as reference for the kinetic energy stored in the plasma. Both
diagnostics, T SX

e and W 36
dia were available at the required time.

None of the diagnostics at W7-AS is capable of providing the radial profile of the
toroidal plasma current density, only the net toroidal current can be measured. For
shot #54154 at t = 0.23s the toroidal net current is approximately 7 kA. In principle,
it is possible to obtain the current density profile by a careful transport analysis, but
this is very sensitive to the input parameters, i.e. density and temperature profiles,
power deposition profiles, and impurity concentrations. Because these suffer from large
error bars in most discharges, a reconstruction has been attempted in the past only
for selected W7-AS discharges. Taking these difficulties into account, it was decided to
use a default current density profile (Fig. 5.4) for the equilibrium reconstructions. The
default current density profile is plausible and is finally justified by the consistency of
the analysis. But clearly such a choice means a significant hypothesis.
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Figure 5.5: Density and temperature profiles obtained by Nd:YAG Thomson scattering
for shot #54154 where z is the vertical coordinate in the cylindrical (R, φ, z) coordinate
system, z = 0 corresponds to the horizontal midplane of W7-AS.

5.1.2 Equilibrium reconstruction

The MHD equilibrium reconstruction requires, as described in section 2.3.1, the pre-
scription of the spatial distribution of plasma current and plasma pressure as a function
of the flux label. Since the mapping between cylindrical coordinates (R, φ, z), which are
independent of the plasma, and magnetic coordinates (s, θ, φ) is not known in advance,
an iterative procedure needs to be applied.

Attempts to use the measured density and temperature profile directly results in un-
reasonable equilibria. The reason for this is that VMECs internal representation of
the pressure profile as a polynomial p(s) =

∑10
n=0 ans

n has approximately the same
number of free parameters as there are points in the measured profile. As a result,
this representation of the profile will follow the measured points exactly and, despite
the large error bars, no smoothing takes place. This problem can be circumvented by
repesenting the data with a parametric model of the profile with less free parameters,
where the analytical form of the model constrains the possible profile shapes. The
following model has been used in most of the W7-AS analyses:

f(s) =
a0(1 − βs)

1 + (s/s0)α
, (5.1)

where a0 is the central value, s0 determines the gradient region, α the steepness of the
gradient, and β the hollowness (β < 0: hollow profiles, β > 0: peaked profiles). After
mapping the profile points to magnetic coordinates, the parameters a0, s0, α and β are
determined for density and temperature separately by a least-squares fit to the data,
using the errorbars as weights. The pressure profile is then calculated using the ideal
gas law: p = 2nekBTe, where ne = ni (Zeff = 1) and Te = Ti has been assumed.

Ref. [81] describes a way to perform an integrated data analysis (IDA) that includes
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data from different diagnostics using the Bayesian probability theory (BPT) to im-
prove the accuracy of the Nd:YAG Thomson scattering profiles at W7-AS. While it is
favourable to use IDA based on BPT, it is a lengthy calculation and the correct assess-
ment of random and systematic errors of diagnostics at W7-AS is a complicated task
for which no appropriate solution exists. To be able to proceed with the data analysis,
a simplified validation procedure is used: It is assumed that the shape of density and
temperature profiles are well reproduced. After outliers have been filtered out and the
profiles are mapped to magnetic coordinates, spatial smoothing is achieved by fitting
the profiles to the model function. Validation is then achived by rescaling the profiles to
make them consistent with other diagnostics. At first, the electron temperature profile
is rescaled by a factor αt to reproduce the central electron temperature obtained from
SX diagnostic. The next step is to calculate the pressure profile and, from that, the
kinetic energy content of the plasma by integration over the plasma volume:

Wkin =

∫

pdV =

∫ 1

0

p · dV

ds
ds. (5.2)

Comparing this to the measured diamagnetic energy gives the factor αn by which the
density profile has to be rescaled. This has been embedded into the automated equilib-
rium reconstruction process. Looking at the posterior PDFs for the Nd:YAG Thomson
scattering system in Ref. [81], it is observed that electron density and temperature
given by this diagnostic are anti-correlated, while the plasma pressure should be well
reproduced. One can therefore expect that the density and temperature corrections
behave as αt ≈ α−1

n . This was not observed for all discharges. Cases with both, αn > 1
and αt > 1, or with corrections α > 1.5 were resolved manually.

The iterative procedure applied throughout this thesis to the equilibrium reconstruction
is as follows:

1. The equilibrium reconstruction is performed for a pressure profile p(s) = p0−p0 ·s
that is linear in s and parabolic in r, with the constraints that the kinetic plasma
energy matches the measured diamagnetic energy and that the plasma extends
to the limiting structures (divertor or baffles). The equilibrium obtained this way
should have the same size and shape of the last closed flux surface as the final
result. The Shafranov shift is expected to be comparable; only the shape and
relative position of the inner flux surface is expected to vary noticably.

2. The equilibrium obtained in the last step is used to map the density and tem-
perature profile points to magnetic coordinates. Afterwards they are fitted to
the profile model and calibrated as described above. Then, the pressure profile is
calculated from density and pressure profiles and the equilibrium reconstruction
is repeated with the obtained pressure profile and the same constraints as before,
keeping the plasma energy and the plasma size constant.

The second step can be repeated until profile mapping and equilibrium are converged.
Further iterations turn out to not lead to additional accuracy because the uncertainties
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in the pressure profile exceed the uncertainties in the mapping. Fig. 5.6 displays the
reconstructed plasma parameter profiles and the shape of flux surfaces for the ideal
MHD equilibrium for shot #54154.

5.1.3 Mode Number Analysis

The choice of coordinates in the mode number analysis naturally affects the obtained
mode numbers (m,n) via the definition of the angle coordinates (θ, φ). All calculations,
to which the results are compared, are done in Boozer coordinates, hence the same co-
ordinates have to be used in the mode number analysis. This requires to express the
probe coordinates in Boozer coordinates. The mapping is not trivial because Boozer
coordinates are not defined outside the last closed magnetic surface (LCMS). In order
to derive a suitable mapping procedure, it should be noticed that only those eigen-
modes which are localized near the plasma boundary can be observed by the Mirnov
diagnostic. Core localized modes with vanishing displacement near the plasma bound-
ary cannot cause magnetic perturbations visible from the outside of the plasma, thus
allowing to restrict the mapping to the outer flux surfaces. In addition, the Mirnov
probes do not allow to determine the radial eigenfunctions, not even the localization
region of the mode due to the reason explained above. It is therefore necessary to
assume the radial localization of the eigenmode. The mapping of Mirnov probe po-
sitions to magnetic coordinates is equivalent to determining the magnetic coordinates
of the volume element inside the plasma from which the Mirnov probes observe the
fluctuations. Two different mapping procedures have been tested.

• Using the approximation that the observation volume of a probe is a narrow cone
directly in front of it and choosing a fixed flux surface s = s0 near the plasma
boundary, the mapping reduces to finding the point R(s0, θp, φp) on the surface
that is closest to the probe position Rp, where R is the position vector:

(s0, θp, φp) : min |R(s0, θ, φ) −Rp|. (5.3)

• Secondly, forward modelling of the eigenmode using helical current filaments on
the surface s0 and the law of Biot-Savart to calculate the perturbed field at
the probe position has been implemented. The current filaments for a (m,n)
eigenmode follow the path θ = θ0 + φ · (n/m) in magnetic coordinates, where θ0
is the poloidal start angle at φ = 0. Using the approximation that the cylindrical
toroidal angle φc almost coincides with Boozers toroidal angle, the equivalent
probe position in magnetic coordinates given by this ”impulse response” mapping
is θp = θ

(max)
0 + φc · (n/m), where θ

(max)
0 is the poloidal start angle of the current

filament that gives the largest contribution to the simulated probe signal.

Both mapping procedures give comparable results, a weak dependency of the mapped
coordinates on the mode numbers is observed using the second procedure. In Fig. 5.7
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Figure 5.6: Equilibrium data for shot #54154: density, temperature and pressure
profiles (black: measured data, red: fit to profile shape, blue: rescaled profiles) used as
input as well as the resulting β and  ι profiles. Additionally, flux surfaces in two cross
sections (φ = 0◦ and φ = 24◦) are shown along with the vessel outline and plasma
facing in-vessel components.
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the result of the mapping is shown, while Fig. 5.8 depicts a comparison between both
mapping procedures.

After having mapped the probe coordinates, the mode number analysis is straightfor-
ward using the extended Lomb periodogram (section 4.3.2) to scan a suitable parameter
space in f,m, n and t. The result of this scan for shot #54154 is given in Fig. 5.9.
The mode number spectrum shows a response at m = 0 and m ≈ 6/7 for various n.
The m = 0 contibution is can probably be attributed to a beginning far-field effect, a
phenomenon that can be explained as follows: Assuming a multipole structure of the
perturbed poloidal magnetic field that decays as B̃pol(r) ∼ B̃pol(r0) · |r− r0|−(m+1), the
fine structure of the perturbed field in poloidal direction vanishes some distance away
from r0, especially for high m. The resulting ”far field” has approximately the same
phase everywhere along a poloidal circumference.

The other contributions in the mode number spectrum at m ≈ 6/7 suffer from spatial
aliasing in n due to the low number of different probe positions in toroidal direction. To
find the correct value of n, one can consider the shear Alfvén wave dispersion relation
ω2

A = k2
‖v

2
A = (m ι− n)2v2

A/R
2
0. A necessary condition to obtain low-frequency waves is

that |k‖| = ω2
A/v

2
A ≪ 1, corresponding to (m ι−n) ≈ 0. Near the plasma boundary,  ι is

approximately 1/3 as seen from Fig. 5.6, resulting in the inter-relationship n/m ≈ 1/3
and allowing to exclude cases with sgn(m) 6= sgn(n) from shear Alfvén eigenmode
considerations. The only peak in the mode number spectrum that fulfills the necessary
condition to be shear Alfvén is m ≈ 6/7, n = 2.
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Figure 5.9: Results of the mode number scan for shot #54154, t = 0.21 . . . 0.23s. The
left panel displays the time-resolved frequency spectrum for mode numbers (m,n) =
(6, 2), while in the right panel the complete mode number spectrum is given at the
point indicated by the center of the red circle in the left panel.
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Figure 5.10: Shear Alfvén continuum calculated for W7-AS shot #54154, t = 0.23s.
The left panel shows the continuum where individual continuum gaps have been
coloured for identification. The right panel shows the same continuum and, addi-
tionally, the dispersion relations for selected continuum branches.
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5.1.4 Eigenmode Identification

The next step on the way to identify an observed Mirnov activity as shear Alfvén
eigenmode is to compare determined mode numbers and frequencies to the Alfvén
continuum. It is calculated using the COBRA code (section 4.4.2) and requires the
reconstructed density profile, the ideal MHD equilibrium as well as the set of Boozer
coordinates for that equilibrium as input. The continuum is shown in Fig. 5.10, it can
be seen in the left panel that the TAE gap extends over the whole plasma radius at
f ≈ 35 kHz, the frequency of the eigenmode. The gap does not close near the plasma
boundary, it is expected that the eigenmode will not suffer from continuum damping.

In the right panel of Fig. 5.10 the same continuum is shown in conjunction with a selec-
tion of relevant continuum branches. Different colours indicate the dominant poloidal
harmonic of the coupled branches, i.e. to which cylindrical continuum branch a point
would belong in the limit of vanishing coupling coefficients ǫ(µν). The figure indicates
that for a TAE with n = 2 the following couplings could contribute to observed har-
monics: m = 3, 4, m = 4, 5, and m = 5, 6. A coupling between m = 6 and m = 7 is
not expected from the shear Alfvén continuum. In Fig. 5.9, only a weak m = 5, n = 2
harmonic is found, the strongest contributions are m = 6 and m = 7. The weakness of
the m = 5 harmonics could result from a localization closer to the plasma core, in that
case the radial eigenfunction could have diminished near the plasma boundary and is
difficult to detect due to the low amplitude (the maximum of the radial eigenfunction of
a harmonic does not necessarily coincide with the radial location of the branch crossing
point in the Alfvén continuum). It must be noted that the equilibrium is calculated at
t = 0.23s while the eigenmode terminates at t = 0.22s. In between the plasma profiles
vary slightly (c.f. Fig. 5.2), so neither the mode number analysis nor the continuum
calculation that are based on the equilibrium reconstruction are sufficiently precise to
definitely exclude m = 5 or m = 7 as possible eigenmode harmonics. The required
value of  ι for a m = 6, 7 coupling inside the plasma can be estimated using Eq. (3.14)
and the result is  ι∗ = 0.308. The minimum  ι in Fig. 5.6 is  ιmin = 0.316, the difference of
δ ι = 0.008 is small compared to the uncertainties introduced by the unknown current
density profile and the pressure profile and considering the large shear in this discharge.

Finally it can be concluded that the observed activity can be identified as TAE with
n = 2 and m = 5, 6, 7 harmonics which is consistent with shear Alfvén continuum
calculations.

5.1.5 Ion Distribution Function

The ion distribution function is an important ingredient in the calculation of the growth
and damping rates of AEs and allows to extract statistical quantities describing the
particle number densities and energy of fast ions. The tools for calculating the ion
distribution function in the presence of a Maxwellian bulk plasma and NBI heating are
described in Sec. 4.4.3.
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Figure 5.11: Birth profiles for W7-AS shot #54154, t = 0.23s, 3.4 MW NBI power.
Radial profiles of deposited Monte-Carlo particle numbers and power density (top),
and typical pitch profiles in the plasma core and at the plasma edge (bottom). The

pitch profiles are normalized so that the integral
∫ 1
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3.4 MW NBI power on a flux surface near the plasma core. Left graph: f(s0, v, χ),
right graph: pitch averaged distribution f(s0, v).
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3.4 MW NBI power.

nth [m−3] nfast [m−3] βth [%] βfast [%] βfast/βth vb/vA

s = 0 2.23 · 1020 1.01 · 1018 2.45 0.55 0.22 1.89
s = 1 2.77 · 1019 3.91 · 1016 0.04 0.01 0.20 0.61

Vol. Avg. 1.66 · 1020 3.55 · 1017 1.31 0.16 0.12 1.36

Table 5.1: Statistical quantities obtained from the velocity distribution function calcu-
lated for W7-AS shot #54154, t = 0.23s, 3.4 MW NBI power.

In shot #54154 at t = 0.23s, both NBI beamlines with four ion sources per beamline
were switched on, delivering a total heating power of 3.4 MW. Here a hydrogen beam
was injected into a hydrogen plasma. In the ionization modelling with 106 test parti-
cles per beamline, the total deposited power was estimated to be 3.18 MW (93.6%).
Prompt losses of injected particles are neglected in both, ionization and slowing down
calculations. The birth profile is shown in Fig. 5.11, where it can be seen that the de-
posited power density peaks towards the plasma center, whereas most of the particles
are ionized at intermediate radii. The pitch distributions are strongly anisotropic and
reflect the unbalanced injection used for the later W7-AS discharges.

The velocity distribution functions obtained after the slowing-down calculation, Fig. 5.12,
retain the velocity anisotropy near the injection energy. As expected, the fast parti-
cles become isotropic during thermalization. In the right graph of Fig. 5.12 the three
injection energies E = 55 keV, E/2 and E/3 can be identified. Table 5.1 lists some
important statistical quantities that were calculated using the ion distribution func-
tion. In Fig. 5.13 the radial profiles of βi, βfast and vb/vA are depicted where vb is the
beam velocity and βi is the thermal ion beta. When βfast is compared to the power
deposition profile in Fig. 5.11 and vb/vA(s) to the density profile in Fig. 5.6, one finds
that the variation of 〈B0〉 (s) is too small to influence the profile shape significantly.
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Figure 5.15: Effective growth rates several TAE modes for
W7-AS shot #54154 using the anisotropic (left) or an equiv-
alent isotropic distribution function (right).

5.1.6 Growth Rates and Fast Ion Losses

The LGRO code (Sec. 4.4.4) is used to calculate the gowth rate of the identified
m = 5/6, n = 2 TAE instability based on the equilibrium reconstruction and the
slowing-down distribution function. It is found that the electron Landau damping has
a stabilizing effect on the mode (Fig. 5.14). The spatial inhomogeneity of the electron
distribution function does also contribute, but this term is significantly smaller com-
pared to the Landau damping. The thermal ions are slightly destabilizing. This is
attributed to the localization of the mode in the gradient region of the plasma, where
the density gradient is strong enough to drive the mode via the ions diamagnetic drift.
The required small resonance velocities are provided by the non-axisymmetric ǫµν cou-
pling coefficients with ν 6= 0. B is negative, and therefore ω∗,i should be destabilizing
for positive n. The thermal ion drive is not strong enough to overcome the electron
damping and without the additional fast-particle drive the mode would be stable. In
total, the effective growth rate is positive and the mode is predicted to be unstable,
driven mainly by fast particles.

Fig. 5.15 shows a comparison of the effective growth rates of all TAEs with n =
−2 . . . 2 using the LGRO code, once with an anisotropic velocity distribution of the
fast particles, and once with an equivalent isotropic distribution having the same βfast

and nfast. The possible values of m and n are determined by the equilibrium  ι-profile
according to eq. (3.14). This figure highlights that the fast-ion drive is directional. Only
those eigenmodes whose harmonics have mode numbers with a certain sign are driven
by the fast ions. A second fact can be derived from Fig. 5.15: The most unstable mode
is not the one identified in experiment. The local model neglects the radial extension of
the modes and therefore any continuum damping which can additionally stabilize some
of the eigenmodes. Finally, the figure shows the difference between the isotropic and
anisotropic distribution of fast ions. Some TAEs are selectively driven more unstable
by the anisotropic velocity distribution while for others the drive reduces, depending
on the number of fast ions that fulfill the resonance condition (3.23).



5.1. DATA ANALYSIS 93

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.5

1

1.5

2

2.5

3

3.5

4

100 120 140 160 180 200 220 240

A
D

C
 V

ol
ta

ge

M
ir

no
v 

In
te

ns
ity

 [
a.

u.
]

Time [ms]

Raw EFIP PMT data: shot #54154, channel 8

-1

-0.5

0

0.5

1

-30 -20 -10 0 10 20 30

C
or

re
la

tio
n

Time Lag [ms]

EFIP - Mirnov cross correlation
shot #54154, PMT #8, Mirnov: MIRTIM
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As stated in Sec. 3.3.2, the fast ions losses by resonant wave-particle interaction are
expected to scale linearly with the wave amplitude. Consequently, this allows one to
look for correlations between the temporal evolution of the wave amplitude and fast ion
losses to identify resonant losses. When calculating the wave amplitude, it has to be
kept in mind that multiple activity at different frequencies is often observed. The time
trace of the wave amplitude is therefore calculated by integrating the time-resolved
frequency spectrum as obtained from wavelet transform in the spectral band where the
mode exists, shown in Fig. 5.16. Additionally, the NBI power needs to be monitored to
exclude changes in the fast ion loss signals that are caused by changes in the heating
power. Finally, the (normalized) cross correlation functions between the EFIP PMT
time traces and the Mirnov intensity are calculated. For the discharge #54154 and
the discovered TAE instability, no significant correlation between Mirnov intensity and
ion loss data could be established for any of the photomultipliers. The small positive
correlation in PMT #8 at ∆t ≈ 5 ms is hardly above the noise level. This is also
supported by the value of the cross correlation function which is below 0.3.

5.2 Discharge Scan

In the course of the present work, in total of 133 Alfvénic activities are being studied
along the line described in the last section. Discharge numbers range from 54009 to
56936. The discharges have been selected according to the following criteria:

High β: Usually, the high beta phase of these discharges is quiescent, but strong
Alfvénic activity is frequently observed during the startup phase. In addition, the
assumption Te = Ti is well justified, the impurity content is low, the NBI driven
toroidal current is almost always compensated, and the natural edge islands are
usually supressed to increase the plasma volume [82]. This is especially important
enable the equilibrium reconstruction based on VMEC alone, because VMEC
does not handle magnetic islands and ergodic regions.

NBI heating, no ECRH: This is required to have a fast ion distribution function
and to have thereby a significant fast particle drive of Alfvén instabilities. Mixed
H/D discharges have been avoided because of difficulties to determine the rela-
tive abundances of hydrogen and deuterium. Especially, experiments performed
shortly after a change of the fuel gas are not considered because the hydrogen
or deuterium inventory in the carbon-containing, plasma facing components in
W7-AS can cause a significant pollution of the plasma. A period of several days
is required until the inventory has decayed.

Data availability: It is required that YAG Thomson data is available to allow an
equilibrium reconstruction based on measured density and temperature profiles.
In addition, Mirnov data should be available for all probe arrays to determine
both mode numbers, m and n, of the harmonics of the observed instability.
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These criteria effectively limit the number of suitable discharges. Those that have
been identified stem from a few experimental campaigns as seen in Appendix C.1.
In discharges where both, ECRH and NBI are listed as heatings, the ECRH heating
starts after the analyzed time period and does not interfere with the Alfvén eigenmode
analysis. The same holds for experiments dedicated to the study of electron Bernstein
waves (EBW) and their applicability for plasma heating by OXB conversion. In the
following, some statistical information about the different discharges that have been
studied will be given to show the covered parameter range. Afterwards, the identified
Alfvén eigenmodes are presented.

5.2.1 Discharge Classification

The studied discharges are collected from several experimental campaigns and cover
a wide range of different plasma parameters. The experiments were conducted at
magnetic field strengths of B0 = −0.9 T, -1 T, -1.25 T (half field) and -2.5 T (full field).
Both, hydrogen and deuterium discharges are present in the list of shots. Fig. 5.17
illustrates the variation of central ion density and temperature throughout the different
discharges. The density ranges from ni(0) ≈ 5 · 1019m−3 to 3 · 1020m−3, while the ion
temperature varies from Ti(0) ≈ 150 eV, in the early startup phase of some discharges,
up to 550 eV. Although the density of fast ions is always small compared to the thermal
bulk ion density, nfast/ni < 10−2, they can carry a signigicant fraction of the total
plasma energy. This is indicated in Fig. 5.18 which displays the volume-averaged fast
ion beta 〈βfast〉 as a function of the thermal ion beta 〈βi〉. The total thermal plasma
beta βth = βi + βe = 2βi, because ne = ni and Te = Ti were assumed. Discharges
with βfast ≈ βi as well as with βfast < βi are present. There is no obvious correlation
between βfast and βi, they can be considered as independent variables.
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Figure 5.19 shows the comparison between the volume averages of two characteristic
velocities, the thermal ion speed and the Alfvén velocity. It is found that the Alfvén
velocity is always larger by a factor of at least 10. This is different for the electrons,
Fig. 5.20, which have thermal velocities of the same order as the Alfvén velocity due
to the low temperature and the high densities. It is expected that the electrons can
interact resonantly with Alfvén eigenmodes and stabilize them via Landau damping.

Fig. 5.21 shows the variation of the ratio of NBI beam velocity vb to the Alfvén velocity
vA, ranging from 0.3 ≤ vb/vA ≤ 2.1. This figure also highlights the correlation between
vA and βi:

vb

vA
=

√

2Einj/mi

B/
√
µ0mini

∼
√
ni

B
, βi ∼

niTi

B2
.

The NBI injection energy was not varied and since the ratio vb/vA is independent of
the particle mass, the deviation from a square root curve in Fig. 5.21 is a result of the
temperature variation.

Two important parameters that determine the possibility of fast particle drive for
Alfvén eigenmodes have already be mentioned. One is the ratio vb/vA which describes
through which resonances the injected particles can interact with the eigenmodes. The
other important parameter is the ratio βfast/βi that gives a comparison between the
energy content in the destabilizing fast ion population and the potentially stabilizing
thermal bulk plasma. Fig. 5.22 shows the data arranged this way. It should be noted
that the volume averaged values displayed there are not significant unless the instability
drive is effective over a large fraction of the plasma radius. For eigenmodes that are
strongly localized in the gradient region, the picture may change qualitatively.
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5.2.2 Eigenmode Classification

The results of the eigenmode identification of the 133 studied Alfvén instabilities can
be summarized as follows:

GAEs: 19 (14.3%),

TAEs: 47 (35.3%),

EAEs: 8 identified + 13 with frequencies inside the EAE gap, total: 21 (15.8%),

NAE30: possibly 1,

MAE01: possibly 1,

HAE21: possibly 3,

Unidentified: 41 (30.8%).

A complete list of all discharges and AEs is given in Appendix C. The mode numbers
and the frequency of the NAE30 eigenmode are in agreement with the Alfvén contin-
uum calculation, but the continuum gap is closed towards the plasma boundary and the
mode is predicted to suffer from continuum damping. It is, therefore, not possible to
be sure that the observed eigenmode is indeed the NAE30 suggested by the mode num-
bers. The identification of the high-frequency MAE and HAE modes is not uniquely
possible with the probe setup at W7-AS because (a) the MIR-1 array is unsuitable
for frequencies larger than 70 kHz – this leaves only two different toroidal positions at
which information about the mode structure is available; and (b) these modes involve
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Figure 5.24: Fast ion losses seen by
PMT #12 for GAEs in shot #55003
and #56355.

harmonics (m,n) and (m+µ, n+Nν) with n’s differing by the number of field periods
N = 5. To summarize, for high-frequency modes the mode numbers are basically un-
known, but in the cases mentioned above, the frequencies of the eigenmodes lies inside
the continuum gaps and one possible harmonic could be found on the mode number
spectra.

The unidentified AEs, which constitute one third of all studied AEs, could not be
assigned to either of GAEs and gap modes, or have m = 0 or n = 0 as only dominant
harmonic in the mode number spectrum. In the following, more details are given about
the GAEs, TAEs, EAEs and the unidentifies AEs.

5.2.2.1 GAEs

The GAEs (see Appendix C.2.1) were observed in low-shear discharges,  ιmax −  ιmin <
0.03, in the vicinity of but not including  ι = 0.5 which is consistent with earlier studies
[21, 83]. With the exception of shot #55003, #55480 and #56355, all GAEs were
found in discharges of the same experimental program which is reflected by the similar
discharge parameters in Fig. 5.23. In this series, the GAEs appeared reproducibly in
the density ramp-up with comparable frequencies and the same high mode numbers
(m,n) = (−14,−7), which were found by studying the aliasing in the mode number
spectrum. No ion or energy losses are associated with these GAEs.

The other three discharges are from different experimental programs. The activity
observed in #55480 has no clear eigenfrequency and occupies the whole frequency
band between 22 kHz and 32 kHz, but it can be assigned clear mode numbers (m,n) =
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Figure 5.25: Left: βfast/(βe + βi) over vb/vA for all TAEs. All quantities have been
evaluated at s = s∗, the intersection point of the corresponding cylindrical continua.
Right: selection of interesting cases.

(2, 1). The GAEs in shot #55003 and #56355 have mode numbers (−4,−2) and (2, 1),
respectively, and cause ion losses as shown in Fig. 5.24. In both cases, the ion losses are
seen in PMTs #8 and #12 of the EFIP diagnostic which correspond to counterpassing
ions with χ ≈ 0.9 and high energies comparable to the NBI injection energy. The
correlation times are ≈ 2 − 4 ms, cross correlation function values > 0.8 indicate that
the losses are indeed caused by resonant wave-particle interaction.

The LGRO code is not yet able to calculate the growth rates of GAEs. But from the
sign of the mode numbers it is expected that the diamagnetic drift acts as a stabilizing
factor on most of these modes.

5.2.2.2 TAEs

The TAEs, listed in detail in Appendix C.2.2, constitute the largest fraction of all
successfully identified AEs. They are found in discharges stemming from several ex-
perimental campaigns and cover a wider parameter range (Fig. 5.25). TAEs exist in all
operational regimes, including high and medium shear discharges, H and D plasmas,
low and high magnetic fields. With a few exceptions, the mode numbers were found to
be positive, ranging from m = 2 . . . 12 and n = 1 . . . 5, with frequencies up to 40 kHz.

Strong indications of fast-particle drive were seen in some of the discharges, shown
separately in the right diagram of Fig. 5.25. In shots #54132 – #54137, the TAE
is observed in a very early stage of the discharge where the NBI power is still being
ramped up. An example is given in Fig. 5.26. The amplitude of the TAE increases
suddenly, coincident with a step in the NBI heating power. Shortly afterwards, the
frequency decreases slightly and the mode deceases. At about the same time, a new
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Figure 5.27: TAE spectrum change by
NBI power step.

Figure 5.28: Harmonics of a (4/5,
2) TAE calculated using the CAS3D3
code [78, 79] for shot #54906 [84].

eigenmode appears slightly above in frequency that could not be identified because the
analysis yields m = 0 as only dominant poloidal harmonic.

The shots #54902 – #54908 belong to a campaign were power scan experiments have
been performed. The TAEs were observed in a late stage of the discharges, from
t = 0.28 . . . 0.39 s in the stationary high-β phase. Due to the low field and the high
densities, the Alfvén velocity is rather small, giving ratios vb/vA > 1 (Fig. 5.25). In
all these discharges, the NBI power has been decreased at t = 0.33 s. This had
a negligible effect on the global plasma parameters, the ideal MHD equilibria and
the Alfvén continua are comparable. Nevertheless, at t ≈ 0.33 s the spectrum of
observed unstable TAEs is changed as can be seen from Fig. 5.27. In addition, the mode
number spectra of the TAEs in these discharges indicate that a considerable number
of dominant harmonics is involved in the formation of the eigenmode. A calculation of
the radial eigenfunctions of the harmonics of a TAE at 17 kHz in discharge #54906,
t = 0.33 s, performed by Könies using the CAS3D3 code, supports this hypothesis. An
excellent agreement between mode numbers and eigenfrequency of the TAE is found.

A different interesting feature is seen in the power scan series in the (6/7, 2) TAE
that appears reproducibly in all discharges of that series. As Fig. 5.27 suggests for this
activity, it is a bursting mode, where each burst appears twice, slightly shifted upwards
in frequency. This behaviour has been termed ”frequency splitting”, but has not been
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further studied.

The sign of the mode numbers suggests that the diamagnetic drift of the fast beam ions
drives the modes. The growth rates of all TAEs have been calculated using the LGRO
code (Sec. 4.4.4), the results are shown in Fig. 5.29. It can be seen that for some TAEs
the growth rates reach magnitudes where it can be expected that the perturbative
approach breaks down. The modes with negative mode numbers are predicted to
be damped, as expected. In many cases, the density gradient of the thermal ions is
sufficiently strong to be slightly destabilizing, the electron Landau damping, however,
is always larger than the thermal ion drive. Fig. 5.30 shows the diamagnetic drift
frequencies compared to the mode frequencies. The drift frequency, fdia = ω∗/(2π) has
been calculated using the following formula:

ω∗ =
v2
0

ωci

· 1

r

d ln(nfast)

dr
, (5.4)

where nfast =
∫

d3v ffast, v
2
0 = n−1

fast

∫

d3v v2ffast, and ωci = eB/mi. All quantities
are evalutated at the magnetic surface where the cylindrical continua of the eigenmode
harmonics would intersect. Both, the Larmor frequency ωci (B < 0) and the density
gradient length are negative, which makes ω∗ > 0. Fig. 5.30 shows that the drive by
the diamagnetic drift, which is proportional to mω∗/ω0 (m ≈ n/ ι for gap modes) is
significantly enhanced by the large ratio ω∗/ω0 > 10, and the high mode numbers. In
contrast to the strong TAE drive by the energetic beam ions, wave-induced fast ion
losses were not observed for any TAE.
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Figure 5.31: βfast/βth vs. vb/vA for
EAEs.
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Figure 5.32: EAE for which ion losses
are observed.

5.2.2.3 EAEs

The number of EAEs that could unambiguously be identified is as low as 8 cases. Addi-
tional 13 Alfvén instabilities have frequencies inside the EAE gap but their mode num-
bers could not be related to couplings in the Alfvén continuum. It is therefore unknown
if these modes really constitute EAEs or if they are other instabilities that just coincide
with the EAE frequency range. The individual events are listed in Appendix C.2.3,
the distribution of dimensionless discharge parameters βfast/βth and vb/vA is given in
Fig. 5.31. These quantities have been evaluated at s = s∗ for the clearly identified
EAEs, in case of the assumed EAEs volume averaged values are given. It should be
noted that one half of the assumed EAEs has frequencies that exceed the capabilities
of the MIR-1 probe array. Hence, the mode numbers are known only approximately.

The Alfvén continua suggest that the radial localization of the EAEs that could be
identified is not in the gradient region, but closer towards the plasma center, roughly
at about half the plasma radius. This is consistent with the observation that the
amplitudes are relatively small and appear noisy. Six of the well identidied EAEs
have mode numbers m,n < 0 and are therefore predicted to be stabilized by the ion
diamagnetic drift. The remaining EAEs in shots #54151 and #56936 are predicted to
marginally unstable with growth rates γ/ω0 ≪ 1%. Growth rate calculations for the
remaining, assumed EAEs could not be performed. Neither their radial localization
nor the dominant harmonics are known.

Although the growth rate calculations suggest that fast particles do not destabilize
the EAEs, there is an indication of counterpassing fast ion losses. In shot #54009,
a correlation between the EAE amplitude and PMT #13 can be seen, where the ion
losses follow the EAE with a time lag of ≈ 2 ms. The lost particles correspond to ions
with an energy of 35 keV, much larger than the bulk ion temperature, and a pitch of
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Figure 5.33: Volume averaged βfast/βth vs. vb/vA. In the right diagram the cases for
which ion or energy losses were observed are highlighted.

χ ≈ 0.64 (50◦). The velocity is v/vb = 0.8 or v‖/vA ≈ 1. For this shot, the beam
velocity was estimated to be vb/vA ≈ 2. These observations are consistent with a
resonant fast particle loss caused by the EAE. In all other discharges no wave-induced
fast ion losses have been identified.

5.2.2.4 Unidentified AEs

There is a number of instabilities that could not be classified. They are listed in Ap-
pendix C.2.5, the volume averaged dimensionless parameters βfast/βth and vb/vA are
plotted in Fig. 5.33. It is seen that, in terms of these parameters, they occupy approx-
imately the same parameter space as the gap modes and GAEs. An exceptionally high
number of cases was identified where the Alfvén activity was correlated with significant
losses of fast ions or plasma energy. In the right hand side diagram of Fig. 5.33 these
cases have been highlighted in a different color. The frequencies of the eigenmodes
are shown in Fig. 5.34. The central frequencies of the continuum gaps depend on
the plasma parameters via  ι and vA (c.f. eq. 3.14) and can vary significantly between
discharges. Therefore the frequencies of the instabilities have been normalized to the
central TAE gap frequency determined for the discharges from a COBRA run to pro-
vide a comparable measure. A range from very low frequency phenomena (well below
the TAE, which is the lowest-frequency gap mode) to real high-frequency phenomena
(which, if they are gap modes, are stellarator specific HAE or MAE modes) is covered.
The central ion densities and temperatures are given in Fig. 5.35. When compared
to Fig. 5.17, it is found that the unidentified cases are well spread over the whole pa-
rameter range explored in this study. With the exception that losses are only seen for
vb/vA > 0.5 and from fTAE ≤ f ≤ 5 · fTAE , lossy discharges are indistinguishable from
ordinary discharges in terms of the presented parameters.
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For some cases it is apparent why the AEs have not been identified. The AE burst
seen in shots #54128, #54129 and #54138 is very similar in frequency, observation
time and mode numbers to instabilities that have been identified as TAEs in #54130
– #54137; the (-2, -1) peak is likely to alias the (11, 4) peak. The differences between
these discharges is that the edge profile values given by the YAG Thomson scattering
diagnostic differ, resulting in changes to the  ι- and ni-profile in the equilibrium recon-
struction that moves the (11/12, 4) coupling in the Alfvén continua out of the plasma.
Consequently, these Alfvén eigenmodes have been classified as unidentified.

In some discharges f ≥ 70 kHz and 900 MHz startup heating coincides (e.g. #54903 –
#54911 t = 0.2 s). The large mode frequency forces to exclude the MIR-1 array from
the mode number analysis because of their resonances. The 900 MHz startup heating
further leads to strong HF pickup in a part of the MIR-3 array with concomitant data
losses. The remaining number of MIR-3 probes together with the MIR-5 array are
insufficient to determine the mode numbers even approximately. The different number
of probes at the two toroidal positions leads to an unpredictable mode number aliasing
spectrum. Besides the missing MIR-1 probe array in that frequency range, the high-
frequency modes with f/fTAE ≫ 1 (e.g. in #54937, #55049, #55321, #55325 and
#56936) are extremely difficult to identify because of yet another reason. The Bµν

spectrum in W7-AS consists of many Fourier coefficients with considerable magnitude.
This makes the Alfvén continuum complex at high frequencies. Wide HAEµν and
MAE0ν gaps are aligned side by side, compressing the continuum between them to
thin threads. The variation of the central gap frequencies with the plasma parameters
has the effect that, at a given frequency, various gaps are found at different radial
positions and it is difficult to determine to which gap an observed instability should be
associated.
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Figure 5.36: Correlation between
plasma energy loss and Alfvén activity
for shot #54906.
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Figure 5.37: Correlation between
plasma energy loss and Alfvén activity
for shot #54907.

In addition, there are cases where m = 0 was observed as only dominant poloidal
harmonic in the mode number spectrum which is likely to be caused by the far-field
effect, or where the mode numbers could be determined but not related to expected AEs
according to the continuum calculations. This is true for nearly all cases with f < fTAE.
The point with f/fTAE ≈ 0.18 belongs to shot #55391, where the central ion density
is only 4.5 · 1019m−3 in a full field B = −2.5 T deuterium discharge, resulting in a
central TAE gap frequency of ≈ 160 kHz. Since no other continuum gaps are located
below the TAE gap, the only type of ideal MHD shear Alfvén instability that can be
expected at those frequencies are GAEs. The observed mode numbers could not be
related to continuum branches that have minima near the observed frequency.

This class, the unidentified AE activities, contains eigenmodes with very different prop-
erties. Some might have been wrongly classified here due to uncertainties in the plasma
profiles and the equilibrium reconstruction. The remaining instabilities range from very
low-frequency phenomena to stellarator specific high-frequency Alfvén eigenmodes, for
which the mode numbers remain uncertain with the given probe setup. A few of the
modes can be described as stationary and lasting over a long time range, while others
show a strongly nonlinear behaviour such as bursting or frequency chirping. Many of
the instabilities were reproducibly found in adjacent discharges.

The discharges #54903 – #54907, #54911 show energy losses which are correlated
with the observed Alfvén instability. An example showing the correlations is given in
Fig. 5.36 for #54906 and in Fig. 5.37 for #54907. The modes always start shortly
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Figure 5.38: Correlation between plasma energy loss, fast ion loss and Alfvén activity
for shot #56358.

after an increase of the NBI heating power and sometimes pass through a dithering
state until a well-formed eigenmode with sharp frequency and large amplitude develops.
In #54908 the eigenmode did not develop out of the dithering state and the plasma
energy kept increasing, though at a lower rate. The correlations are observed in the
time traces of the fast diamagnetic loop at φ = 15◦, the diamagnetic loop at φ =
36◦ is too slow to resove the time dependence. Neither radiation losses in the time
traces of the Bremsstrahlung monitor nor a bolometer response were seen, only a slight
increase in the Hα light near the divertor indicates enhanced particle exhaust. The bulk
plasma density and temperature, observed by interferometers and SX central electron
temperature diagnostic, do not exhibit losses that are sufficiently strong to explain the
drop in the plasma energy. It is therefore suggested that energetic particle losses are
responsible for the decrease in plasma energy. The losses approximately scale linearly
with the Mirnov amplitude which is a strong indication for resonant wave-particle
interaction. The fast ion loss probe was positioned at z = 33 cm below the midplane,
which is rather far from the plasma, and did not observe significant particle fluxes.

An example showing fast ion losses as well as a significant drop in plasma energy
is given in Fig. 5.38. It shows some Alfvén activity that could not be identified to
be a gap mode, although it appears to have a frequency inside the TAE gap. The
analysis has been performed at t ≈ 0.18s, where the branch near 50 kHz is dominant.
The mode number analysis, Fig. 5.39, yields, (m,n) = (4, 2) as only harmonic with
large confidence. The Alfvén continuum suggests, however, that only a GAE with
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Figure 5.39: Mode number spectrum of the AE activity at t ≈ 180ms, 50 kHz and
the corresponding Alfvén continuum for shot #56358, showing the TAE gap and the
(m,n) = (4, 2) branch.

mode numbers (4, 2) and frequencies well below 10 kHz is expected to be observed
at about r/a = 0.85 in experiment. This shot had been subject to previous studies
and therefore a set of validated profiles, based on the concept of the integrated data
analysis, were available [85] and have been used in the equilibrium reconstruction. The
correlation between Mirnov amplitude and ion losses is excellent over a large time, the
cross correlation function approaches 1 and peaks at a positive time lag of 2 ms which
is comparable to the slowing-down time. This indicates that the Mirnov activity is
ahead of the partially slowed down ions that are lost. EFIP PMTs #8 and #13 show
the largest signals that exhaust almost the whole dynamic range of the PMT data
acquisition setup. These PMTs observe particles that correspond counterpassing ions
with medium (≈15 keV) and high energies (injection energy 55 keV), respectively, and
large pitch χ ≈ 0.9.

In the remaining discharges for which ion losses could be shown, these occur for coun-
terpassing energetic particles with large pitch χ as well. The magnitude of the ion
losses is lower and no effect on the diamagnetic energy is seen. All these AE instabili-
ties show strong nonlinearities like frequency chirping or bursting. Discharge #55388
also shows significant fast ion losses, but these were found to be caused by a periodic
modulation of the NBI heating power. The bursts of the eigenmode and the ion losses
are coincident with NBI bursts, i.e. the cross correlation function peaks at ∆t = 0.
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Chapter 6

Discussion and Conclusions

6.1 Equilibrium Reconstruction

The plasma equilibrium is the fundamental building block on which the AE analy-
sis rests. All other steps depend sensitively on the quality of the equilibria which
themselfves depend on the quality of the spatial profiles of plasma pressure and inter-
nal current density. The VMEC/XSTELLOPT toolchain [71–73] has been chosen to
solve the ideal MHD equilibrium based on measured pressure profiles and additional
constraints.

While the integrated data analysis [81] should be the preferred way to validate the
plasma density and temperature profiles obtained from the Nd:YAG Thomson scatter-
ing system, it is for now an expensive procedure which is unsuitable to be applied to
a larger number of discharges at W7-AS and was only performed for selected shots of
special interest. A simplified procedure has been employed that is straightforward to
apply to a large number of different discharges.

The pressure profiles in the plasma center are well described by the YAG Thomson
scattering system after filtering outliers, and are consistent throughout the discharges
of an experimental campaign. The validation of the central densities and temperatures
with plasma energy and SX central electron temperature gives sufficient accuracy for
a successful quantitative comparison between experimentally observed eigenmode fre-
quencies and the location of the gaps in the Alfvén continuum. Except in very early
phases of a discharge, the density profiles are nearly flat in the plasma center and have
strong gradients at radii r/a ≈ 0.7 – 1. The temperature profiles are more peaked, the
gradient region starts at significantly smaller radii and is less pronounced. Density and
temperature values in the edge region are sometimes missing or at least suffer from
large uncertainties, although the error estimates given for these points by the Bayesian
model for the analysis of YAG Thomson raw data indicate otherwise. Experiments
with the incorporation of edge density profiles obtained from the Lithium beam di-
agnostic have shown that in the discharges of interest, YAG Thomson scattering and

109
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LiBeam give inconsistent results in the important gradient region. This is attributed to
the fact that both diagnostics operate at their very limits in the cold and high-density
discharges. To be able to proceed, the boundary values of density and temperature
were prescribed to be 10% of the central value with a relative error estimate of 30%
before fitting the profiles to the profile shape model. These values are roughly expected
to be valid outside the LCMS and are consistent with comparable YAG profiles where
edge values are determined.

The influence of the internal current density profile has been taken into account only
by using a single default profile for all discharges. In addition to the neoclassical
bootstrap current, the unbalanced neutral beam injection drives considerable Okhawa
currents which were mostly compensated by an Ohmic current to provide net-current
free operation. In [86] was studied the influence of the value and the radial profile of
Zeff on the net current densities and the resulting changes to the  ι profile and the ideal
MHD stability. It was found that possible changes to the internal current densities can
lower the value of  ι over large parts of the plasma radius, while it significantly increases
the central value of  ι because both, the ohmic current (∼ T 3/2) and the Okhawa current
(∼ PNBI), strongly peak in the center of the discharge. A change in the  ι profile
correspondingly changes the Alfvén continuum. Besides moving couplings between
continuum branches (which depend only on  ι) into or out of the plasma column, it
modifies the variation of AE gap frequencies with the radius and, therefore, can provide
enhanced or reduced continuum damping.

The edge magnetic islands that are already present in the vacuum field of W7-AS in
the vicinity of a low-order rational transform  ι near the LCMS also modify the ideal
MHD equilibrium considerably. They are required for proper island divertor operation,
but destroy the outer magnetic surfaces and thus reduce the available plasma volume
and radius. To minimize the influence of the edge islands, only discharges from those
experimental campaigns have been studied where the islands are suppressed. This
is the case in the high-β discharges performed between 2000 and 2002 [82], were the
divertor was merely used as limiter. A side effect is that the plasma radius is known,
which is a free parameter in the solution of the equilibrium. A constraint imposed
on the equilibria is that the last closed magnetic surface extends up to the divertor
structures.

Close to the plasma boundary, r/a ≈ 1, the magnetic shear commonly changes sign as
seen in Fig. 5.6 at exactly the same position where the curvature of the density profile
reverses. This effect is not a physical one, it is introduced by the profile shape model.
Consequently, care has to be taken when analyzing eigenmodes that depend on details
in this region.

The equilibria that have been calculated are consistent with the observations of Alfvén
eigenmodes. In previous studies of Alfvén activity in W7-AS [83, 87] equilibria based on
parabolic pressure profiles were used due to the lack of validated pressure profiles. The
usability of this approach is limited as seen in Fig. 6.1, which shows a direct comparison
between equilibria obtained for a parabolic and a measured flat-top profile. A general
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Figure 6.1: Comparison of Alfvén continua obtained from equilibria based on a
parabolic and a measured pressure profile, respectively.

observation is that the typical flat-top profile of high-β discharges keeps continuum
gaps open over much larger plasma regions, especially in the high-frequency region of
the continuum. In conjunction with the stronger density gradient this improves the
instability of gap modes.

6.2 Mirnov Data Analysis

Previous analyses of Alfvén eigenmodes utilizing the Mirnov diagnostic were based on
a technique involving Fourier filtering and Singular Value Decomposition (SVD) to
separate coexisting features in the spectrum, followed by a phase difference analysis to
reconstruct the mode structure [25]. It was found that problems arose due to inadequate
poloidal probe positions (vacuum field), too large poloidal mode numbers and a too
large distance between plasma and probes. Depending on the radial localization of the
eigenmode, the limit in the feasibility to detect poloidal mode numbers m was found
as low as m = 3 . . . 5 using the MIR-1 array.

Two of the problems could be avoided. Firstly, the probe positions are correctly trans-
formed to Boozer coordinates. In these coordinates the harmonics of the eigenmode
are assumed to possess a plane wave structure. Secondly, the projection onto a single
value of m or n, that is inherent in the phase difference analysis, has been avoided.
Instead a proper decomposition in orthogonal plane wave basis functions is performed
in both, poloidal and toroidal directions simultaneously, comparable to a multidimen-
sional Fourier analysis but suitable for uneven datapoint spacing. More insight gives
the equivalent statement that the data is compared to the hypothesis of a (m,n, ω)-
harmonic, yielding the probability that the harmonic is present in the data. The
interpretation in terms of probabilities is permitted by the statistical properties of the
Lomb periodogram. Spatial aliasing can thus be recognized by scanning sufficiently
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large ranges for (m,n), where it should be noted again that the effect of uneven dat-
apoint spacing is that different aliasing peaks of the same feature do not necessarily
have the same amplitude.

The third problem, the large distance between probes and plasma boundary, can not
be circumvented. In fact, the observation of m = 0 features indicates that the strong
spatial decay of high multipole orders of the field perturbation imposes a limit on the
detectability of Alfvén eigenmodes with high (m,n).

In general, the multidimensional Lomb periodogram has proven to be a usefull tool
that allows the determination of the mode numbers of Alfvén eigenmodes with high
accuracy. The statistical interpretation of the spectrum additionally allows to include
the Lomb periodogram naturally into the IDA concept [88, 89] for the forthcoming
Wendelstein 7-X experiment.

6.3 Alfvén Eigenmodes and their Stability

Only ideal MHD shear Alfvén eigenmodes were considered in the eigenmode analysis,
kinetic Alfvén waves that exist because of finite parallel electric fields Ẽ‖ and finite
ion gyro-radii have not been looked for. To justify this, it is instructive to look at the
”nonideal parameter” [90]:

λ =
4mŝρi

rmǫ̂3/2

√

3

4
+
Te

Ti

,

where m is the poloidal mode number, ŝ = d ln( ι)/d ln(r) is the magnetic shear, ρi the
ion gyro-radius, rm is the radius where the mode is localized and ǫ̂3/2 = 5rm/(2R). It
describes the significance of kinetic effects, λ≪ 1 corresponds to vanishing importance
of non-ideal MHD. This parameter has been calculated for all studied cases and was
found to be λ < 10−3, which is a consequence of the small shear in W7-AS and the low
temperatures (ρi small). Therefore kinetic Alfvén eigenmodes are not expected to be
observed.

Although the studied discharges emerge from a few similar campaigns with low temper-
atures and high densities, the experimental conditions under which Alfvén instabilities
have been analyzed vary considerably in terms of the stability parameters βfast/βth and
vb/vA because events in the steady-state high-β as well as the startup phase t < 0.25s
were used. Under steady-state conditions the eigenmodes usually have low amplitudes
and are stationary over large time intervals, while the events observed in the startup
phase appear only transiently because they experience a constantly changing back-
ground plasma. The typical lifetime of such modes is 50 – 100 ms, depending on the
rate of equilibrium changes. Observed eigenmodes appear reproducibly in adjacent
discharges of an experimental campaign.

In contrast to previous studies of Alfvén eigenmodes at W7-AS, the identification of
instabilities is based on both mode numbers (m,n) as well as the frequency. This
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is made possible by the proper analysis of Mirnov probe data based on the devel-
oped multi-dimensional Lomb periodogram, which allows one to obtain reliable mode
number spectra even in the case of uneven probe spacing. Eigenmodes are identified
by comparing the mode numbers and frequencies to the ideal MHD Alfvén continua.
Depending on the mode frequency, uncertainties of 5 – 15 kHz were assumed that
describe the combined uncertainties of plasma density and Doppler shift by plasma
rotation. Strictly speaking, the restricted number of probes allows the mode number
analyses only for low (m,n) eigenmodes, but significant improvements can be achieved
by studying the aliasing in the mode number spectrum. Mode numbers up to m = 14,
n = 7 have been determined this way using all available probes. The assessment of
mode numbers for high-frequency modes was found to be impossible because the char-
acteristics of the MIR-1 probes prohibit their use for frequencies larger than 70 kHz.
Gap modes like TAEs or EAEs are identified by frequencies inside the continuum gaps
and mode numbers that correspond to couplings between Alfvén continua inside the
plasma column. Additionally it is required that the continuum gap is ”open” at the
mode frequency which means that the mode does not intersect the continuum at some
other radial position, otherwise the mode would suffer from continuum damping. A
necessary condition for the existence of GAEs is that a Alfvén continuum branch has
an off-axis minimum (fmin > 0). Global Alfvén eigenmodes must have the same mode
numbers as the continuum branch and a frequency below, but close to fmin.

Many of the observed instabilities could thereby be identified as one of the ideal MHD
Alfvén eigenmodes. Given the uncertainties of density and temperature profiles espe-
cially in the gradient region and the unknown current density profile, which all affect
the Alfvén continuum, false-positive or false-negative identifications cannot fully be
excluded.

6.3.1 GAEs

A total of 19 GAEs could be successfully identified. All appeared transiently during
the density ramp-up, no GAE was observed in the steady-state phase. Nearly all of
them were observed in discharges of a single experimental campaign under comparable
conditions, characterized by low values of βfast/βth < 0.1 and vb/vA ≤ 1/2. The
remaining GAEs were seen at parameter values not much different. However, due
to the low number of cases observed, this behaviour is not necessarily representative.
Nearly all the GAEs have mode numbers n,m < 0. Because the magnetic field is
negative, the ions diamagnetic drift is expected to have a stabilizing effect on these
modes. The velocity anisotropy term [cf. Eqs. (3.20) and (3.22)] is prefixed with a
factor mαλ/E , where λ = 1−χ2. Due to the tangential injection, the fast particles are
almost aligned to the magnetic field, χ2 → 1, which minimizes this term. Significant
drive by velocity anisotropy requires that the fast particles have a considerable fraction
of their energy perpendicular to the magnetic field. The only possibility for particles
to destabilize the mode are positive velocity gradients in the distribution function near
the resonant velocities (inverse Landau damping), which requires a loss cone in velocity
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space that the beam ions enter during the slowing down. No traces of such losses are
seen by the EFIP diagnostic, so the destabilization mechanism of these GAEs remains
unclear.

The observation that GAEs appear in low-shear cases close to a low-order rational  ι
but not including it is consistent with earlier observations. It can be explained by the
absence of couplings for low mode numbers (m,n) in the Alfvén continuum that have
been avoided by the choice of  ι. If the shear is sufficiently high to naturally include
couplings for low (m,n), the GAEs disappear and TAEs constitute the most unstable
AE.

6.3.2 TAEs

TAEs constitute the major fraction of the studied Alfvén instabilities, observed under
a variety of different discharge conditions, transient as well as steady-state. TAEs
in high-β cases were often found to have a whole range of poloidal mode numbers.
This experimental observation is confirmed by a calculation of the mode structure of a
typical TAE under high-β conditions, which shows that the eigenmode indeed consists
of several poloidal harmonics with non-vanishing eigenfunctions near the plasma edge.
Having mode numbers m,n > 0, the fast particle drive of these TAEs is confirmed by
growth rate calculations. The main destabilization mechanism is the diamagnetic drift
of the fast beam ions. In the studied discharges, thermal ions additionally enhance the
growth rate with their diamagnetic drift caused by the strong density gradient near
the plasma boundary where the TAEs were found to be localized. But the magnitude
of the thermal ion drive is low compared to the fast ion drive because the thermal
velocity vth ≪ vb. In none of the cases the thermal ion drive was sufficiently strong
to overcome the electron Landau damping and without the fast particle contribution
the mode would be predicted to be stable. In some discharges the fast ion drive was
observed directly by an increase of the mode amplitude coincident with an increase
of NBI heating power. Another, indirect sign of fast particle drive was seen in the
steady-state, high-β phase of some discharges where a decrease of NBI heating power,
resulting only in small modifications of the plasma equilibrium, caused the spectrum
of coexisting unstable TAEs to change.

Fig. 5.25 suggests that there is a threshold in the destabilization of TAEs by fast
particles that depends on the ratio of vb/vA. The LGRO code has a mode of operation
where it calculates stability diagrams for a given mode by varying the ratio vb/vA and
calculating the critical βfast for which γ = γe +γi +γfast = 0. Due to the way the code
works, it requires that the thermal ions have a damping effect, so the diamagnetic drift
of the thermal ions had to be suppressed by assuming a flat density profile. The stability
diagram obtained for a selected case using the anisotropic fast particle distribution
function is shown in Fig. 6.2 where βfast/βth is plotted in logarithmic scale. The same
diagram obtained for an isotropic velocity distribution function with equivalent fast
particle density and βfast is given in Fig. 6.3. From these figures can be seen that
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Figure 6.2: LGRO stability diagram for
a TAE using the anisotropic energetic
ion distribution function.
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Figure 6.3: LGRO stability diagram
for a TAE using an equivalent isotropic
fast ion distribution function.

for vb/vA > 1 even a perturbatively small population of fast particles is predicted to
destabilize the mode. The drive is reduced suddenly by large amounts whenever v‖,b/vA

drops below one of the possible resonance velocities, vres
‖ /vA = 1 and 1/3, indicated

by a larger βcrit. It also highlights the importance of electron Landau damping in
low-temperature discharges, which increases βcrit by a factor of 5 in this example. The
comparison between isotropic and anisotropic velocity distribution functions reveals
that the main differences occur near the resonance velocities, where isotropy has the
effect of smoothing out the strong response of βcrit near vres

‖ and thereby enhances
stability at vb ≥ vres

‖ . The decrease of the instability threshold when vb approaches
the resonance velocities from above is caused by the pitch angle spread during slowing
down, which is correctly described by the fast particle distribution function. Due to
the tangential injection, the pitch is |χ| ≈ 1 at the injection energy and the parallel
velocity v‖,b ≈ v. If the beam velocity is much larger than the Alfvén velocity, particles
at resonant velocities are nearly thermalized and isotropic in velocity. As vb → vres

‖ ,
the distribution of particles at the resonance velocity becomes localized at the injection
pitch angle which effectively increases the number of resonant particles.

The critical β strongly depends on details of the thermal and fast particle distribution
functions and the magnitude of the Fourier coefficients of |B|. For the eigenmodes
under consideration, the instability threshold was observed to vary by an order of
magnitude between cases. It is therefore not possible to calculate a global stability
diagram for all TAEs using the LGRO code. Nevertheless, an instability threshold for
the fast particle drive due to electron and ion damping is predicted that qualitatively
describes the experimental findings.

6.3.3 EAEs and High-Frequency Eigenmodes

Only eight EAEs could clearly be identified. A larger number of eigenmodes was found
to have frequencies inside the EAE gap, which can probably be assumed to be EAEs but
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could not be identified in terms of their mode numbers. One half of the assumed EAEs
has frequencies in excess of 70 kHz which makes the mode number analysis uncertain.
Frequencies up to 160 kHz were found to lie inside the EAE gap in cases of low density
and high magnetic field. Growth rate calculations were performed for the identified
EAEs. Only two of them had mode numbers m,n > 0 and were found to be marginally
unstable. The location of the couplings between Alfvén continua suggests that these
modes are localized approximately at half the plasma radius, where the density gradient
and, consequently, the diagmagnetic drift of the fast ions is comparably small. The
other cases were strongly damped by the combined effects of electron Landau damping,
thermal and energetic ion diamagnetic drifts. For EAEs that were only assumed,
the growth rate could not be calculated because neither the mode numbers nor the
localization region are known.

High-frequency eigenmodes in W7-AS, that have f ≫ fTAE , can mostly be consid-
ered to be stellarator specific HAE or MAE modes due to the structure of the Alfvén
continuum which yields that the NAEµ0 gaps are small in contrast to the HAE and
MAE gaps. The especially wide HAE21 gap is caused by the rotating ellipticity of the
plasma cross section in W7-AS, and the stronger magnetic field at both ends of each
field period creates a significant MAE01 gap. GAEs are not expected to exist in these
frequency ranges because the wide HAE and MAE gaps compress the Alfvén contin-
uum into thin threads so that no continuum branch could possibly form a minimum.
The identification of HAEs and MAEs is complicated by the fact that eigenmodes with
toroidal coupling numbers ν 6= 0 involve harmonics with n2 = n1 ±Nν where N = 5 is
the number of field periods at W7-AS. Such a resolution cannot be obtained with the
Mirnov probe setup at W7-AS. The mode number analysis of Mirnov data from the
poloidal arrays MIR-3 and MIR-5 results in spectra that show a regular aliasing pat-
tern with ∆m ≈ 7 and ∆n = 2 where all aliasing peaks are of comparable amplitude.
Evidence for the observation of three HAE21, one MAE01 and one NAE30 eigenmode
has been found by comparing the aliasing peaks in the mode number spectrum to
couplings in the Alfvén continuum, where one of the harmonics was identified in the
correct frequency range. However, this is not significant and could just be by chance.

6.3.4 Unidentified Eigenmodes

One third of the events could not be classified to be either gap mode or GAE and is
consequently treated as unidentified. Again, approximately one half of these events has
frequencies beyond the capabilities of the MIR-1 probe array so that the mode numbers
could not be determined with sufficient resolution. Of the remaining low-frequency
eigenmodes, three transient eigenmodes have the same characteristics as modes that
have been identified as TAEs in other discharges of the same experimental campaign.
They have not been identified because the measured density and temperature profile
shapes are probably incorrect and result in a modified Alfvén continuum where these
modes are not allowed. For most of the remaining low-frequency modes the poloidal
mode number m = 0 was found as only dominant harmonic in the mode number
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spectrum, which is an indication of far-field effects.

A selection of unidentified Alfvén eigenmodes shows strong non-linear effects like fast
frequency chirping or bursting, significant losses of plasma energy or fast ions are
observed as well. The frequencies of these modes are often close to, but not inside
a continuum gap. Where known, the mode numbers are low-order rationals. Similar
characteristics are expected for EPMs which are forced oscillations of the plasma in
the presence of a resonant fast ion drive that is sufficiently strong to overcome the
continuum damping of the modes. EPMs should have frequencies that correspond
to characteristic frequencies of the driving particle motion, in case of well-circulating
fast ions the toroidal transit frequency is expected. In any of these cases the toroidal
transit frequency of the most energetic ions, v ≈ vb, exceeds the mode frequency which
means that partially slowed-down beam ions fulfill this condition as well. Volume
averaged values of vb/vA > 0.7 and βfast/βth > 1% for these discharges, which can
easily be exceeded in parts of the plasma, indicate the presence of a strong energetic
ion component. A rigorous proof for the observation of EPMs in stellarators is currently
not possible because the required non-linear simulation tools are not available.

6.4 Alfvén Eigenmodes and Fast-Ion Losses

For wave-induced, resonant losses of fast ions it is expected that they scale linearly with
the wave amplitude. In addition to causality arguments, this allows one to identify
those losses in experiments. Cross correlations between the temporal evolution of the
Mirnov amplitude in a spectral band and the photomultiplier time traces of the fast ion
loss detector were calculated for this purpose. A distinction between NBI prompt losses
and resonant, wave-induced losses is possible by the time lag between wave amplitude
and ion loss signal. It is required that the wave amplitude is ahead of the fast ion losses
and that the time shift is of the order of the slowing-down time with typical values of 2
– 5 ms. This is close to the detection limit because the photomultipliers were digitized
with a frequency of 4 kHz, corresponding to 4 samples/ms. The slowing-down time is
an upper limit for the ejection of particles by resonant interaction with AEs. Numerical
simulations indicate that energetic particles need a few additional milliseconds to cross
the plasma edge region and reach the detector. Larger time lags of the order of the
particle confinement time indicate losses by neoclassical transport processes. In cases
where the Alfvén eigenmode is excited by an increase of the NBI heating power but
does not cause fast ion losses, the time lag at the maximum of the correlation function
was found to be negative.

Only three of the identified GAEs and gap modes caused noticable fast ion losses.
Although some of the TAEs were observed to be strongly driven by neutral beam
injection, significant particle losses besides the NBI prompt losses could not be seen.
In contrast, a considerable fraction of unidentified Alfvén eigenmodes, which are likely
to be EPMs, could be shown to result in strong losses of plasma energy and/or energetic
particles. In discharges #54902 – #54907 and #54911 at t ≈ 200 ms fast ion losses
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could not be observed directly because the probe was too far away from the plasma.
There is, however, a strong anticorrelation between the Mirnov amplitude and the
plasma energy measured by the fast diamagnetic loop. The plasma monitor signals
suggest escaping fast ions as only explanation for the energy loss. Discharge #56358
shows a similar behaviour of the diamagnetic energy, but in addition the EFIP probe
recorded the ion losses as well. There it was shown that the correlation function indeed
peaks at ∆t = 2 ms. The PMTs which observe the losses correspond to small pitch
angles and particle energies from the injection energy of 55 keV to medium energies
of about 15 keV, which are still much larger than the thermal ion temperature and
consistent with the observation of NBI ions expelled from the plasma.

6.5 Conclusions

A systematic study of experimentally observed Alfvén instabilities has been performed
for a series of discharges taken mostly from high-β campaigns at W7-AS, a large number
of eigenmodes has been analyzed and compared to theoretical calculations. In these
discharges, the eigenmodes are frequently observed during the startup phase of the
discharge before the high-β phase is reached. Due to the permanently changing bulk
plasma in this phase, the eigenmodes appear only transiently.

The ideal MHD equilibrium is one of the most important ingredients in the analysis
and all subsequent steps sensitively depend on it. For a successful interpretation of
observed Alfvén eigenmodes it is vital that the equilibrium reconstruction is as close
to the experimental conditions as possible. This includes the assessment of realistic
density and temperature profiles. In the considered discharges at W7-AS the profiles
differ significantly from parabolic profiles that were often assumed in previous studies.
Qualitative changes of the Alfvén continua, modifying the mode numbers of possible
eigenmodes as well as the relevance of continuum damping for these modes, conse-
quently follow. In addition, the equilibrium is required for mapping of Mirnov probes
postitions to magnetic coordinates, the calculation of the velocity distribution function
of energetic neutral beam ions and the determination of growth and damping rates
of eigenmodes. The procedure that is used to reconstruct the ideal MHD equilibrium
from measured pressure profiles that are made consistent with the measurements of
other, independent diagnostics, has resulted in equilibria that are found to be in very
good agreement with the observed Alfvén eigenmodes. A small number of exceptions
from this general finding is observed and indicates the necessity of high-quality plasma
profile diagnostics.

The identification of Alfvén eigenmodes is based on a direct comparison of mode num-
bers and frequencies to the Alfvén continuum, were only ideal MHD eigenmodes are
considered because Kinetic Alfvén Eigenmodes are not expected in the plasma param-
eter regimes under consideration. The mode numbers were determined from Mirnov
probes using the newly developed multi-dimensional Lomb periodogram that is capable
of analyzing data of unevenly spaced probes with different sample rates. Limitations of
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the Mirnov probes restrict a successful identification of ideal MHD Alfvén eigenmodes
to low frequencies. GAEs were found to exist only transiently in the startup phase
of low-shear discharges, while TAEs constitue the most frequently observed Alfvén
instability, existing in a variety of experimental conditions. They are frequently desta-
bilized the gradient region of the plasma. EAEs have been observed occasionally, a
necessary parameter regime for their destabilization is not seen. The identification of
high-frequency eigenmodes is difficult due to the complicated structure of the Alfvén
continuum and the limitations of the Mirnov probe setup. Strong evidence of the ob-
servation of Energetic Particle Modes (EPMs) in the frequency range from 50 . . . 120
kHz, which is below the toroidal transit frequency of the most energetic NBI parti-
cles in W7-AS, has been found. The higher abundance of gap modes as compared to
GAEs is not in contrast to previous studies, but reflects the change in the magnetic
configuration in these late discharges.

The fast particle drive of TAEs by energetic ions could be reproduced by growth rate
calculations based on a theoretical model that considers strongly localized eigenmodes
with two dominant harmonics interacting with well-circulating particles. Despite these
simplifications, the model describes the relative magnitudes of the various contributions
to growth or damping rates quite well for optimized stellarators like W7-AS, but is
expected to underestimate the damping rate due to the neglect of trapped electrons.
The thermal ions contribute slightly to the growth rate through their diamagnetic
drift which is sufficiently large due to the strong density gradients near the plasma
boundary. Electron Landau damping can not be neglected in these cold discharges
and provides the only damping mechanism. It was always larger than the drive by
thermal ions, and without additional fast particle drive the modes would be stable.
The energetic particles strongly destabilize the eigenmode through spatial gradients in
their distribution. Velocity anisotropy drive is predicted to be small for well circulating
particles and no evidence for positive velocity gradients in the distribution function,
which are required for inverse Landau damping, is observed. The instability of GAEs
and EAEs can not be explained by fast particle drive because the eigenmodes are
found to have the wrong sign of mode numbers. In this case, the spatial gradient in
the distribution function acts strongly stabilizing on these modes.

A degradation of the confinement of energetic ions by Alfvén eigenmodes is seen only
exceptionally for ideal MHD eigenmodes. Correlations exist in case of two GAEs and
one EAE. No losses are observed that are correlated to TAEs, even though strong wave-
particle interactions, that provide the drive of the eigenmodes, is both, theoretically
predicted and experimentally shown. This stands in contrast to the worst case estimate
of ion losses caused by ideal MHD Alfvén eigenmodes as given in Ref. [11], where it
was predicted that a significant fraction of energetic ions is radially redistributed and
eventually expelled from the plasma by interaction with a TAE. Different from ideal
MHD Alfvén eigenmodes, significant drops of plasma energy and severe fast ion losses
are frequently observed for presumed EPMs, which are not eigenmodes of the ideal
MHD force operator, but can be characterized as forced oscillations of the plasma due
to the presence of a non-perturbative fraction of energetic ions.
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Chapter 7

Summary

In the present thesis, a systematic study of beam driven Alfvén eigenmodes in high-
density and low-temperature plasmas of the W7-AS stellarator is performed. The
device went out of operation in 2002 and the study is based on stored experimental data.
Alfvén instabilities can roughly be divided into ideal MHD Alfvén eigenmodes and those
existing due to kinetic effects. The spectrum of ideal MHD Alfvén waves in toroidal
fusion devices consists of a continuum of stable waves that are strongly localized.
Weakly damped, discrete eigenmodes can exist in gaps of the continuous spectrum
which are formed by plasma inhomogeneities and the coupling of Alfvén continua. This
allows an identification of ideal MHD Alfvén eigenmodes in terms of their frequency and
mode numbers. Kinetic effects can modify this spectrum and cause additional types
of eigenmodes, the kinetic Alfvén eigenmodes (KAE) and energetic particle modes
(EPM). The goal of this thesis is twofold: (I) identification and description of fast
particle driven Alfvén instabilities in W7-AS, and (II) study of energetic particle losses
induced by Alfvén instabilities.

The reconstruction of the ideal MHD plasma equilibrium for each discharge with suf-
ficient accuracy is the very foundation of all subsequent steps. This is achieved, based
on measured plasma parameter profiles that are further refined by validating them to
the measurements of other, independent plasma diagnostics. The applied scheme is
inspired by an approach of Integrated Data Analysis (IDA) to combine different di-
agnostic data and provide combined uncertainties. After mode number analysis and
eigenmode identification, the theoretically expected, linear growth rate of the instabil-
ity is calculated where possible, and the various contributions of the fast particle drive
to the instability of the mode are identified.

Alfvénic activity recorded by the Mirnov diagnostic is analyzed, which consists of
a set of spatially distributed coils that measure magnetic fluctuations. On W7-AS,
the probes are arranged in three poloidal arrays at different toroidal positions. The
spacing between the probes is non-equidistant. In addition, the signals of one probe
array are digitized with a different sample rate. These characteristics prohibit the
straight-forward use of standard tools available for harmonic analysis. Instead, a new
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tool has been developed and thoroughly tested. It is a multi-dimensional extension
of the Lomb periodogram, able to provide reliable time-resolved frequency and mode
number spectra in the case of uneven datapoint spacing. Numerical studies of this
periodogram show a good performance with respect to mode number resolution given
the low number of available probes, and robustness against perturbations of the signal.
Only two of the probe arrays can be used for the analysis of eigenmodes with frequencies
> 70 kHz, such that for high-frequency phenomena insufficient information about the
mode numbers is available.

A total of 133 different Alfvén eigenmodes is studied in discharges from different ex-
perimental campaigns. A restriction to discharges from various high-β campaigns with
neutral beam heating is required to allow for a realistic reconstruction of plasma equi-
librium and velocity distribution functions of energetic particles. The discharges are
characterized by high density, ne = 5 ·1019m−3 to 2.5 ·1020m−3 at relatively low temper-
atures of Te = Ti = 150 . . . 600 eV. Alfvén eigenmodes often appear transiently in the
startup phase of these discharges, where density and heating power are being ramped
up. Occasionally, Alfvén eigenmodes are seen in the stationary, high-β phase in the
presence of considerable neutral beam heating.

Most of the Alfvén eigenmodes are successfully classified as ideal MHD eigenmodes.
19 global, 47 toroidicity-induced and 8 ellipticity-induced Alfvén eigenmodes (GAEs,
TAEs, and EAEs, respectively) are unambiguously identified by their mode numbers
and frequencies. Excellent agreement between experimentally observed mode number
spectra and theoretically calculated eigenmode structure is shown for a TAE example.
Additional 13 events are found to have frequencies inside the EAE gap and could pos-
sibly be EAEs. Evidence for high-frequency Alfvén eigenmodes (mirror- and helicity-
induced Alfvén eigenmodes) is seen, but can not be proven rigorously due to uncertain
mode numbers and the complexity of the Alfvén continuum. The remaining 41 Alfvén
eigenmodes can not be classified to be one of the above cases. Reasons are either high
frequencies, mode numbers obscured by far-field effects, or mode numbers that could
not be related to ideal MHD Alfvén eigenmodes. A selection of these shows indications
of strong non-linear wave-particle interactions and are assumed to be EPMs. Kinetic
Alfvén eigenmodes are not expected to exist in the experimental conditions that were
studied.

The radially resolved velocity distribution function is used to describe the parameter
regimes in which the modes are observed in terms of the dimensionless parameters
vb/vA (beam velocity normalized to the Alfvén velocity) and βfast/βth, where β is the
ratio of plasma pressure to magnetic pressure. The first parameter describes through
which of the possible resonance velocities particles can interact with the eigenmode. A
peculiarity of the fast particle dynamics in fusion devices is that they can resonantly
interact with Alfvén eigenmodes through sideband resonances even if v < vA. The sec-
ond parameter describes the energy content of the destabilizing fast particle population
compared to the potentially stabilizing thermal plasma component. These parameters
contain relevant information about the instability of an eigenmode and such diagrams
are given for all observed modes. In addition to that, the expected linear growth rate
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of gap modes is calculated based on a theoretical model that extends the ideal MHD by
a perturbative, drift-kinetic description of the energy exchange between waves and cir-
culating particles, neglecting the effects of trapped particles. For the discharges under
consideration the thermal electron speed is comparable to vA and the electrons pro-
vide a significant Landau damping contribution. Due to strong density gradients near
the plasma boundary in most of the discharges, the thermal ions can provide a small
drive via the spatial inhomogeneity which does not overcome the electron damping,
however. The drive by spatial inhomogeneity of thermal ions requires a certain prop-
agation direction of the mode and is equally stabilizing for opposite mode numbers.
The fast particles also contribute to the growth rate via spatial inhomogeneity, velocity
gradients and velocity anisotropy terms are negligible in W7-AS. Most of the observed
GAE or EAE modes have negative mode numbers, which correspond to a propagation
direction for which the spatial inhomogeneity of thermal and beam ions is predicted to
be stabilizing. A fast particle drive of these modes is not confirmed, whereas the TAEs
are found to be strongly destabilized by neutral beam injection. The distribution of
plasma parameters for discharges showing TAEs in terms of the dimensionless stabil-
ity parameters suggests an instability threshold that is qualitatively confirmed by an
exploration of the parameter space with the theoretical model.

Wave-induced, resonant losses of energetic ions scale linearly with the wave amplitude.
To identify them, correlations between ion loss probe signals and wave amplitudes are
searched, where correlation times in the order of the slowing-down time of energetic
particles are expected. Significant correlations can be established only exceptionally for
3 of the identified ideal MHD Alfvén eigenmodes. Those Alfvén eigenmodes, however,
which are assumed to be EPMs frequently show severe losses of energetic ions that are
visible in the time traces of the plasma energy as well.
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Appendix A

Differential Geometry – a very
small tutorial

A.1 Reciprocal sets of vectors

An important building block for the description of vectors in curvilinear coordinates is
the concept of reciprocal sets of vectors. Two sets of vectors, A,B,C and a,b, c are
called reciprocal sets of vectors, if

A · a = B · b = C · c = 1

A · b = A · c = B · a = B · c = C · a = C · b = 0. (A.1)

This implies that both, A,B,C and a,b, c are each comprised of linearly independent
vectors and that the respective triple products A · (B×C) and a · (b×c) are non-zero.
Actually, Eq. (A.1) are necessary and sufficient conditions for both sets of vectors to be
reciprocal. To find the vectors of one set a,b, c in terms of the reciprocal set A,B,C,
we look at the conditions a ·B = a ·C = 0. This means that a is perpendicular to both,
B and C. Because B and C cannot be collinear vectors, a must be a = C · (B × C).
Inserting this into a · A = CA · (B × C) = 1, one sees that the constant must be
C−1 = A · (B× C). Hence we have the inter-relationship:

a =
B × C

A · (B ×C)
b =

C ×A

B · (C × A)
c =

A × B

C · (A ×B)
(A.2)

The fact that both sets of vectors consist of linearly independent vectors spanning a
non-zero volume can be used to utilize each of the sets as legitimate basis vectors in
3D. Indeed, any vector X can be written as

X = (X · a) A + (X · b) B + (X · c) C or

X = (X · A) a + (X · B) b + (X · C) c. (A.3)
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In cartesian coordinates, the set of unit basis vectors î, ĵ, k̂ is reciprocal to itself. This
implies that in such coordinates the vector X can be written as X = (X · î) î+(X · ĵ) ĵ+
(X · k̂) k̂. Relation (A.3) is very important in the upcoming development of curvilinear
coordinates.

A.2 Curvilinear Coordinates

Consider a transformation R(u1, u2, u3) that describes any point in 3D space, by
means of position vector R, as a function of three parameters called (for the moment)
u1, u2, u3. If we expand R in cartesian coordinates the transformation reads:

x = x(u1, u2, u3)

R(u1, u2, u3) : y = y(u1, u2, u3) (A.4)

z = z(u1, u2, u3)

The transformation is invertible if the functions x, y, z have continuous partial deriva-
tives with respect to u1, u2 and u3, respectively, and if the Jacobian of the transforma-
tion is not zero. In this case the inverse transform is given by

u1 = u1(x, y, z), u2 = u2(x, y, z), u3 = u3(x, y, z) (A.5)

This states that any position vector R with cartesian coordinates (x, y, z) can be
uniquely described by the independent parameters (u1, u2, u3) which makes them co-
ordinates as well. The reason for using superscripts will become clear below. The
position of the indices is important.

As in every 3D coordinate system, curvilinear coordinates have three naturally occuring
families of coordinate surfaces, obtained if one coordinate ui is kept fixed while the
other coordinates are varied continuously. Analogously, three families of coordinate
curves are obtained by varying one coordinate uj continuously while keeping the other
coordinates fixed. The direction in which a point on the coordinate curve moves as
uj is increased is taken to be the positive direction along that coordinate curve. The
coordinate system is called orthogonal if the coordinate curves intersect at right angles
everywhere.

The coordinate system is determined completely only if the coordinate surfaces ui =
const. are known. Any coordinate curve uj is uniquely determined by the intersection
of the coordinate surfaces ui = const. and uk = const. where i, j, k are a permutation
of 1, 2, 3, while it is generally not possible to reconstruct the coordinate surfaces from
the coordinate curves alone.
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A.3 Co- and Contravariant Vector Components, Met-

ric Coefficients

It is now possible to define a set of tangent basis vectors in point P described by
position vector R as any set of vectors e1, e2 and e3 with finite length that point in
the positive direction of the coordinate curves. In other words, these basis vectors are
tangent vectors to the coordinate curves in point P . Simple considerations show that
∂R/∂ui is a tangent vector to the ui coordinate curve. Hence the tangent basis vectors
are defined by

e1 =
∂R

∂u1
, e2 =

∂R

∂u2
, e3 =

∂R

∂u3
. (A.6)

This basis is said to be local because, in general, the basis vectors vary from point to
point. Again, the position of the index is important.

The gradient, ∇ui of a function ui is defined so that the differential dui is given by

dui = ∇ui · dR =
∑

j

∇ui ∂R

∂uj
duj = ∇ui · ejdu

j (A.7)

In the last step definition (A.6) has been used as well as the summation convention
which says that if a letter appears twice, as sub- and as superscript index, on the
same side of the equation, the equation is to be summed over all values of that index.
Eq. (A.7) can hold if and only if

∇ui · ej = δi
j.

This relation states that ∇ui and ej form reciprocal sets of vectors defined in (A.1).
Therefore we define ∇ui as the reciprocal basis vectors

∇ui ≡ ei ei · ej = δi
j (A.8)

Normally, neither are ei and ej of unit length, nor are they perpendicular. It is impor-
tant to note that, while ej are tangent vectors to the uj coordinate curves, the vectors
ei are perpendicular to the ui = const coordinate surfaces. By means of Eq. (A.2) one
set of basis vectors can be calculated if the other basis vectors are known.

According to Eq. (A.3), any vector D can be written as a linear combination of the
vectors of either of the sets of reciprocal sets of vectors:

D =

(

D · ∂R
∂ui

)

∇ui = (D · ei) ei = Die
i. (A.9)

which is an expansion of D along the reciprocal basis vectors. Analogously, D can be
written as a linear combination of the tangent basis vectors:

D = (D · ∇ui)
∂R

∂ui
= (D · ei) ei = Diei (A.10)
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This shows that in curvilinear coordinates, there is more than one kind of components
of a vector. The coefficients Di appearing in (A.9) are called covariant components of
the vector D, while Di in (A.10) are called the contravariant components.

Of course it’s possible to write one set of basis vectors in terms of the other. Rewriting
(A.9) and (A.10) with D = ei and D = ej, respectively, we get

ei = (ei · ej)e
j = gije

j (A.11a)

ej = (ej · ek)ek = gjkek (A.11b)

The dot products of basis vectors are so important that they get their own symbols:

gij = ei · ej, gij = ei · ej, (A.12)

they are called metric coefficients. From their definition can be seen that the metric
coefficients are symmetric: gij = gji and gij = gji. These coefficients contain all
relevant information about the metric in a curvilinear coordinate system, hence their
name. This can be shown by looking at the differential arc length dl along a curve

(dl)2 = |dR|2 = dR · dR.

with the differential vector dR given by

dR =
∂R

∂u1
du1 +

∂R

∂u2
du2 +

∂R

∂u3
du3 = ejdu

j

so that (dl)2 is given by

(dl)2 =
∑

i,j

(ei · ej)du
iduj = gijdu

iduj. (A.13)

Expressing the covariant (contravariant) components of a vector in terms of the con-
travariant (covariant) components is a straightforward matter using the metric coeffi-
cients:

Di = D · ei = (Djej)ei = gjiD
j = gijD

j (A.14a)

Dk = D · ek = (Die
i)ek = gikDi = gkiDi (A.14b)

There is an interesting relationship between the metric coefficients and the Kronecker
delta. Consider Eq. (A.11a), ei = gije

j, dot multiplied with ek:

δk
i = ei · ek = gije

j · ek = gijg
jk = gk

i

This relation states that the mixed metric coefficients gj
i have the same values, 0 or 1,

as the Kronecker delta δj
i , which originates from the fact that ei and ej are reciprocal

sets of vectors.
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The metric coefficients gij can be used to form a matrix denoted by [gij] (similarly for
gkl and [gkl]). The product of the matrices C = [gij ][g

kl] equals the identity matrix
because of C(a, b) =

∑

n gang
nb = gb

a = δb
a. From this immediately follows that [gkl] is

the inverse of [gij]. From linear algebra it’s known that the determinants satisfy the
following relationship:

det[gij] =: g, det[gkl] = g−1. (A.15)

Now consider the coordinate transform (A.5). The Jacobian J of the transform is
defined as the determinant of the nine partial derivatives ∂R(i)/∂uj :

J =

∣

∣

∣

∣

∣

∣

∂x/∂u1 ∂x/∂u2 ∂x/∂u3

∂y/∂u1 ∂y/∂u2 ∂y/∂u3

∂z/∂u1 ∂z/∂u2 ∂z/∂u3

∣

∣

∣

∣

∣

∣

(A.16)

The triple product A·(B×C) can be written in determinant form with the components
Ax, Ay, Az, . . . as matrix elements. This allows to write Eq. (A.16) in a more compact
form:

J =
∂R

∂u1
· ∂R
∂u2

× ∂R

∂u3
(A.17)

The Jacobian of the inverse transform is equally given by the determinant of the matrix
of partial derivatives:

J inv =

∣

∣

∣

∣

∣

∣

∂x/∂u1 ∂x/∂u2 ∂x/∂u3

∂y/∂u1 ∂y/∂u2 ∂y/∂u3

∂z/∂u1 ∂z/∂u2 ∂z/∂u3

∣

∣

∣

∣

∣

∣

(A.18)

The elements ∂ui/∂x, ∂ui/∂y and ∂ui/∂z are the cartesian components of ∇ui. Hence,

J inv = ∇u1 · ∇u2 ×∇u3 (A.19)

Starting from (A.19) and substituting ∇ui = ei = ej × ek/ei · (ej × ek) = ej × ek/J , it
can be shown that, as expected because ∂R/∂ui and ∇ui are reciprocal sets of vectors,
J inv = J−1.

A relationship between g and J can be established by looking at the elements gij of
the matrix of which g is the determinant (A.11):

gij = ei · ej =
∂R

∂ui
· ∂R
∂uj

.

If we write x = R(1), y = R(2), z = R(3), then

gij =
∑

n

∂R(n)

∂ui
· ∂R(n)

∂uj
. (A.20)
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This relation states that [gij] can formally be thought of as the product of two matrices.
It is a theorem of linear algebra that the determinant of a product matrix equals the
product of the determinants of the factors:

g = det[gij ] =

(

det

[

∂R(n)

∂ui

])(

det

[

∂R(n)

∂uj

])

= J2

This yield the important relationship

g = J2 or J =
√
g. (A.21)

A.4 Tensors

The most simple introduction to tensors makes use of the dot-product operation be-
tween vectors. A simple second order tensor or dyad is defined via the relation

X · AB = (X · A)B AB · Y = A(B · Y) (A.22)

The notation for a dyad is a simple juxtaposition, AB, of the vectors making up the
diad without any symbol in between. Another notation is A⊗B; here ⊗ is called the
tensor product or the outer product.

From the definition (A.22), it follows that the order of the vectors making up a dyad is
important. It also explains why the dot product of a vector with a dyad is, in general,
not commutative:

X · AB = (X · A)B ∼ B
X · BA = (X · B)A ∼ A
AB · X = A(B · X) ∼ A

The vectors A and B can, as usual, be expanded along a set of basis vectors. This
leads to four possible forms of component descriptions of a dyad:

AB =















AiBje
iej = Dije

iej Dij : covariant components
AiBjeiej = Dijeiej Dij : contravariant components

AiB
jeiej = D.j

i eiej D.j
i , D

i
.j : mixed components

AiBjeie
j = Di

.jeie
j

(A.23)

The dot in the indices of the mixed components of the dyad is important to indicate
which index comes first. Otherwise, Dj

i could be interpreted as either the component
of D.j

i eiej or as the component of Di
.jeie

j. Since the order of vectors making up the
dyad matters, these two are generally different. There are nine different combinations
of either, Dij , D

ij , D.j
i and Di

.j, i, j = 1, 2, 3 – therefore the component description of
a second order tensor is sometimes called the nonian form.

Consider now a general second order tensor
↔−
D or dyadic

↔−
D = Dije

iej = Dijeiej = D.j
i eiej = Di

.jeie
j. (A.24)
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A general second order tensor cannot always be written as a single dyad. It can,
however, be written as a sum of three dyads. Let A, B and C be any three vectors
that have a non-zero triple product A · (B × C) 6= 0. It’s then possible to find three
vectors X, Y and Z such that [91]

↔−
D = XA + YB + ZC. (A.25)

Calculations including vectors and second order tensors can be done by expansion in
appropriate co- and contravariant components and by reminding the relation ei ·ej = δj

i :

X · ↔−D = XiD
jkei · ejek = XiD

ikek = Y kej = Y (A.26a)

↔−
D · X = DijXkeiej · ek = DikXkei = Z iei = Z (A.26b)

E · ↔−D · F = EiDjkF
lei · ejek · el = EiDikF

k = number (A.26c)

The last relation can be used for the expansion of a general second order tensor in
components. Upon substituting E and F by tangent or reciprocal basis vectors as
needed, Eq. (A.26c) gives:

Dij = ei ·
↔−
D · ej, Dij = ei · ↔−D · ej,

D.j
i = ei ·

↔−
D · ej, Di

.j = ei · ↔−D · ej.
(A.27)

As in the case of vectors, conversion between covariant, contravariant and mixed com-
ponents of a tensor involves metric coefficients, i.e.

Dij = ei · ↔−D · ej = ei · (Dkle
kel) · ej = Dkle

i · ekel · ej = gikDkl g
lj

= ei · (Dk
.leke

l) · ej = Dk
.le

i · eke
l · ej = Di

.l g
lj

= ei · (D.l
ke

kel) · ej = D.l
ke

i · ekel · ej = gikD.j
k

(A.28)

Here eq. (A.27) and ei · ej = δi
j have been used.

To complete the short discussion of tensors it is worth noting that the metric coefficients
gij, g

kl and gm
n are themselfes legitimate components of a second order tensor – the so

called metric tensor ↔−g .

A.5 Important Vector Identities in Curvilinear Co-

ordinates

The dot product between vectors can be ”shifted” to dot products between the
basis vectors by expanding the vectors in components:

A · B = AiBjei · ej = AiBjδ
j
i = AiBi

= AiB
jei · ej = AiB

jδi
j = AiB

i

= AiBjei · ej = AiBjgij

= AiBje
i · ej = AiBjg

ij

(A.29)
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The cross product between vectors can also be expressed by cross products
between basis vectors. Care must be taken to expand both vectors along the same
basis:

A × B = AiBjei × ej = AiBje
i × ej

Here, summation over i and j is implied. Upon noting that ek = ǫijkJ ei × ej and
ek = ǫijkJ

−1 ei × ej, where ǫijk and ǫijk are the well known Levi-Civita symbols that
evaluate to 1 (−1) for i, j, k an even (uneven) permutation of 1, 2, 3 and 0 otherwise,
this can be rewritten in more compact form:

(A × B)k = ǫijkJAiBj (A.30a)

(A × B)k = ǫijkJ
−1AiBj (A.30b)

The Del operator is a generalization of the Nabla operator in cartesian coordinates
and is denoted by the same symbol ∇. In curvilinear coordinates it can formally be
introduced via the relationship dΦ = ∇Φ · dR. Observing that ei · ej = δi

j , dΦ can be
expanded via the chain rule to give:

dΦ =
∂Φ

∂ui
dui =

∂Φ

∂ui
ei · ej du

j =

(

ei ∂

∂ui

)

Φ · ej du
j = ∇Φ · dR.

A comparison of the last two terms shows that ∇ can be identified with ei∂/∂ui.
The Del operator operates on everything on its right, except when brackets indicate
otherwise. The gradient of a scalar field Φ(u1, u2, u3) is obtained by operating ∇ on Φ:

grad Φ = ∇φ =
∂Φ

∂ui
ei. (A.31)

The dot product of the ∇-operator with a vector field is called divergence of the vector
field and is given by:

divA = ∇ ·A =
1

J

∂

∂ui
(JAi). (A.32)

Different derivations of this formula can be found in many text books about differential
geometry. The curl of a vector field is obtained as the cross product of the ∇-operator
with a vector A.

rotA = ∇×A

= ∇× (Aje
j) = Aj(∇× ej) + ∇Aj × ej = 0 +

∂Aj

∂ui
ei × ej

Here, ∇ × ej = ∇ × ∇ui ≡ 0 and ∇ ≡ ei ∂/∂ui were used. This can be further
simplified, by using the ei ↔ ei formalism, to give:

(∇×A)k = ǫijkJ−1 ∂Aj

∂ui
. (A.33)
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The parallel and perpendicular components of a vector A with respect to
the ambient magnetic field B are often required and are denoted by A‖ and A⊥,
respectively. The dot product is equivalent to the orthogonal projection of one vector
onto the other. Consequently, the parallel component A‖ is simply:

A‖ =
A · B
|B| = b · A (A.34)

where b is the unit vector along B. The component of A perpendicular to B is given
by:

A⊥ = −b × (b× A). (A.35)
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Appendix B

Boozers magnetic coordinates

B.1 Covariant B Components

In section 2.1.4 it was shown that the contravariant components of B can be related
to the magnetic fluxes as follows: Bρ = 0, Bθ = Ψ̇r

pol/2π
√
gf and Bφ = Ψ̇tor/2π

√
gf . It

is possible to find similar expressions for the covariant B components that involve the
poloidal and toroidal currents, respectively.

Consider Ampère’s law, µ0 J = ∇× B, which is an inhomogeneous vector differential
equation with a source term µ0J. The solution of this partial differential equation
constists of two terms, the solution B0 of the homogeneous equation, and a particular
solution BJ of the inhomogeneous problem. B0 must satisfy ∇ × B0 = 0 which
suggests that B0 can be written as the gradient of a scalar magnetic potential in
vacuum, B0 = ∇Φ. This scalar magnetic potential in vacuum is generated completely
by exterior currents. Because B0 is a physical quantity, is must be single valued. This
again can be used to determine the form Φ must have: Φ = Φ′ + Φ̃. Here, Φ̃ is periodic
in (θf , φf) and Φ′ is the secular part. Ampère’s law in integral form,

∮

B ·dl = µ0I, can
be used to determine the secular terms in Φ. Any closed integration loop in poloidal
direction does not encircle any currents and hence, Bθf

= 0. Any closed integration
loop that encircles the major axis, however, contains the toroidal field coil currents and
therefore 2πBφf

= µ0

∑

Icoils. This gives rise to a secular term proportional to φf in Φ:

Φ = µ0/2π
∑

(Icoils)φf + Φ̃. All coils that wrap around in toroidal direction but stay
outside of the torus give rise to a single-valued potential only. The helical windings
in classical stellarators carry currents in different directions that cancel in any closed
integration path in toroidal direction, giving rise to a periodic potential as well.

In contrast to an ordinary partial differential equation, the particular solution BJ

must be a correct physical solution because, due to the vector identity ∇× ∇Φ ≡ 0,
the homogeneous solution vanishes everywhere. The solution to the inhomogeneous

135
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problem, µ0 J = ∇× BJ, requires knowlegde of the contravariant J components:

J i =
1

µ0

(∇× BJ)i =
1

µ0
√
g

(

∂Bk

∂uj
− ∂Bj

∂uk

)

(B.1)

From the MHD force balance equation, ∇p = J ×B, one again immediately sees that
J · ∇p = 0 which states that J lies in the flux surface as well. Hence, J · ∇ρ = 0.
Charge conservation yields ∇ · J = 0. Similar relations were used for the magnetic
field in the last section. Again, it can be shown that the non-vanishing contravariant
J components are not independent of each other:

∂

∂θ
(
√
gJφ) +

∂

∂φ
(
√
gJθ) = 0 (B.2)

which allows to introduce a function η = η(ρ, θ, φ) to write J in the same form as the
magnetic field:

J = ∇ρ×∇η. (B.3)

Again, Jθ and Jφ are related to η via

Jθ =
−1√
g

∂η

∂φ
, Jφ =

1√
g

∂η

∂θ
. (B.4)

η is subject to similar restrictions with respect to the single-valuedness as ν, therefore
the most general form for η is

η(ρ, θ, φ) = a(ρ) θ + b(ρ)φ+ η̃(ρ, θ, φ) (B.5)

One can now define the poloidal ribbon current and the toroidal current inside the flux
surface as:

Ir
pol =

∫∫

Spol

J · dS =

∫∫∫

V

(J · ∇θ) d3R, (B.6a)

Itor =

∫∫

Stor

J · dS =

∫∫∫

V

(J · ∇φ) d3R (B.6b)

to obtain η(ρ, θ, φ) = İtor(ρ) θ/2π− İr
pol(ρ)φ/2π+ η̃(ρ, θ, φ). If η̃ would be constant on

the flux surface, (θ, φ) would be straight current density line coordinates. Because this
is, however, not generally the case, the contravariant J components are:

Jρ = 0, Jθ =
İr
pol

2π
√
g

+
∂η

∂φ
, Jφ =

İtor

2π
√
g

+
∂η

∂θ
. (B.7)

Upon substituting these into (B.1), one sees that the choice

(BJ)ρ = −µ0η̃(ρ, θf , φf), (BJ)θf
=
µ0

2π
Itor(ρ), (BJ)φf

=
−µ0

2π
Ir
pol(ρ) (B.8)
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is a particular solution of the inhomogeneous problem. It must still be checked that
this solution is indeed the physical solution. This can be done by applying Ampère’s
law in integral form on a closed integration path along a coordinate curve. At first this
is done along the poloidal coordinate curve:

∮

along θf

B · dl =

∮

Bje
j · eθf dθf =

∫ 2π

0

Bθf
dθf = µ0Itor(ρ) (B.9)

Doing the same along the φf coordinate gives the result that
∫ 2π

0
dφf = µ0I

out
pol (ρ) =

µ0(I
p
pol − Ir

pol(ρ)). Here, Iout
pol (ρ) is the poloidal current outside of the flux surface

ρ = const. and Ip
pol is the total poloidal plasma current. One sees that an additional

integration constant µ0I
p
pol/2π is needed to make Bφf

a physical quantity.

The homogeneous and the inhomogeneous solution can now be put together. It is
convenient to introduce a measure for the total poloidal current made up by the poloidal
plasma current and the poloidal current through the external toroidal field coils. This
current, denoted Id

pol is the poloidal current outside of a flux surface through a disk

touching the magnetic axis. It is given by Id
pol = (Ip

pol − Ir
pol) +

∑

Icoils = Iout
pol +

∑

Icoils.
By doing so, the scalar magnetic potential becomes purely periodic and the external
coil currents are absorbed in the integration constant of the inhomogeneous solution.
Finally, the covariant B components are:

Bρ = −µ0η̃(ρ, θf , φf) +
∂Φ̃(ρ, θf , φf)

∂ρ
(B.10a)

Bθf
=
µ0

2π
Itor(ρ) +

∂Φ̃(ρ, θf , φf)

∂θf

(B.10b)

Bφf
=

−µ0

2π
Id
pol(ρ) +

∂Φ̃(ρ, θf , φf)

∂φf

(B.10c)

B.2 Boozer Coordinates

Boozer uses the freedom provided by (2.20) to make the periodic part of the scalar
magnetic potential vanish. This will lead to a new Jacobian that is specifically simple.
To find the new boozer coordinates (θb, φb), one can look at the inverse new Jacobian
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(
√
gb)

−1 = ∇ρ · (∇θb ×∇φb). Upon substituting (2.20) into this expression,

(
√
gb)

−1 = ∇ρ · [∇(θf + Ψ̇r
polGb) ×∇(φf + Ψ̇torGb)]

= ∇ρ · (∇θf ×∇φf ) + Ψ̇r
pol∇ρ · (∇Gb ×∇φf )

+Ψ̇tor∇ρ · (∇θf ×∇Gb)

= (
√
gf)−1 + Ψ̇r

pol(∇φf ×∇ρ) · ∇Gb + Ψ̇tor(∇ρ×∇θf) · ∇Gb

= (
√
gf)−1 + 2π

(

Ψ̇r
pol

2π

eθf√
gf

· ∇Gb +
Ψ̇tor

2π

eφf√
gf

· ∇Gb

)

= (
√
gf)−1 + 2πB · ∇Gb (B.11)

is obtained. Here, the previously derived expressions for Bi and ei = (∇uj ×∇uk)/
√
g

were used. An expression for
√
gf and

√
gb can be found by looking at the dot product

of B with itself:

(B)2 = B ·B = BiBi

=
µ0

4π2√gf
(Ψ̇r

polItor + Ψ̇torI
d
pol) + B · ∇Φ̃. (B.12)

Solving this for
√
gf yields:

√
gf =

µ0

4π2

Ψ̇r
polItor + Ψ̇torI

d
pol

(B)2 −B · ∇Φ̃
(B.13a)

√
gb =

µ0

4π2

Ψ̇r
polItor + Ψ̇torI

d
pol

(B)2
(B.13b)

because Φ̃ ≡ 0 in boozer coordinates. When these Jacobians are substituted into (B.11),
the equation can be simplified to

B · ∇Gb =
2π

µ0

B · ∇Φ̃

Ψ̇r
polItor + Ψ̇torId

pol

. (B.14)

This equation has the simple solution

Gb =
2π

µ0

Φ̃

Ψ̇r
polItor + Ψ̇torI

d
pol

, (B.15)

which allows the unique determination of Boozers flux coordinates (θb, φb).

For a special choice of the flux label, ρ ≡ Ψtor, the Jacobian in boozer coordinates can
be further simplified by using the definition of  ι (2.19):

(

√

gb(Ψ, θ, φ)
)−1

= Ψ̇tor∇ρ · (∇θb ×∇φb) = Ψ̇tor

(

√

gb(ρ, θ, φ)
)−1

, (B.16a)
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√
gb =

µ0

4π2Ψ̇tor

Ψ̇r
polItor + Ψ̇torI

d
pol

(B)2
=

µ0

4π2

 ιItor + Id
pol

(B)2
. (B.16b)

The important result is the following. Because  ι, Itor and Id
pol are flux surface quantities,

on any given flux surface Boozers Jacobian is only a function of (B)2 :
√
gb ∼ B−2.

This simple Jacobian and the fact that the boozer coordinates are straight field line
coordinates are the reasons why the Boozer coordinates are so commonly used.
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Appendix C

List of Discharges and AEs

C.1 Discharges

Shot B36
tor [T] Bz [T] Gas  ιa tVMEC [s] Program

54009 -0.907 -0.020 H2 0.477 0.231 ECRH: – , 900 MHz, NBI
high beta

54010 -0.907 -0.020 H2 0.477 0.21 ECRH: – , 900 MHz, NBI
high beta

54012 -0.908 -0.020 H2 0.477 0.21 ECRH: – , 900 MHz, NBI
high beta

54014 -0.908 -0.020 H2 0.477 0.21 ECRH: – , 900 MHz, NBI
high beta

54015 -0.914 -0.019 H2 0.372 0.2 ECRH: – , 900 MHz, NBI
high beta

54020 -1.001 -0.019 H2 0.378 0.3 ECRH: – , 900 MHz, NBI
high beta

54082 -2.147 -0.020 H2 0.354 0.31 ECRH: 70 GHz, 900 MHz, NBI
EBW and X1 current drive

54083 -2.147 -0.020 H2 0.349 0.31 ECRH: 70 GHz, 900 MHz, NBI
EBW and X1 current drive

54128 -1.247 -0.017 H2 0.346 0.132, ECRH: 70 GHz, NBI
0.26 high beta

54129 -1.248 -0.017 H2 0.346 0.14 ECRH: 70 GHz, NBI
high beta

54130 -1.248 -0.017 H2 0.346 0.132 ECRH: 70 GHz, NBI
high beta

54132 -1.248 -0.017 H2 0.346 0.131 ECRH: 70 GHz, NBI
high beta

141



142 APPENDIX C. LIST OF DISCHARGES AND AES

Shot B36
tor [T] Bz [T] Gas  ιa tVMEC [s] Program

54133 -1.249 -0.017 H2 0.346 0.131 ECRH: 70 GHz, NBI
high beta with Ip

54134 -1.248 -0.018 H2 0.345 0.131 ECRH: 70 GHz, NBI
high beta with Ip

54135 -1.247 -0.017 H2 0.346 0.14 ECRH: 70 GHz, NBI
high beta with Ip

54136 -1.248 -0.017 H2 0.346 0.14 ECRH: 70 GHz, NBI
high beta with Ip

54137 -1.248 -0.017 H2 0.345 0.131 ECRH: 70 GHz, NBI
high beta with Ip

54138 -1.247 -0.017 H2 0.345 0.15 ECRH: 70 GHz, NBI
high beta with Ip

54149 -1.244 -0.019 H2 0.342 0.23 ECRH: 70 GHz, NBI
high beta with Ip

54150 -1.245 -0.019 H2 0.342 0.23 ECRH: 70 GHz, NBI
high beta with Ip

54151 -1.244 -0.019 H2 0.342 0.23 ECRH: 70 GHz, NBI
high beta with Ip

54153 -1.244 -0.019 H2 0.342 0.23 ECRH: 70 GHz, NBI
high beta with Ip

54154 -1.245 -0.019 H2 0.342 0.23 ECRH: 70 GHz, NBI
high beta with Ip

54155 -1.244 -0.019 H2 0.342 0.21 ECRH: 70 GHz, NBI
high beta with Ip

54156 -1.243 -0.019 H2 0.303 0.23 ECRH: 70 GHz, NBI
high beta with Ip

54820 -2.512 -0.010 H2 0.536 0.179, ECRH: 140 GHz, H2, NBI
0.229 transition H-Mode HDH

54821 -2.511 -0.010 H2 0.535 0.179, ECRH: 140 GHz, H2, NBI
0.20 transition H-Mode HDH

54832 -2.501 -0.010 H2 0.520 0.229 ECRH: 140 GHz, H2, NBI
transition H-Mode HDH

54840 -2.501 -0.010 H2 0.520 0.2 ECRH: 140 GHz, H2, NBI
transition H-Mode HDH

54843 -2.504 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54844 -2.499 -0.010 H2 0.515 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54845 -2.498 -0.010 H2 0.522 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54846 -2.495 -0.010 H2 0.525 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH
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Shot B36
tor [T] Bz [T] Gas  ιa tVMEC [s] Program

54850 -2.512 -0.010 H2 0.536 0.179, ECRH: 140 GHz, H2, NI
0.229 transition H-Mode HDH

54852 -2.505 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54853 -2.505 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54854 -2.505 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54855 -2.505 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54856 -2.506 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54857 -2.503 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54858 -2.503 -0.010 H2 0.518 0.2 ECRH: 140 GHz, H2, NI
transition H-Mode HDH

54902 -0.997 -0.019 H2 0.484 0.329, ECRH: 140 GHz, NBI
0.379 high beta program

54903 -0.992 -0.017 H2 0.491 0.2, 0.328, ECRH: 140 GHz, NBI
0.378 high beta program

54904 -0.995 -0.018 H2 0.488 0.229, 0.329, ECRH: 140 GHz, NBI
0.379 high beta program

54905 -0.994 -0.018 H2 0.488 0.2, 0.328, ECRH: 140 GHz, NBI
0.378 high beta program

54906 -0.993 -0.017 H2 0.491 0.2, 0.328, ECRH: 140 GHz, NBI
0.378 high beta program

54907 -0.998 -0.019 H2 0.484 0.2, 0.328, ECRH: 140 GHz, NBI
0.378 high beta program

54908 -1.001 -0.020 H2 0.481 0.328, ECRH: 140 GHz, NBI
0.378 high beta program

54911 -1.002 -0.021 H2 0.478 0.2 ECRH: 140 GHz, NBI
high beta program

54927 -1.249 -0.018 H2 0.626 0.2 ECRH: – , 900 MHz, NBI
high beta, iota=5/8

54930 -1.248 -0.018 H2 0.626 0.184 ECRH: – , 900 MHz, NBI
high beta, iota=5/8

54937 -1.248 -0.018 H2 0.616 0.36 ECRH: – , 900 MHz, NBI
high beta, iota=5/8

54998 -1.807 -0.007 H2 0.565 0.19 ECRH: – , 900 MHz, NBI
fluktuations in HDH-Mode

55003 -1.807 -0.007 H2 0.565 0.23 ECRH: – , 900 MHz, NBI
density limit at 1.8T
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Shot B36
tor [T] Bz [T] Gas  ιa tVMEC [s] Program

55049 -2.503 -0.010 H2 0.518 0.2, 0.23 ECRH: 140 GHz, NBI,
transition H-Mode HDH

55056 -2.503 -0.010 H2 0.518 0.19 ECRH: 140 GHz, NBI,
transition H-Mode HDH

55288 -1.247 -0.022 D2 0.482 0.232 ECRH: – , 900 MHz, NBI
high beta, deuterium NBI

55315 -1.247 -0.022 D2 0.482 0.228 ECRH: 70 GHz, NBI
high beta, deuterium NBI

55316 -1.247 -0.022 D2 0.482 0.228 ECRH: 70 GHz, NBI
high beta, deuterium NBI

55317 -1.247 -0.022 D2 0.482 0.227 ECRH: 70 GHz, NBI
high beta, deuterium NBI

55318 -1.247 -0.022 D2 0.482 0.21 ECRH: 70 GHz, NBI
high beta, deuterium NBI

55319 -1.251 -0.021 D2 0.481 0.21 ECRH: 70 GHz, NBI
high beta, deuterium NBI

55321 -1.252 -0.021 D2 0.481 0.21 ECRH: 70 GHz, NBI
high beta, deuterium NBI

55323 -1.251 -0.021 D2 0.481 0.21 ECRH: 70 GHz, NBI
high beta, deuterium NI

55324 -1.253 -0.021 D2 0.481 0.21 ECRH: 70 GHz, NBI
high beta, deuterium NI

55325 -1.252 -0.021 D2 0.481 0.21 ECRH: 70 GHz, NBI
high beta, deuterium NI

55388 -2.510 -0.010 D2 0.565 0.184 ECRH: 140 GHz, NBI(D)
H-mode

55391 -2.511 -0.010 D2 0.537 0.183 ECRH: 140 GHz, NBI(D)
H-mode

55413 -1.249 -0.022 D2 0.440 0.18 ECRH: 900 MHz, NBI(D)
high beta

55477 -1.520 -0.006 H2 0.562 0.2 ECRH: 140 GHz, 900 MHz, NBI,
3rd harm. OXB, 5/9 config.

55480 -1.521 -0.006 H2 0.563 0.2 ECRH: 140 GHz, 900 MHz, NBI,
3rd harm. OXB, 5/9 config.

55484 -1.520 -0.006 H2 0.563 0.2 ECRH: 140 GHz, 900 MHz, NBI,
3rd harm. OXB, 5/9 config.

55486 -1.520 -0.006 H2 0.563 0.2 ECRH: 140 GHz, 900 MHz, NBI,
3rd harm. OXB, 5/9 config.

55489 -1.521 -0.006 H2 0.562 0.2 ECRH: 140 GHz, 900 MHz, NBI,
3rd harm. OXB, 5/9 config.

55490 -1.520 -0.006 H2 0.563 0.2 ECRH: 140 GHz, 900 MHz, NBI,
3rd harm. OXB, 5/9 config.
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Shot B36
tor [T] Bz [T] Gas  ιa tVMEC [s] Program

55493 -1.515 -0.006 H2 0.482 0.2 ECRH 140GHz, 900MHz, NBI,
3rd harm. OXB, 5/9 config.

56355 -1.259 -0.010 H2 0.519 0.2 ECRH: –, 900 MHz, H2, NBI
Alfven waves

56358 -1.249 -0.015 H2 0.521 0.186 ECRH: –, 900 MHz, H2, NBI
Alfven waves

56370 -1.252 -0.010 H2 0.433 0.3 ECRH: –, 900 MHz, H2, NBI
Alfven waves

56380 -1.193 -0.010 H2 0.363 0.19 ECRH: –, 900 MHz, NBI
Alven eigenmode studies

56936 -1.277 -0.033 H2 0.494 0.28 ECRH: 70 GHz, H2, NBI
high beta

C.2 Observed Alfvén Instabilities

C.2.1 GAEs

Shot t [s] f [kHz] (m, n) Remarks

54820 0.18 - 0.20 33 (-14, -7) stationary
54821 0.18 - 0.20 33 (-14, -7) stationary
54832 0.21 - 0.23 24 (-14, -7) stationary
54840 0.20 - 0.215 25 (-14, -7) transient
54843 0.20 - 0.215 25 (-14, -7) transient
54844 0.20 - 0.215 25 (-14, -7) transient
54845 0.19 - 0.205 25 (-14, -7) transient
54846 0.18 - 0.19 21 (2, 1) tail observed
54850 0.18 - 0.19 32 (-14, -7) tail observed
54852 0.19 - 0.22 24 (-14, -7) transient
54853 0.20 - 0.215 25 (-14, -7) transient
54854 0.20 - 0.215 25 (-14, -7) transient
54855 0.20 - 0.22 25 (-14, -7) transient
54856 0.195 - 0.21 25 (-14, -7) transient
54857 0.185 - 0.21 25 (-14, -7) transient
54858 0.20 - 0.215 25 (-14, -7) transient
55003 0.19 - 0.21 35 (-4, -2) transient, ion loss
55480 0.18 - 0.19 30 (2, 1) dithering
56355 0.19 - 0.23 30 (2, 1) higher harmonics, ion loss
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C.2.2 TAEs

Shot t [s] f [kHz] (m, n) Remarks

54010 0.20 - 0.22 28 (10/11, 5) transient
54012 0.20 - 0.21 30 (10/11, 5) transient
54014 0.20 - 0.205 30 (10/11, 5) tail observed
54020 0.27 - 0.37 19 (3/4/5, 1) bursting
54128 0.25 - 0.31 25 (5/6/7, 2) stationary
54130 0.12 - 0.135 25 (11/12, 4)
54132 0.12 - 0.135 25 (11/12, 4) mode amplitude correlated

with NBI power steps
54133 0.12 - 0.135 24 (11/12, 4) ”
54134 0.12 - 0.135 24 (11/12, 4) ”
54135 0.12 - 0.13 24 (11/12, 4) ”

0.12 - 0.14 35 (5/6, 2)
54136 0.12 - 0.135 24 (11/12, 4) ”
54137 0.12 - 0.14 24 (11/12, 4) ”
54149 0.21 - 0.25 20 (4/5/6, 1)

0.25 - 0.27 30 (5/6/7, 2) bursting
54150 0.22 - 0.27 30 (7/8, 2) bursting
54151 0.22 - 0.27 35 (7/8, 2) bursting
54153 0.22 - 0.27 32 (7/8, 2) bursting
54154 0.21 - 0.22 35 (5/6/7, 2) tail observed
54155 0.21 - 0.22 35 (6/7, 2) tail observed
54156 0.21 - 0.24 30 (6/7, 2) frequency band
54902 0.29 - 0.33 25 (8/9, 3) regular bursts

0.33 - 0.39 25 (6/7/8, 2) bursts, frequency splitting
16 (4/5/6/7, 2) stationary

54903 0.28 - 0.39 16 (5/6/7, 2) stationary
0.28 - 0.33 25 (6/7/8, 2) bursts, frequency splitting

54904 0.28 - 0.33 16 (4/5, 2) stationary
0.28 - 0.39 25 (6/7, 2) bursts, frequency splitting

54905 0.28 - 0.34 16 (4/5/6, 2) stationary
0.35 - 0.39 25 (5/6/7, 2) bursts, frequency splitting

54906 0.28 - 0.33 16 (4/5/6, 2) stationary
0.30 - 0.33 25 (6/7/8, 2) bursts, frequency splitting
0.34 - 0.39 16 (2/3, 1) stationary

54907 0.28 - 0.34 15 (4/5/6, 2) stationary
0.28 - 0.39 25 (5/6/7, 2) bursts, frequency splitting

54908 0.30 - 0.33 25 (8/9, 3) regular bursts
0.33 - 0.39 17 (4/5/6, 2) stationary
0.33 - 0.39 25 (6/7/8, 2) bursts, frequency splitting
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Shot t [s] f [kHz] (m, n) Remarks

54998 0.19 - 0.194 80 (8/9, 4) burst, chirping
55315 0.23 - 0.25 19 (7/8, 3) noisy

0.22 - 0.25 37 (4/5/6, 2) noisy
55316 0.20 - 0.25 20 (-9/-8, -4) noisy
55323 0.21 - 0.24 20 (10/11, 5) noisy
55324 0.20 - 0.24 37 (4/5/6, 2) noisy
55325 0.20 - 0.24 20 (-12/-11, -5)
56380 0.15 - 0.21 40 (2/3, 1) noisy
56936 0.25 - 0.265 24 (-11/-10, -4) tail observed

C.2.3 EAEs

C.2.3.1 Successfully Identified EAEs

Shot t [s] f [kHz] (m, n) Remarks

54009 0.20 - 0.21 32 (-7/-5, -3) tail observed, ion losses
54151 0.21 - 0.27 32 (5/7, 2) noisy, frequency splitting
54153 0.21 - 0.27 35 (-9/-7, -3) noisy, frequency splitting
55316 0.20 - 0.23 49 (-5/-3, -2) stationary
55317 0.20 - 0.22 49 (-5/-3, -2) stationary
55318 0.20 - 0.22 49 (-5/-3, -2) stationary
55319 0.20 - 0.21 49 (-5/-3, -2) stationary
56936 0.27 - 0.30 50 (1/3, 1) weak and noisy

C.2.3.2 AEs with frequencies inside the EAE gap

Shot t [s] f [kHz] Dominant (m, n) Remarks

54015 0.20 - 0.205 56 (3, 1) (4, 1) tail observed
54150 0.21 - 0.27 37 (8, 1) (9, 1) noisy
54155 0.21 - 0.23 49 (0, -2)
54820 0.18 - 0.23 ≈145 (3, 2)

0.18 - 0.23 ≈155 (-7, -3)
54821 0.18 - 0.23 ≈160 (-7, -3)
54850 0.18 - 0.23 ≈120 (-7, -1) (-7, 4) bursts, frequency chirping
54905 0.38 - 0.34 37 (0, -2) bursting
54927 0.19 - 0.21 90 (-14, -8) (-12, -8) bursting
54930 0.19 - 0.205 90 (-2, -2) bursting
55288 0.235 - 0.245 100 (-1, 0) transient
55316 0.20 - 0.21 37 (6, 2) (7, 2) tail observed
56370 0.28 - 0.33 60 m = -7, 3, or 15 stationary
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C.2.4 NAE, HAE and MAE Modes

It is noted that for the high-frequency modes, where MIR-1 is unavailable, strong
mode number aliasing is observed due to the low number of probes remaining. The
poloidal mode number m shows a regular aliasing pattern with ∆m ≈ 7, while for n
is only known whether it is even or uneven. The aliasing peaks were all of comparable
amplitudes. The mode numbers given below are just stated because they appear in
the mode number spectrum and correspond to a coupling that is present in the Alfvén
continuum. They should not be considered as having unambiguously been determined.

Shot t [s] f [kHz] (m, n) Remarks

55288 0.23 - 0.235 150 m = 7, n even possibly NAE30

55315 0.20 - 0.23 370 (-12, -4)? HAE21 gap
450 (-1, -3)? MAE01 gap

55323 0.20 - 0.22 330 (6, 5)? HAE21 gap
55324 0.20 - 0.22 330 (6, 5)? HAE21 gap

C.2.5 Unidentified Alfvén Eigenmodes

Shot t [s] f [kHz] Dominant (m, n) Remarks

54082 0.30 - 0.33 30 (-4, -1) (-1, -1) stationary
54083 0.30 - 0.33 25, 32 (-4, -1) (-4, -3) have same mode numbers
54128 0.12 - 0.135 27 (-2, -1) (11, 4) transient
54129 0.12 - 0.135 26 (-2, -1) (11, 4) transient
54138 0.12 - 0.135 24 (-2, -1) (11, 4) transient
54903 0.19 - 0.23 110 (-1, 0) chirping, energy losses
54904 0.19 - 0.21 97 (-1, 0) chirping, energy losses
54905 0.19 - 0.23 105 (-1, 0) chirping, energy losses
54906 0.18 - 0.23 95 (-1, 0) chirping, energy losses
54907 0.19 - 0.23 75 (-1, 0) chirping, energy losses
54908 0.19 - 0.22 110 (1, 0) dithering
54911 0.19 - 0.23 70 (1, 1) stationary, energy losses
54937 0.35 - 0.37 300 (?, ?) high frequency mode

340 (?, ?) high frequency mode
380 (?, ?) high frequency mode

55049 0.18 - 0.185 19 (0, 1) (2, 1) tail observed
0.18 - 0.20 25 (7, 3) (-7, -4) transient
0.22 - 0.23 220 bursts
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Shot t [s] f [kHz] Dominant (m, n) Remarks

55056 0.185 - 0.195 87 (8, 0) (8, 4) transient
55288 0.245 - 0.25 195 (12, 0) (12, 4) start observed
55317 0.20 - 0.25 20 (0, -2) stationary
55318 0.20 - 0.25 20 (0, -2) stationary
55321 0.20 - 0.21 340 (1, 2) three bursts
55323 0.20 - 0.24 17 (-4, 3) ELMy at first
55324 0.20 - 0.24 17 (-4, 3) ELMy at first
55325 0.20 - 0.21 420 (0, 1) (-12, -6) two bursts
55388 0.17 - 0.23 40 (-4, ±2) bursting, frequency splitting
55391 0.18 - 0.23 25 (0, -3) (-14, -7) stationary
55413 0.17 - 0.20 25 (-3, -1) bursting, ion losses
55477 0.17 - 0.19 40 (-1, -1) (14, 7) dithering, chirping, ion losses

0.19 - 0.20 80 (-2, -1) (6, 5) two bursts
55480 0.20 - 0.21 35 (0, 7) (14, 7) transient

0.20 - 0.22 60 (-7, -3) (14, 7) transient, chirping
55484 0.17 - 0.20 25 m = 0 dithering at first
55486 0.17 - 0.19 35 (-1, -1) (9, 6) chirping

0.19 - 0.21 25 (0, -2) transient
55489 0.185 - 0.195 100 (8, 0) (1, 1) bursts, ion losses
55490 0.185 - 0.195 100 bursts, ion losses
55493 0.18 - 0.19 50 (5, 2) chirping, ion losses
56358 0.17 - 0.20 50 (4, 2) chirping, ion losses
56936 0.26 - 0.30 80 - 220 multiple quasicoherent activity
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