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Summary 
 

The role of integrins in flavivirus infection 

by Vinicius Pinho dos Reis 

 

The Flavivirus genus (Flaviviridae family) comprises the most important arboviruses in the world such as 

dengue virus, West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus and yellow fever virus 

(YFV). Every year, several outbreaks caused by flaviviruses are reported worldwide (i.e.: ZIKV and YFV 

outbreaks in South America) with a huge impact on economy and public health. In the last few decades, 

many aspects of the flavivirus biology and the interaction of flaviviruses with host cells have been 

elucidated. However, many underlying mechanisms concerning receptor usage, entry process and viral 

interaction with host cell factors are still not completely understood. Integrins, the major class of cell 

adhesion molecules have been implicated in the infectious cycle of different viruses including flaviviruses. 

A previous report proposed that a particular integrin, the αVβ3 integrin, might act as a cellular receptor 

for WNV. However, this hypothesis was not confirmed by other groups.  

In the present study, murine cell lines lacking the expression of one or more integrin subunits were used 

to evaluate the involvement of different integrins in the flavivirus infection cycle. Mouse fibroblasts lacking 

the expression of β1 integrin (MKF-β1-/-) or β3 integrin (MEF-β3-/-) subunits or αVβ3 integrin (MEF-αVβ3-/-

) as well as their corresponding wild-type cells were utilized. A second model using Chinese hamster ovary 

cells (CHO-K1), a cell line that has been described to be refractory to some flaviviruses, were modified to 

express either αV (CHO-αV+/+) or β3 (CHO-β3+/+) integrin subunits. All cell lines were first characterized by 

confocal laser microscopy, flow cytometry and functional assays prior to infection to assess their integrin 

expression. The cell lines were then inoculated with different flaviviruses of public health relevance: WNV, 

YFV-17D, Usutu virus (USUV), Langat virus (LGTV) and ZIKV. Infection assays were designed in order to 

evaluate whether integrins influence i) cell susceptibility; ii) binding; iii) internalization and iv) replication 

of the investigated flaviviruses. Our findings clearly demonstrate that β1, β3 and αVβ3 integrins do not act 

as flavivirus cellular receptor or attachment factor since their ablation does not completely abrogate 

flavivirus infection in the investigated cell lines. Flavivirus binding to the cell surface of MEFs, MKFs and 

CHO cells was not disturbed by the genomic deletion of the above-mentioned integrins. The deletion of 

β1 and β3 integrin subunit did not affect internalization of any of the flaviviruses tested. In contrast to 

that, loss of αVβ3 integrin in the MEF-αVβ3-/- cells showed a statistically significant decrease in WNV and 

USUV internalization while ZIKV, YFV-17D and LGTV internalization remained unaffected suggesting that 

αVβ3 integrin might be involved in the internalization process of at least some flaviviruses. 



 

ix 

On the other hand, flavivirus replication was substantially impaired in the integrin-deficient cell lines in 

comparison to their corresponding wild-type cells. Both, MEF-β3-/- and MKF-β1-/- cells showed a 

statistically significant reduction on viral load for all flaviviruses tested in comparison to their respective 

wild-type cells. The MEF-αVβ3-/- cells in particular, showed a strong inhibition of flavivirus replication with 

a reduction of up to 99% on viral loads for all flaviviruses tested. Levels of flavivirus negative-strand RNA 

were substantially decreased in MEF-αVβ3-/- cells indicating that integrins might influence flavivirus RNA 

replication. The ectopic expression of either αV or β3 integrin subunits in CHO cells slightly increased the 

replication of all flaviviruses tested. Taken together, this is the first report highlighting the involvement of 

integrins in ZIKV, USUV, LGTV and YFV infection. The results strongly indicate that the investigated 

integrins play an important role in flavivirus infection and might represent a novel host cell factor that 

enhances flavivirus replication. Although the exact mechanism of interaction between integrins and 

flaviviruses is currently unknown, the results provided in this study deepen our insight into flavivirus - host 

cell interactions and open doors for further investigations. 
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Zusammenfassung 
 

The role of integrins in flavivirus infection 

von Vinicius Pinho dos Reis 

 

Die Gattung der Flaviviren (Familie Flaviviridae) beinhaltet einige der wichtigsten Arboviren weltweit, 

beispielsweise das Dengue Virus, das West-Nil Virus (WNV), das Zika Virus (ZIKV), das Japanische-

Enzephalitis Virus sowie das Gelbfieber Virus (YFV). Jedes Jahr kommt es zu zahlreichen, durch Flaviviren 

verursachten Ausbrüchen (u.a. Zika und Gelbfieber Virus Ausbrüche in Südamerika), die mit immensen 

Auswirkungen auf die Ökonomie und das öffentliche Gesundheitswesen einhergehen. Obwohl die 

Interaktion von Flaviviren mit verschiedenen Wirtszellen in den letzten Jahrzehnten intensiv untersucht 

wurde und wichtige Fragen in der Flavivirus Biologie bereits geklärt werden konnten, sind viele 

zugrundeliegende Mechanismen, u.a. die virale Rezeptornutzung, der Eintrittsprozess sowie die 

Interaktion mit verschiedenen Wirtszellfaktoren nicht vollständig verstanden. Integrine, eine der 

wichtigsten Klasse von Zelladhäsionsmolekülen, wurden bereits in der Literatur beschrieben, eine Rolle im 

Infektionszyklus verschiedener Viren, u.a. auch der Flaviviren, zu spielen. Es gibt zudem Hinweise, dass ein 

bestimmtes Integrin, das αVβ3 Integrin, als Zellrezeptor für WNV fungieren kann, wobei diese Hypothese 

bislang nicht weiter bestätigt werden konnte. In dieser Arbeit wurde der Einfluss von bestimmten 

Integrinen auf die Flavivirusinfektion in verschiedenen, genetisch modifizierten Maus- und 

Hamsterzelllinien untersucht. Hierfür wurden zum einen Mausfibroblasten verwendet, die für die 

Expression von β1 oder β3 Integrin Untereinheiten oder für das αVβ3 Integrin deletiert sind (MKF-β1-/-; 

MEF-β3-/- und MEF-αVβ3-/-), um diese in Infektionsexperimenten mit den entsprechenden Wildtypzellen 

zu vergleichen. Zum anderen wurde die Chinese Hamster Ovary (CHO) Zelllinie genutzt, welche in der 

Literatur als refraktär gegenüber bestimmten Flaviviren beschrieben wurde. Diese Zelllinie wurde im 

Rahmen der Studie genetisch so modifiziert, dass entweder die αV (CHO-αV+/+) oder die β3 (CHO-β3+/+) 

Integrin Untereinheit exprimiert wurde. Alle rekombinanten Zelllinien sowie deren Wildtyp wurden mittels 

Konfokalmikroskopie, Durchflusszytometrie und funktionalen Assays bezüglich der Integrinexpression 

charakterisiert. Anschließend wurden die Zellen mit den folgenden, Public Health relevanten Flaviviren 

inokuliert: WNV, YFV, ZIKV, Usutu Virus (USUV) und Langat Virus (LGTV). In diesen Experimenten wurde 

der Einfluss der beschriebenen Integrine auf i) zelluläre Empfänglichkeit; ii) Bindung; iii) Internalisierung 

und iv) Replikation der verwendeten Flaviviren untersucht. Die Ergebnisse der Studie zeigen, dass die 

untersuchten Integrine in den verwendeten Maus- und Hamsterzelllinien weder als Zellrezeptor noch als 

Attachment-Faktor dienen. Die fehlende Expression der Integrine verhindert in keinem Fall die Infektion 

der Zellen. Unabhängig von der Integrinexpression können alle untersuchten Flaviviren an die 
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entsprechenden Zellen binden und internalisiert werden. Die Deletion der β1 und β3 Integrin 

Untereinheiten zeigt keinen Effekt auf die Internalisierung der untersuchten Flaviviren. Das Fehlen des 

αVβ3 Integrins in den MEF-αVβ3-/- Zellen hingegen resultiert in einem statistisch signifikanten Unterschied 

in der Internalisierung von WNV und USUV im Vergleich zu den entsprechenden Wildtypzellen während 

die Internalisierung von ZIKV, YFV-17D und LGTV unbeeinträchtigt bleibt. Diese Ergebnisse deuten darauf 

hin, dass αVβ3 Integrin in die Internalisierung bestimmter Flaviviren involviert sein könnte.  

Die Flavivirusreplikation zeigt sich in den Integrin-defizienten Zellen in dieser Studie stark beeinträchtigt 

im Vergleich zu den Wildtypzellen. Die Deletion der β1 und β3 Untereinheiten resultiert in einer statistisch 

signifikant verminderten Replikation in den entsprechenden Mausfibroblasten. Eine noch deutlichere 

Beeinträchtigung der Replikation aller untersuchter Flaviviren mit einer Reduktion der Viruslast um bis zu 

99% wird zudem in den MEF-αVβ3-/- Zellen beobachtet. Diese Ergebnisse werden zusätzlich durch deutlich 

reduzierte Mengen an detektierbarer Negativstrang-RNA in den MEF-αVβ3-/- Zellen unterstützt, was auf 

einen Einfluss der Integrine auf die Flavivirusreplikation hinweist. Die ektopische Expression der 

beschriebenen Integrine in CHO Zellen resultiert ebenfalls in einem leichten Anstieg der 

Flavivirusreplikation. Insgesamt ist dies der erste Bericht, der die Beteiligung von Integrinen in ZIKV, USUV, 

LGTV und YFV Infektionen beschreibt. Die Ergebnisse dieser Studie deuten stark darauf hin, dass 

bestimmte Integrine eine entscheidende Rolle in der Flavivirusinfektion spielen und möglicherweise einen 

neuen Wirtszellfaktor für Flaviviren darstellen. Auch wenn ein eindeutiger Mechanismus für die 

Interaktion von Integrinen mit Flaviviren bislang nicht bekannt ist, können die gewonnenen Ergebnisse 

dieser Studie den Anstoß für weiterführende Untersuchungen geben.  
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1) Introduction 

1.1) Arboviruses: a brief overview 
 
Arthropod-borne viruses, or in short arboviruses, are a group of viruses transmitted by arthropods such as 

mosquitoes, ticks and sandflies (Kuno et al., 2005). According to the World Health Organization (WHO) 

arboviruses possess the ability to replicate in their arthropod vectors as well as in their vertebrate hosts 

leading to efficient virus amplification that enables subsequent transmission to a new host (WHO, 1985).  

Up to now, there are more than 530 arboviruses described, of which more than 100 cause disease in 

humans. In addition, a majority of arboviruses are considered to be zoonotic viruses (Gubler, 2001; 

Lequime et al., 2016; Liang et al., 2015). Arboviruses belong mainly to eight virus families namely 

Peribunyaviridae, Phenuiviridae, Nairoviridae, Togaviridae, Reoviridae, Asfarviridae, Rhabdoviridae and 

Flaviviridae (Adams et al., 2017; Lequime et al., 2016; Liang et al., 2015; Weaver et al., 2010).  

Arboviruses are maintained in the nature in enzootic cycles which include non-human vertebrates 

(especially birds, non-human primates and rodents) as their reservoir hosts and arthropods as vectors. In 

some cases, arboviruses may have more than one vertebrate host or arthropod vector (Davis et al., 2008; 

Weaver et al., 2004). In most of the cases, humans, domestic animals, livestock and a variety of wild 

animals are considered incidental hosts that sustain low and short viremia, which does not contribute to 

the ongoing arbovirus cycle (Gubler, 2001). In case of infections with dengue virus (DENV), yellow fever 

virus (YFV), Zika virus (ZIKV) and some alphaviruses, humans and primates may develop high viremia and 

clinical symptoms leading to potential infection of mosquitoes which then contributes to the maintenance 

of the arbovirus cycle in nature (Gubler, 2001).  

Arboviral diseases are found in all six continents (with the exception of the Arctic and Antarctic) and billions 

of people are living in areas with high risk of arboviral transmission and disease (Beck et al., 2013; Huang 

et al., 2014). In the particular context of flaviviruses, DENV, the most important arbovirus in the world, is 

today present in 128 countries, with more than 4 billion of people living in areas with its transmission 

(Duong et al., 2015). Every year, several flavivirus outbreaks are reported around the world: ZIKV, DENV 

and YFV in South America; West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Powassan virus 

(POWV) in North America; Usutu virus (USUV), WNV, Tick Borne encephalitis virus (TBEV) and Louping ill 

virus (LIV) in Europe; Japanese encephalitis virus (JEV), DENV and ZIKV in Asia; Murray Valley encephalitis 

virus (MVEV), WNV and DENV in Australia and YFV, DENV, WNV and several other flaviviruses in Africa 

(Artsob, 2000; Beck et al., 2013; Lima-Camara, 2016; Lindsey et al., 2014; Mackenzie et al., 2009; Smith et 

al., 2011; Tompkins et al., 2013).  
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1.2) The Flaviviridae family 
 
Although the theory that mosquitoes could transmit diseases was first proposed in 1881 by Carlos Finnlay, 

a Cuban physician, it was Walter Reed who isolated the first human arbovirus, the YFV, at the beginning 

of the 1900’s and empirically demonstrated that YFV is a mosquito-borne virus (Tomori, 2004). The family’s 

name came from the latin word flavus that means yellow, in reference to the yellow fever disease (Huang 

et al., 2014). Today, the Flaviviridae family comprises more than 60 viral species distributed along the four 

genera: Flavivirus, Pestivirus, Hepacivirus and Pegivirus (Figure 1) (Simmonds et al., 2017). The Pestivirus 

genus includes among others the bovine viral diarrhea virus (BVDV) and the classic swine fever virus 

(CSFV); the Hepacivirus genus includes the Hepatitis C virus (HCV) as well as canine, equine and rodent 

hepaciviruses and the Pegivirus genus includes human, rodent, bat, equine and simian pegiviruses (Drexler 

et al., 2013; Lindenbach, 2013). 

 

 

Figure 1: Phylogenetic classification of the Flaviviridae family. The phylogenetic tree shows the four genera included 
within the Flaviviridae family: Flavivirus, Pestivirus, Hepacivirus and Pegivirus. Figure source: Simmonds et al.,(2017). 
Originally published in https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-
viruses/w/flaviviridae (no modifications) This picture is under Creative Commons Attribution 4.0 (CC.BY-SY.4.0).  

https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/flaviviridae
https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/flaviviridae
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1.3) The Flavivirus genus 

1.3.1) Taxonomy and classification  

 
The Flavivirus genus is represented by more than 70 viruses and most of them are arboviruses of medical 

and veterinary importance such as DENV, WNV, TBEV, JEV, ZIKV and YFV as the prototype of this genus 

(Huang et al., 2014; Simmonds et al., 2017). Phylogenetic studies divided the Flavivirus genus in three 

major clades according to their mechanism of transmission and genetic similarity: mosquito-borne 

flaviviruses (MBFV), tick-borne flaviviruses (TBFV) and no-known vector flaviviruses (NKVF) (Gaunt et al., 

2001; Lindenbach, 2013). More recently, an additional group has been included and named insect-specific 

flaviviruses (ISF) (Blitvich et al., 2015). The MBFV clade includes important pathogens of human and 

animals which may be also classified according to the disease they cause: i) hemorrhagic disease viruses 

(DENV and YFV); ii) neurotropic and encephalitis viruses (WNV, JEV, SLEV and ZIKV) and iii) acute febrile 

disease viruses (DENV, ZIKV, WNV) (Grard et al., 2007; Lindenbach, 2013). Infections with some members 

of the TBFV clade might lead to encephalitis and neurological manifestations (LIV, TBEV and POWV) as well 

as to hemorrhagic fever (Omsk hemorrhagic fever virus; OHFV, Kyasanur forest disease virus; KFDV) (Grard 

et al., 2007). The NKVF clade includes several flaviviruses such as the Yokose virus, Entebbe bat virus and 

the Modoc virus. Their biology and disease manifestation in humans and animals are unclear (Blitvich et 

al., 2017).  

Another flavivirus classification is based on antigenic similarity and the presence of serological cross-

reactivity. WNV, JEV and USUV are classified into the Japanese Encephalitis complex; LIV, TBEV and KFDV 

are classified into the TBEV complex, ZIKV is grouped into the Spondweni serocomplex and DENV is 

grouped in a separated complex (Calisher et al., 1989; Kuno et al., 1998). 

 

1.3.2) Structure and physical properties of flaviviruses 

 
Virions are spherical and enveloped and contain an icosahedral nucleocapsid that surrounds the virus 

genome (Figure 2 A and B). They have a diameter of around 40-60 nm and are structurally composed by 

multiple copies of the capsid (C) protein, the envelope (E) protein and the membrane (M) protein (Figure 

2 A and B) (Lindenbach, 2013; Oliveira et al., 2017; Schweitzer et al., 2009). The nucleocapsid is assembled 

by multiple copies of the C protein (12-14 kDa). The largest structural protein, the E protein (50-54 kDa), 

is highly glycosylated, responsible to interact with cellular receptors and elicits most of the neutralizing 

antibodies against the virus. The M protein is synthesized as a precursor-membrane protein (prM) of 18-

20 kDa and is also highly glycosylated. Together with the E protein, it is responsible to form the outer 

surface of the virions. Its cleavage from prM to M is mediated by furin and constitutes an important step 

in virus maturation (Chambers et al., 1990; Lindenbach, 2013). 
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The virus particle can be displayed in two physical states: mature particles (fully prM cleavage) and 

immature particles (no prM cleavage) (Pierson et al., 2012). The immature particles (Figure 2 C) show 

approximately 60 spikes that are E/prM protein trimers while the mature particles are smooth and plane 

(Figure 2 D) with no spike projections on the surface (Pierson et al., 2012). 

Like most enveloped viruses, the flavivirus particle is sensitive to low pH, detergents, alcohols, aldehydes 

and beta-propiolactone as well as UV light and temperatures above 60°C (Muller et al., 2016). 

 

 

 
Figure 2: Schematical representation of flavivirus particles. Sagittal illustration showing the C protein, M protein as 
well as dimers of the E protein and the +ssRNA genome inside the capsid (A); outer surface of a mature virion (B); 
immature virus particle is depicted showing a rough structure of accumulated prM proteins (C) and smooth mature 
flavivirus particle (E). References: Figure 2 A and 2 B: http://viralzone.expasy.org/24?outline=all_by_species, 
modified. This picture is under Creative Commons Attribution 4.0 (CC.BY-NC.4.0); image 2 C and 2 D: Simmonds et 
al., 2017, (no modifications). Republished with permission from Microbiology Society from Simmonds et al. 2017 
DOI: https://doi.org/10.1099/jgv.0.000672. 

 

1.3.3) Genome organization 

 
The flavivirus genome is a single stranded RNA of positive polarity (+ssRNA) with approximately 11 Kb 

(9,500 to-12,500 nucleotides) that encodes for 10 proteins: three structural (C-prM-E) and seven non-

http://viralzone.expasy.org/24?outline=all_by_species
https://doi.org/10.1099/jgv.0.000672
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structural proteins (NS1-NS2a-NS2b-NS3-NS4a-NS4b-NS5; Figure 3) (Bollati et al., 2010). The viral RNA 

functions as a messenger RNA (mRNA) and is immediately translated into a polyprotein (Mukhopadhyay 

et al., 2005). The genome is arranged into a single open reading frame (ORF) that encodes a polyprotein 

of 3,300 to 3,500 amino acids which is cleaved by viral and host proteases (Chambers et al., 1990).  

The flavivirus genome is flanked by non-coding regions (NCR), with the 5’ region being generally smaller 

than the 3’ region (Chambers et al., 1990; Gebhard et al., 2011). The majority of flavivirus genomes lack a 

polyadenylation tail (poly A) at the 3’ region. The only exception found among the flavivirus genomes is a 

European strain of TBEV (strain Neudörfl) that harbors a poly A tail in the 3’ region. The function of the 

poly A tail in this specific strain of TBEV is still unclear (Asghar et al., 2016; Mandl et al., 1991). At the 5’ 

region of all flaviviruses a type I cap structure (m7GpppAmp) is found (Gebhard et al., 2011). In general, 

for most of the flaviviruses, in both 5’ and 3’ regions the RNA shows secondary structures resembling 

“hairpins” that are important for RNA transcription, translation and stability (Gebhard et al., 2011).  

 

 

 

 
Figure 3: Genome organization for the members of the Flavivirus genus. The +ssRNA contains two non-coding regions 
at the 5’ and 3’ ends flanking a single open reading frame (ORF) that encodes a single polyprotein. The polyprotein is 
cleaved by viral and host proteases (arrows) resulting in three structural proteins (C-prM-E) and seven non-structural 
proteins (NS1-NS2a-NS2b-NS3-NS4a-NS4b-NS5). The structural protein encoding sequences are located downstream 
of the 5’ end and the non structural protein encoding sequences upstream of the 3’ end. Reference: Originally 
published in http://viralzone.expasy.org/24?outline=all_by_species, modified. This picture is under Creative 
Commons Attribution 4.0 (CC.BY-NC.4.0). 

 

1.3.4) Functions of structural and non-structural proteins 

1.3.4.1) Structural proteins 

 

The C protein has the major function to shape the viral particle and to protect the viral RNA from 

degradation. However, other functions of the C protein still remain broadly unknown (Oliveira et al., 2017). 

It is unclear how and at which point of the flavivirus replication the C protein recruits and packs the viral 

RNA (Samsa et al., 2009). A study demonstrated that regions within the alpha-4 helix of the C protein are 

responsible for RNA packing (Ma et al., 2004). The C protein was also found in the nucleus of infected cells 

http://viralzone.expasy.org/24?outline=all_by_species
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and is reported to interact with nuclear proteins and enhances replication of JEV (Mori et al., 2005; Tsuda 

et al., 2006). In addition to that, WNV C protein might interact with other cellular proteins and may induce 

apoptosis (Yang et al., 2002). Since many functions and underlying mechanisms associated with the C 

protein have been studied in recent years, the C protein has been considered as an important target for 

antiviral drug design (Oliveira et al., 2017). 

The prM/M protein is associated with the E protein building heterodimers that are anchored into the lipid 

bilayers to form the outer viral surface (Zhang et al., 2003). Studies have demonstrated the prM/M protein 

to be involved in apoptosis induction and interactions with host cells during virus entry, replication and 

assembly (Brabant et al., 2009; Brault et al., 2011; Catteau et al., 2003; Gao et al., 2010; Wong et al., 2012). 

During the infection, antibodies are raised against the prM protein. Interestingly, those antibodies were 

reported to mediate entry of immature WNV and DENV virions via Fc receptor, thus enhancing the virus 

infection via a phenomenon known as antibody-dependent enhancement (ADE) (Colpitts et al., 2011; 

Halstead, 1979; Rodenhuis-Zybert et al., 2010a). However, it has not been elucidated whether the 

presence of those antibodies might be associated with a poor prognosis or with severe clinical 

manifestations of DENV infection (Rodenhuis-Zybert et al., 2015). 

The flavivirus E protein is a transmembrane protein and a class II fusion protein. Structurally, the E protein 

has three domains: E-DI, E-DII and E-DIII. In response to an acidic pH, the E protein undergoes irreversible 

conformational changes that eventually lead to the fusion of the virus particle with the endosomal 

membrane and consequently genome delivery into the cytoplasm (Kielian, 2014; Modis et al., 2004; Smit 

et al., 2011). The E-DI is the central domain of the E protein structure. E-DII contains a hydrophobic fusion 

loop, a peptide that is responsible for viral fusion with the cell membrane (Zhang et al., 2004). In the 

immature virus particle, the fusion loop is covered by a portion of prM peptides impairing the virus fusion 

(Li et al., 2008; Lindenbach, 2013). Studies on DENV and WNV have demonstrated that antibodies raised 

against the fusion loop are highly cross-reactive and might trigger ADE and internalization of immature 

particles via Fc receptor (Lai et al., 2008; Rodenhuis-Zybert et al., 2011a). Finally, the E-DIII is an 

immunoglobulin like domain and the most exposed domain of the E protein, forming projections along the 

virion. It also contains the receptor binding domain that mediates binding to the host cell (Lindenbach, 

2013; Zhang et al., 2004). Interestingly, some flaviviruses such as MVEV, YFV-17D and JEV have an integrin 

binding motif in their E-DIII, namely the RGD (Arg-Gly-Asp) motif, raising speculations that these viruses 

might use integrins as cellular receptors (van der Most et al., 1999). In addition to that, among all other E 

protein domains, E-DIII is the most immunogenic domain and forms a major target for neutralizing 

antibodies. This domain has thus been used in several vaccine candidates as a target for antiviral drugs 

and as antigen in serological assays (Chavez et al., 2010; Perera et al., 2008). A vaccine harboring the YFV-

17D backbone and the structural proteins of WNV is commercially available for horses. For humans, DENV 
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and JEV chimeric-based vaccines are available (Arroyo et al., 2004; Chin et al., 2013; Guy et al., 2015; 

Monath et al., 2002).  

 

1.3.4.2) Non-structural proteins 

 
The non-structural (NS) 1 protein is highly glycosylated and highly conserved among flaviviruses. Upon 

infection, the NS1 protein may be localized intracellularly or may be secreted. The NS1 protein is dimeric 

in case of intracellular localization and hexameric when secreted. The intracellular form of NS1 seems to 

be involved in immune evasion and interacts with host cell proteins (Rastogi et al., 2016; Somnuke et al., 

2011). In association with NS4b, NS1 is also reported to be involved in virus replication (Muller et al., 2013; 

Rastogi et al., 2016). The secreted form of NS1 is highly immunogenic and has been detected in antigen 

capture based assays during early infection. Furthermore, some authors have proposed that NS1 is a 

biomarker and that high levels of anti-DENV NS1 antibodies might be correlated with more severe disease 

(Hermann et al., 2014; Paranavitane et al., 2014; Singh et al., 2010). Several studies have also 

demonstrated that soluble NS1 from different flaviviruses can inhibit the complement system by 

interacting with C4b complement protein and factor H (Avirutnan et al., 2010; Avirutnan et al., 2011; 

Chung et al., 2006).  

The NS2 protein is cleaved into two different proteins: NS2A and NS2B. The NS2A is a hydrophobic protein 

that is involved in RNA replication and virus assembly (Leung et al., 2008; Lindenbach, 2013). NS2A was 

also reported to interact with the 3’ NCR of the viral genome and to modulate the interferon responses 

(Liu et al., 2005; Mackenzie et al., 1998). NS2B interacts as a cofactor with NS3 and this complex has been 

demonstrated to be the main viral protease and is involved in the processing of viral structural proteins 

(Bessaud et al., 2006; Murray et al., 2008). This complex has been targeted as candidate for antiviral drugs 

(Aguilera-Pesantes et al., 2017). The NS3 is a multifunctional protein involved in RNA replication. Studies 

further demonstrated protease, helicase and NTPase activities of this protein (Lindenbach, 2013; Wu et 

al., 2005). A study with YFV demonstrated that NS3 alone is also involved in virus assembly (Patkar et al., 

2008). 

Similar to NS2, the NS4 protein is cleaved into two proteins: NS4A and NS4B. Although their exact functions 

are unclear, both proteins are membrane associated and have been shown to be linked to flavivirus 

replication complexes (FRC) (Lindenbach, 2013; Miller et al., 2007; Nemesio et al., 2012). A study 

suggested that the NS4A of WNV is an essential co-factor for NS3, leading to NS3 helicase activity (Shiryaev 

et al., 2009).  

The NS5 protein is the largest flavivirus protein (103 kDa) and the most conserved protein among the 

flaviviruses (Lindenbach, 2013). Due to its high similarity among the members of Flavivirus genus, the NS5 
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protein nucleotide sequence is widely used for phylogenetic and flavivirus evolution analysis (Baleotti et 

al., 2003; Kuno et al., 1998). Several functions have been attributed to NS5. The most important one is its 

RNA-dependent RNA polymerase (RdRp) activity. In this case, NS5 plays an essential role in the RNA 

replication, being involved in the synthesis of both negative and positive strand RNAs during the flavivirus 

replication cycle (Bollati et al., 2010; Klema et al., 2015). Another important function associated to NS5 is 

its methyltransferase activity being important for adding the cap structure to the 5’ NCR (Ray et al., 2006). 

This process constitutes an important mechanism of viral immune evasion not only for flaviviruses but for 

other viruses as well (Dong et al., 2014).  

 

1.4) Flavivirus interaction with the host cell 

1.4.1) Flavivirus entry into the host cell 

 
The flavivirus entry is a complex process involving the usage of multiple receptors and accessory 

molecules. Initially, virions bind to the host cell via electrostatic, non-specific and low affinity interactions 

with cell membrane molecules. The interaction with those molecules does not mediate virus entry but 

virus attachment leading to accumulation of virions on the cell membrane (Grove et al., 2011; Smit et al., 

2011). Upon attachment, flaviviruses move along the cell membrane in order to find their specific 

receptor(s) that will mediate entry into the host cell. Flaviviruses mainly enter the host cell by receptor-

mediated endocytosis, i.e. clathrin-mediated endocytosis (Kaufmann et al., 2011; Smit et al., 2011; van der 

Schaar et al., 2008). However, alternative routes have been reported by other authors. For example, DENV 

might enter the cells alternatively by caveolae, dynamin or macropinocytosis (Acosta et al., 2009; 

Suksanpaisan et al., 2009). WNV has been described to enter the cell by lipid rafts (Medigeshi et al., 2008). 

A study with TBEV suggested an alternative entry route by macropinocytosis in Caco-2 cells (Yu et al., 

2014).  

Flavivirus internalization is a relatively fast event according to two studies with DENV and WNV, 

demonstrating that virions were internalized within less than five minutes after binding to a cellular 

receptor (Chu et al., 2004a; van der Schaar et al., 2008). Upon internalization, virions are located in the 

early and late endosomes until they finally fuse with the lysosomes (Smit et al., 2011; Yamauchi et al., 

2013). The intracellular trafficking of the virion along the endosomes is controlled by a group of GTPases 

called Rab (Jordens et al., 2005; Yamauchi et al., 2013). Rab 5 and Rab 7 proteins have been shown to be 

required for DENV and WNV entry into Hela cells (Krishnan et al., 2007).  

Fusion of late endosomes with the lysosomes causes endosomal acidification leading to pH-dependent 

irreversible changes in the E protein conformation and consequently, to fusion of the viral and endosomal 

membrane (Kaufmann et al., 2011). Studies demonstrated that the E protein changed its conformation by 
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mild-acidic environment (pH 5.0 to 6.0) leading to E protein trimerization and consequently fusion loop 

exposition (Stiasny et al., 2007). Treatment with drugs that inhibit endosomal acidification such as 

chloroquine led to inhibition of DENV-2 fusion and consequently replication in both in vitro and in vivo 

models (Farias et al., 2013; Farias et al., 2014; Farias et al., 2015). Other in vitro studies using drugs that 

inhibited endosomal acidification also showed inhibition of WNV and JEV replication (Chu et al., 2006; Chu 

et al., 2004a; Kalia et al., 2013). Fusion of the viral and endosomal membrane is then followed by virus 

uncoating and releasing the viral RNA into the cytoplasm where the replication cycle is initiated 

(Mukhopadhyay et al., 2005; van der Schaar et al., 2008). 

 

1.4.2) Flavivirus replication 

 
Flavivirus replication takes place in membrane-induced vesicles located in the cytoplasm of infected cells 

(Bartholomeusz et al., 1999; Brinton, 2013; Romero-Brey et al., 2014). Within the cytosol, the viral +ssRNA 

is immediately translated into a single polyprotein that is cleaved at first by host proteases (Murray et al., 

2008; Natarajan, 2010). The flavivirus non-structural proteins induce modifications in the cellular 

membranes of the endoplasmatic reticulum (ER), building compartments, the FRC. Inside the FRC, the viral 

proteins necessary to support viral replication accumulate and the viral RNA is then replicated (Klema et 

al., 2015; Saeedi et al., 2013). The NS5 then transcribes +ssRNA template into a negative-strand RNA and 

a transitory double strand RNA (dsRNA) structure is formed. Thus, the dsRNA is separated by NS3 helicase 

activity and the negative-strand RNA is used as template for the synthesis of new +ssRNA (Klema et al., 

2015; Natarajan, 2010). The newly synthesized +ssRNA is then translated into a single polyprotein that is 

cleaved by host and viral proteases. Following that, post-translational cleavage of C-prM-E proteins takes 

place mediated by the NS2B/NS3 complex and host proteases. The structural proteins remain anchored in 

the membrane of the ER while more +ssRNA is synthesized (Klema et al., 2015; Lindenbach, 2013). 

Assembly of new virus particles occurs in the lumen of the ER when the C protein physically interacts with 

the +ssRNA leading to packing of viral RNA and formation of the nucleocapsid. The nucleocapsid containing 

the viral RNA is budding through the ER which consists the prM-E protein heterodimers forming the 

immature virus particle (Fernandez-Garcia et al., 2009; Murray et al., 2008). In this immature state, the 

prM hides the fusion loop located at the E-DII protein to avoid self-fusion with the Golgi membranes during 

the trans-Golgi pathway. Following the trans-Golgi pathway, the prM protein is cleaved by furin exposing 

the fusion loop and dissociation of prM-E complexes giving the virions a status of mature particles (Heinz 

et al., 1994; Stadler et al., 1997; Yu et al., 2008; Zhang et al., 2003). Infectious mature virus particles are 

released by exocytosis pathway (Fernandez-Garcia et al., 2009). An overview of the flavivirus replication 

cycle and genome replication is shown in Figure 4.  
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Figure 4: Flavivirus replication cycle. (A) After binding, flaviviruses are internalized by receptor mediated endocytosis 
(a), the low endosomal pH triggers irreversible changes in the E protein leading to fusion of viral membrane with 
endosome, uncoating and delivery of viral genome (b); the viral positive single stranded RNA (+ssRNA) is 
subsequently translated and replicated in the perinuclear region inside the flavivirus replication complex (c); virus 
assembly occurs in the endoplasmatic reticulum following a final glycosylation in the Golgi complex (e); the cleavage 
of prM to M and consequent final maturation is mediated by furin along the trans-Golgi network (f) and the virus is 
secreted by exocytosis (g). (B) The +ssRNA is immediately translated into a polyprotein that is cleaved first by host 
proteases and later by viral proteases. The +ssRNA is then transcribed in a negative-strand RNA and the viral genome 
acquires an intermediate double strand (ds) RNA state. The negative-strand RNA serves as a template for synthesis 
of new +ssRNA. A final 5’ CAP is added to the newly synthesized viral +ssRNA. References: Figure A: Reprinted from 
Rodenhuis-Zybert et al.,(2011b) with permission from Elsevier (Rodenhuis-Zybert et al. 2011b, DOI: 
https://doi.org/10.1016/j.tim.2011.02.002, modified; Figure B: Klema et al.,(2015),  no modifications. This picture is 
under Creative Commons Attribution 4.0 (CC.BY.4.0) 

A 

B 

https://doi.org/10.1016/j.tim.2011.02.002
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1.5) Epidemiology 
 

In North America, the circulation of WNV, SLEV and POWV have been reported in USA and Canada. DENV 

has been also reported in parts of USA (Texas, Hawai and Puerto Rico) and Mexico (Davis et al., 2008). In 

Central and South America, especially in Brazil, the circulation of several flaviviruses has been described, 

among them DENV, WNV, SLEV, ZIKV, YFV, Rocio virus, Bussuquara virus, Cacipacoré virus, Iguape virus 

and Ilhéus virus. Thereof, in particular DENV, ZIKV and YFV are of greater importance for publich health 

(Figueiredo, 2000; Zanluca et al., 2015). DENV is responsible for large outbreaks in Brazil and surrounding 

countries in South and Central America (Ramos-Castaneda et al., 2017). In 2015, ZIKV was first detected in 

the northeast from Brazil (Zanluca et al., 2015). In the following years, more than 210,000 cases of ZIKV 

infection were recorded with more than 10,000 suspected cases of microcephaly (Brazillian Ministry of 

Health - MS 2016a; Brazillian Ministry of Health - MS 2016b).  

In Europe, WNV, USUV and TBEV are the major flaviviruses circulating within the continent (Papa, 2017). 

In 2016, the European Center for Disease Control (ECDC) recorded 225 cases of WNV in humans with most 

of the cases in South and Southeast Europe (ECDC, 2016). USUV was first detected in 1996 in Italy, from a 

dead Eurasian blackbird (Turdus merula) (Weissenbock et al., 2013). Since then, USUV has been spreading 

throughout Europe and has been detected in birds in Austria, Belgium, Czech Republic, England, Germany, 

Greece, Hungary, Spain and Switzerland (Ashraf et al., 2015; Engel et al., 2016). TBEV is the causative agent 

of severe encephalitis in humans in Europe and its circulation is reported in 27 European countries. 

Although an effective vaccine is available, the number of cases have recently increased (Amicizia et al., 

2013).  

JEV, DENV, WNV, ZIKV, MVEV and Kunjin virus (KUJV) are the flaviviruses of major concern in Asia and 

Australia (Kindhauser et al., 2016; Mackenzie et al., 2009; Russell et al., 2000). JEV is present in 24 countries 

in Asia, Western Pacific and Northern Australia (Wang et al., 2015b). It is estimated that more than 67,000 

human cases of JEV infection occur every year (Campbell et al., 2011a). DENV represents a public health 

problem especially in Southeast Asia and the Western Pacific region with up to 187,000 cases in 2010 

(Murray et al., 2013). MVEV has caused sporadic encephalitis cases in humans in Australia (Russell et al., 

2000). KUJV is classified within the WNV group and has been reported to circulate in Australia. In general, 

most of the infections are asymptomatic and result in mild clinical manifestations (Prow, 2013). ZIKV is 

endemic in eight countries in Asia, but ZIKV infections seem to be very sporadic and outbreaks have been 

rarely reported (Kindhauser et al., 2016; Posen et al., 2016; Wiwanitkit, 2016). In the federal states of 

Micronesia, ZIKV is endemic with huge outbreaks in Yap Islands and French Polynesia. Serological surveys 

estimated that 73% of the Yap Island population have antibodies against ZIKV (Duffy et al., 2009). 
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1.6) Flavivirus transmission and ecology 
 

Most of the flaviviruses are maintained in nature by two distinct transmission cycles: the enzootic (= 

sylvatic) or urban (= human) cycle (Vasilakis et al., 2011). The sylvatic cycle involves mosquitoes and wild 

animals such as birds and/or non-human primates or, for TBFV, ticks, rodents and apparently wild deer 

(Mansfield et al., 2009; Weaver et al., 2004). The urban cycle, especially important for DENV, YFV and ZIKV, 

involves humans and the Aedes spp. mosquitoes in urban and peri-urban areas. In this case, humans play 

an important role in facilitating the infection of naïve mosquitoes (Vasilakis et al., 2011; Vasilakis et al., 

2017). 

 

1.6.1) Transmission vectors 

 
The majority of flaviviruses are transmitted by mosquitoes and only a few flaviviruses are transmitted by 

ticks (Huang et al., 2014; Lasala et al., 2010). Several studies have demonstrated that many mosquito 

species such as Aedes spp. and Culex spp. are susceptible to flaviviruses and transmit them to other hosts 

(Conway et al., 2014). Aedes aegypti and Aedes albopictus are the most widespread mosquitoes being 

found in the Americas, Africa, Europe, Asia and Australia and are competent vector of DENV, YFV, ZIKV and 

many other flaviviruses (Kraemer et al., 2015). Culex spp. have the similar global distribution as Aedes spp. 

and are vectors of WNV, KUJV, JEV, MVEV and SLEV (Prow, 2013; Samy et al., 2016).  

Ticks transmit flaviviruses such as TBEV, LIV, POWV, KFDV and OHFV (Dobler, 2010). The genus Ixodes spp. 

is globally widespread and responsible for the transmission of POWV, LIV and TBEV in North America, 

Europe and Asia (Dobler, 2010; Pettersson et al., 2014).  

Although the majority of flaviviruses are transmitted via arthropods, a small number of human infections 

happens without any vector. The majority of non-vectored infections occurs by blood transfusion, bone 

marrow as well as solid organ transplantations (Chen et al., 2016). Sexual transmission of flaviviruses has 

also been reported, especially for ZIKV (Foy et al., 2011; Grischott et al., 2016). Perinatal transmission of 

DENV and ZIKV was reported in endemic areas (Besnard et al., 2014; Chen et al., 2016; Grischott et al., 

2016). 

 

1.6.2) Flavivirus reservoirs 

 

Birds, rodents, other small mammals and some reptiles are known to be a reservoir for flaviviruses 

(Weaver et al., 2004). Humans, horses and some livestock and domestic animals are usually considered to 

be dead-end hosts as they normally do not transmit the virus to other vertebrates. Since they do not 

sustain strong and persistent viremia, these hosts do not function as a reservoir for re-infection of 
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mosquitoes which impedes the arbovirus transmission cycle (van den Hurk et al., 2009; Weaver et al., 

2004).  

Birds are the main reservoir for flaviviruses, especially for those that belong to the Japanese encephalitis 

serocomplex such as WNV, JEV and USUV. WNV infects more than 100 different bird species while JEV is 

able to infect more than 90 and USUV more than 30 bird species (Ashraf et al., 2015; Campbell et al., 2002; 

van den Hurk et al., 2009). This broad avian host range and the migratory behavior might contribute to the 

emergence and introduction of flaviviruses to new environments such as observed for WNV in North 

America and JEV in Australia (van den Hurk et al., 2009; Weaver et al., 2004). In general, flavivirus infection 

in birds leads to high and long-lasting viremia. For this reason birds are often considered to be amplifying 

hosts of many flaviviruses. For JEV, pigs may also act as amplifying hosts (van den Hurk et al., 2009; Weaver 

et al., 2004).  

Ticks are the main reservoir for TBEV nevertheless, rodents and other wildlife animals such as deers are 

important in the maintenance of TBEV in nature (Lindquist, 2014; Lindquist et al., 2008). Although the role 

of birds in the TBEV life cycle has not yet been unravelled, birds might spread TBEV infected ticks into 

distant areas (Mansfield et al., 2009). A study conducted by Waldenstrom et al.,(2007) found TBEV infected 

ticks on birds migrating from Western Russia to Sweden.  

Finally, although not considered reservoir, non-human primates are an important amplifying host for 

several flaviviruses such as DENV, ZIKV and in special for YFV in the Americas and Africa (Barrett et al., 

2007; Kuno et al., 2017).  

 

1.7) Flavivirus pathogenesis 
 

Following inoculation by mosquito or tick bite, flaviviruses initiate a prompt replication at the inoculation 

site infecting mainly fibroblasts, epithelial cells, resident macrophages and migratory dendritic cells 

(Langerhans cells) (Bustos-Arriaga et al., 2011; Samuel et al., 2006). This early replication in local tissues 

enables the flaviviruses to increase the viral load allowing further migration to target tissues/cells. Infected 

Langerhans cells and resident macrophages migrate to the draining lymph node where the virus initiates 

the spreading through the lymphatic system, consequently reaching the blood stream  and disseminating 

to the target cells and tissues (Kaufmann et al., 2011; Martina et al., 2009). 

Viremia in birds is detected within less than 24 hours after infection with a recent study demonstrating 

viremia even 30-45 minutes after infection (Gamino et al., 2013; Reisen et al., 2007). In humans, viremia 

for WNV and DENV is observed between 2-4 and 1-7 days after infection, respectively (Busch et al., 2008; 

Vaughn et al., 2000). 



14 

The mechanisms for neuroinvasion of neurotropic flaviviruses are poorly understood. There have been 

four routes proposed: i) hematogenic dissemination; ii) blood brain barrier disruption; iii) infected 

leukocyte mediated migration (“Trojan-horse”) and iv) transneural route (Sips et al., 2012; Suen et al., 

2014). The pathogenesis of hemorrhagic diseases observed in DENV, KFDV and OHFV infections seems to 

be rather immune-mediated than directly caused by the infection of endothelial cells. In this case, the 

strong activation of the immune response would alter the vascular permeability leading to hemorrhagic 

manifestations (Back et al., 2013). High levels of Tumor Necrosis Factor alpha, interleukin (IL-) 6 and IL-8 

were found in patients with dengue hemorrhagic fever (Martina et al., 2009). 

 

1.8) Clinical manifestations 
 

Flavivirus infections may lead to four distinct manifestations: i) asymptomatic infection (or sub-clinical 

infection); ii) acute febrile disease; iii) hemorrhagic fever and iv) meningoencephalitis (Cobo, 2016; 

Martina et al., 2009; Turtle et al., 2012). Asymptomatic infections account for approximately 80 % of 

flavivirus infection cases in humans in special for WNV and DENV (Hayes et al., 2005; Reiter, 2010). DENV, 

YFV and KFDV are more related to hemorrhagic fever and manifestations related to hemodynamic 

disorders (Holbrook, 2012; Martina et al., 2009). Most of the members of the Japanese encephalitis 

complex such as WNV, JEV, MVEV and SLEV are more reported to cause encephalitis in humans and 

animals (Niven et al., 2017; Turtle et al., 2012). Horses infected by WNV seem to develop neurological 

manifestations in more than 10% of the infections and less than 1% of humans develop neurological 

manifestations (Castillo-Olivares et al., 2004). Symptomatic USUV infections in humans are rare and more 

confined to immunocompromised individuals. However, antibodies against USUV were found in 

asymptomatic blood-donor individuals in Italy (Allering et al., 2012; Gaibani et al., 2012). POWV, LIV and 

TBEV infections result in most of the cases in neurological manifestations such as encephalitis and 

meningoradiculitis (Bogovic et al., 2015; Turtle et al., 2012). Several case reports have described atypical 

clinical manifestations of flavivirus infections especially in hyper-endemic areas such as South and North 

America, Asia and Australia. In case of DENV infections, hepatitis, pneumonia, optical neuritis, pancreatitis, 

nephritis and myocarditis have been reported (Gulati et al., 2007; Nimmagadda et al., 2014). Atypical 

clinical manifestations due to WNV infection are more related to central nervous system disorders. Those 

include acute flaccid paralysis, Guillain-Barré Syndrome, meningoradiculitis and a polio-like syndrome 

(Ahmed et al., 2000; Josekutty et al., 2013; Leis et al., 2012; Sejvar et al., 2003). Recently, ZIKV was linked 

to abnormal malformations in newborns (microcephaly) and spontaneous abortions as well as atypical 

clinical manifestations in adults such as the Guillain-Barré syndrome and encephalitis (Cao-Lormeau et al., 

2016; Martines et al., 2016; Paixao et al., 2016).  
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1.9) Flavivirus receptors and host cell factors 
 
During the initial steps of infection, viruses must cross the cell membrane to deliver their genome into the 

cytoplasm and complete the replication cycle. Prior to entry, viruses interact with a diverse repertoire of 

cellular molecules in order to find their receptor to mediate virus particle internalization, fusion and 

genome delivery (Bhella, 2015; Yamauchi et al., 2013). 

Over the last few decades, the knowledge concerning the mechanisms of flavivirus interaction with the 

host cells have increased dramatically. However, many aspects of these flavivirus-host interactions still 

remain unclear. To date, many flavivirus receptor candidates as well as host cell factors have been 

identified and suggested to interact with flaviviruses during the course of infection (Fernandez-Garcia et 

al., 2009; Pastorino et al., 2010; Perera-Lecoin et al., 2013).  

Host cell factors are defined as molecules that may interact with (flavi)viruses during the early steps of 

infection, during RNA replication or may be involved in virus assembly and egress (Foo et al., 2015; Wang 

et al., 2017; Ward et al., 2016).  

 

1.9.1) Flavivirus receptors  

 
According to the literature, flaviviruses might either use an ubiquitously expressed molecule or multiple 

receptor molecules to invade the host cell. In this process, molecules such as attachment factors and the 

putative receptor(s) act synergistically to promote flavivirus entry into the host cell (Perera-Lecoin et al., 

2013; Smit et al., 2011). 

Notably, glycoaminoglycans (GAG), in particular heparan sulfate, are widely expressed in most of cell lines 

and have been demonstrated to interact with flaviviruses during the initial steps of infection. Interactions 

between flavivirus particles and GAGs are mainly mediated by negatively charged carbohydrates such as 

GAGs that bind to the positively charged flavivirus E protein (Afratis et al., 2012; Perera-Lecoin et al., 2013; 

Smit et al., 2011). The importance of heparan sulfate on flavivirus binding to the cell surface was 

extensively demonstrated by several studies: heparin (a heparan sulfate analogue) or lactoferrin (a 

molecule that binds GAGs), were both able to block entry of several flaviviruses such as DENV, YFV, WNV, 

JEV ,TBEV and ZIKV (Chen et al., 2017; Chen et al., 1997; Chien et al., 2008; Germi et al., 2002; Hilgard et 

al., 2000; Kim et al., 2017; Kroschewski et al., 2003; Lee et al., 2004; Tan et al., 2017). Although the role of 

GAGs in flavivirus attachment and entry was extensively shown, this characteristic seems to be related to 

virus attenuation, adaptation to cell culture and loss of virulence in vivo as reported in some studies with 

DENV, JEV, MVEV and TBEV (Lee et al., 2002; Lee et al., 2006a; Mandl et al., 2001). 

Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) is a C-type lectin 

that has also been implicated to play a role in attachment and entry of WNV and DENV in human cell lines 
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such as monocytes and dendritic cells (Davis et al., 2006; Navarro-Sanchez et al., 2003; Tassaneetrithep et 

al., 2003). More recently, HEK293 cells expressing the DC-SIGN receptor were reported to greatly enhance 

ZIKV infection in up to 50% (Hamel et al., 2015). 

TIM and TAM receptors belong to a class of transmembrane phosphatidylserine binding receptors that 

have been involved in entry of several enveloped viruses including flaviviruses such as WNV, DENV, and 

ZIKV (Hamel et al., 2015; Jemielity et al., 2013; Meertens et al., 2012). In the case of ZIKV, a study 

demonstrated that both TIM and TAM mediated ZIKV entry into human fibroblasts with TAM being more 

effective in mediating ZIKV infection than TIM (Hamel et al., 2015). However, a recent study using a group 

of mice deficient for TAM receptors demonstrated that expression of TAM receptors are not required for 

ZIKV infection in vivo, reinforcing the multitude of flavivirus receptor usage and the hypothesis that 

flaviviruses use multiple receptors to gain access to the target cells (Hastings et al., 2017). 

The high affinity laminin receptor has been described to play a role in flavivirus entry in mammalian as 

well as in mosquito cells. A study conducted by Tio et al.,(2005) using a virus overlay binding protein assay 

identified that DENV serotypes 1, 2 and 3 but not DENV serotype 4 interacted with the laminin receptor. 

Thepparit et al.,(2004b) also identified the laminin receptor as potential DENV receptor in a human hepatic 

cell line (HepG2). In this study, entry of DENV serotype 1 into HepG2 cells was blocked by anti-laminin 

antibodies as well as by soluble laminin in a dose-dependent manner. Interestingly, this phenomenon was 

only shown for DENV serotype 1 but not for DENV serotypes 2, 3 and 4 serotypes in this study (Thepparit 

et al., 2004b). In C6/36 mosquito cells, soluble laminin and antibodies against the laminin receptor were 

shown to abrogate binding and internalization of DENV serotypes 3 and 4, but had no impact on DENV 

serotype 1 and 2 (Sakoonwatanyoo et al., 2006).  

Similarly, the laminin receptor has been identified to play a role in JEV entry into neural cells and anti-

laminin receptor antibodies disrupted JEV infection in up to 25% (Thongtan et al., 2012). Vimentin was 

also implicated to be involved in JEV binding and internalization. A study demonstrated that silencing the 

human vimentin gene greatly impaired the binding and entry of RP9, a pathogenic JEV strain (Liang et al., 

2011). 

 

1.9.2) Flavivirus host cell factors  

 
Over the last few years, several molecules have been reported as flavivirus host cell factors. Recently, a 

CRISPR genetic screening based strategy was used to unravel host cell factors for DENV and HCV in a 

hepatic human cell line (Huh 7) (Marceau et al., 2016). This study identified many families of proteins 

associated to the ER such as the translocon associated protein complex, ER associated protein degradation 

(ERAD) and oligosaccharyltransferase protein complex (OST) (Marceau et al., 2016). Further validation by 
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cell infection assays with several flaviviruses demonstrated that DENV, WNV, ZIKV and YFV replication was 

completely abrogated by the deletion of the above mentioned molecules, implicating that flaviviruses 

share mutual host cell factors (Marceau et al., 2016).  

More recently, a family of proteins called “reticulon” have been reported to be involved in flavivirus 

replication. This family of proteins is mostly found in the ER and is associated with the formation of vesicles 

and membranes in the ER (Aktepe et al., 2017). By downregulating the expression of reticulon 3.1A 

protein, the authors showed that WNV, ZIKV and DENV replication was substantially impaired but not 

completely abrogated. The authors suggested that the presence of this family of proteins in the ER is of 

great importance for the flavivirus membrane induced remodeling, a process that is essential for the 

flavivirus RNA replication (Aktepe et al., 2017). 

Another study reported a total of 96 genes to be involved in WNV replication using a large scale siRNA 

screening in Drosophila melanogaster cells (Yasunaga et al., 2014). Among those host cell factors, several 

identified proteins were involved in WNV endocytosis and endosomal acidification. Although lacking 

functional validation, this work provides important insights into the multitude of flavivirus host cell factors 

in different hosts (Yasunaga et al., 2014). 

The RNA binding protein AUF1 p45, a cellular chaperone, has been reported to be a common flavivirus 

host cell factor. Silencing of AUF1 p45 in Huh7 cells significantly dropped WNV, ZIKV and DENV replication 

by destabilizing the viral genome and impeding its cyclisation (Friedrich et al., 2017). 

The Golgi ERI3 protein belongs to a family of RNA binding proteins that was reported to be a host cell 

factor for DENV and YFV (Ward et al., 2016). Though ERI3 was not required for DENV and YFV RNA stability, 

the authors concluded that ERI3 is essential for flavivirus RNA synthesis (Ward et al., 2016). 

A class of ribosomal proteins including RPLP1 and RPLP2, has been found to be required for RNA translation 

of a number of flaviviruses such as DENV, ZIKV and YFV in human and mosquito cell lines (Campos et al., 

2017).  

 

1.10) Cell Adhesion molecules and their involvement in flavivirus infection 

1.10.1) Brief overview 

 
Tissues are composed of cells and an extracellular matrix (ECM) that is vital to sustain the architecture and 

conformation of the tissue (Gumbiner, 1996). The major function of cell adhesion molecules is to mediate 

contact between the cell surface and the ECM or mediate cell-cell contacts (Chothia et al., 1997). There 

are mainly four families of cell adhesion molecules: cadherins, immunoglobulins, selectins and integrins 

(Lodish H, 2000). The cadherins are a family of cell surface proteins that are important for shaping the 

tissue architecture. The major function of cadherins is to mediate cell-cell adhesion (Shapiro et al., 2009). 
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The immunoglobulin superfamily comprises molecules such as antibodies, major histocompatibility 

complex (MHC) and membrane associated proteins of T and B cell receptor complex (Wai Wong et al., 

2012). Immunoglobulin-like proteins are associated with cell adhesion functions. Representatives are 

neural cell adhesion molecule (NCAM), junctional cell adhesion molecule (JAM), intercellular cell adhesion 

molecule (ICAM) and vascular cell adhesion molecule (VCAM) (Aricescu et al., 2007). The selectin family of 

cell adhesion molecules is represented by P-, E-, and L-selectins that stand for platelet-, endothelial- and 

leukocyte- selectins, respectively. Their major function is to mediate leukocyte and platelet adhesion to 

the vascular endothelium (Bendas et al., 2012). Integrins were first described in 1986 when fibronectin 

was found to bind to a group of transmembrane proteins that functioned as respective receptors (Hynes, 

1987; Tamkun et al., 1986). The name “integrin” was then proposed to these newly discovered 

transmembrane proteins due to their ability to link the ECM with the cytoskeleton (Hynes, 2002; Hynes, 

2004). 

 

1.10.2) The integrin family 

 
Integrins are characterized as a large family of cell adhesion molecules expressed in almost all cell lines 

that display a diverse repertoire of integrins depending on their function and localization (Hynes, 2002). 

For example, while leukocytes express high levels of β2 integrin subunits (known as “leukocyte integrin”), 

epithelial cells and fibroblasts lack the expression of this integrin subunit (Harris et al., 2000). Integrins are 

expressed in mammalian cells as well as in sponges, corals, arthropods and nematodes and share a high 

degree of similarity among the species (Brower et al., 1997; Burke, 1999; Hughes, 2001).  

Integrins are heterodimeric molecules composed of two subunits, alpha (α) and beta (β). Both subunits 

are non-covalently bound. Up to now, there are 18 α subunits and 8 β subunits known that are able to 

create 24 different integrin combinations (Figure 5) (Campbell et al., 2011b; Hynes, 2002). 
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Figure 5: The integrin family and their possible α and β integrin subunits combinations. There are 18 α integrin 
subunits and 8 β integrin subunits. The αβ integrin combination enables to form 24 distinct integrin molecules. The 
β1 integrin subunit is the more promiscuous integrin subunit enabling more possible combinations.  
 

 

Integrins are type I transmembrane molecules (Figure 6) with an ectodomain (extracellular part), a 

transmembrane domain and a short cytoplasmatic tail that is responsible for signal transduction (Hynes, 

2002; Ulmer, 2010). Integrins are allosteric proteins and can be found in three different states (Figure 6): 

i) inactive state (also called “bent” state) at which they show low affinity and are unable to bind the ligands 

(Figure 6 A); ii) “extended” state in which they show some affinity to the ligands (Figure 6 B) and iii) active 

state (“ligand occupied” state or “high affinity” state) in which they display a high affinity to the ligands 

(Figure 6 C) (Askari et al., 2009; Evans et al., 2009; Srichai, 2010). 
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Figure 6: Integrin structure and conformations: bent inactive integrin state (A); active, extended integrin state (B) and 
active, high affinity integrin state bound to the extracellular matrix (ECM); C). The α integrin subunit is represented 
in green while the β integrin subunit is represented in pink. Each integrin subunit is composed of a large extracellular 
domain, a transmembrane molecule and the cytoplasmatic tail. Reference: © Georgiadou et al.,(2017), modified. 
Originally published in The Journal of Cell Biology, 216:1107-1121. DOI: 10.1083/jcb.201609066. 
 
 

Integrins are also classified as metalloproteins because their functions are highly regulated by divalent 

cations such as Mg++, Mn++ and Ca++ (Zhang et al., 2012). Divalent cations in particular Mg++ and Mn++, have 

stimulatory effects on the integrin activation substantially increasing the integrin-ligand affinity. Opposite 

to that, Ca++ ions have inhibitory effects on the integrins. These stimulatory and inhibitory effects mediated 

by divalent cations are especially important in the case of leukocytes where the integrins are most of the 

time in the inactive state (Leitinger et al., 2000; Mitroulis et al., 2015; Zhang et al., 2012). 

The most important integrin functions are to mediate cell adhesion to the ECM and to transduce 

intracellular cell signaling (Harburger et al., 2009; Hynes, 2002). Since their discovery, several other 

important physiological functions have been attributed to integrins. Those functions include cell migration 

and differentiation during embryogenesis and organogenesis and leukocyte migration during 

inflammatory response (Darribere et al., 2000; Hyun et al., 2009; Lammermann et al., 2008; Merviel et al., 

2001; Schmidt et al., 2013b). Integrins are able to control cell mitosis by the activation of mitogen activated 

protein kinase (MAP) and many other intracellular proteins involved in the progression of cell cycle (Streuli, 

2009). On the other hand, integrins can also control the apoptotic mechanisms in different cells. Integrins 

can trigger anoikis, a type of apoptosis induced when cells are not properly attached to the ECM. This 

mechanism seems to be especially important to control tumor metastasis (Gilmore, 2005). Furthermore, 

integrins are involed in hemostasis, healing processes and platelets aggregation (Bennett, 2005; Bergmeier 

et al., 2012; Koivisto et al., 2014; Longmate et al., 2014). 

A 

B 

C 



 

21 

Since integrins are closely connected to the cytoskeleton, these connections mediate several cellular 

responses that will culminate in changes in cell morphology, adhesion and spreading (Calderwood et al., 

2000; Choquet et al., 1997). One classical example of cell response driven by cytoskeleton rearrangement 

is the formation of structures called focal adhesion sites. These structures consist of integrin 

agglomerations and intracellular signaling proteins that connect the ECM to the actin cytoskeleton 

(Wehrle-Haller et al., 2002; Wozniak et al., 2004). 

One important characteristic of integrins is their ability to bind to different ligands like fibronectin, 

vitronectin, fibrinogen, laminin, von Willebrand factor and collagen. The recognition of an integrin ligand 

is mediated by conserved amino acid sequences within the ligand (Humphries et al., 2006; Plow et al., 

2000). One of the main ligand motifs involved in the recognition by integrins is the RGD (Arg-Gly-Asp) motif 

which is found in fibronectin, vitronectin and fibrinogen. Another integrin ligand motif is GFOGER which is 

present in collagen (Humphries et al., 2006). 

 

1.10.3) Integrin signaling 

 
Integrin molecules are very specialized in transducing intracellular signaling via its cytoplasmatic tail 

leading to distinct changes in cell response (Harburger et al., 2009; Miranti et al., 2002). Integrins are called 

“bi-directional” molecules due to their ability to transduce signals from inside the cell (called “inside-out” 

signaling) or from outside of the cell (called “outside-in” signaling) (Hynes, 2002; Shen et al., 2012). Inside-

out signaling is particularly important in the context of leukocyte and platelet activation during immune 

and inflammatory responses. During this process, integrin activation increases the affinity to their ligands. 

Outside-in signaling happens in response to ligand binding to integrins subsequently leading to 

intracellular events that might end in different cell responses such as migration, differentiation, division 

or apoptosis (Harburger et al., 2009; Kim et al., 2011). Downstream intracellular signaling involves several 

molecules such as focal adhesion kinase (FAK) which is phosphorylated upon integrin activation and is a 

pivotal marker of integrin signaling (Mitra et al., 2005; Zhao et al., 2011) Several other intracellular 

signalling proteins have been reported to be involved in the integrin signaling such as Rho family proteins, 

Src-kinase family proteins, talin, kindlins, paxilin, vinculin and many others (Harburger et al., 2009).  

 

1.10.4) Integrins as virus receptors 

 
Since integrins are widely expressed in many cell lines, are conserved among the species and represent 

essential receptors involved in different important cellular processes, not surprising that viruses also 

explore the integrin machinery with several benefits for their infection cycle. Although some viruses 
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harbor canonical integrin ligand motifs, other viruses use the integrin machinery independently of these 

motifs (Hussein et al., 2015; Triantafilou et al., 2001) .  

Adenoviruses (Adenoviridae family, Mastadenovirus genus) are the classical example of virus-integrin 

interaction. These viruses can enter the cells by using αVβ3 or αVβ5 integrin. Many adenovirus strains 

harbor an RGD motif loop in the penton base that is reported to interact with integrins mediating 

adenovirus internalization (Nemerow et al., 2016; Wickham et al., 1993).  

Foot and mouth disease virus (FMDV – Picornaviridae family, Aphthovirus genus) is another example for 

an RGD-dependent manner integrin usage. FMDV was shown to interact with at least four RGD binding 

integrins (αvβ1, αvβ6, αvβ3 and αvβ8) to promote virus attachment and internalization (Berinstein et al., 

1995; Jackson et al., 2004; Jackson et al., 2002; Wang et al., 2015a). In one of these studies, ectopic 

expression of the αv integrin subunit in Chinese Hamster Ovary (CHO) cells, a cell line that is non-

permissive to FMDV infection, enabled FMDV binding to the cells and subsequent infection of the CHO 

cells (Jackson et al., 2002).  

Several herpesviruses of medical importance were shown to use integrins as cellular receptors. The 

Kaposi’s sarcoma associated herpesvirus (KSHV – Herspesviridae family, Rhadinovirus genus) was shown 

to use the α3β1 integrin, a laminin receptor, to mediate binding and entry in human foreskin fibroblasts 

(Akula et al., 2002). Another study reported that KSHV also interacts with αVβ3 integrin mediating 

attachment and entry into salivary gland epithelial cells (Garrigues et al., 2014). The human herpex simplex 

virus 1 (HHV-1 – Herpesviridae family, Simplexvirus genus) glycoprotein H (gH), a protein involved in 

herpesvirus fusion, harbors an RGD motif that was demonstrated to mediate binding to αVβ3 integrin in 

Vero and CHO cells (Parry et al., 2005). Another study demonstrated binding of soluble HHV-1 gH and 

glycoprotein L (gL) to αVβ6 and αVβ8 with high affinity reinforcing the physical interaction between HHV-

1 glycoproteins and integrins (Gianni et al., 2013). The human cytomegalovirus (HCMV – Herpesviridae 

family, Cytomegalovirus genus) glycoprotein B (gB) does not posses any canonical integrin ligand motif but 

holds a disintegrin-like domain instead which is a conserved motif known to be recognized by integrins 

(Feire et al., 2010). The disintegrin-like domain was found to interact directly with the β1 integrin subunit. 

Soluble recombinant gB fragments blocked HCMV infection (Feire et al., 2010). 

Hantaviruses (Hantaviridae family, Orthohantavirus genus) have a particular and distinct interaction with 

integrins. It was proposed that pathogenic hantaviruses such as Sin Nombre virus (SNV) and New York 1 

virus (NYV-1) use the β3 integrin subunit as cellular receptor while non-pathogenic hantaviruses like 

Prospect Hill virus (PHV) were shown to use β1 integrin subunit to infect the host cell (Gavrilovskaya et al., 

1999; Gavrilovskaya et al., 1998). These studies demonstrated that expression of both αIIbβ3 and αvβ3 

integrins rendered CHO cells permissive to SNV and NYV-1 but not PHV, indicating a particular usage of 

integrins by pathogenic hantaviruses (Gavrilovskaya et al., 1999; Gavrilovskaya et al., 1998).  
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The arbovirus Ross river virus (RRV – Togaviridae family, Alphavirus genus) was reported to use α1β1 

integrin as cellular receptor in human epithelial cells (HeLa) and mosquito cells (C6/36) (La Linn et al., 

2005). In this study, type IV collagen as well as monoclonal and polyclonal antibodies against the β1 

integrin subunit inhibited RRV infection. RRV was also shown to interacted physically with soluble α1β1 

integrin (La Linn et al., 2005).  

The CSFV (Flaviviridae family, Pestivirus genus) has been reported to upregulate the expression of β3 

integrin subunit in swine endothelial cells upon infection (Tang et al., 2010). More recently, Li et al., (2014) 

reported that expression of β3 integrin subunit enhanced CSFV infection and proliferation. By comparing 

a set of porcine cell lines, the authors demonstrated a more efficient virus infection and proliferation in 

cell lines expressing high amounts of β3 integrin subunit (Li et al., 2014).  

 

1.10.5) Integrins and flaviviruses 

 
The first study reporting the involvement of integrins in flavivirus infection goes back to 1997. The authors 

proposed that α3β1 integrin, a laminin receptor, could be involved in TBEV infection (Protopopova et al., 

1997).  

The presence of the integrin binding RGD motif in the E protein of YFV-17D, MVEV and JEV led to 

speculations whether these viruses might use integrins as a cellular receptor (van der Most et al., 1999). 

By introducing amino acid exchanges in the YFV-17D RGD motif, the authors demonstrated that those 

amino acid exchanges did not affect YFV-17D infection in human adrenal gland cells (SW13 cells) but rather 

resulted in instability of the YFV-17D E protein which consequently impaired virus spread at 37°C. 

Additionally, RGD modification to RAD and RAE strongly impaired the YFV-17D titers in mosquito C6/36 

cells. These results provided additional evidence of integrin interaction with flaviviruses (van der Most et 

al., 1999). 

In 2003, the isolation of a 105 kDa cellular protein from Vero and murine neuroblastoma cells was 

reported. The unidentified 105 kDa cellular protein interacted with WNV promoting virus binding and 

infection of the cells. In the same study, antibodies raised against the unknown 105 kDa protein strongly 

abrogated WNV and KUJV infection in Vero cells (Chu et al., 2003). Further characterization of the 

unknown 105 kDa protein by peptide sequencing revealed a member of the integrin family, namely the 

integrin αVβ3 (Chu et al., 2004b). The authors demonstrated that specific antibodies against the αV and 

β3 integrin subunits strongly impaired WNV binding to Vero cells by 50% and 60%, respectively. In addition, 

these antibodies inhibited WNV internalization in Vero cells by 50% (αV) and 75% (β3) (Chu et al., 2004b). 

Silencing of β3 integrin subunit in Hela cells reduced WNV entry by about 60%. Binding and infection of 

WNV in CS-1 melanoma cells, a WNV non-susceptible cell line that does not express the β3 integrin 
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subunit, was substantially increased upon ectopic expression of β3 integrin subunit. Finally, WNV binding 

to αVβ3 integrin triggered the FAK phosphorylation, giving reasonable evidence that integrin αVβ3 integrin 

might act as a putative WNV receptor (Chu et al., 2004b). Further studies demonstrated that WNV 

recombinant E-DIII protein bound with high specificity to αVβ3 but not to αVβ5 or heparan sulfate (Lee et 

al., 2006b). Moreover, treatment of β3 integrin expressing CS-1 cells with WNV recombinant E-DIII protein 

resulted in αVβ3-E-DIII complex formation and precipitation, suggesting that WNV E-DIII physically 

interacts with αVβ3 integrin (Lee et al., 2006b). In strong contrast to the results reported by other authors, 

Medigeshi et al. (2008) demonstrated that WNV entry into the host cell is completely independent of αVβ3 

integrin but instead depends on lipid-raft microdomains (Medigeshi et al., 2008). Using CS-1 cells as well 

as mouse embryonic fibroblasts (MEF) deficient for β3 integrin subunit and FAK, the authors showed that 

WNV infects CS-1 cells regardless of the αVβ3 integrin expression. Virus titers in both β3 integrin subunit 

and FAK deficient MEFs did not differ significantly from their respective wild type cell lines (Medigeshi et 

al., 2008).  

More recently, Schmidt et al.,(2013a) showed that the αV, β1 and β3 integrin subunit were not involved 

in WNV binding to MEFs. Furthermore, antibodies raised against the β1 and β3 integrin subunits did 

neither affect binding nor replication of WNV. However, the deletion of β1 and β3 integrin subunits, 

strongly impaired the replication of all WNV strains in the integrin deficient MEFs. Once the respective 

integrin subunit was rescued, WNV yields were recovered up to 90% (Schmidt et al., 2013a). Moreover, 

Fan et al., (2017) suggested that αVβ3 integrin could promote JEV infection in baby hamster kidney cells 

strain 21 (BHK-21). Downregulation of both, αV and β3 integrin subunits in BHK-21 cells reduced the JEV 

plaque formation by 4- fold and 2-fold in αV and β3 integrin subunit siRNA silenced BHK cells. Moreover, 

synthetic RGD peptides as well as antibodies raised against the αV and β3 integrin subunits reduced the 

plaque formation by up to 58% and 33%, respectively (Fan et al., 2017). Since CHO cells have been 

demonstrated to be not or only poorly permissive to several viral agents including flaviviruses (Berting et 

al., 2010) and to lack the expression of αV and β3 integrin subunits at the cell surface (Gianni et al., 2010a; 

Gianni et al., 2010b; Xu et al., 2011), Fan et al. (2017) established a CHO cell line expressing the β3 integrin 

subunit to investigate the involvement of this integrin in JEV infection. The expression of β3 integrin 

subunit increased JEV replication in CHO cells suggesting that this specific integrin subunit might play a 

role in the JEV replication cycle (Fan et al., 2017).  
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2) Objectives 
 

The current knowledge on integrin usage by flaviviruses is scarce and most of the previous studies were 

performed with WNV and JEV. In these reports, integrins were demonstrated to be involved in WNV and 

JEV binding and internalization into the host cell as well as in RNA replication.  

To our knowledge, there are no other studies demonstrating the involvement of integrins in other 

flavivirus infections despite WNV and JEV. Therefore, the main objective of this study was to evaluate the 

potential role of selected integrins, the αVβ3 integrin and the β1 and β3 integrin subunits, for the infection 

cycle of several other medically important flaviviruses. 

For this purpose the study aimed: 

(i) to develop cell lines expressing the integrins and corresponding deficient cell lines, 

(ii)  to evaluate the potential of integrins as flavivirus receptor, 

(iii)  to prove the ability of integrin to act as flavivirus attachment factor, 

(iv) to investigate the potential role of integrins in flavivirus internalization, 

(v) to characterize the role of integrins in flavivirus RNA replication.  
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3) Materials and Methods 

3.1) Materials 
 

All materials, reagents, solution protocols, equipments, softwares and databases are listed in Appendices 

I, II, III, VII, IX. 

3.2.) Cell culture methods 

3.2.1.) Cell lines and cultivation methods  

 

All cell lines used in this study are described in Table 1 and Appendix VIII. Generally, cells were maintained 

in medium containing 10 % fetal bovine serum (FBS). Cells were cultivated under standard conditions in a 

37°C incubator with 5% carbon dioxide. Prior to experiments, cells were cultivated with 5% FBS. For 

splitting, cells were washed twice with 1X phospate buffered saline (PBS) followed by adding 5ml of 0.25% 

trypsin solution into the flasks and incubation at 37°C for 5 minutes. Trypsin inactivation was performed 

by adding 5 ml of the usual cell culture medium supplied with FBS. 

 
Table 1: Cell lines used in this study 

Designation Species Background Organ/Tissue Reference/Source 

MEF-WT Mus musculus C57/BL6 Embryonal Dr. Markus Keller, INNT, 
Friedrich-Loeffler Institut, 

Insel Riems MEF-αVβ3-/- Mus musculus C57/BL6 Embryonal 

MEF-β3+/+R Mus musculus C57/BL6 Embryonal 
Hodivala-Dilke et al.,(1999); 

Schmidt et al.,(2013a) 
MEF-β3-/- Mus musculus C57/BL6 Embryonal 

MKF-β1Flox Mus musculus C57/BL6X 129SV Kidney 

Fassler et al.,(1995a) 

MKF-β1-/- Mus musculus C57/BL6X 129SV Kidney 

CHO-K1 Cricetulu. griseus - Ovary Puck et al.,(1958) 

Vero Chlorocebus aethiops - Kidney 
see references 1 and 2 in 

Osada et al.,(2014)  

Vero B4 Chlorocebus sabaeus - Kidney 
German Collection of 

microorganisms and cel 
culture - DSMZ 

Vero E6 Chlorocebus aethiops - Kidney 
see reference 13 in  
Osada et al.,(2014)  

Vero 76  Chlorocebus aethiops - Kidney 

   MEF: mouse embryonic fibroblasts; MKF: mouse kidney fibroblasts; CHO: Chinese Hamster Ovary cells; R: rescue 
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3.2.2) Mouse embryonic fibroblasts (MEFs) 

 

Wild type mouse embryonic fibroblasts (MEF-WT) and MEFs lacking the expression of either β3 integrin 

subunit (MEF-β3-/-) or αVβ3 integrin (MEF-αVβ3-/-) as well as MEFs rescued (R= rescue) for the expression 

of β3 integrin subunit (MEF-β3+/+R) were cultivated in Dulbecco’s Modified Essential Medium (DMEM) 

supplied with 10% FBS and 1% antibiotic-antimycotic mix composed of penicillin (10,000 U /ml), 

streptomycin (10 mg/ml) and amphotericin B (25 µg/ ml). Cells were cultivated until confluence of 

approximately 80% (MEF-WT) and 90% (MEF-αVβ3-/-) was reached. Cultures were routinely split at ratios 

of 1:10 for MEF-WT and MEF-αVβ3-/- and 1:3 for MEF-β3-/- and MEF-β3+/+R. For the MEF-β3+/+R transfected 

cells, the zeocin antibiotic was added into the medium at a final concentration of 10 µg per ml.  

 

3.2.3) Mouse kidney fibroblasts (MKFs) 

 

Wild type mouse kidney fibroblasts (MKF-β1flox) and mouse kidney fibroblasts lacking the expression of β1 

integrin subunit (MKF-β1-/-) were cultivated in DMEM supplied with 5% FBS and 1% antibiotic-antimycotic 

mix composed of penicillin (10,000 U/ml), streptomycin (10 mg/ml) and amphotericin B (25 µg/ml). Cells 

were cultivated until confluence of approximately 80% was reached. Cultures were routinely split at a ratio 

of 1:10.  

 

3.2.4) Chinese hamster ovary cells 

 

Chinese Hamster Ovary cells clone K1 (CHO-K1) were cultivated in Eagle’s Modified Essential Medium (E-

MEM) supplied with 10% FBS and 1% antibiotics-antimycotic mix composed of penicillin (10,000 U/ml), 

streptomycin (10 mg/ml) and amphotericin B (25 µg/ml). Cells were cultivated until confluence of 

approximately 80% was reached. Cultures were routinely split at a ratio of 1:5. For CHO-β3+/+R and CHO-

αV+/+R transfected cells, the selection antibiotics zeocin or hygromycin were added into the medium at a 

final concentration of 50 µg per ml and 5 µg per ml, respectively. 

 

3.2.5) Vero cells 

 

Vero cells from different lineages referred to as Vero-76, Vero-B4, Vero-E6 and Vero were cultivated in E-

MEM supplied with 10% FBS and 1% antibiotic-antimycotic mix (100 µg/ml). Cells were cultivated until 

confluence of approximately 80% was reached. Cultures were routinely split at a ratio of 1:5. 
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3.2.6) Cryopreservation methods 

 

For long-lasting storage of eukaryotic cells in liquid nitrogen, cells were detached from the flasks by trypsin 

as described above. The detached monolayers were resuspended in fresh medium and centrifuged at 900 

rotations per minute (RPM) for 10 minutes. Then, supernatants were discarded and the cell pellet was 

gently resuspended in fresh cold medium containing 10% of cell culture grade dimethylsulfoxide (DMSO) 

prepared shortly before the freezing procedure. Cell suspension was aliquoted in cryogenic storage vials 

and placed into Mr Frosty™ cell freezing container filled with isopropanol and stored overnight at -80°C. 

Finally, cells were transferred into liquid nitrogen tanks for long-term storage. 

For thawing cryopreserved cells, cryogenic storage vials were removed from liquid nitrogen tanks and 

placed into a portable small liquid nitrogen container. Cryogenic tubes were quickly thawed in a pre-

warmed water bath (37°C). Afterwards, cell suspension was gently resuspended and cells were seeded in 

fresh cell culture medium (10 ml) in T25 cm² flasks and incubated at 37°C. The day after, cells were washed 

with 1X PBS to remove cell debris and DMSO remains and fresh medium was added. 

 

3.2.7) Determination of cell number  

 

Determination of total cell number was achieved by counting the cells in a Neubauer chamber. All the four 

quadrants (16 squares) were counted and the average number of cells was calculated. The number of cells 

per ml was calculated using the formula 

 

N° of cells/ml =
A

B
 x C x 10000     

   

where A is the average of cells counted in each quadrant; B is the number of quadrants counted and C is 

the dilution factor. 

 

 

3.2.8) Determination of cell viability 

 

Routinely, prior to cell plating and all cell infection assays, cell viability was determined using the trypan 

blue exclusion method. In order to evaluate cell metabolism and consequently cell viability, the MTS-

tetrazolium colorimetric assay was applied. While the first method measures cell membrane selectiveness, 

the second method measures the ability of cells to metabolize tetrazolium metabolites.  
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Determination of cell viability by trypan blue exclusion method was performed as described by 

Strober,(2015). Briefly, cells were detached as described above and resuspended in a total volume of 10 

ml fresh medium. An aliquot of 100 µl of cell suspension was transferred into a microtube containing 0.4% 

trypan blue dye solution diluted in 1X PBS (1:10 dilution) to a final volume of 1 ml. After two minutes at 

room temperature, 10 µl of cell suspension was loaded into a Neubauer chamber and counted using 

inverted light microscope. Blue stained cells (i.e.: no cell membrane selectiveness) were considered dead 

and cells that did not acquire blue staining (i.e.: cell membrane selectiveness) were considered vital. 

Determination of viability was calculated by the following formula: 

 

Viability (%)=
number of vital cells

total number of cells
 x 100% 

 

 

Determination of cell viability was also performed using the CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (Promega) following instructions of the manufacturer. Briefly, cells were detached as 

described above and resuspended in a total volume of 10 ml of fresh medium. Cell number was 

determined by counting in a Neubauer chamber as described before. Different cell concentrations (ranging 

from 10³ to 106 cells per well) were seeded in duplicate into the 96-well cell culture plates to a final volume 

of 100 µl. After addition of 20 µl of MTS-tetrazolium reagent to each well, the plates were gently mixed 

and incubated at 37°C with 5% carbon dioxide atmosphere under light protection for 4 hours with gently 

mixing every hour. Thereafter, absorbance was measured at 490 nm by an Enzyme-linked immunosorbent 

assay (ELISA) plate reader. Vero cells and Vero cells treated with 10% sodium azide (100 µl per ml of cells) 

were used as positive and negative control, respectively. Background wells (only MTS-tetrazolium reagent) 

as well as blank wells (no reagent) were added into the plate as internal controls. Absorbance was plotted 

by mean value of respective cell amount subtracted by the background absorbance. Two independent 

experiments were performed in duplicate (n=2). 
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3.3) Viruses and virological techniques 
 

All viruses used in this study are described in Table 2.  

 

Table 2: Flaviviruses used in this study 

Virus 
Abbreviation 

(ICTV) 
Strain Source Reference 

Yellow Fever 
virus 

YFV 17D 
Dr. Ute Ziegler, 

FLI,INNT 
Theiler et al.,(1937) 

West Nile 
virus 

WNV PreVnile™ 
Dr. Katja Schmidt, 

FLI,INNT 
Arroyo et al.,(2004) 

Usutu virus USUV Germany 
Dr. Ute Ziegler, 

FLI,INNT 
Jöst et al.,(2011) 

Langat virus LGTV TP-21 
Dr. Ute Ziegler, 

FLI,INNT 
Smith,(1956) 

Zika virus ZIKV MR-766 
Dr. Ute Ziegler, 

FLI,INNT 
Dick et al.,(1952) 

  

3.3.1) Preparation of viral stocks 

 

For flavivirus propagation, confluent monolayers of Vero-76 cells were seeded in T75 cm2 flasks. Virus 

stocks were thawed on ice and diluted in E-MEM without FBS at a ratio of 1:10. Prior to inoculation, cell 

monolayers were washed once with 1X PBS and virus inoculum was added to the cell monolayers and 

incubated for 1 hour at 37°C with constant agitation every 20 minutes. After this period, the inoculum was 

removed and replaced with E-MEM 2% FBS. Inoculated monolayers were incubated at a 37°C incubator 

with 5% carbon dioxide for a period of 5 to 7 days until the cytopathic effects (syncytia formation, cell 

death and total or focal degeneration of cell monolayers) were clearly observed. Cell supernatants were 

harvested and centrifuged at 5,000 RPM for 10 minutes to remove cell debris. Virus stocks were aliquoted 

and stored at -80°C. 

 

3.3.2) Virus purification and concentration 

 

For the binding studies, viruses were purified by sucrose gradient density centrifugation. Briefly, virus 

stocks were propagated in Vero cells as described above. For virus purification, cells were cultivated in 

T162 cm² flasks. Supernatants from infected Vero cells were clarified by centrifugation at 5,000 RPM for 

10 minutes at 4°C. Cell debris was removed and the supernatant was mixed with 50% polyethylene glycol 

(PEG) 6000 and incubated for 30 minutes on ice. Afterwards, flasks were incubated overnight at 4 °C for 
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virus precipitation. In parallel, sucrose gradient was prepared with two densities: 30% and 60% of sucrose 

(30 g of sucrose per 100 ml of TNE buffer and 60 g of sucrose per 100 ml of TNE buffer). Then, 4 ml of 60% 

solution and 6 ml of 30% solution were added into ultracentrifugation tubes and incubated overnight at 

4°C. The day after, the virus/PEG 6000 mixture was centrifuged at 5,000 RPM for 30 minutes at 4°C. The 

pellet containing the precipitated virus particle was resuspended in TNE buffer, carefully added into the 

centrifugation tube containing the sucrose gradient and centrifuged at 28,000 RPM for 2 hours at 4°C. 

Afterwards, a visible band containing the precipitated virus was collected and centrifuged again using the 

same conditions described above. Finally, purified virus was resuspended in 500 µl of TNE buffer, aliquoted 

and stored at -80°C until use.  

 

3.3.3) Plaque assay  

 

The plaque assay was performed as previously described by Dulbecco et al.,(1953) with some 

modifications. For the plaque assay, specific Vero cells for each flavivirus were seeded into 6-well plates 

at a confluence of 1x105 cells per well in E-MEM 10% FBS, 24 hours prior to inoculation. On the day of 

inoculation, virus stocks were 10-fold serially diluted ranging from 1:10 to 1:108 in E-MEM without FBS and 

inoculated into the wells in duplicate. A negative control well (no virus) was also included in the assay. 

Infected monolayers were incubated for 1 hour at 37°C with constant agitation every 20 minutes. After 

this period, the inoculum was removed and monolayers were covered with an overlay medium composed 

of E-MEM 2% FBS supplied with 1.8% bacteriological agar.Plates were incubated at 37°C for a period of 5 

to 7 days. After this period, monolayers were fixed with buffered 10% formalin for 1 hour and stained with 

1% crystal violet solution overnight. The day after, monolayers were washed to remove excess of dye and 

agarose clumps, dried and plaques were counted. The plaque forming units (PFU) were calculated 

following the formula: 

 

PFU/ml= n° of plaques x 2 x inverse of dilution 

 

3.3.4) Tissue culture infectious dose determination 

 

The tissue culture infectious dose (TCID50) assay was performed as previously described by Reed,(1938) 

with modifications. For the assay, Vero cells were seeded in E-MEM 10% FBS at a confluence of 1x104 cells 

per well in 96-well plates at 24 hours prior to inoculation. Virus stocks were 10-fold serially diluted ranging 

from 1:10 to 1:1010 in E-MEM without FBS and incubated on ice until inoculation. Medium was removed 

from the wells and 100 µl of inoculum was added into the wells in quadruplicate. Inoculated monolayers 



   

33 

were incubated at 37°C for 1 hour for virus adsorption and infection. After this period, the inoculum was 

removed, the wells washed once with 1X PBS and the wells were replaced with fresh E-MEM 2% FBS. Plates 

were checked daily for the presence of cytopathic effect (i.e.: monolayer devastation) with an estimated 

time of 4 to 6 days post inoculation. Once the cytopathic effects were visualized, monolayers were fixed 

with buffered 10% formalin for 1 hour, washed twice with distilled water and stained with 1% crystal violet 

solution overnight. The following day, plates were washed and the end-point titer was calculated 

according to the Spearman-Kaerber method (Kärber, 1931; Spearman, 1908). The following formula was 

applied for determination of end-point titers: 

 

M = X
k 

+ d/2 - ΣP
i 

Where, 

               M = Logarithm of titer in relation to the testing volume  
               X

k 
= Negative common logarithm of the highest dilution level where all wells are positive           

               d = Negative common logarithm of the dilution factor  
 P

i 
= Positive wells/well rate in a row starting with the dilution X 

 

3.4) Cloning of heterologous DNA in expression vectors 
 

All vectors, sequences, reagents and buffers are listed in Appendices I, II, IV and V. The Escherichia coli (E. 

coli) strain DH5α was used as standard strain for all cloning procedures. Further information concerning 

its genetic background and the manufacturer is displayed in Appendix VIII. 

 

3.4.1) Preparation of competent bacterial cells 

 

Preparation of competent E. coli cells was performed using the calcium-magnesium method (Hanahan et 

al., 1991). Frozen bacteria glycerol stocks were scraped and inoculated into Luria Bertani (LB) medium 

without antibiotics and incubated overnight at 37°C in a bacterial shaker at 200 RPM. The day after, 1 ml 

of the overnight bacterial culture suspension was added into 40 ml of LB medium without antibiotics. 

Cultures were incubated at 37°C with continuous agitation (200 RPM) and the optical density of 600 nm 

(OD600) was measured systematically. When the culture reached the OD600 value of 0.5, the bacterial 

suspension was transferred to a 50 ml centrifuge tube, incubated on ice for 10 minutes and centrifuged at 

2,000 RPM for 10 minutes at 4°C. After centrifugation, supernatants were discarded and the pellet was 

gently resuspended in 2 ml of ice-cold calcium-magnesium buffer, filled with 18 ml of the same buffer 

(final volume of 20 ml) and incubated on ice for 30 minutes. Afterwards, bacterial suspension was 
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centrifuged at 1,800 RPM for 10 minutes at 4°C. The supernatant was discarded and the pellet 

resusupended in 3 ml of ice-cold calcium-magnesium buffer plus 500 µl of glycerol. After gentle mixing 

suspension was aliquoted (100 µl) into microtubes and quickly frozen by liquid nitrogen. Stocks of 

competent bacteria were then transferred to -80°C and stored until use.  

 

3.4.2) Transformation of bacterial cells 

 

Bacteria were transformed by heat shock method as described by Froger et al.,(2007) with modifications. 

For this, competent E. coli (strain DH5α) cells were thawed on ice and 100-500 ng of vector or constructs 

were added, gently mixed and incubated for 30 minutes on ice. Following this incubation, bacterial cells 

were incubated at 42°C for 2 minutes followed by 5 minutes incubation on ice. After this, 1 ml of LB 

medium without antibiotics was added and bacterial cells were incubated for 1 hour and 30 minutes at 

37°C with constant shaking (300 RPM). Then, cells were centrifuged at 8,000 RPM for 3 minutes and 

resuspended in 100 µl of LB medium and gently mixed by pipetting. Bacteria were then seeded on LB agar 

plates containing either ampicillin (100 µg/ml) or kanamycin (50 µg/ml) according to the resistance gene 

assigned to the vector and incubated at 37°C for 12-16 hours in incubator. 

 

3.4.3) Selection of bacterial transformants 

 

Bacterial cells grown on the LB agar plate containing the selection antibiotic were considered to be 

transformed (containing the vector) and were selected for cultivation in LB medium. For this, 5-10 colonies 

were picked from each plate and inoculated individually in LB medium containing the antibiotics 

mentioned above. Cultures were incubated for 12-16 hours at 37°C with constant agitation at 200 RPM in 

a bacteriological shaker. The next day, cultures were centrifuged at 5,000 RPM for 30 minutes, supernatant 

discarded and the bacterial pellet lysed for DNA plasmid isolation or frozen at -20°C for further use.  

3.4.4) Purification of plasmid DNA 

 

For purification of plasmid DNA at small and medium scale, the QIAprep Spin Miniprep Kit (Qiagen) and 

QIAprep Plasmid Midi Kit (Qiagen) were used respectively, following manufacturer’s instructions. Bacterial 

pellets were resuspended in P1 buffer and subsequently lysed with P2 buffer and mixed by inversion 4 to 

6 times. Suspension was neutralized by addition of P3 buffer and centrifuged at 5,000 RPM for 30 minutes. 

After this, the supernatant was loaded into filter cartridges for filtration and loaded into gravity flow 

columns. After flow through of the supernatant, columns were washed twice with QC buffer and DNA was 
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eluted in QF buffer. DNA was precipitated by addition of absolute isopropanol at room temperature. The 

mixture was mixed and centrifuged at 5,000 RPM for one hour at 4°C. After this, the pellet was washed 

with 70% isopropanol and centrifuged again at 5,000 RPM for 30 minutes at 4°C. Pellets were dried and 

resuspended in 100-200 µl of TE buffer. Plasmid DNA concentrations were determined by micro-volume 

spectrophotometer (NanoDrop®). 

 

3.4.5) Agarose gel electrophoresis  

 

Separation of plasmid DNA and restriction fragments was achieved by agarose gel electrophoresis using 

gels with different agarose concentrations (0.8%, 1.0% and 1.8%) according to the DNA fragment size. For 

separation of large DNA fragments, lower agarose concentrations were used and for small DNA fragment 

size higher agarose concentrations instead. The 50x Tris-acetate-EDTA buffer concentrate (50x TAE) was 

used as standard electrophoresis buffer in a working concentration of 1X (1X TAE). The same fresh-

prepared 1X TAE buffer was used to dissolve the agarose powder. Agarose powder was weighed and 

dissolved in 100 ml of 1X TAE buffer and melted by heating the mixture under constant agitation. After, 

the homogeneous agarose mixture was added into an electrophoresis tray coupled with a 1.5 mm comb. 

Thereafter, the gels were transferred to an electrophoresis chamber and the chamber loaded with 1X TAE. 

In parallel, samples were diluted in 5 µl of 6x loading buffer dye and loaded into the gel slots. Alongside, a 

molecular size marker was loaded in the first slot to estimate the size of fragments. The separation took 

place at 110 volts for 1 hour. After electrophoresis, the gels were stained with ethidium bromide (1 

mg/liter). DNA fragments were visualized by ultraviolet (UV) light excitation using a transilluminator and 

documented with an integrated camera system and thermal printer. If necessary, the desired bands were 

excised and subjected to purification. 

 

3.4.6) Enzymatic digestion of plasmid DNA 

 

Vectors as well as constructs were digested by restriction endonucleases. High fidelity (HF) restriction 

enzymes from New England Biolabs were used for all experiments according to the manufacturer’s 

guidelines. Shortly, 20 units of restriction endonucleases (1 µl of each enzyme) were added to digest 1-2 

µg of DNA together with the 5X Cutsmart buffer (New England Biolabs). Water was added to complete the 

final volume to 50 µl. Reactions were run in a thermocycler for 2 hours at 37°C, followed by endonucleases 

heat inactivation at 65°C for 10 minutes. After digestion, DNA fragments were visualized by agarose gel 

electrophoresis as mentioned in the section above. 
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3.4.7) Vector DNA dephosphorylation  

 

To avoid spontaneous vector re-circularization, vector DNA was subjected to dephosphorylation to remove 

the phosphate groups from the 5’ ends soon after digestion. The New England Biolabs Antartic 

Phosphatase system was used since it allows high compatibility with the buffer used for previous digestion. 

For this, 1 μl of 10Χ Antarctic Phosphatase reaction buffer and 1 unit of Antarctic Phosphatase were 

added.per 10 μl of digestion reaction mixture. The reaction mix was incubated for 1 hour at 37 °C before 

inactivation of the enzyme for five minutes at 65 °C. 

 

3.4.8) Gel extraction of plasmid DNA  

 

For isolation of plasmid DNA from agarose gels, the QIAquick gel extraction kit (Qiagen) was used according 

to the manufacturer’s guidelines. Shortly, after electrophoresis and staining with ethidium bromide, 

fragments were excised from the agarose gels with a clean-sterile scalpel and added into 2.0 ml 

microtubes. The fragments were weighed and 100 µl of QG buffer per 100 mg of gel was added. The 

mixture was incubated at 50°C for approximately 10 minutes until complete gel dissolution. Then 1 volume 

of isopropanol was added to the mixture, mixed and loaded into QIAquick spin column and centrifuged at 

13,000 RPM for 1 minute. Subsequently, columns were washed with 750 µl PE buffer and centrifuged again 

at 13,000 for 1 minute. Finally, 50 µl of RNAse/DNAse free water was added onto the column, incubated 

for 5 minutes and transferred to a sterile 1.5 ml microtube for centrifugation at 13,000 RPM for 1 minute. 

The plasmid DNA concentration was measured by micro-volume spectrophotometer (Nanodrop®) and 

stored at -20° C until use. 

 

3.4.9) DNA clean-up and nucleotide removal 

 

In order to remove excess of salts, enzymes and nucleotides from the digestion reaction, vector DNA clean-

up was performed upon digestion and/or dephosphorylation using the QIAquick Nucleotide Removal Kit 

(Qiagen). Shortly, the digestion reaction was mixed with 10 volumes of PNI buffer, applied to a spin column 

and centrifuged at 6,000 RPM for 1 minute. The flow-through was discarded and the column washed with 

750 µl PE buffer and centrifuged again for 1 minute at 6,000 RPM. The flow-through was discarded and 

the column centrifuged again to remove excess of buffers. The DNA was eluted by adding 50 µl of water 

to the column, incubation for 5 minutes at room temperature and centrifugation at 13,000 RPM for 1 

minute. The plasmid DNA concentration was measured by micro-volume spectrophotometer (Nanodrop®) 

and stored at -20° C until use.  
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3.4.10) Ligation 

 

Ligation reaction was performed using the Rapid DNA Ligation kit (ThermoFisher) following manufacturer’s 

instructions. Based on the plasmid (vector) DNA and insert concentration ratios were calculated as 1:1, 

1:3, 1:5. Then, the vector, insert, buffer and the T4 ligase were mixed and a final volume of 20 µl was 

completed with water. Reaction was incubated at room temperature for 1 hour and 5-10 µl of ligation 

reaction was used to transform competent bacteria as described above. For selection of recombinant 

bacteria, the procedure described in section 3.4.3 was applied. Constructs were confirmed by restriction 

endonuclease digestion (section 3.4.6) and sequencing (see below). 

 

3.4.11) DNA sequencing methods  

 

Plasmid DNA as well as PCR amplicons were submitted to sequencing to confirm their identities with the 

original sequences. The dideoxy chain-termination method according to Sanger et al.,(1977) was used to 

sequence all samples in this study.  Samples were prepared and shipped to Eurofins Genomics, Ebersberg, 

Germany, following instructions of the company. Shortly, samples containing 50-100 ng/µl of purified 

plasmid DNA or 2-5 ng/µl of purified PCR product were diluted in water to a total volume of 15 μl. If 

necessary, forward and reverse primers were shipped together with the samples in a separate mix 

containing a primer concentration of 10 pmol and final volume of 15 µl. 

 

3.4.12) Synthesis of integrin coding sequences  

 

The mouse αV and β3 integrin (ITG-αV and ITG-β3) subunit coding sequences (GenBank, accession no. 

KP296148.1 and NM016780.2) were commercially synthesized by GeneArt, Regensburg, Germany. The 

sequences were codon-optimized to enable maximal expression in murine cell lines. Additionally, to 

increase the expression of recombinant modified genes, the Kozak consensus sequence (5’-GCCACC-3’) 

was added at the 5’ region upstream of the integrin coding sequence. The cleavage sites for the restriction 

endonucleases BamHI and NotI were added at 5’ and 3’ regions, respectively. The integrin genes were 

cloned into a standard vector (pMK-RQ) harboring the kanamycin resistance gene. The final constructs 

named pMK-ITGαV and pMK-ITGβ3 were 5,450 base pairs and 4,678 base pairs, respectively. The genes 

corresponding to ITG-αV had 3,172 base pairs and ITG-β3 had 2,400 base pairs. These genes were used for 

subcloning into the pcDNA 3.1 vector system. 
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3.4.13) Cloning of integrin genes 

 

The respective pMK vectors harboring the ITG-αV and ITG-β3 genes were digested with HF BamHI and NotI 

restriction endonuclease enzymes as described in section 3.4.6. The integrin corresponding fragments, 

3,172 bp for the ITG-αV and 2,400 bp ITG-β3 were excised from the gels and subjected to gel extraction 

clean-up as described in section 3.4.8. Concentration of DNA fragments was measured by micro-volume 

spectrophotometer (Nanodrop®). 

The pcDNA 3.1 (+) Zeo and pcDNA 3.1 (+) Hygro plasmid DNA referred to as pcDNA 3.1 (Z) and pcDNA 3.1 

(H), respectively, were digested with HF-BamHI and HF-NotI as described in section 3.4.6. After digestion, 

the linearized vectors were immediately dephosphorylated as outlined in 3.4.7 and purified as mentioned 

in section 3.4.9. After purification, plasmid DNA and insert were subjected to ligation as described in 

section 3.4.10. After that, the procedures for bacterial transformation and selection of bacterial 

transformants were performed according to section 3.4.2 and 3.4.3. To confirm the successful subcloning 

of integrin genes, the putative recombinant plasmids were digested as described in 3.4.6. Selected 

recombinant plasmids were confirmed by DNA sequencing as mentioned in section 3.4.11. 

 

3.5) Transfection methods and antibiotic selection 
 

Transfection of plasmid DNA was performed using a cationic lipid based chemical, commercially known as 

Lipofectamine®. To deliver the respective foreign target genes into MEFs, Lipofectamine® LTX-Plus was 

used preferentially due to its low toxicity and high transfection efficiency. To create CHO-K1 cells 

expressing the αV or β3 integrin subunits, CHO-K1 cells were transfected with Lipofectamine® 3000. 

 

3.5.1) Transfection protocol optimization 

 

Transfection procedures were performed as recommended by the manufacturer’s (Invitrogen). The 

optimal DNA/Lipofectamine® ratios were evaluated in the cell lines to achieve the highest transfection 

efficiency with the lowest toxicity. Initially, cells were transfected with a vector harboring the green 

fluorescent protein (GFP) coding sequence. For the Lipofectamine® LTX, pcDNA-GFP was tested at ratios 

of 1:3, 1:5, 1:7 and 1:9 (DNA : Lipofectamine®). Best results were achieved with the ratio of 1:9. For the 

Lipofectamine® 3000, the ratios 2:3 and 2:5 (DNA : Lipofectamine®) were tested. Best results were 

achieved with the ratio 2:3. 
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3.5.2) Transfection of mouse embryonic fibroblasts 

 

MEF-β3-/- and MEF-αVβ3-/- cells were seeded into 12-well plates 12-16 hours prior to transfection with 

DMEM 10% FBS without antibiotics. The next day, the medium was replaced with fresh cell culture 

medium (500 µl per well) and incubated at 37°C until transfection. A mix containing the Lipofectamine® 

LTX reagent (18 µl), the Plus reagent (5 µl), the plasmid DNA (2 µg) and Opti-MEM® medium (to a final 

volume of 500 µl) were prepared in duplicate. The mixture was incubated for 10 minutes at room 

temperature and then added dropwise to the cells. Plates were gently rocked and incubated at 37°C with 

5% carbon dioxide for 24 hours. The medium was then replaced with fresh cell culture medium and cells 

were incubated for additional 24 hours before they were split and subjected to antibiotic selection. 

 

3.5.3) Transfection of CHO-K1 cells 

 

The CHO-K1 cells were seeded into 12-well plates 12-16 hours prior to transfection with E-MEM 5% FBS 

without antibiotics. The next day, the medium was replaced with fresh cell culture medium (500 µl per 

well) and incubated at 37°C until transfection. A mix containing the Lipofectamine® 3000 (6 µl), the P3000 

reagent (4 µl), the plasmid DNA (2 µg) and Opti-MEM® medium (to a final volume of 500 µl) was prepared 

in duplicate. The mixture was incubated for 10 minutes at room temperature and then added dropwise to 

the cells. Plates were gently rocked and incubated at 37°C with 5% carbon dioxide for 24 hours. The 

medium was then replaced with fresh cell culture medium and cells were incubated for additional 24 hours 

before they were split and subjected to antibiotic selection. 

 

3.5.4) Antibiotic selection  

 

Cells were split and subjected to antibiotic selection 48 hours after transfection. Cells were detached from 

the 12-well plates as described in 3.2.1. and seeded into 6-well plates. The MEFs transfected with pcDNA 

3.1 (H)-ITG-αV and pcDNA 3.1 (Z)-ITG-β3 were resuspended in DMEM 10% FBS supplied with hygromycin 

(100 µg/ml) and zeocin (500 µg/ml). For the CHO-K1 cells transfected with the pcDNA3.1(H)-ITG-αV and 

pcDNA3.1(Z)-ITG-β3, cells were resuspended in E-MEM 10% FBS containing the hygromycin (200 µg/ml)  

and zeocin (1000 µg/ml). Cells were kept under antibiotic selection for several (approximately 15) passages 

and sorted by magnetic cell sorting in order to reach a homogeneous cell population expressing the 

integrin genes. 
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3.6) Cell sorting  
 

In order to obtain a homogenous cell population of integrin expressing cells, transfected cells were sorted 

magnetically using the MACS system following the instructions of the manufacturer. A positive selection, 

i.e. the selection of integrin expressing cells, was chosen. The system is composed of the MS magnetic 

columns, the MACS multiStand and the anti-biotin Microbeads. The procedure was performed under 

sterile conditions. Cells were detached from the flasks and resuspended in 1X MACSQuant Running buffer 

and the cell number was determined (1x107 cells per column). Cells were then incubated with biotinylated 

anti-αV and anti-β3 integrin subunit specific antibodies (1 µg per 1x107 cells) for one hour and 30 minutes 

at 4°C with slight rotation (20 RPM). After this, cells were centrifuged at 1,000 RPM at 4°C for 10 minutes 

and the pellet washed twice with 1X MACSQuant Washing buffer. The cell pellet was resuspended in 100 

µl of 1X MACSQuant Running buffer. Thereafter, 50 µl of anti-biotin Microbeads were added, mixed 

carefully and incubated at 4°C with constant agitation (20 RPM) for 1 hour at 4°C. Then, cells were washed 

twice with washing buffer and centrifuged at 1,000 RPM for 10 minutes at 4°C and resuspended in 500 µl 

of MACSQuant Running buffer. MS columns were placed in the MACS multiStand and equilibrated with 

MACSQuant Washing buffer followed by careful loading of cells into MS columns. The first fraction 

containing the unlabeled cells (flow-through) was collected and placed at 4°C. Subsequently, columns were 

washed three times with MACSQuant Washing buffer. Finally, columns were removed from the magnetic 

stand, loaded with 500 µl of MACSQuant Running buffer and cells were eluted by pressure with a plunger. 

This elution procedure was repeated twice. The positively selected cells were again centrifuged at 1,000 

RPM for 10 minutes and seeded into T25 cm² cell culture flasks with medium containing the selection 

antibiotics. To analyze the percentage of integrin expressing cells and separation efficiency, flow cytometry 

analysis was performed 

 

3.7) Flow cytometry analysis 
 

Further details about the antibodies used in this experiment are shown in Appendix III. Flow cytometry 

analysis was performed to measure the integrin expression on the cell surface. Briefly, cells were detached 

from flasks and passed through a 0.22 µm cell strainer. Cell number was determined and a concentration 

of 1x106 cells per tube was used. Tubes were incubated on ice for 30 minutes, centrifuged and incubated 

with anti mouse αV, β1 and β3 integrin-subunit specific antibodies for 1 hour at 4°C. After this incubation, 

cells were washed twice with ice-cold 1X PBS and centrifuged at 2,000 RPM for 5 minutes. Secondary 

antibodies labelled with Alexa 488 and Alexa 647 fluorescent dyes were added into the tubes and 

incubated for 1 hour at 4°C. Subsequently, cells were washed twice with ice-cold 1X PBS and centrifuged 
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at 2,000 RPM for 5 minutes. Cell pellets were resupended in 300 µl of ice-cold 1X PBS and analyzed by BD 

FACSCanto II flow cytometer with BD FACSDiva Software. A number of 10,000 events was determined. 

Data were processed and post-analyzed by Flowing software (Perttu Terho – Turku Centre for 

Biotechnology, University of Turku, Finland). 

  

3.8) Indirect Immunofluorescence 
 

Further details about the antibodies used in this experiment are shown in Appendix III. Cells were grown 

on glass coverslips 12-16 hours prior to the experiment. Thereafter, cells were fixed with 3 % 

paraformaldehyde for 15 minutes, followed by incubation with 50 mM ammonium chloride for 30 minutes. 

After this, cells were permeabilized with 0.5 % TritonX-100, washed twice with 1X PBS and subsequently 

blocked with 0.5 % skim milk. Antibodies were diluted in blocking buffer and cells were incubated with 

anti mouse αV, β1 and β3 integrin-subunit specific antibodies for 1 h at room temperature followed by 

three washes with 1X PBS and subsequent incubation with Alexa-488 and Alexa-647 labelled secondary 

antibodies for 1 hour at 4°C. For nucleus staining, the glass cover slips were quickly rinsed with 2 mg/ml 

4',6-Diamidino-2-Phenylindole (DAPI) solution diluted at 1:5,000 in 1X PBS followed by a final wash with 

1X PBS and a quick wash with distilled water. Finally, coverslips were dried and fixed upside down on 

microscopy slides with VectaShield® anti-fade mounting medium. Cells were visualized in the laser 

Confocal Leica DMI600 CS microscope and using the LAS AF Leica Application Suite software. Images were 

processed with ImageJ software (National Institutes of Health, NIH, USA). 

 

3.9) Cell adhesion assay 
 

In order to verify the presence of other RGD binding integrins and confirm the functionality of these 

integrins, a cell adhesion assay was performed as described by Miao et al.,(2000) with modifications. 

Enzyme-linked mmunosorbent assay (ELISA) Maxisorp® plates were coated overnight at 4°C with 1 µg/ml 

of recombinant mouse vitronectin or Poly-L-Lysin (Poly-L-Lsy) diluted in carbonate buffer (pH 8.0). The 

next day, plates were washed once with 1X PBS and blocked with 2% bovine serum albumin (BSA) prepared 

in 1X PBS  and incubated for 1 hour at 37°C. Cell monolayers were detached from the flasks using 5 mM 

EDTA, counted and added at a concentration of 1x105 cells per well in serum free E-MEM with 0.1% BSA 

fraction V. Cells were incubated for 30 minutes (MKF-β1Flox and MKF-β1-/-) or 45 minutes (all other cells) at 

37°C to allow for cell adhesion. Vero cells were used as control for the assay. After this incubation, plates 

were washed to remove non-adherent cells and adherent cells were fixed with 3% paraformaldehyde for 

1 hour at room temperature. After fixation, plates were washed and cells were stained with 1% crystal 
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violet prepared in 20% methanol for 1 hour. After extensive washing, plates were dried and the dye was 

extracted from the adhered cells with a dye removal solution (50% ethanol in 50 mM sodium citrate buffer, 

pH 4.5). Absorbances (OD 550 nm) were measured using ELISA plate reader. 

 

3.10) Development of synthetic RNA and production of standard curves for RT-qPCR 
 

Synthetic in vitro transcribed RNAs were produced to enable quantification of viral RNA load in the 

infection experiments. All sequences, their respective accession numbers as well as a schematic 

organization of these constructs are displayed in Appendix X. Sequences were collected from the online 

database GenBank® provided by the National Center for Biotechnology Information (NCBI). Geneious® 

software was used to process and modify the sequences. The in vitro transcription reactions were 

perfomed using the Riboprobe System SP6/T7 kit (Promega). 

 

3.10.1) Sequence design and synthesis 

 

Sequences from YFV-17D (NS5 gene), USUV (NS1 gene), WNV (E gene), LGTV (NS5 gene) and ZIKV (NS1 

gene) were collected from the GenBank database and the primer/probe binding regions from the virus 

sequences were tested in silico to certify the correct primer/probe annealing. In the 5’ extremity, the 

bacteriophage SP6 RNA polymerase promoter sequence was added upstream to the specific virus 

primer/probe binding regions. Between the SP6 promoter sequence and the virus primer/probe binding 

region a “spacer” region containing 8 nucleotides was added. Finally the specific virus primer/probe 

binding region was added. In addition to that, if the sequence length allowed modifications, an 

“identification” region was introduced to certify sequence authenticity and avoid and rapidly identify 

cross-contamination. Sequences were then commercially synthesized by Eurofins Genomics and cloned 

into pEX-A2 vector (Eurofins Genomics). 

 

3.10.2) Vector linearization and clean-up 

 

Four micrograms of each construct were linearized by restriction endonuclease cleavage using the HF-NotI 

as described in 3.4.6. Afterwards, linearization was confirmed by agarose gel electrophoresis and the 

linearized construct was purified using the QIAquick PCR Purification Kit following manufacturer’s 

instructions. Linearized vectors were eluted in 50 µl of DNAse/RNAse free water and stored at -20°C until 

use. 

  



   

43 

3.10.3) Production of synthetic RNAs 

 

Linearized vectors were in vitro transcribed using the Riboprobe system SP6/T7 kit (Promega) following 

manufacturer’s guidelines. Briefly, the reaction was scaled-up to a final volume of 40 µl. Then, a mix was 

prepared containing the transcription buffer, DTT, RNase inhibitors, the ribonucleotides (rATP, rGTP, rCTP 

and rUTP), the SP6 polymerase, the linearized vector and water to a final volume of 40 µl (Table 3) and the 

reactions were incubated at 37°C for 2 hours. 

 

 

Table 3: Protocol for in vitro synthesis of RNA  

  

 

 

            

3.10.4) Removal of DNA template 

 

To completely remove remaining template DNA, reactions were digested with 2 units (2 µl) of DNAse turbo 

per µg of DNA template and incubated at 37°C for 1 hour. 

  

Reagent Volume 

Transcription Optimized 5X Buffer 8.0 µl 

DTT (100mM) 4.0 µl 

Recombinant RNasin  Ribonuclease Inhibitor (20–40 units) 1.0 µl 

rATP, rGTP and rUTP (2.5 mM each) 8.0 µl 

100 µM rCTP (diluted from stock) 4.8 µl 

Linearized template DNA  (0.2–1.0 mg/ml in water or TE buffer) X 

SP6, T3 or T7 RNA Polymerase (15–20 units) 4.0 µl 

Water X 

 Final Volume 40 µl 
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3.10.5) RNA purification 

 

The in vitro transcribed RNAs were cleaned up using the RNeasy Mini Kit (Qiagen) following manufacturer’s 

instructions. Briefly, the in vitro transcription reaction was resuspended in 350 µl of RLT buffer and 250 µl 

of absolute ethanol. Samples were loaded into spin columns and centrifuged at 8,000 RPM for 1 minute. 

The flow-through was discarded and the columns were washed twice with 500 µl RPE buffer. To remove 

remaining buffer, the columns were centrifuged at 13,000 RPM for 1 minute. Then, columns were loaded 

with 50 µl of DNase/RNase free water and incubated for 5 minutes and then centrifuged again at 13,000 

RPM for 1 minute. Synthetic RNAs were quantified by micro-volume spectrophotometer (Nanodrop®) and 

stored at -80°C until use. 

 

3.10.6) Determination of RNA copy numbers  

 

RNA copy numbers were determined as described by Hoffmann et al.,(2005). The following formula was 

applied for this calculation: 

 

Copy numbers =
conc of RNA (g)/(µl)

transcript length in nucleotides x 340 
x 6.022x1023 

 

3.10.7) Preparation of standard curve 

 

To quantify the absolute viral RNA copy numbers, a standard curve was developed based on serial dilutions 

of the respective synthetic RNAs. Shortly, samples were diluted serially in RNA-safe-buffer (RSB) ranging 

from 1:10 to 1:108 to a final volume of 250 µl. After dilution, samples were stored at -80°C and once 

thawed, stored at -20°C with a maximum of 5 freeze- and thaw-cycles.  

 

3.11) Isolation of nucleic acids 

3.11.1) Isolation of viral RNA from cell culture supernatant 

 

Virus RNA was isolated using the QIAamp Viral RNA Mini Kit (Qiagen) following manufacturer’s protocol. 

Briefly, 140 µl of cell culture supernatant were collected and mixed with 560 µl AVL buffer. Afterwards, 

suspensions were spin-centrifuged to remove droplets from the lid and 560 µl of absolute ethanol were 

added to the mixture, mixed and shortly spun-down to remove lid droplets. Then 630 µl were loaded to a 

spin column and centrifuged at 8,000 RPM for 1 minute, the flow-through was discarded and the step 
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repeated again. Columns were first washed with 500 µl of AW1 and subsequently with 500 µl of AW2 

buffer, centrifuged at 8,000 RPM for 1 minute and 3 minutes, respectively. Finally, the spin columns were 

transferred to a sterile 1.5 ml microtube, 50 µl of AVE buffer were added to the columns, incubated for 5 

minutes and then centrifuged at 13,000 RPM for 1 minute. The eluted RNA was stored at -80°C until use. 

 

3.11.2) Isolation of total RNA from cell monolayers  

 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) following manufacturer’s instructions.  Cell 

culture monolayers were resusupended in 350 µl of RLT buffer and frozen overnight at -80°C. Suspensions 

were spun-down to remove droplets from the lid and 350 µl of 70% ethanol were added, mixed and shortly 

spun-down again. Then 700 µl of the mixture were loaded to a spin column and centrifuged at 8,000 RPM 

for 1 minute, the flow-through discarded and the step repeated, if necessary. Columns were washed with 

700 µl of RW1 buffer and subsequently with 500 µl of RPE buffer before centrifugation at 10,000 RPM for 

1 minute (RW1 buffer) and 2 minutes (RPE buffer). Finally, the spin columns were transferred to a sterile 

1.5 ml microtube, 50 µl of AVE buffer was added to the columns, incubated for 5 minutes and then 

centrifuged at 13,000 RPM for 1 minute. The eluted RNA was stored at -80°C until use. 

 

3.12) Polymerase chain reaction 
 

Primer sequences and reagents are all listed in Appendices VI, IV.  

 

3.12.1) One-step reverse transcription-polymerase chain reaction (RT-PCR) 

 

To detect the gene expression by reverse transcription (RT) followed by polymerase chain reaction (PCR) 

two systems are available: one-step and two-step RT-PCR. Basically, the first system performs both, the 

RT and PCR reaction in a single reaction while in the second system, each reaction must be performed 

separately. For detection of integrin mRNA expression, we chose the one-step RT-PCR method using the 

Superscript III™ One-Step RT-PCR kit. Total RNA was isolated as described in section 3.11.2. A master mix 

containing 1.0 µl of each forward and reverse primers (at a concentration of 10 pmol), 25 µl of the PCR 

buffer (containing dNTPs, magnesium and DTT) and 2.0 µl of the enzyme mix containing both RT (Moloney 

murine leukemia virus RT) and Thermus aquaticus (Taq) DNA polymerase enzymes were added into a 1.5 

ml microcentrifuge tube. Sterile RNase/DNase free water was added into the tube to complete the 

reaction to a final volume of 45 µl. The master mix was then gently homogenized and aliquoted into a 0.2 
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ml PCR reaction tube. After this, the total RNA (5 µl) was added into each tube separately and reactions 

were mixed and submitted to thermal cycling as shown in Tables 4, 5 and 6. 
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Table 4: RT-PCR cycling conditions used for detection of the mouse αV integrin gene 
 
 

 

 

 

 
 
 
 
 
 
 

Table 5: RT-PCR cycling conditions used for detection of the mouse β3 integrin gene 
 
 

 

 

 

 

 

 

 

 

Table 6: RT-PCR cycling conditions used for detection of the mouse β1 integrin gene  
 
 

 

 

 
 

 

 

 

 

 

 

Stage Temperature Time Cycles 

Reverse Transcription 55° C 60 min 1x 

PCR 

94° C 2 min 

40 x 
94°C 15 sec 

56°C 30 sec 

68°C 60 sec 

Final Elongation 68°C 10 min  

Stage Temperature Time Cycles 

Reverse Transcription 60° C 60 min 1x 

PCR 

94° C 2 min 

40 x 
94°C 15 sec 

62°C 30 sec 

68°C 60 sec 

Final Elongation 68°C 10 min  

Stage Temperature Time Cycles 

Reverse Transcription 55° C 60 min 1x 

PCR 

94° C 2 min 

40 x 
94°C 15 sec 

60°C 30 sec 

68°C 60 sec 

Final Elongation 68°C 10 min  
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3.12.2) Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) 

 

Quantification of viral genome by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) 

was performed in a one-step system. The detection method used in this study was based on DNA probes 

labelled with fluorescent dyes (commonly known as Taqman system). Primers and probes were diluted to 

a final concentration of 10 pmol in 0.1X TE buffer. The primer/probe mix was stored at -20°C under light 

protection. The RT-qPCR reactions were set using the QuantiTec Probe RT-PCR kit (Qiagen). The standard 

protocol was used for all RT-qPCR reactions. Viral RNA was isolated from supernatants or cell culture 

monolayers as outlined in 3.11. A mastermix containing 12.5 µl of the PCR buffer (supplied with dNTPs, 

magnesium and the Taq DNA polymerase), 2.0 µl of the primers/probe mix, 0.25µl of the RT enzyme mix 

(Omniscript® Reverse Transcriptase and Sensiscript® Reverse Transcriptase) and water was added up to a 

final volume of 20 µl. The mastermix was homogenized by agitation and a quick spin-centrifugation was 

done to collect droplets from the lid. Then, the mastermix was aliquoted into 96-well PCR plates. Finally, 

5 µl of RNA template were added into the respective wells, plates were sealed with adhesive optical PCR 

sealing film, centrifuged and submitted to thermal cycling as shown in Table 7. A standard curve based on 

in vitro transcribed RNA was used to quantify the absolute copy number. Positive controls as well as 

negative and blank controls were also added in every RT-qPCR experimental run. All RT-qPCR reactions 

were run in the CFX96™ Real-Time PCR Detection System (Biorad). 

 

Table 7: Cycling conditions for RT-qPCR 

 

 

 

 

 

 

 

 

3.12.3) Detection of flavivirus RNA by RT-qPCR 

 

The pan-flavivirus detection and identification assay was used for the detection and quantification of YFV 

and LGTV genomes (Vina-Rodriguez et al., 2017). In this assay, a primer pair was designed targeting the 

NS5 region of different flaviviruses, enabling the detection of almost all flavivirus species. Aside in this 

study, a DNA-based probe labelled with fluorescence dye was designed separately targeting the inter-

Stage Temperature Time Cycles 

Reverse Transcription 
50° C 30 min 

1x 
95° C 15 min 

PCR 

95°C 15 sec 

45 x 55°C 30 sec 

72°C 15 sec 
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regions between forward and reverse primers. The YFV and LGTV DNA-probes were labelled with 

6’carboxyfluorescein (FAM) reporter at the 5’ region and with a tetramethylrhodamine (TAMRA) quencher 

at the 3’ region. FAM-specific fluorescences were excited at 450-490 nm and detected at 515-530 nm. 

Detection of USUV genome was performed as described by Jöst et al.,(2011) with modifications. The DNA-

based probe was labelled with a Hexachlorofluorescein (HEX) at the 5’ region and Black Hole Quencher 1 

(BHQ-1) as quencher at the 3’ region. HEX specific fluorescences were excited at 515-535 nm and detected 

at 560-580 nm. The WNV genome detection was performed as described by Lanciotti et al.,(2000) with 

modifications. The DNA-based probe was labelled with FAM reporter at the 5’ region and with TAMRA 

quencher at the 3’ region. FAM specific fluorescences were excited at 450-490 nm and detected at 515-

530 nm. ZIKV genome was detected using primers and probe described by Lanciotti et al.,(2008) with 

modifications. The DNA-based probe was labelled with FAM reporter at the 5’ region and TAMRA quencher 

at the 3’ region. FAM specific fluorescences were excited at 450-490 nm and detected at 515-530 nm. 

 

3.13) Cell infection assays 
 

Generally, all cell infection assays were performed in 12-well plates except the binding inhibition assay 

that was performed in 24-well plates. Unless specified, all integrin deficient MEFs and MKFs, their 

respective wild-type cells and the CHO cells expressing the αV and β3 integrin subunits were seeded at a 

concentration of 1x105 cells per well. Cells were cultivated in DMEM or E-MEM supplied with 2% FBS unless 

further specified. Prior to inoculation, cell concentrations as well as cell viability (Trypan Blue method) 

were determined to ensure correct multiplicity of infection (MOI) calculation. For virus inoculation, serum 

and antibiotic free DMEM or E-MEM were used. 

 

3.13.1) Virus binding assay 

 

For the binding assay, cell culture medium was replaced with serum-free DMEM or E-MEM medium and 

cells were pre-incubated at 4°C for 30 minutes prior to inoculation. After this, plates were placed on ice 

and cells inoculated with sucrose gradient purified flaviviruses at an MOI of 10. Then, cells were incubated 

for one hour on ice with agitation every 15 minutes. After this period, the inoculum was removed and the 

wells were washed four times with ice-cold 1X PBS to remove unbound virus particles. Cell monolayers 

were resuspended in RLT buffer and stored at -80°C. Three independent experiments were performed in 

triplicate. 
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3.13.2) Replication Assay 

 

For the replication assay, cells were inoculated at an MOI of 10 and incubated at 37°C for virus adsorption 

for one hour. After this period, the inoculum was removed and monolayers were washed four times with 

1X PBS to remove unbound virus particles. Finally, either fresh E-MEM or DMEM 2% FBS medium was 

added into the wells and plates were incubated at 37°C with 5% carbon dioxide. Supernatants were 

harvested 48 hours after inoculation and stored at -80°C until use. Three independent experiments were 

performed in triplicate. 

 

3.13.3) Virus internalization assay 

 

For the internalization assay, cell culture medium was replaced with serum-free DMEM and cells were pre-

incubated at 4°C for 30 minutes prior to inoculation. After this, plates were placed on ice and cells 

inoculated with different flaviviruses at an MOI of 10. Cells were incubated for one hour on ice with 

agitation every 15 minutes. After this period, inoculum was removed and cells washed four times with ice-

cold 1X PBS to removed unbound virus particles and serum-free DMEM was added into the wells. Cells 

were shifted to 37°C for 40 minutes to allow virus internalization. After this period, medium was removed 

and cell monolayers were washed once with 1X PBS and treated with acidic glycine (pH 2.5) for 2 minutes 

to inactivate non-internalized virions as described elsewhere (Hung et al., 1999; Suksanpaisan et al., 2009; 

Thepparit et al., 2004a). Following this treatment, monolayers were washed twice with 1X PBS and cell 

monolayers were resuspended in RLT buffer and stored at -80°C. Three independent experiments were 

performed in triplicate. 

 

3.13.4) Detection of flavivirus negative-strand RNA 

 

For the detection of flavivirus negative-strand RNA, cells were inoculated as detailed in 3.13.2. 

Supernatants were removed and cell monolayers were extensively washed with 1x PBS to remove excess 

of virus. Cell monolayers were resuspended in RLT buffer and stored at -80°C. Three independent 

experiments were performed in triplicate. Levels of flavivirus negative-strand RNA were calculated using 

the 2^ddCT method as described by Pfaffl,(2001).  
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3.13.5) Binding inhibition assay 

 

For the binding inhibition assay, cells were seeded in 24-well plates with DMEM supplied with 2% FBS at a 

concentration of 1x104 cells per well, 12-16 hours prior to inoculation. Medium was replaced with serum-

free DMEM and cells were pre-incubated at 4°C for 15 minutes prior to inoculation. Subsequently, type I 

collagen (0-500 µg/ml), synthetic RGD motif peptide (0-250 µg/ml) and recombinant mouse vitronectin (0-

50 µg/ml) were added into the wells in serum-free DMEM supplied with 1 mM MnCl2 and 1 mM MgCl2 and 

incubated at 4°C for 30 minutes to allow ligand binding. After this, plates were placed on ice, washed twice 

and cells inoculated at an MOI of 10. Cells were incubated for 1 hour on ice with constant agitation every 

15 minutes. After this period, the inoculum was removed and the wells were washed four times with ice-

cold 1X PBS to remove unbound virus particles. Cell monolayers were resuspended in RLT buffer and stored 

at -80°C. Experiments were performed in duplicate. Percentage of binding inhibition was calculated using 

the following formula: 

 

Percentage of binding inhibition =
Ct value of infected cell − Ct value of treated control cells

Ct value of  infected cell
 𝑥 100 

 

3.14) Graphical design and statistical analysis 
 

Graphics were designed using Graphpad Prism software version 6. Statistical analysis was also performed 

using Graphpad Prism software version 6. if necessary, prior to statistical analysis, the D’Agostino & 

Pearson and Shapiro-Wilk normality tests were performed in order to assure normal distribution. The non-

parametric Mann-Whitney test was used to evaluate statistical significance between the two groups (Wild-

type vs.Knock-out cells) in the binding experiments. The parametric Student’s t-test was used to evaluate 

statistical significance between the two groups (Wild-type vs.Knock-out cells) in the internalization and 

replication experiments. The parametric One-way ANOVA with Bonferroni’s correction was used to 

compare three or more groups. Indication of statistical significance is represented by asterisks (*) as 

follows: * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p = ≤ 0.0001. The abbreviation “ns” stands for 

“not significant” with p > 0.05. 
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4.) Results 

4.1) Generation of integrin expressing cells 

4.1.1) Cloning of integrin genes into mammalian expression vectors 

 
The constructs pMK-ITGαV and pMK-ITGβ3 were digested separately with the HF-BamHI and HF-NotI 

restriction endonucleases. In a subsequent step, the mouse ITG-αV and ITG-β3 genes were inserted into 

pcDNA 3.1 (H) (5,600 bp) and pcDNA 3.1 (Z) (5,000 bp) vectors, respectively, and transformed into E. coli 

strain DH5α. Constructs containing the correct insert were subjected to DNA sequencing. Sequence 

analysis showed the absence of mutations and confirmed in-frame orientation of the inserted sequences 

(data not shown).  

As demonstrated in Figure 7, gel electrophoresis showed fragments of 5,600 bp and 3,172 bp (lane 2) 

corresponding to the pcDNA 3.1 (H) vector and mouse ITG-αV gene, respectively, and fragments of 5,000 

bp and 2,400 bp (lane 3) corresponding to the pcDNA 3.1 (Z) vector and the mouse ITG-β3 gene. 

 

 

 

Figure 7: Restriction digestion analysis of pcDNA 3.1 (H) and pcDNA 3.1 (Z) derived integrin gene constructs. The 
constructs were digested by restriction endonucleases HF-BamHI and HF-NotI. Agarose electrophoresis showing 
fragments of 5,600 and 3,172 bps (lane 2; L2) corresponding to the pcDNA 3.1 (H) and the mouse ITG-αV gene; 
fragments of 5,000 and 2,400 bps corresponding to the pcDNA 3.1 (Z) vector and the mouse ITG-β3 gene (lane 3; L3). 
Agarose concentration: 0.8%; electrophoresis conditions: 110V, 70 minutes; ethidium bromide staining; L1: 
GeneRuler 1 Kb DNA ladder (Fermentas). Abbreviation: bp: base pairs. 
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4.1.2) Recovery of αVβ3 integrin expression in MEF-αVβ3-/- cells 

 
To recover the expression of αVβ3 in MEF-αVβ3-/-cells, both vectors harboring the mouse αV and β3 

integrin subunit genes were transfected simultaneously into MEF-αVβ3-/- cells. Forty-eight hours after 

transfection with the vectors harboring the mouse ITG-αV and mouse ITG-β3 integrin subunit genes, 

antibiotic selection using hygromycin B and zeocin was initiated. Within the first 3 days, more than 80% of 

the cells died due to the antibiotic selection. Resistant cell populations were kept under antibiotic selection 

for approximately 6-12 weeks or until a confluent cell monolayer was achieved that allowed splitting to 

T25 cm² flasks. Several clones showed the presence of both αV and β3 integrin subunit genes at the cellular 

DNA level (data not shown). However, the expression levels of αV and β3 integrin subunits at the cell 

surface measured by FACS were less than 10% (data not shown). Positive selection by magnetic cell sorting 

was performed in order to obtain a homogeneous cell population expressing the respective integrin 

subunits. The cell sorting resulted in a cell population of very low density that was further maintained 

under cultivation. After reaching the confluence, cells were tested again by PCR and FACS. Most cells of 

the population lost the expression of one or both integrin subunits but still grew under antibiotic selection. 

Several modifications and different strategies were applied in order to recover the αVβ3 integrin 

expression in MEF-αVβ3-/- cells such as i) decrease of antibiotic concentration; ii) removal of antibiotics 

after cell sorting until the sorted cells reach confluence of more than 60% and iii) use of other transfection 

reagents and transfection techniques such as electroporation. Indeed, all these modifications resulted in 

cell populations with low or absent αVβ3 integrin expression. In turn, the recovery of αVβ3 integrin 

expression in the MEF-αVβ3-/- cells was not achieved (data not shown). Thus, the MEF-WT cells were used 

as the respective wild-type cells. 

 

4.1.4) Establishment of CHO cells expressing the integrin subunits 

 
Transfection efficiency in CHO cells reached more than 80% as determined by the GFP-encoding vector 

control. Forty-eight hours after transfection with the vectors harboring the mouse ITG-αV and mouse ITG-

β3 integrin subunit genes, CHO cells were split into T25 cm² flasks and set under antibiotic selection with 

either zeocin or hygromycin. Hygromycin resistant cell populations were observed after three days of 

antibiotic selection. Zeocin resistant cell populations were observed after one week. Cells were 

successively passed for up to 20 passages. These cell populations were then subjected to positive selection 

by magnetic cell sorting and further characterized for expression of ectopic integrins 

  



54 

4.2) Characterization of integrin expressing cells  

4.2.1) Cell morphology and growth 

4.2.1.1) Cell morphology and growth of MEF and MKF cells 

 
Integrin deficient cells as well as their respective wild-type cells were characterized by indirect 

immunofluorescence, FACS and RT-PCR. Initial morphological analyses of the integrin deficient cells as well 

as their respective wild-type cells revealed slight differences in cell morphology (Figure 8). The MKF-β1-/- 

cells showed to be more round-shaped than the parental wild-type cells, the MKF-β1Flox. Both cell lines 

showed similar growth rates and were split more often than MEFs. Interestingly, the MEF-αVβ3-/- cells 

showed morphological changes by forming more cell aggregations than their respective wild-type cells. 

MEF-αVβ3-/- cells showed to be more round-shaped and the cell density was much lower than for the MEF-

WT and MKF cells (Figure 8). The MEF-β3+/+R cells showed a discrete decrease in the growth rate when 

compared to MEF-β3-/- cells. No substantial differences on cell morphology were observed between MEF-

β3+/+R and MEF-β3-/- cells. 

 
Figure 8: Morphology of integrin deficient MEFs and MKFs and their respective wild-type cells. Cells were visualized 
by inverted light microscopy 72 hours after seeding in T25 cm² cell culture flasks. Magnification: 20X. Abbreviations: 
MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts deficient for αVβ3 

integrin; MKF-β1Flox: mouse kidney fibroblasts expressing the β1 integrin subunit; MKF-β1-/-: mouse kidney fibroblasts 
deficient for the β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit (R 
= rescue; rescued by ITG-β3 gene transfection) and MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 

integrin subunit. 
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4.2.1.2) Cell morphology and growth of CHO cells 

 
CHO-K1 cells were transfected with pcDNA plasmids harboring the mouse αV or mouse β3 integrin subunit 

genes. Upon transfection and establishment of CHO cells expressing the mouse αV or β3 integrin subunits, 

referred to as CHO-αV+/+ and CHO-β3+/+, cells were characterized for their morphology and growth. As 

demonstrated in Figure 9, expression of mouse αV and β3 integrin subunits in CHO cells did not alter cell 

morphology in comparison with the CHO-K1 cells. The cell growth of CHO-αV+/+ and CHO-β3+/+ cells was 

substantially slower than that of CHO-K1 cells as observed by different split rates during the maintenance 

of the cell cultures (data not shown).  

 

 

Figure 9: Morphology of wild-type CHO-K1 cells and CHO cells expressing mouse αV or mouse β3 integrin subunits. 
Cells were visualized by inverted light microscopy 72 hours after seeding in T25 cm² cell culture flasks. Magnification: 
10X. Abbreviations: CHO-K1: Chinese hamster ovary cell clone K1; CHO-αV+/+: Chinese hamster ovary cells expressing 
the mouse αV integrin subunit; CHO-β3+/+: Chinese hamster ovary cells expressing the mouse β3 integrin subunit. 
αV: alpha V integrin subunit; β3: beta 3 integrin subunit. 

 

4.2.2) Detection of integrin mRNA by RT-PCR  

4.2.2.1) Detection of integrin mRNA by RT-PCR in MEFs and MKFs 

 
RT-PCR was performed to test for the mRNA expression of αV, β1 and/or β3 integrin subunits in the 

integrin deficient, rescued and WT cells. As shown in Figure 10 A (right panel), the detection of αV, β1 and 

β3 integrin subunit mRNA in MEF-WT cells was confirmed by amplification of fragments of 300 bp, 500 bp 

and 200 bp corresponding to the αV, β1 and β3 integrin subunit mRNAs, respectively. In contrast to that, 

MEF-αVβ3-/- cells only expressed the β1 integrin subunit mRNA (Figure 10 A, left panel).  

The MKF-β1Flox and MEF-β3+/+R cells showed an expression pattern of αV, β1 and β3 integrin subunit mRNA 

identical to the MEF-WT cells (Figure 10 B, right panel and Figure 10 C, right panel). The MKF-β1-/-  cells 

were demonstrated to express αV and β3 integrin subunit mRNA while lacking β1 integrin subunit mRNA 

(Figure 10 B, left panel). Last, the analysis of MEF-β3-/- cells revealed the expression of αV and β1 integrin 

subunit mRNAs in the absence of β3 integrin subunit mRNA (Figure 10 C, left panel).  
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Figure 10: Expression of integrin mRNA in MEF-WT and MEF-αVβ3-/- (A); MKF-β1Flox and MKF-β1-/- (B) and MEF-β3+/+R 

and MEF-β3-/- (C) cells. The RT-PCR resulted in amplification of 300 bp (αV integrin), 500 bp (β1 integrin) and 200 bp 
(β3 integrin) products. Agarose concentration: 2.5%; electrophoresis conditions: 110 V, 70 minutes; ethidium 
bromide staining; Ladder: GeneRuler 100 bp DNA ladder (Fermentas). Abbreviations: MEF-WT: mouse embryonic 
fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblast deficient for αVβ3 integrin; MKF-β1Flox: mouse kidney 
fibroblasts expressing the β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient for the β1 
integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); MEF-β3-/-

: mouse embryonic fibroblasts deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 integrin 
subunit; β3: beta 3 integrin subunit, Ctrl-: negative control; bp: base pairs. 
 
 
 

4.2.2.1) Detection of integrin mRNA by RT-PCR in CHO cells 

 
To confirm the expression of αV and β3 integrin subunit mRNAs in transfected CHO cells, RT-PCR was 

performed. As shown in Figure 11, the CHO-K1 cells express only the β1 integrin subunit. Obviously, the 

endogenous hamster β1 integrin subunit was also expressed in the CHO cells transfected with either the 

mouse αV or the mouse β3 integrin subunit genes (Figure 11). CHO-αV+/+ cells that were transfected with 

a DNA plasmid harboring the mouse αV integrin gene expressed the respective αV integrin subunit mRNA 

(Figure 11). Finally, the CHO-β3+/+ cells expressed the β3 integrin subunit mRNA (Figure 11). In conclusion, 

the CHO cells transfected with the mouse αV and β3 integrin subunits genes expressed the respective 

mRNAs. 
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Figure 11: Expression of integrin mRNA in CHO-K1, CHO-αV+/+ and CHO-β3+/+ cells. The RT-PCR resulted in 
amplification of 300 bp (αV integrin), 500 bp (β1 integrin) and 200 bp (β3 integrin) products. Agarose concentration: 
2.5%; electrophoresis conditions: 110 V, 70 minutes; ethidium bromide staining; Ladder: GeneRuler 100 bp DNA 
ladder (Fermentas). Abbreviations: CHO-K1: Chinese hamster ovary cell clone K1; CHO-αV+/+: Chinese hamster ovary 
cells expressing the mouse αV integrin subunit; CHO-β3+/+: Chinese hamster ovary cells expressing the mouse β3 
integrin subunit; αV: alpha V integrin subunit; β1: beta 1 integrin subunit; β3:  beta 3 integrin subunit; Ctrl-: negative 
control; bp: base pairs. 

 

4.2.3) Characterization of integrin expressing cells by indirect immunofluorescence assay 

4.2.3.1) Characterization of MEFs and MKFs  

 
In order to visualize the integrin expression pattern and to determine its sub-cellular localization, indirect 

immunofluorescence assays were performed using antibodies raised against the αV, β1 and β3 integrin 

subunits.  

Images analyzed by confocal laser microscopy revealed that all of the expressed integrin subunits are 

globally distributed along the cell membrane with the formation of focal adhesion sites intensively stained 

at the cell surface (Figure 12). As expected, MEF-WT, MEF-β3+/+R and MKF-β1Flox cells expressed the αV 

(shown in red, left panel, Figure 12), β1 and β3 integrin subunits (shown in green, middle and right panel, 

Figure 12). When analyzing the integrin deficient cells, the MEF-αVβ3-/- cells expressed only the β1 integrin 

subunit (Figure 12) while the MEF-β3-/- cells expressed the αV and β1 (Figure 12). The MKF-β1-/- cells 

showed no expression of β1 but readily expressed the αV and β3 integrin subunits (Figure 12). 

Interestingly, the formation of focal adhesion sites was also observed in the MEF-αVβ3-/- , the MEF-β3-/- 

and the MKF-β1-/- cells indicating that the absence of a certain integrin subunit had no impact on the 

functional expression of other integrin heterodimers. In summary, these results further confirm the results 

obtained by RT-PCR. 
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Figure 12: Immunofluorescence-based detection of αV, β1 and β3 integrin subunits in MEF and MKF cells. Antibodies 
raised against mouse αV (red), β1 and β3 (green) integrin subunits were used to detect the integrin expression on 
the cell surface. Nuclei were stained using DAPI (blue). Images were captured by Leica laser scanning confocal 
microscope and processed with LAS AF, Leica. Images were edited using ImageJ software. Scale bar: 20 µm (αV 
staining) and 13 µm (β3 and β1 staining). Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-

/-: mouse embryonic fibroblasts deficient for αVβ3 integrin; MKF-β1Flox: mouse kidney fibroblasts expressing the β1 
integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient for the β1 integrin subunit; MEF-β3+/+R: 
mouse embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); MEF-β3-/-: mouse embryonic fibroblasts 
deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 integrin subunit; β3: beta 3 integrin 
subunit. 
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4.2.3.1) Characterization of CHO cells 

 
To confirm the expression of mouse αV and β3 integrin subunits in CHO cells at the cell membrane, the 

same immunofluorescence protocol as described for MEF/MKF cells was applied here. As shown in Figure 

13, the respective mouse integrin subunits were detected at the cell surface forming characteristic focal 

adhesion sites in both CHO-αV+/+ and CHO-β3+/+ cells indicating the formation of chimeric integrin 

heterodimers in CHO-αV+/+ as well as in CHO-β3+/+ cells.  

 

 

Figure 13: Immunofluorescence-based analysis of CHO-αV+/+ and CHO-β3+/+ cells for the expression of αV and β3 
integrin subunits on the cell surface. Antibodies raised against mouse αV (red) or β3 (green) integrin subunits were 
used to detect the respective integrin subunits. Nuclei were stained using DAPI (blue). Images were captured by Leica 
laser scanning confocal microscope and processed with LAS AF, Leica. Images were edited using ImageJ software. 
Scale bar: 13 µm. Abbreviations: CHO-αV+/+: Chinese hamster ovary cells expressing the mouse αV integrin subunit; 
CHO-β3+/+: Chinese hamster ovary cells expressing the mouse β3 integrin subunit; αV: alpha V integrin subunit; β3: 
beta 3 integrin subunit. 

 
 

4.2.4) Characterization of integrin expressing cells by flow cytometry 

4.2.4.1) Characterization of MEFS and MKFs by flow cytometry 

 
In order to verify the indirect immunofluorescence results as well as to quantify integrin expression on the 

cell surface, flow cytometry was applied. As shown in Figure 14, all wild-type MEFs and MKFs expressed 

high levels of αV, β1 and β3 integrin subunit on the cell surface. The expression levels ranged from 98% to 

100% for all integrin subunits (Table 8). MEF-αVβ3-/- cells showed no expression of both αV and β3 integrin 

subunits but expressed considerable amounts of β1 integrin subunits (Figure 14 and Table 8). MEF-β3-/- 

cells showed high expression of αV and β1 integrin subunits but complete absence of β3 integrin subunit 

expression (Figure 14). MKF-β1-/- cells expressed high levels of αV and β3 integrin subunits but no 

detectable levels of β1 integrin subunits (Figure 14). In summary, the results achieved by flow cytometry 

analysis are in accordance with the previous results obtained by indirect immunofluorescence assay and 

RT-PCR.  



60 

 

Figure 14: Flow cytometry analysis of MEF and MKF cells for αV, β1 and β3 integrin subunit expression. The figure shows 

the flow cytometry histograms based on the mean fluorescence intensity (MFI). Cells were incubated with anti-integrin 

subunit specific antibodies followed by isotype specific secondary antibodies labelled with Alexa-647 (αV integrin) or Alexa-

488 (β3 and β1 integrin). Unlabelled cells as well as mouse IgG isotype (not shown) were used as controls. MFI is 

represented in log scale. Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic 

fibroblasts deficient for αVβ3 integrin; MKF-β1Flox: mouse kidney fibroblasts expressing the β1 integrin subunit (wild-type); 

MKF-β1-/-: mouse kidney fibroblasts deficient for the β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts 

expressing the β3 integrin subunit (R = rescue); MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit; 

αV: alpha V integrin subunit; β3: beta 3 integrin subunit; β1: beta 1 integrin subunit.
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Table 8: Percentage of integrin expression in MEFs and MKFs measured by flow cytometry  

 
 

Percentage of cells expressing respective 
integrin subunits 

Cell Line αV β3 β1 

MEF-WT 99.2 99 99.8 

MEF-αVβ3-/- nd nd 99.4 

MEF-β3+/+R 99.9 100 99.9 

MEF-β3-/- 99.9 nd 99.9 

MKF-β1Flox 99.7 99 99 

MKF-β1-/- 99.9 98.7 nd 

               
 

 

 

 

 

 

 

 

  

Abbreviations: nd: not detected; MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: 

mouse embryonic fibroblasts deficient for αVβ3 integrin; MKF-β1Flox: mouse kidney fibroblasts 

expressing the β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient for the 

β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit; 

MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit; αV: alpha V integrin 

subunit; β1: beta 1 integrin subunit; β3: beta 3 integrin subunit. 



62 

4.2.4.1) Characterization of CHO cells by flow cytometry 

 
The levels of integrin expression were measured by flow cytometry using the same antibodies raised 

against the mouse αV and β3 integrin subunit. As seen in Figure 15, CHO-αV+/+ and CHO-β3+/+ cells 

expressed high amounts of mouse αV and β3 integrin subunits while the respective wild-type CHO-K1 cells 

showed no expression of these integrin subunits. The percentage of αV or β3 integrin expressing cells 

ranged from 99.7% to 99.9% for CHO-αV+/+ and CHO-β3+/+ cells, respectively (Table 9).  

 

 

 

Figure 15: Flow cytometry analysis of CHO-K1, CHO-αV+/+ and CHO-β3+/+.cells for αV and β3 integrin subunit 
expression. Flow cytometry histograms are based on the mean fluorescence intensity (MFI). Cells were incubated 
with αV (red) and β3 (green) anti-integrin subunit specific antibodies followed by incubation with isotype specific 
secondary antibody labelled with Alexa-647 (αV integrin) or Alexa-488 (β3 integrin). Abbreviations: CHO-αV+/+: 
Chinese hamster ovary cells expressing the mouse αV integrin subunit; CHO-β3+/+: Chinese hamster ovary cells 
expressing the mouse β3 integrin subunit; αV: alpha V integrin subunit; β3: beta 3 integrin subunit.  

 
Table 9: Percentage of integrin expression in CHO-K1, CHO-αV+/+ and CHO-β3+/+ cells measured by flow 

cytometry 

 
Percentage of cells expressing 
respective integrin subunits 

Cell Line αV β3 

CHO-K1 nd nd 

CHO-αV
+/+

 99.7 nt 

CHO-β3
+/+

 nt 99.9 

                    

  

Abbreviations: nd: not detected; nt: not tested; CHO-αV+/+: Chinese hamster ovary cells 
expressing the mouse αV integrin subunit; CHO-β3+/+: Chinese hamster ovary cells 
expressing the mouse β3 integrin subunit; αV: alpha V integrin subunit; β3:  beta 3 
integrin subunit.  
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4.3) Effect of integrin ablation on cell viability 
 
Loss of integrin expression might lead to the inability of the cell to attach to the ECM and potentially 

triggering anoikis, a type of apoptosis triggered by the inability of cells to bind to the ECM (Gilmore, 2005). 

In order to determine whether the deletion of αVβ3 integrin and the β1 and β3 integrin subunits affects 

viability of MEFs and MKFs, a colorimetric cell viability assay based on MTS-tetrazolium was applied. There 

was no difference in cell viability detected for MEF-αVβ3-/- and MEF-β3-/- cells when compared to their 

respective wild-type, MEF-WT and MEF-β3+/+R cells (Figure 16 A and C). Similarly, the loss of β1 integrin 

subunit expression in MKF-β1-/- cells did not influence cell viability in comparison to MKF-β1Flox as their 

respective wild-type cells (Figure 16 B). 

 

 

Figure 16: Tetrazolium cell viability assay for MEF-αVβ3-/- and MEF-WT (A); MKF-β1-/- and MKF-β1Flox (B) and MEF-β3-

/- and MEF-β3+/+R (C) cells. Cells were seeded at different concentrations (103 to 106 cells per well) and incubated with 
the tetrazolium reagent for 4 hours at 37°C with 5% carbon dioxide. Optical density was measured at 490 nm. Two 
independent experiments were each performed in duplicate (n=2). Square and circle represent the mean values, bars 
represent the standard deviation (means ± standard deviation). Dashed lines indicate the detection limit of the test. 
Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts deficient 
for αVβ3 integrin; MKF-β1Flox: mouse kidney fibroblasts expressing the β1 integrin subunit (wild-type); MKF-β1-/-: 
mouse kidney fibroblasts deficient for the β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing 
the β3 integrin subunit (R = rescue); MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit; αV: 
alpha V integrin subunit; β1: beta 1 integrin subunit; β3: beta 3 integrin subunit.  
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In addition to that, routine observation of MEF and MKF cells by light microscopy did not show any signs 

of cell viability reduction such as nuclear retraction, loss of nucleus/cytoplasm ratio, loss of cell adherence 

or excessive number of dead cells (data not shown). In conclusion, the ablation of αVβ3 integrin and β1 

and β3 integrin subunits did not interfere with cell viability. 

 

4.4) Functional characterization of integrin deficient and corresponding wild-type cells 
 
In order to analyze whether the deletion of integrins affects the ability of the integrin deficient cells to 

bind to their ligands, a cell adhesion assay was performed. Poly-L-Lsy, a positively charged polymer, served 

as positive control for cell adhesion since it facilitates binding via electrostatic interactions and is 

independent of integrins (Salmela et al., 2017). All tested cell lines bound to the Poly-L-Lsy (Figure 17 A - 

C). Interestingly, integrin deficient cells bound less efficiently to Poly-L-Lsy coated wells. BSA coated wells, 

used as a control to prove sufficient blocking of the wells showed no cell adhesion for any of the tested 

cells (Figure 17 A - C). Vero cells, known to express a broad variety of different integrins, served as positive 

control and bound efficiently to the vitronectin (Figure 17 A – C). As demonstrated in Figure 17 A, MEF-

αVβ3-/- cells bound to a less extent to mouse vitronectin in comparison to the wild-type cells (MEF-WT). 

The binding activity of MEF-αVβ3-/- cells to vitronectin was reduced by approximately 37.6% (Figure 17 A). 

In a similar manner, the deletion of the β3 integrin subunit in the MEF-β3-/- cells reduced the binding to 

vitronectin to approximately 40.5% compared to the MEF-β3+/+R cells (Figure 17 C). The deletion of β1 

integrin subunit affected poorly the ability of MKF-β1-/- cells to bind to vitronectin (Figure 17 B). In this 

case, a reduction of approximately 8.0% on binding to mouse vitronectin compared to the MKF-β1Flox cells 

was observed (Figure 17 B). In turn, in both integrin deficient MEF and MKF cells, the deletion of one or 

two integrin subunits impaired the recognition and binding to vitronectin.  
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Figure 17: Vitronectin cell adhesion assay with MEF-αVβ3-/- and MEF-WT (A); MKF-β1-/- and MEF-β1Flox (B) and MEF-
β3-/- and MEF-β3+/+R cells (C). Plates were coated overnight with 1 µg/ml of mouse vitronectin. Then, plates were 
blocked with 1% BSA and cells were seeded and incubated at 37°C with 5% carbon dioxide for 30 minutes. Plates 
were washed carefully, fixed with 3% PFA and cells were stained with 1% crystal violet. Dye was extracted and optical 
density was measured at 550 nm. Vero cells, Poly-L-Lsy and BSA were used as controls for the assay. The experiment 
was performed in triplicate. Bars represent the mean values and error bars represent the standard deviation (means 
± standard deviation). Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse 
embryonic fibroblasts deficient for αVβ3 integrin; MKF-β1Flox: mouse kidney fibroblasts expressing the β1 integrin 
subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient for the β1 integrin subunit; MEF-β3+/+R: mouse 
embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); MEF-β3-/-: mouse embryonic fibroblasts 
deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 integrin subunit; β3: beta 3 integrin 
subunit; Poly-L-Lsy: Poly-L-Lysine; BSA: bovine serum albumin; VTN: vitronectin; O.D.: optical density. 
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Next, it was evaluated whether the mouse αV and β3 integrin subunits expressed in CHO-αV+/+ and CHO-

β3+/+ cells are functional and able to recognize their ligands such as vitronectin. For this, CHO cells 

expressing either the αV or β3 integrin subunits were subjected to the same cell adhesion assay as applied 

to the integrin deficient MEF and MKF cells.  

As shown in Figure 18, the binding to mouse vitronectin was higher in CHO-αV+/+ and CHO-β3+/+ cells in 

comparison to the CHO-K1 cells. The increase in vitronectin binding was 41.9% and 44.5% for the CHO-

αV+/+ and CHO-β3+/+ cells, respectively. In conclusion, the chimeric integrins formed by the ectopic 

expression of mouse αV and β3 integrin subunits associated with the corresponding hamster integrin 

subunits showed to be functional by binding to vitronectin. 

 

 

 
 

Figure 18: Vitronectin cell adhesion assay with CHO-K1, CHO-αV+/+ and CHO-β3+/+ cells. Plates were coated overnight 
with 1 µg/ml of mouse vitronectin. Plates were then blocked with 1% BSA and cells were seeded and incubated at 
37°C with 5% carbon dioxide for 30 minutes. Plates were washed carefully, fixed with 3% PFA and cells were stained 
with 1% crystal violet. Dye was extracted and optical density was measured at 550 nm. Vero cells, Poly-L-Lsy and BSA 
were used as controls for the assay. The experiment was performed in triplicate. Bars represent the mean values and 
error bars represent the standard deviation (means ± standard deviation). Abbreviations: CHO-αV+/+: Chinese 
hamster ovary cells expressing the mouse αV integrin subunit; CHO-β3+/+: Chinese hamster ovary cells expressing the 
mouse β3 integrin subunit; αV: alpha V integrin subunit; β3: beta 3 integrin subunit; Poly-L-Lsy: Poly-L-Lysine; BSA: 
bovine serum albumin; VTN: vitronectin; O.D.: optical density. 
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4.5) Cell infection assays 
 

In order to investigate whether integrins are involved in the early or late steps of flavivirus infection, 

experiments were designed to analyze these steps separately. Basically it was the aim of this study to 

assess: i) susceptibility and permissiveness of integrin deficient cells for different flaviviruses by analyzing 

the flavivirus replication kinetics; ii) flavivirus binding to integrin deficient cells; iii) virus internalization and 

iv) virus RNA replication.  

 

4.5.1) Flavivirus replication kinetics in MEFs, MKFs and CHO cells 

 
In order to evaluate if the absence of αV, β1 and β3 integrin subunits affects cell permissiveness and/or 

influences replication efficiency of different flaviviruses, all integrin deficient MEFs and MKFs as well as 

the respective wild-type cells were inoculated with YFV-17D, WNV, USUV and LGTV at an MOI of 0.1. Vero 

cells, known to be highly permissive and susceptible to flaviviruses, were used as control in all assays. 

Inoculation of CHO-K1 cells with the flaviviruses mentioned above resulted in no detectable virus titers 

(data not shown). 

As shown in Figure 19 A – D, all four cell lines were permissive for the four flaviviruses investigated. 

However, the replication kinetics of different flaviviruses differed distinctly among the cell lines. Flavivirus-

inoculated Vero cells, the most permissive cell line for flaviviruses, displayed the highest titers for all 

flaviviruses tested 96 hours post inoculation (Figures 19 A – D). Surprisingly, YFV-17D replication in MEF-

β3-/- cells reached similar titers as in Vero cells (6.0 vs. 6.25 log TCID50/ml; Figure 19 A). In addition, YFV-

17D showed to replicate more efficiently in MEF-WT than in Vero cells within the first 72 hours (Figures 

19 A). Among the MEFs, MEF-WT cells produced the highest titers for all flaviviruses tested in this study. 

In these cells, the highest titers were observed for USUV reaching a maximum of up to 9 log TCID50/ml 

after 96 hours (Figure 19 C) and LGTV (7 log TCID50/ml, Figure 19 D) followed by YFV-17D (6.50 TCID50/ml 

Figure 19 A) and WNV (4.5 TCID50/ml Figure 19 B).  

In contrast to that, MEF-αVβ3-/- cells displayed low viral titers for all flaviviruses tested (Figure 19 A – D). 

After 96 hours, titers reached 3.0 log TCID50/ml for YFV-17D, 3.75 log TCID50/ml for WNV, 5.0 log TCID50/ml 

for USUV and 3.25 log TCID50/ml for LGTV. In MEF-β3-/- cells, LGTV and USUV titers were even lower 

reaching only a maximum of 3.75 and 4.75 log TCID50/ml at 96 hours post inoculation, respectively (Figure 

19 C and D). As mentioned above, YFV-17D showed to moderately replicate in MEF-β3-/- cells in 

comparison to the MEF-WT cells (Figure 19 A). Finally, LGTV showed to replicate more efficiently in MKF-

β1-/- cells than the other flaviviruses tested, reaching titers comparable to MEF-WT cells after 96 hours 

post-infection (MKF-β1-/- 6.75 log TCID50/ml vs. MEF-WT 7.0 log TCID50/ml; Figure 19 D). In sum, the 
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deletion of one or two integrin subunits was not able to abrogate flavivirus infection, but substantially 

impaired replication of some flaviviruses.  

 

 

Figure 19: Replication kinetics of YFV-17D, WNV, USUV and LGTV in MEF-WT (red), MEF-αVβ3-/- (blue), MKF-β1-/- 
(black), MEF-β3-/- (green) and Vero (brown) cells. Cells were seeded into 24-well plates and infected with MOI of 0.1. 
Supernatants were harvested every 24 hours over a period of 4 days post inoculation. Virus titers were measured by 
TCID50 in Vero cells. Virus titers were expressed as log of TCID50 per ml of supernatant. Three independen experiments 
were performed. Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic 
fibroblasts deficient for αVβ3 integrin; MKF-β1-/-: mouse kidney fibroblasts deficient for the β1 integrin subunit; MEF-
β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 
integrin subunit; β3: beta 3 integrin subunit; YFV-17D: Yellow fever virus strain 17D; WNV: West Nile virus; USUV: 
Usutu virus and LGTV: Langat virus; p.i.:post-inoculation; TCID50: tissue culture infectious dose 50%. 

 
 

 

  



   

69 

4.5.2) Influence of integrins on flavivirus binding  

 
Several viruses such as FMDV, echovirus and hantaviruses bind to integrins mediating virus internalization 

into the host cell (Hussein et al., 2015). To investigate whether integrins are involved in flavivirus binding 

to MEFs and MKFs, a virus binding assay was performed.  

First, flavivirus binding to the Vero cells was evaluated by RT-qPCR. As expected, all flaviviruses bound to 

Vero cells but to a different extent (Figure 20). Among all the viruses tested, USUV bound to Vero cells to 

the highest amount displaying mean Ct values of 17.1 followed by WNV (mean Ct value of 21) and YFV-

17D with a mean Ct value of 25.5 (Figure 20). Unexpectedly, LGTV, a cell culture adapted TBEV strain bound 

to Vero cells less efficiently (mean Ct value of 29.9, Figure 20).  

 

 

 
 
Figure 20: Flavivirus binding to Vero cells measured by RT-qPCR. Cells were seeded into 12-well plates, placed on ice 
and inoculated with different flaviviruses at an MOI of 10. After one hour, monolayers were washed, harvested and 
lysed with RLT buffer. Total RNA was isolated and RT-qPCR was performed to indirectly measure virus binding to the 
cell surface by detection of viral RNA. Virus binding values are expressed in cycle threshold values (Ct values). Bars 
represent the mean of Ct values and error bars represent the standard deviation (means ± standard deviation). 
Abbreviations: YFV-17D: Yellow fever virus strain 17D; WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat virus; 
Ct: cycle threshold. 
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4.5.2.1) Influence of integrins on flavivirus binding to MEF and MKF cells 

 
Next, it was evaluated if the deficiency of one or two integrin subunits could affect flavivirus binding to 

MEFs and MKFs. As shown in Figure 21 A-C, the deletion of αVβ3 integrin, β1 or β3 integrin subunits did 

not affect the flavivirus binding to integrin deficient MEFs and MKFs in comparison to the respective wild-

type cells. Statistical analysis did not infer any statistical significance (p > 0.05) in all groups tested with 

different flaviviruses (Figure 21 A-C). Taken together, these results indicate that αVβ3 integrin, β1 or β3 

integrin subunits are not involved in flavivirus binding to the MEF and MKF cells. 

 
 
Figure 21: Flavivirus binding to MEF-WT and MEF-αVβ3-/- (A); MKF-β1Flox and MKF-β1-/-(B) and MEF-β3+/+R and MEF-
β3-/- (C) cells. Cells were seeded into 12-well plates, placed on ice and inoculated with different flaviviruses at an MOI 
of 10. After one hour, monolayers were washed, harvested and lysed with RLT buffer. Total RNA was isolated and 
RT-qPCR was performed to indirectly measure virus binding to the cell surface by detection of viral RNA. Virus binding 
values are expressed in cycle threshold values (Ct values). Three independent experiments were each performed in 
triplicate (n=3). Bars represent the mean Ct values and error bars represent the standard deviation (means ± standard 
deviation). Statistical analysis: Mann-Whitney test; ns: not significant (p> 0.05). Abbreviations: MEF-WT: mouse 
embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts deficient for αVβ3 integrin; MKF-β1Flox: 
mouse kidney fibroblasts expressing the β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient 
for the β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); 
MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 
integrin subunit; β3: beta 3 integrin subunit; YFV-17D: Yellow fever virus strain 17D; WNV: West Nile virus; USUV: 
Usutu virus; LGTV: Langat virus; Ct: cycle threshold.  
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4.5.2.2) Influence of integrins on flavivirus binding to CHO cells 
 

To further investigate the influence of integrins on flavivirus infection, CHO cells expressing the mouse αV 

or mouse β3 integrin subunits, CHO-αV+/+ and CHO-β3+/+, and the respective wild-type cells, CHO-K1, were 

used. It was investigated whether the ectopic expression of mouse αV and β3 integrin subunits in CHO-

αV+/+ and CHO-β3+/+ cells influences flavivirus binding to the cell surface.  

As demonstrated in Figure 22, expression of both αV and β3 integrin subunits had no impact on flavivirus 

binding to CHO cells. The statistical analysis also failed to show any significant differences between CHO-

K1 and CHO cells expressing either the αV or the β3 integrin subunit (p > 0.05). 

Together, the expression of mouse αV and mouse β3 integrin subunits in CHO cells per se did not influence 

flavivirus binding to CHO cells. 

 

 
 

Figure 22. Flavivirus binding to CHO-K1, CHO-αV+/+ and CHO-β3+/+ cells. Cells were seeded into 12-well plates, placed 
on ice and inoculated with an MOI of 10. After one hour, monolayers were extensively washed, harvested and lysed 
with RLT buffer. Total RNA was isolated and RT-qPCR was performed to indirectly measure virus binding to the cell 
surface by detection of viral RNA. Virus binding values are expressed in cycle threshold (Ct) values. Three independent 
experiments were performed in triplicate (n=3). Bars represent the mean Ct values and error bars represent the 
standard deviation (means ± standard deviation). Statistical analysis: Mann-Whitney test; ns: not significant (p > 
0.05). Abbreviations: YFV-17D: Yellow fever virus strain 17D; WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat 
virus; CHO-K1: Chinese hamster ovary cells clone K1; CHO-αV+/+: Chinese hamster ovary cells expressing the mouse 
alpha V integrin subunit; CHO-β3+/+: Chinese hamster ovary cells expressing the mouse beta 3 integrin subunit. 

 

  



72 

4.5.3) Effect of integrin ligands on flavivirus binding to MEF and MKF cells 

 
For a functional blocking assay, MEF-αVβ3-/- and the respective MEF-WT cells were selected for treatment 

with different integrin ligands. For this assay, three integrin ligands were selected: i) the synthetic RGD 

peptide that represents the minimum residual sequence that integrins recognize; ii) the vitronectin that 

binds with high affinity to RGD binding integrins such as α5β5 and α8β1 and iii) the type I collagen that 

binds to collagen binding integrins such as α1β1, α2β1 and α10β1 integrins (Humphries et al., 2006). 

A pilot experiment was performed in Vero cells to evaluate whether the experimental conditions allowed 

efficient integrin ligand binding. Cells were first treated on ice with 50 µg of a recombinant his-tagged 

vitronectin that was subsequently detected on the cell surface using monoclonal anti-his-tag antibodies. 

As observed in Figure 23, recombinant mouse vitronectin was detected on the cell surface of Vero cells in 

high amounts. 

 

 

 

Figure 23: Detection of recombinant his-tagged mouse vitronectin on the cell surface of Vero cells. Vero cells were 
treated with recombinant mouse vitronectin (50 µg/ml) for 30 minutes, and then washed and fixed with PFA for 15 
minutes. Then, monoclonal antibodies raised against the his-tag motif were used followed by an anti-mouse Alexa 
488 secondary antibody (green). Nuclei were stained using DAPI (blue). Images were visualized by laser scanning 
confocal microscopy and edited using ImageJ software. 
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The established protocol was then applied to MEF-WT and MEF-αVβ3-/- cells that, after treatment with the 

integrin ligands mentioned above, were inoculated with different flaviviruses. As demonstrated in Figure 

24 (panel A, B and C) none of the integrin ligands were able to disrupt flavivirus binding to the cell surface 

of MEF-WT or MEF-αVβ3-/- cells as determined by RT-qPCR. Treatment with recombinant mouse 

vitronectin had almost no impact on flavivirus binding (Figure 24, panel A). The maximum inhibitory effect 

of recombinant mouse vitronectin on virus binding observed for MEF-WT and MEF-αVβ3-/- cells was 6.3% 

for the YFV-17D, 7.6% for the WNV, 4.8% for the USUV and 4.9% for the LGTV compared to the untreated 

controls (Figure 24, panel A). The treatment of MEF-WT and MEF-αVβ3-/- cells with a synthetic cyclic RGD 

peptide equally resulting in no substantial binding inhibition of the investigated flaviviruses (Figure 24, 

panel B). Pre-treatment of the cells with type I collagen did not affect flavivirus binding in both, MEF-WT 

and MEF-αVβ3-/- cells (Figure 24, panel C). The maximum binding inhibition achieved was 5.1% for YFV-

17D, 7.8 % for WNV, 4.5% for USUV and 3.4% for LGTV when compared to the untreated control. Taken 

together, the results of these assays including the binding assay reinforce that integrins are not involved 

in flavivirus binding to the MEF and MKF cells. 
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Figure 24: Binding inhibition assay with MEF-WT and MEF-αVβ3-/- cells. Cells were first treated with increasing 
concentrations of recombinant mouse vitronectin (0-50 µg/ml) (panel A); synthetic cyclic RGD peptide (0-250 µg/ml) 
(panel B) and type I collagen (0-500 µg/ml) (panel C) for 30 minutes prior to virus inoculation. Then, treated cells 
were shifted to 4°C and inoculated with different flaviviruses at an MOI of 10 for 1 hour. Monolayers were extensively 
washed and resuspended in RLT buffer. The total RNA was isolated and RT-qPCR was performed. Percentage of 
binding inhibition was calculated based on cycle threshold values. Two independent experiments were performed in 
duplicate. Dots represent the mean of individual values from each independent experiment. Dashes represent the 
median. Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts 
deficient for αVβ3 integrin; αV: alpha V integrin subunit; β3: beta 3 integrin subunit; YFV-17D: Yellow fever virus 
strain 17D; WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat virus; RGD: Arginine-Glycine-Aspartic acid. 
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4.5.4) Effect of integrins on flavivirus internalization by MEF and MKF cells 

 
In order to investigate whether the lack of integrin expression influences flavivirus internalization, the 

integrin deficient MEF and MKF cells as well as their respective wild-type cells were inoculated with 

different flaviviruses. As shown in Figures 25, 26 and 27 A – D, the absence of integrin expression did not 

abrogate flavivirus internalization by MEF and MKF cells.  

Internalization of YFV-17D and LGTV was not affected by the loss of αVβ3 integrin expression in MEF-αVβ3-

/- cells when compared to MEF-WT cells (Figures 25 A and D). Statistical analysis using the Student’s t-test 

revealed no significant differences (p > 0.05) between the two cell lines with 4.3% and 6.3% of differences 

in internalization for YFV-17D and LGTV, respectively. On the other hand, statistical analysis using the 

unpaired Student’s t-test revealed a significant difference between MEF-WT and MEF-αVβ3-/- cells 

concerning the internalization of WNV (p = 0.0007) and USUV (p =  0.0001) (Figure 25 B and C). Data 

analysis demonstrated the differences in internalization of USUV and WNV to be rather low between the 

two cell lines. The differences in virus internalization between MEF-WT and MEF-αVβ3-/- cells for WNV and 

USUV were 3.6% and 7.6%, respectively. These results indicate that αVβ3 integrin might be involved in the 

internalization of some flaviviruses. 

Our findings for MKF-β1Flox and MKF-β1-/- cells demonstrated that deletion of β1 integrin subunit did not 

influence flavivirus internalization (Figure 26 A-D). The differences in virus internalization were 2.25% for 

YFV-17D, 0.59% for WNV, 1.16% for USUV and 7.16% for LGTV resulting in no statistical significance for all 

the viruses tested (p > 0.05) suggesting that β1 integrin subunit is not involved in flavivirus internalization. 

Internalization of YFV-17D (p = 0.2254), WNV (p = 0.9880) and USUV (p = 0.0779) by MEF-β3-/- and MEF-

β3+/+R cells was not affected by the deletion of the β3 integrin subunit (Figure 27 A-D). Statistical analysis 

showed only a small but significant difference in internalization of LGTV (p = 0.0318) between the two cell 

lines with a difference in virus internalization of 11.34%. The difference in virus internalization was 

extremely low for YFV-17D (p=0.2254) and USUV with 1.71% and 2.21%, respectively. These findings 

suggest that the β3 integrin subunit might be involved in the internalization of LGTV.  

Collectively, these results implicate that αVβ3 integrin and the β3 integrin subunit might have an effect on 

the internalization of some flaviviruses in MEF cells. 
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Figure 25: Internalization of YFV-17D (A), WNV (B), USUV (C) and LGTV (D) by MEF-WT and MEF-αVβ3-/- cells. Cells 
were seeded into 12-well plates, placed on ice and inoculated with different flaviviruses at an MOI of 10. After one 
hour, monolayers were extensively washed and shifted to 37°C for 30 minutes. Cell monolayers were then washed 
once with acidic glycine (pH 2.5) and incubated for 2 minutes, washed twice with 1X PBS and monolayers harvested 
and lysed with RLT buffer. Total RNA was isolated and RT-qPCR was performed to measure internalized virus particles 
by detection of viral RNA. The amount of internalized virus is expressed as copy numbers per microliter (log 
transformed). Three independent experiments were performed in triplicate (n=3). Dot plots represent each 
individual replicate from the three independent experiments. Statistical analysis: Unpaired Student’s t-test with 
Welch’s correction; (***) p ≤ 0.001; (****) p ≤ 0.0001; ns: not significant (p > 0.05). Abbreviations: MEF-WT: mouse 
embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts deficient for αVβ3 integrin; αV: alpha V 
integrin subunit; β3: beta 3 integrin subunit; YFV-17D: Yellow fever virus strain 17D; WNV: West Nile virus; USUV: 
Usutu virus; LGTV: Langat virus. 
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Figure 26: Internalization of YFV-17D (A), WNV (B), USUV (C) and LGTV (D) by MKF-β1Flox and MKF-β1-/- cells. Cells 
were seeded into 12-well plates, placed on ice and inoculated with different flaviviruses at an MOI of 10. After one 
hour, monolayers were extensively washed and shifted to 37°C for 30 minutes. Cell monolayers were then washed 
once with acidic glycine (pH 2.5) and incubated for 2 minutes, washed twice with 1X PBS and monolayers harvested 
and lysed with RLT buffer. Total RNA was isolated and RT-qPCR was performed to measure internalized virus particles 
by detection of viral RNA. The amount of internalized virus is expressed as copy numbers per microliter (log 
transformed). Three independent experiments were performed in triplicate (n=3). Dot plots represent each 
individual replicate from the three independent experiments. Statistical analysis: Unpaired Student’s t-test with 
Welch’s correction; ns: not significant (p > 0.05). Abbreviations: MKF-β1Flox: mouse kidney fibroblasts expressing the 
β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient for the β1 integrin subunit; MEF-β3+/+R: 
mouse embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); MEF-β3-/-: mouse embryonic fibroblasts 
deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 integrin subunit; β3: beta 3 integrin 
subunit; YFV-17D: Yellow fever virus strain 17D; WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat virus. 
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Figure 27: Internalization of YFV-17D (A), WNV (B), USUV (C) and LGTV (D) by MEF-β3+/+R and MEF-β3-/- cells. Cells 
were seeded into 12-well plates, placed on ice and inoculated with different flaviviruses at an MOI of 10. After one 
hour, monolayers were extensively washed and shifted to 37°C for 30 minutes. Cell monolayers were then washed 
once with acidic glycine (pH 2.5) and incubated for 2 minutes, washed twice with 1X PBS and monolayers harvested 
and lysed with RLT buffer. Total RNA was isolated and RT-qPCR was performed to measure internalized virus particles 
by detection of viral RNA. The amount of internalized virus is expressed as copy numbers per microliter (log 
transformed). Three independent experiments were performed in triplicate (n=3). Dot plots represent each 
individual replicate from the three independent experiments. Statistical analysis: Unpaired Student’s t-test with 
Welch’s correction; (*) p ≤ 0.05; ns: not significant (p > 0.05). Abbreviations: MEF-β3+/+R: mouse embryonic fibroblasts 
expressing the β3 integrin subunit (R = rescue); MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin 
subunit; β3: beta 3 integrin subunit; YFV-17D: Yellow fever virus strain 17D; WNV: West Nile virus; USUV: Usutu virus; 
LGTV: Langat virus. 
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4.5.5) Influence of integrins on flavivirus replication in MEFs, MKFs and CHO cells 

 
So far, this study has shown that integrins are not involved in binding of flaviviruses to MEFs, MKFs and 

CHO cells. On the other hand, internalization of some flaviviruses was slightly affected by the loss of 

integrins. Next, it was evaluated whether the deletion of one or two integrin subunits affects flavivirus 

replication in MEF, MKF and CHO cells by RT-qPCR and virus titration.  

 

4.5.5.1) Effect of β1 integrin subunit deletion on flavivirus replication 

 
As seen in Figure 28 A and B, the deletion of β1 integrin subunit in MKF-β1-/- cells affected the replication 

of YFV-17D and WNV reducing viral loads by 65.1% and 45.5%, respectively, as determined by 

quantification of viral genome. On the other hand, replication of USUV was not affected by the deletion of 

β1 integrin subunit (Figure 28 C). Statistical analysis using the parametrical Student’s t-test showed a 

statistically significant reduction in the viral loads of YFV-17 (p = 0.0003), WNV (p = 0.0001) but not for 

USUV (p = 0.4086) in MKF-β1-/- cells (Figure 28 A – C). Virus titers measured by TCID50 were also decreased 

in MKF-β1-/- cells infected with YFV-17D (MKF-β1-/- vs MKF-β1flox: 4.55 vs 4.13 log TCID50/ml) and WNV 

(MKF-β1-/- vs MKF-β1flox: 5.58 vs 5.33 log TCID50/ml) (Figure 28 A and B). USUV titers were slightly increased 

in MKF-β1flox cells in comparison to MKF-β1-/- cells (MKF-β1-/- vs MKF-β1flox: 7.25 vs 6.33 log TCID50/ml) 

(Figure 28 C). Unexpectedly, the LGTV replication in MKF-β1-/- cells was increased up to 335% resulting in 

a higher viral load compared to wild-type MKF-β1Flox cells (Figure 28 D). This increase of viral load observed 

in MKF-β1-/- cells showed to be statistically significant (p = 0.0001).  LGTV titers were also substantially 

higher in MKF-β1-/- than in MKF-β1Flox cells (MKF-β1-/- vs MKF-β1flox: 5.91 vs 6.83 log TCID50/ml).  

Taken together, these results suggest that the deletion of β1 integrin subunit might impair the replication 

of YFV-17D and WNV and, in case of LGTV, potentially enhance the replication. 
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Figure 28: Replication analysis of YFV-17D (A), WNV (B), USUV (C) and LGTV (D) in integrin deficient MKF-β1-/- and 
corresponding wild-type MKF-β1Flox cells. RNA yields and virus titers were measured 48 hours post inoculation. Cells 
were seeded into 12-well plates and inoculated with different flaviviruses at an MOI of 10. After one hour, 
monolayers were extensively washed and shifted to 37°C for 48 hours. Supernatants were harvested, total RNA was 
isolated and RT-qPCR was performed to determine the yield of viral RNA. The amount of virus genome is expressed 
as copy numbers per microliter (log transformed). Virus titers were determined by TCID50. End-point determinations 
of virus titers were calculated using the Spearman-Kaerber method. Titers are expressed in log values. Three 
independent experiments were performed in triplicate (n=3). Bars represent mean values and error bars represent 
the standard deviation (mean ± standard deviation). Statistical analysis: Unpaired Student’s t-test with Welch’s 
correction; (***) p ≤ 0.001; (****) p ≤ 0.0001; ns: not significant (p > 0.05). Abbreviations: YFV-17D: Yellow fever 
virus strain 17D; WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat virus; MKF-β1Flox: mouse kidney fibroblasts 
expressing the beta 1 integrin subunit; MKF-β1-/-: mouse kidney fibroblasts deficient for the beta 1 integrin subunit. 
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4.5.5.2) Effect of β3 integrin subunit deletion on flavivirus replication in MEFs 

 
Similar results were also found for MEF-β3+/+R and MEF-β3-/- cells (Figure 29 A – D). Quantification of viral 

RNA revealed decrease in flavivirus replication for WNV, USUV and LGTV in MEF-β3-/- cells in comparison 

to MEF-β3+/+R  cells (Figure 29 B, C and D). The reduction of viral RNA yields for WNV, USUV and LGTV were 

28.2%, 63.5% and 43.9%, respectively (Figure 29 B, C and D). Statistical analysis indicated that these 

differences are significant (WNV p = 0.0001; USUV p = 0.0001 and LGTV p = 0.0001). Viral titers measured 

by TCID50 also showed a decrease for WNV (MEF-β3+/+R vs MEF-β3-/-: 5.16 vs 4.25 log TCID50/ml), USUV 

(MEF-β3+/+R vs MEF-β3-/-: 6.33 vs 5.08 log TCID50/ml) and LGTV (MEF-β3+/+R vs MEF-β3-/-: 6.25 vs 6.33 log 

TCID50/ml) (Figure 29 B, C and D). 

On the other hand, viral load of YFV-17D showed to be lower in MEF-β3+/+R cells than in the integrin 

deficient MEF-β3-/- cells (Figure 29 A). The increase of YFV-17D replication in MEF-β3-/- cells was 116% 

compared to MEF-β3+/+R cells. Statistical analysis also demonstrated that the differences observed in YFV-

17D replication in the two cell lines were significant (p = 0.0001). YFV-17D titers were also higher in MEF-

β3-/- in comparison to MEF-β3+/+R cells (MEF-β3+/+R vs MEF-β3-/-: 4.66 vs 4.83 log TCID50/ml) (Figure 29 A). 

Together, these results indicate that the deletion of β3 integrin subunit might impair replication of USUV, 

LGTV and WNV. 
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Figure 29: Replication analysis of YFV-17D (A), WNV (B), USUV (C) and LGTV (D) in integrin deficient MEF-β3-/- and 
corresponding wild-type MEF-β3+/+R cells. RNA yields and virus titers were measured 48 hours post inoculation. Cells 
were seeded into 12-well plates and inoculated with different flaviviruses at an MOI of 10. After one hour, 
monolayers were extensively washed and shifted to 37°C for 48 hours. Supernatants were harvested, total RNA was 
isolated and RT-qPCR was performed to determine the yield of viral RNA. The amount of virus genome is expressed 
as copy numbers per microliter (log transformed). Virus titers were determined by TCID50. End-point determinations 
of virus titers were calculated using the Spearman-Kaerber method. Titers were expressed in log values. Three 
independent experiments were performed in triplicate (n=3). Bars represent mean values and error bars represent 
the standard deviation (mean ± standard deviation). Statistical analysis: Unpaired Student’s t-test with Welch’s 
correction; (****) p ≤ 0.0001; ns: not significant (p > 0.05). Abbreviations: YFV-17D: Yellow fever virus strain 17D; 
WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat virus; MEF-β3+/+R:  mouse embryonic fibroblasts expressing 
the beta 3 integrin subunit (R = rescue); MEF-β3-/-: mouse embryonic fibroblasts deficient for the beta 3 integrin 
subunit. 

 

4.5.5.3) Effect of αVβ3 integrin deletion on flavivirus replication in MEFs 

 
As demonstrated in Figure 30 A – D, flavivirus replication in MEF-αVβ3-/- cells was strongly impaired by the 

lack of αVβ3 integrin expression when compared to MEF-WT cells (Figure 30 A – D). The reduction of viral 

RNA yields was 99.2% for YFV-17D, 99.9% for WNV, 99.5% for USUV and 99.0% for LGTV (Figure 30 A - D). 

The statistical analysis (Student’s t-test) evidenced that the differences observed in flavivirus replication 

between MEF-WT and MEF-αVβ3-/- cells were highly significant (p = 0.0001) for all the viruses analyzed. 

Virus titers were also strongly reduced in MEF-αVβ3-/- cells in comparison to MEF-WT cells (Figure 30 A - 
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D). The viral titers were 5.24-fold decreased for YFV-17D (MEF-WT vs MEF-αVβ3-/-: 6.08 vs 1.16 log 

TCID50/ml), 2.6-fold decreased for WNV (MEF-WT vs MEF-αVβ3-/-: 5.41 vs 2.08 vs log TCID50/ml), 1.82-fold 

decreased for USUV (MEF-WT vs MEF-αVβ3-/-: 8.66 vs 4.75 log TCID50/ml) and 1.68-fold decreased for LGTV 

(MEF-WT vs MEF-αVβ3-/-: 7.16 vs 4.25 log TCID50/ml). In sum, the deletion of αVβ3 integrin strongly 

affected flavivirus replication. 

 

 

Figure 30: Replication analysis of YFV-17D (A), WNV (B), USUV (C) and LGTV (D) in the integrin deficient MEF-αVβ3-/- 
and corresponding wild-type MEF-WT cells. RNA yields and virus titers were measured 48 hours post inoculation. 
Cells were seeded into 12-well plates and inoculated with different flaviviruses at an MOI of 10. After one hour, 
monolayers were extensively washed and shifted to 37°C for 48 hours. Supernatants were harvested, total RNA was 
isolated and RT-qPCR was performed to determine the yield of viral RNA. The amount of virus genome is expressed 
as copy numbers per microliter (log transformed). Virus titers were determined by TCID50. End-point determinations 
of virus titers were calculated using the Spearman-Kaerber method. Titers were expressed in log values. Three 
independent experiments were performed in triplicate (n=3). Bars represent mean values and error bars represent 
the standard deviation (mean ± standard deviation). Statistical analysis: Unpaired Student’s t-test with Welch’s 
correction; (****) p ≤ 0.0001; ns: not significant (p > 0.05). Abbreviations: YFV-17D: Yellow fever virus strain 17D; 
WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat virus; MEF-WT:  mouse embryonic fibroblasts wild-type; MEF-
αVβ3-/-: mouse embryonic fibroblasts deficient for the alpha V beta 3 integrin. 
  



84 

As demonstrated in Figure 30 A - D, the deletion of αVβ3 integrin strongly impairs flavivirus replication. In 

order to further investigate whether the deletion of αVβ3 integrin influences the flavivirus RNA replication, 

the level of flavivirus negative-strand RNA was measured. As shown in Figure 31, the level of negative-

strand RNA in MEF-αVβ3-/- cells was strongly reduced in comparison to MEF-WT cells. LGTV showed the 

strongest reduction of negative-strand RNA with 98.2% of reduction (Figure 31 D). The other flaviviruses 

showed reductions of 94% (YFV-17D), 65.7% (WNV) and 85% (USUV). Together, these results suggest that 

integrin expression might influence flavivirus RNA replication. 

 

 

Figure 31: Detection of flavivirus negative-strand RNA in MEF-WT and MEF-αVβ3+/+ cells. Cells were inoculated with 
YFV-17D (A), WNV (B), USUV (C) and LGTV (D) at an MOI of 10. After 48 hours post inoculation, monolayers were 
washed and then harvested, lysed and total RNA was extracted. RT-qPCR was performed to quantify the amount of 
negative-strand RNA. The levels of flavivirus negative-strand RNA were normalized against beta-actin, a 
housekeeping gene, and the relative gene expression was calculated by 2^ddCT method. Levels of flavivirus negative-
strand RNA were expressed as fold amplification in relation to the housekeeping gene. Three independent 
experiments were performed in triplicate (n=3). Bars represent mean values and error bars represent the standard 
deviation (mean ± standard deviation). Abbreviations: YFV-17D: yellow fever virus strain 17D; WNV: West Nile virus; 
USUV: Usutu virus; LGTV: Langat virus; MEF-WT:  mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse 
embryonic fibroblasts deficient for the alpha V beta 3 integrin.  
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4.5.5.4) Effect of αV or β3 integrin expression on flavivivirus replication in CHO cells 

 
In order to analyze whether the expression of αV and β3 integrin subunits could influence flavivirus 

replication in CHO cells, the CHO-K1 as well as the CHO cells expressing the αV and β3 integrin subunits 

were inoculated with YFV-17D, WNV, USUV and LGTV at an MOI of 10. 

The Figures 32 A – D show the replication profile of different flaviviruses in CHO cells expressing the mouse 

αV or β3 integrin subunit as well as in the CHO-K1 cells. Despite the high MOI (10) used in this study, 

flaviviruses only replicated poorly in all CHO cell lines tested. However, replication was slightly increased 

in CHO cells expressing either αV or β3 integrin subunits (Figures 32 A – D). The expression of αV integrin 

subunit resulted in a slight increase of YFV-17D (Figure 32 A) and USUV RNA yields (Figures 32 C) in CHO-

αV+/+ cells in comparison with the CHO-K1 cells. YFV-17D and USUV replication was increased by 82.8% and 

142.5%, respectively. Statistical analysis demonstrated that those differences were highly significant in 

both cases, YFV-17D (p = 0.0045) and USUV (p = 0.0001). In contrary to the αV integrin subunit, the 

expression of β3 integrin subunit in CHO cells did neither influence YFV-17D nor USUV (p = 0.8407 for YFV-

17D and p = 0.2685 for USUV) (Figures 32 A and C).  

For LGTV however, an increase of 72.5% in replication in CHO-β3+/+ cells in comparison to CHO-K1 cells was 

observed (Figure 32 D). This increase in LGTV replication in CHO-β3+/+ cells showed to be significant (p = 

0.0069). The expression of αV integrin subunit in CHO cells did not influence LGTV replication (Figure 32 

D). Unexpectedly, in the case of WNV, the replication seemed to be more efficient in CHO-K1 cells than in 

CHO-αV+/+ cells (Figures 32 B) and this difference showed to be statistically significant (p = 0.0024). WNV 

replication in CHO-αV+/+ cells was decreased by only 24.3 % compared to wild-type CHO-K1 cells. On the 

other hand, the replication of WNV in CHO-β3+/+ cells was slightly increased compared to CHO-K1 cells 

(Figures 32 B). The increase of WNV replication was 21.58% and showed to be significant (p = 0.0251).  

In conclusion, these cell infection assays demonstrate that expression of either αV or β3 integrin subunits 

in CHO-K1 cells might positively affect the replication of some flaviviruses. 
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Figure 32: Replication analysis of YFV-17D (A); WNV (B); USUV (C) and LGTV (D) in CHO-K1, CHO-αV+/+ and CHO-β3+/+ 

cells. The figure shows RNA yields 48 hours post-inoculation. Cells were seeded into 12-well plates and inoculated 
with different flaviviruses at an MOI of 10. After one hour, monolayers were extensively washed and shifted to 37°C 
for 48 hours. Supernatants were harvested and total RNA was isolated and RT-qPCR was performed to determine the 
yield of viral RNA. The amount of virus genome is expressed as copy numbers per microliter (log transformed). Three 
independent experiments were performed in triplicate (n=3). Bars represent mean values and error bars represent 
the standard deviation (mean ± standard deviation). Statistical analysis: One-Way ANOVA with Bonferroni correction; 
(*) p ≤ 0.05; (**) p ≤ 0.01; (****) p ≤ 0.0001; ns: not significant (p > 0.05). Abbreviations: YFV-17D: Yellow fever virus 
strain 17D; WNV: West Nile virus; USUV: Usutu virus; LGTV: Langat virus; CHO-K1: Chinese hamster ovary cells clone 
K1; CHO-αV+/+: Chinese hamster ovary cells expressing the mouse alpha V integrin subunit; CHO-β3+/+: Chinese 
hamster ovary cells expressing the mouse beta 3 integrin subunit. 
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4.6) Cell infection assays to investigate the effect of integrin ablation on Zika virus 

infection 

4.6.1) Influence of integrins on ZIKV binding to MEFs and MKFs 

 
First, it was evaluated whether the genomic deletion of integrins affects ZIKV binding to the surface of 

integrin deficient MEFs and MKFs. As demonstrated in Figure 33, the absence of αVβ3 integrin in MEF-

αVβ3-/- cells as well as the β1 and β3 integrin subunit in MKF-β1-/- and MEF-β3-/- cells did not influence ZIKV 

binding to the cell surface of these cells. No statistical significance was shown for any of the cells tested (p 

> 0.05).  

In conclusion, similar to other flaviviruses, the absence of integrin expression did not affect ZIKV binding 

to the surface of MEFs and MKFs. 

 

 

Figure 33. Zika virus (ZIKV) binding to the integrin deficient MEFs and MKFs and the corresponding wild-type cells. 
Cells were seeded into 12-well plates, placed on ice and inoculated with ZIKV at an MOI of 10. After one hour, 
monolayers were extensively washed, harvested and lysed with RLT buffer. Total RNA was isolated and RT-qPCR was 
performed to indirectly measure virus binding to the cell surface by detection of viral RNA. Virus binding values are 
expressed in cycle threshold (Ct) values. Three independent experiments were performed in triplicate (n=3). Bars 
represent the mean Ct values and error bars represent the standard deviation (means ± standard deviation). 
Statistical analysis: Mann-Whitney test; ns: not significant (p > 0.05). Abbreviations: MEF-WT: mouse embryonic 
fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts deficient for αVβ3 integrin; MKF-β1Flox: mouse 
kidney fibroblasts expressing the β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient for 
the β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); 
MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit.  
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4.6.2) Influence of integrins on ZIKV internalization by MEFs and MKFs 

 
Next, we evaluated whether the lack of integrin expression could affect ZIKV internalization into MEFs and 

MKFs. As shown in Figure 34, ZIKV was equally internalized into MEFs and MKFs regardless of integrin 

expression (Figure 34). No statistically significant difference was found between MKF-β1Flox vs MKF-β1-/- 

cells (p = 0.1605; Figure 34 B). Statistical analysis however revealed a difference in ZIKV internalization 

between MEF-β3+/+R and MEF-β3-/- cells (p = 0.0341; Figure 34 C). Although the statistical analysis 

demonstrated a significant difference, the total RNA copy numbers indicating ZIKV internalization differed 

only by 2.9% for MEF-β3+/+R vs MEF-β3-/- cells (Figure 34 C). Statistical analysis also indicated significant 

differences in ZIKV internalization between MEF-αVβ3-/- and MEF-WT cells (p = 0.0007; Figure 34 A) while 

viral RNA copy numbers between MEF-αVβ3-/- vs MEF-WT cells differed only by 2.0%. Together, our results 

demonstrated that integrins are most likely not involved in ZIKV internalization. 

 

 

Figure 34: Zika virus (ZIKV) internalization by MEF-WT and MEF-αVβ3-/- (A); MKF-β1Flox and MKF-β1-/- (B) and MEF-

β3+/+R and MEF-β3-/- (C) cells. Cells were seeded into 12-well plates, placed on ice and inoculated with ZIKV at an MOI 

of 10. After one hour, monolayers were extensively washed and shifted to 37°C for 30 minutes. Cell monolayers were 

then washed once with acidic glycine (pH 2.5) and incubated for 2 minutes, washed twice with 1X PBS. Monolayers 

were harvested and lysed with RLT buffer. Total RNA was isolated and RT-qPCR was performed to determine the 

amount of internalized virus particles. The amount of virus internalization is expressed in copy numbers per microliter 

(log transformed). Three independent experiments were performed in triplicate (n=3). Dot plots represent each 

individual replicate from the three independent experiments. Statistical analysis: Unpaired Student’s t-test; (*) p ≤ 

0.05; (***) p ≤ 0.001; ns: not significant (p > 0.05). Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; 

MEF-αVβ3-/-: mouse embryonic fibroblasts deficient for αVβ3 integrin; MKF-β1Flox: mouse kidney fibroblasts 

expressing the β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient for the β1 integrin 

subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); MEF-β3-/-: mouse 

embryonic fibroblasts deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 integrin subunit; 

β3: beta 3 integrin subunit.  
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4.6.3) Influence of integrins on ZIKV replication in MEFs, MKFs and CHO cells 

 
Subsequent experiments to evaluate the influence of integrins on ZIKV replication were performed in MEF, 

MKF and CHO cells expressing the αV and β3 integrin subunits. As demonstrated in Figure 35 C, deletion 

of β3 integrin subunit affected ZIKV replication with a reduction of ZIKV RNA yields by 54.06% in MEF-β3-

/- cells in comparison to MEF-β3+/+R cells. This reduction of ZIKV yields in MEF-β3-/- cells showed to be 

statistically significant (p = 0.0002). Surprisingly, the lack of β1 in MKF-β1-/- cells had a positive effect on 

ZIKV replication with an increase in ZIKV RNA yields of more than 77% in comparison to the MKF-β1Flox cells 

(Figure 35 B). This finding also showed to be statistically significant (p = 0.0001). On the other hand, and 

similar to what was observed for the other flaviviruses, the deletion of αVβ3 integrin in MEF-αVβ3-/- cells 

had a significant impact on ZIKV replication with a reduction of almost 98% (p = 0.0001) in ZIKV RNA yields 

compared to MEF-WT cells (Figure 35 A).  

 

 

 

Figure 35: Zika virus (ZIKV) replication analysis in MEF-WT and MEF- αVβ3-/- (A); MKF-β1Flox and MKF-β1-/- (B); MEF-
β3+/+R and MEF-β3-/- (C) cells. Cells were seeded into 12-well plates and inoculated with ZIKV at an MOI of 10. After 
one hour, monolayers were extensively washed and shifted to 37°C for 48 hours. Supernatants were harvested and 
total RNA was isolated. RT-qPCR was performed to determine the yields of viral RNA. The amount of virus genome is 
expressed as copy numbers per microliter (log transformed). Three independent experiments were performed in 
triplicate (n=3). Bars represent mean values and error bars represent the standard deviation (mean ± standard 
deviation). Statistical analysis: unpaired students t-test; (***) p ≤ 0.001; (****) p ≤ 0.0001. Abbreviations: MEF-WT: 
mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts deficient for αVβ3 integrin; MKF-
β1Flox: mouse kidney fibroblasts expressing the β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts 
deficient for the β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit (R 
= rescue); MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit; αV: alpha V integrin subunit; 
β1: beta 1 integrin subunit; β3: beta 3 integrin subunit. 
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Since MKF-β1-/- cells only showed a slight increase in ZIKV replication while MEF-β3-/- cells only displayed a 

small decrease, the ZIKV titers were not further determined by TCID50 due to the very small differences in 

RT-qPCR based RNA quantification. However, the titers of ZIKV in MEF-WT cells and MEF-αVβ3-/- cells were 

determined by TCID50 to further confirm the inhibition of ZIKV replication observed in these cells. Titers of 

ZIKV in MEF-αVβ3-/- cells were reduced by almost 2 logs in comparison to MEF-WT cells (MEF-WT vs MEF-

αVβ3-/- : 6.29 vs 4.37 log TCID50/ml; Figure 36), reinforcing the involvement of αVβ3 integrin in ZIKV 

replication. 

 
 

 

Figure 36: Zika virus (ZIKV) titers after inoculation of MEF-αVβ3-/- and MEF-WT cells. Cells were seeded into 12-well 
plates and infected with ZIKV at an MOI of 10. After one hour, monolayers were extensively washed and shifted to 
37°C for 48 hours. Supernatants were harvested and ZIKV titers were determined by TCID50. End-point titers were 
calculated using the Spearman-Kaerber method. Titers are expressed in log values. Experiment was performed in 
triplicate. Bars represent mean values and error bars represent the standard deviation (mean ± standard deviation). 
Abbreviations: MEF-WT: mouse embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblasts deficient 
for αVβ3 integrin; αV: alpha V integrin subunit; β3: beta 3 integrin subunit. 

 
 
 
To confirm that ablation of integrins, in particular the αVβ3 integrin, interferes in flavivirus RNA replication, 

the level of ZIKV negative-strand RNA was measured.  

As shown in Figure 37, no significant differences in the levels of ZIKV negative-strand RNA expression in 

MKF-β1-/- and the MEF-β3-/- cells in comparison to the respective wild-type cells, MKF-β1Flox and MEF-β3+/+R, 

were detected. In contrast, synthesis of ZIKV negative-strand RNA in MEF-αVβ3-/- cells was reduced almost 

1000-fold compared to MEF-WT cells (Figure 37). In conclusion, deletion of αVβ3 integrin affects ZIKV 

replication at RNA replication level. 
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Figure 37. Levels of Zika virus (ZIKV) negative-strand RNA in integrin deficient MEFs and MKFs and corresponding 
wild-type cells. Cells were inoculated with ZIKV at an MOI of 10 at 37°C for 1 hour. After inoculation, cells were 
washed 6 times and incubated at 37°C for 48 hours. Monolayers were harvested 48 hours after inoculation and levels 
of ZIKV negative-strand RNA were measured by RT-qPCR. The levels of ZIKV negative-strand RNA were normalized 
against beta-actin, a housekeeping gene, and the relative gene expression was calculated by 2^ddCT method. Levels 
of ZIKV negative-strand RNA were expressed as fold amplification in relation to the housekeeping gene. Three 
independent experiments were performed in triplicate (n=3). Bars represent mean values and error bars represent 
the standard deviation (mean ± standard deviation). Scale was log-transformed. Abbreviations: MEF-WT: mouse 
embryonic fibroblasts wild-type; MEF-αVβ3-/-: mouse embryonic fibroblast deficient for αVβ3 integrin; MKF-β1Flox: 
mouse kidney fibroblasts expressing the β1 integrin subunit (wild-type); MKF-β1-/-: mouse kidney fibroblasts deficient 
for the β1 integrin subunit; MEF-β3+/+R: mouse embryonic fibroblasts expressing the β3 integrin subunit (R = rescue); 
MEF-β3-/-: mouse embryonic fibroblasts deficient for the β3 integrin subunit; αV: alpha V integrin subunit; β1: beta 1 
integrin subunit; β3: beta 3 integrin subunit 

 

 

In order to assess whether the expression of αV and β3 integrin subunits in CHO cells could enhance ZIKV 

replication, CHO cells expressing the αV or β3 integrin subunits as well as the corresponding CHO wild-

type cells were inoculated with ZIKV. In contrast to what was observed for the other flaviviruses in the 

replication assays in CHO cells, the expression of αV or β3 integrin subunits did not enhance ZIKV 

replication in CHO cells (Figure 38 A). Statistical analysis (One-Way ANOVA) failed to demonstrate any 

statistical significance between the groups.  

Next, the level of ZIKV negative-strand RNA was measured by RT-qPCR. The levels of negative-strand ZIKV 

RNA were similar in all CHO cells tested regardless of the expression of αV or β3 integrin subunits in these 

cells (Figure 38 B). In conclusion, these results demonstrate that the ectopic expression of integrins in CHO 

cells does not influence ZIKV replication. 
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Figure 38: Zika virus (ZIKV) replication analysis in CHO-K1, CHO-αV+/+ and CHO-β3+/+ cells. Figure A shows RNA yields 
after 48 hours post-inoculation and Figure B shows the level of ZIKV negative strand RNA measured by RT-qPCR. Cells 
were seeded into 12-well plates and inoculated with ZIKV at an MOI of 10. After one hour, monolayers were 
extensively washed and shifted to 37°C for 48 hours. Supernatants were harvested and total RNA was isolated. RT-
qPCR was performed to determine the yield of viral RNA. (A) The amount of virus genome is expressed as copy 
numbers per microliter (log transformed). (B) The levels of ZIKV negative-strand RNA were normalized against beta-
actin, a housekeeping gene, and the relative gene expression was calculated by 2^ddCT method. Levels of ZIKV 
negative-strand RNA were expressed as fold amplification in relation to the housekeeping gene. Three independent 
experiments were performed in triplicate (n=3). Bars represent mean values and error bars represent the standard 
deviation (mean ± standard deviation). Statistical analysis: One–way ANOVA with Bonferroni correction; ns: not 
significant (p > 0.05). Abbreviations: CHO-K1: Chinese hamster ovary cells clone K1; CHO-αV+/+: Chinese hamster 
ovary cells expressing the mouse alpha V integrin subunit CHO-β3+/+: Chinese hamster ovary cells expressing the 
mouse beta 3 integrin subunit. 
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5) Discussion 
 
Flaviviruses have an extraordinary ability to infect a huge diversity of hosts. Thus, for many years, it was 

proposed that flaviviruses use a single common receptor to infect the host cell. However, since many 

molecules have been recently characterized to function as potential flavivirus receptors in different cell 

lines from different hosts, the idea of one common receptor has been rejected (Gould et al., 2008; 

Kaufmann et al., 2011; Perera-Lecoin et al., 2013; Rodenhuis-Zybert et al., 2010b; Smit et al., 2011). Thus, 

today the main hypothesis claims that flaviviruses use multiple receptors to get access into the host cell 

and that the receptor repertoire might change according to the host and/or the cell line (Kaufmann et al., 

2011; Perera-Lecoin et al., 2013).  

Another subject that has been extensively studied over the last few years are host cell factors that 

modulate virus infection. Those host cell factors might not function as the cellular receptor but might act 

as accessory molecules that influence the virus infection (Fernandez-Garcia et al., 2009; Pastorino et al., 

2010; Wang et al., 2017).  

In the past, several groups have proposed and investigated the involvement of cell adhesion molecules, in 

particular integrins, in the flavivirus infection cycle (Chu et al., 2004b; Medigeshi et al., 2008; Protopopova 

et al., 1997) since integrins are highly conserved among vertebrate and invertebrate species and 

constitutively expressed in all cell lines (Hynes, 1992). 

A recent study by Schmidt et al. (2013) concluded that WNV entered the cells independently of the integrin 

expression and regardless of the WNV strain used. For this study, a MEF cell line lacking the expression of 

different integrin subunits was infected with different WNV strains. For all these WNV strains, the lack of 

integrin expression did not affect binding or internalization into the MEFs. However, the deletion of β1 or 

β3 integrin subunits affected WNV replication suggesting a role of integrins in WNV infection (Schmidt et 

al., 2013a). More recently, integrin αVβ3 has been demonstrated to play a role in JEV infection reinforcing 

the importance of integrins in the flavivirus infection cycle (Fan et al., 2017). 

In the present study, a similar model based on MEFs deficient for the expression of one or more integrin 

subunits and their respective wild-type cells were used to assess the influence of integrins in the flavivirus 

infection cycle. Additionally, CHO cells expressing the mouse αV or β3 integrin subunits were generated 

to investigate the involvement of these cell adhesion molecules in the flavivirus infection cycle. All these 

cell lines were used to assess their permissiveness and susceptibility to different flaviviruses, namely YFV-

17D, USUV, LGTV, WNV and ZIKV. 
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5.1) Development of suitable cell models 
 
In this study, several cell models were established to investigate the involvement of integrins in the 

flavivirus infection cycle. Those models were based on (i) MEFs lacking the expression of αVβ3 integrin or 

β3 integrin subunit; (ii) MKFs lacking the expression of β1 integrin subunit and iii) CHO cells expressing 

either αV or β3 integrin subunits.  

The deletion of these specific integrin subunits in MEFs and MKFs enabled us to evaluate whether one 

specific integrin heterodimer or specific integrin subunit(s) were involved in the flavivirus infection cycle. 

The ablation of the respective integrin genes in the integrin deficient MEFs and MKFs occurred at the 

genomic level by homologous recombination (Fassler et al., 1995a; Hodivala-Dilke et al., 1999; Schmidt et 

al., 2013a). The advantage of this method is that by deleting the target genes at the DNA level, most of 

the off-target effects caused by other gene silencing methods such as siRNA are avoided and/or abrogated 

(Boettcher et al., 2015). Those effects would include residual expression of target genes and activation of 

the innate immunity by introducing foreign nucleic acids into the target cell cytoplasm (Angart et al., 2013; 

Jackson et al., 2010). Another advantage of using MEFs is that these cells are easily isolated and maintained 

and have a high rate of proliferation in vitro (Ruiz-Ojeda et al., 2016). Although no study has fully described 

the whole integrin profile in MEFs, a few studies have demonstrated that they express a diverse repertoire 

of integrins such as α5β1, α11β1, α2β1 and α1β1 (Carracedo et al., 2010; Guo et al., 2005; Lu et al., 2014; 

Popova et al., 2004; Zhu et al., 2007). Due to the embryonic origin of MEFs used in the present study, the 

expression of integrins might be substantially upregulated in these cells to mediate important cellular 

processes during embryonic stages such as migration, attachment and differentiation of the cells  (Bokel 

et al., 2002; Hertle et al., 1991; Schmid et al., 2003; Sutherland et al., 1993). 

In contrast to that, CHO cells express only a limited integrin repertoire and have been reported to be 

unsusceptible to several viral agents including members of the Flavivirus genus which makes these cells a 

suitable model to study the involvement of integrins in flavivirus infection (Berting et al., 2010; Garrigues 

et al., 2008; Symington et al., 1993; Takagi et al., 1997; Xu et al., 2011).  

Lastly, although mice and hamster are not a natural flavivirus reservoir, a number of cell lines derived from 

these species have been reported to be susceptible to flavivirus infection and support efficient replication 

(Chan et al., 2016; Rossi et al., 2016; Tesh et al., 2005; Wang et al., 2011). In this study, we demonstrated 

that some flaviviruses such as YFV-17D and USUV replicated to comparable levels in MEF-WT cells as in 

Vero cells, the most flavivirus permissive cell line. These results strongly support the usage of MEFs and 

MKFs to investigate flavivirus susceptibility and replication in vitro. 
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5.1.1) Recovery of αVβ3 integrin in MEF-αVβ3-/- cells 

 
MEFs deficient for αVβ3 integrin were subjected to recover their respective integrin genes. For that, cells 

were transfected with vectors carrying the mouse αV and β3 integrin subunit genes. Though several 

transfection strategies were followed, the expression of αVβ3 integrin in MEF-αVβ3-/- cells was not 

recovered. Different cationic lipid based transfection reagents and several transfection methods such as 

electroporation were attempted but only resulted in low transfection efficiency and high cell toxicity 

leading to excessive cell death. By transfecting the integrin subunit encoding plasmids one after another 

into MEF-αVβ3-/- cells, the recovered integrin expression was very low. After a few passages, the level of 

integrin expression even decreased which made it necessary to base the following work on MEF wild-type 

cells. Per se, primary cells such as MEFs are known to be hard to transfect and several authors have 

experienced low transfection efficiencies using cationic lipid based transfection as performed in our study 

(Han et al., 2015; Lee et al., 2017). The antibiotic selection reagents used for selection of transgenic 

resistant cells might also play a crucial role in the establishment of transgenic cell lines (Lanza et al., 2013). 

Unsuccessful recovery of expression of both integrin subunits in MEF-αVβ3-/- cells might therefore be 

attributed to the toxic effects of the antibiotics used for selection of resistant clones. However, the zeocin 

selection marker used in our study showed to be superior in selecting resistant clones compared to other 

antibiotic selection markers (Lanza et al., 2013). Since MEF-αVβ3-/- cells were transfected with two vectors 

either harboring the antibiotic resistance gene for zeocin or hygromycin, cells were selected by adding 

both antibiotics to the cell culture medium. It remains unclear whether both antibiotic resistance genes 

were expressed at their maximum level to allow complete cell resistance to both antibiotics. This might 

also explain the observation of some transfected MEF-αVβ3-/-cell populations that expressed different 

levels of αV and β3 integrin subunits and later succumbed to antibiotic selection. To transduce the target 

genes into MEF-αVβ3-/- cells and recover the expression of αVβ3 integrin, viral vector-based methods 

might be an interesting approach for future studies.  

 

5.2) Cell morphology, growth rates and viability of MKFs, MEFs and CHO cells 
 
Since MEFs and MKFs originate from different tissues, differences on cell morphology, growth rate and 

integrin expression were expected.  

The double deficient MEF-αVβ3-/- cells revealed a remarkable difference in cell morphology and growth 

rates compared to their wild-type cells. These differences in cell morphology and growth rates are certainly 

due to the genomic deletion of αVβ3 integrin. A study conducted by Cruet-Hennequart et al.,(2003) 

reported that αVβ3 and αVβ5 integrins regulate cell proliferation by activating the integrin-linked kinase 

leading to cell cycle progression. Functional blocking of these integrins by epitope blocking antibodies as 
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well as synthetic RGD peptides led to inhibition of the cell cycle with consequent reduction of cell 

proliferation (Cruet-Hennequart et al., 2003). Despite the reduction of cell growth and density, the MEF-

αVβ3-/- cells showed an abnormal morphology by forming cell aggregations. This abnormal morphology 

might be attributed to the loss of αVβ3 integrin and the increased need of the close cell-to-cell contact to 

promote growth. A number of publications have further demonstrated that the absence of αVβ3 and α5β1 

integrins disturbs cell spreading and expansion on extracellular matrices (Balcioglu et al., 2015; Charo et 

al., 1990; Cruet-Hennequart et al., 2003). These observations might also account for the formation of 

“cellular islets“ observed in MEF-αVβ3-/- cells in our study. 

Notably, the MKF-β1-/- cells displayed a more rounded shape compared to the parental cell line, the MKF-

β1Flox cells. This morphological effect is most likely attributed to the deletion of β1 integrin subunit and 

was also observed by others (Fassler et al., 1995b; Hou et al., 2016). Interestingly, in our study, the loss of 

β1 integrin subunit did not affect the MKF-β1-/- cell growth rate as observed by similar split ratios 

compared to MKF-β1Flox cells. However, their growth rate was still higher than that observed for MEFs. 

These characteristics concerning morphology and cell growth are in accordance with reports from other 

authors (Fassler et al., 1995b; Hou et al., 2016; Schmidt et al., 2013a).  

Unexpectedly, the loss of β3 integrin subunit expression in MEF-β3-/- cells did neither influence cell 

morphology nor cell growth. However, the rescued β3 expressing cells (MEF-β3+/+) showed a strong 

decrease of growth rate. This special characteristic observed in MEF-β3+/+ cells is most probably attributed 

to the usage of zeocin as antibiotic selection marker and was also observed in the CHO-β3+/+ cells treated 

with zeocin. Last, ectopic expression of either αV or β3 integrin in CHO cells did not influence cell 

morphology. However, similar to what was observed in MEF-β3+/+ cells, we experienced a decline in the 

split ratio for maintenance in the CHO-β3+/+ cells when compared to the CHO-K1 cells. Again, this effect 

might be attributed to the use of zeocin as selection antibiotic and was also reported by another author 

(Hwang et al., 2005). 

Despite the fact that the deletion of integrins might influence cell morphology, spread and growth, 

deleting one or more integrin subunits does not seem to influence cell viability in our study.  

Our metabolic viability assay (MTS assay) clearly demonstrated that loss of integrin expression did not 

affect cell viability regardless of the cell line tested. Within the course of the study and prior to infection 

experiments, cells were routinely checked by trypan blue staining which did not reveal any decrease in cell 

viability. Though several publications have reported that integrin ablation or knock-down might trigger 

apoptotic pathways consequently leading to cell death in certain cell types (Koistinen et al., 2004; Popov 

et al., 2011; Simirskii et al., 2007), we did not observe such an effect in any of our cell lines.  

This might be attributed to the expression of alternative integrin heterodimers that counterbalance the 

lack of αVβ3 integrin, β1 and β3 integrin subunits in our MEFs and MKFs. Other authors have reported that 
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expression of integrins in certain cell types rescued these cells from entering into apoptosis by triggering 

intracellular signaling with the result of cell survival (Montgomery et al., 1994; Zhang et al., 1995). 

 

5.3) Characterization of integrin expression in MEFs, MKFs and CHO cells 
 
In order to characterize the integrin expression among our cell lines, several methods were applied. 

Confocal laser microscopy analysis was performed to determine the sub-cellular localization of integrins 

and/or the loss of αVβ3 integrin and β1 and β3 integrin subunits. 

Integrins were homogeneously distributed along the cell membrane in all analyzed MEF and MKF cell lines 

which is in accordance to the literature (Geiger et al., 2011). As expected, MEF and MKF wild-type cells 

expressed αV, β3 or β1 integrin subunits in high amounts evidenced by the presence of multiple focal 

adhesion sites. The presence of these structures visualized in wild-type MEFs and MKFs indicated the 

formation of functional integrin heterodimers as reported by other authors (Schmidt et al., 2013a). 

Interestingly, by staining the integrin deficient cells, we also observed the presence of focal adhesion sites 

indicating that other functional integrin heterodimers were indeed expressed in the deficient cell lines. 

For example, the deletion of β1 in MKF-β1-/- cells did not affect the expression of αV and β3 subunits in 

these cells in our study. This fact can be explained by the structural composition of integrins as 

heterodimers that are composed of one α and one β integrin subunit (Hynes, 2002). The genomic ablation 

of β1 integrin subunit in these cells obviously impairs the formation of all β1 integrin heterodimer 

combinations at the cell surface level whereas other heterodimers remain unaffected as described by 

other groups (Fassler et al., 1995b; Hynes, 2002; Schmidt et al., 2013a). Similarly, the deletion of αVβ3 

integrin in MEF-αVβ3-/- cells disrupts the expression of six integrins (αVβ1, αVβ3, αVβ4, αVβ5, αVβ6 and 

αVβ8) while the deletion of β3 integrin subunit in MEF-β3-/- cells only impairs the expression of αVβ3 in 

this specific cell line according to the literature (Hynes, 2002; Schmidt et al., 2013a). 

Confocal microscopy analysis in CHO-β3+/+ and CHO-αV+/+ cells revealed an integrin expression at the cell 

surface similar to the pattern observed in MEFs/MKFs. This indicates the formation of integrin 

heterodimers by combining endogenous hamster integrin subunits with ectopic mouse integrin subunits. 

Due to the fact that integrins share a high similarity among the mammalian species, the formation of 

hybrid integrins is possible and was reported by other authors (Briesewitz et al., 1995; Symington et al., 

1993; Takagi et al., 1997). In the case of CHO cells expressing the mouse αV integrin subunit (CHO-αV+/+) 

the probable integrin combination is αVβ1 integrin, as a previous report showed the expression of 

endogenous β1 integrin subunit in CHO cells (Takagi et al., 1997). For CHO cells expressing the mouse β3 

integrin subunit, the only heterodimer combination possible is the αVβ3 integrin since the αIIb is 

exclusively expressed in platelets and megakaryocytes (Bennett, 2005; Hynes, 2002). 
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In order to measure the level of integrin expression in our cell lines, RT-PCR and flow cytometry analysis 

were performed. The wild-type MEFs and MKFs expressed high levels (> 90%) of αV, β1 and β3 integrin 

subunits which is in accordance with a previous report (Schmidt et al., 2013a). Concerning the integrin 

deficient cells, flow cytometry results demonstrated the total absence of either αVβ3 integrin (MEF-αVβ3-

/-), β3 (MEF-β3-/-) or β1 (MKF-β1-/-) integrin subunits in the respective cell lines which has been described 

before (Fassler et al., 1995a; Schmidt et al., 2013a).  

There have been controversies in the literature whether the deletion of one specific integrin could up- or 

down-regulate the expression of other integrins. In our study, we did not determine up- or down-

regulation of other integrin subunits in response to deletion of αV, β1 or β3 integrin subunits. However, 

our observations demonstrated that levels of β1 integrin expression in MEF-αVβ3-/- and MEF-β3-/- cells or 

αV and β3 integrin expression in MKF-β1-/- cells remained constant according to the flow cytometry 

analysis. A study using human cardiac fibroblasts reported that β3 integrin gene knock-down by siRNA 

upregulated the expression of β5 integrin subunit. The opposite effect of β3 integrin upregulation was 

observed when β5 integrin subunit was silenced, demonstrating a compensatory effect between both 

integrin subunits (Sarrazy et al., 2014). Another study showed that α2β1 integrin in keratinocytes was 

substituted by other collagen binding integrins such as α1β1 or α11β1 integrin in α2 knock-out-mice (Zhang 

et al., 2006). On the other hand, two studies reported no compensatory effects in αV and β3 integrin-null 

mice (Bader et al., 1998; Hodivala-Dilke et al., 1999). As the level of integrin subunits other than αV, β1 

and β3 was not determined in our study, a compensatory effect can only be assumed.  

Transfection of CHO cells with a vector carrying either the mouse αV or β3 integrin subunit genes resulted 

in clones stably expressing mouse αV or β3 integrin subunits as demonstrated by RT-PCR and flow 

cytometry analysis. Flow cytometry revealed expression of high levels of mouse αV and β3 integrin 

subunits. As mentioned above, CHO cells are known to express only a few integrins. However, a study 

demonstrated the expression of endogenous β1 integrin and αV integrin subunits (Takagi et al., 1997). 

Due to unknown reasons, this hamster αV integrin subunit was not expressed on the cell surface (Takagi 

et al., 1997). In our study, we assume that the ectopic expression of mouse β3 integrin subunit in CHO cells 

was able to rescue the expression of hamster αV since we detected the mouse β3 integrin subunit at the 

cell surface. This assumption is supported by the fact that β3 integrin subunit is only described to form 

heterodimers with αV or αIIb integrin subunits, the latter being exclusively expressed in megakaryocytes 

and platelets (Bennett, 2005; Hynes, 2002). The formation of hamster/mouse “hybrid” integrins such as 

α5β1, α3β1, αVβ1 and αVβ3 was also reported by other authors (Balzac et al., 1993; Felding-Habermann 

et al., 1997; Laukaitis et al., 2001; Zhang et al., 1993). 

Finally, to confirm whether the integrins expressed in CHO cells are functional and able to recognize their 

ligands, a cell adhesion assay was performed. In this assay, both CHO cell lines expressing hamster/mouse 
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hybrid integrins showed to recognize vitronectin as their integrin ligand while CHO-K1 cells bound less 

efficiently to vitronectin. This observation confirmed the functionality of the hybrid integrins expressed in 

CHO cells and is also reported by other authors (Balzac et al., 1993; Felding-Habermann et al., 1997; Zhang 

et al., 1993). 

In the same assay, integrin-deficient MEFs and MKFs bound less efficiently to vitronectin than their 

respective wild-type cells. However, binding was observed for all cell lines regardless of absence or 

presence of αV, β1 or β3 integrin subunits. Though the present study was focused on αV, β1 and β3 integrin 

subunits, these results provide evidence that MEF-αVβ3-/-, MEF-β3-/- and MKF-β1-/- cells may indeed 

express other RGD binding integrins. However, the expression level of these RGD binding integrin 

heterodimers in our MEF and MKF cell lines is unknown.  

 

5.4) Cell infection assays 

5.4.1) Flavivirus binding to the cell surface is not enhanced by the presence of integrins 

 
In order to analyze the influence of integrins in flavivirus binding to the cell surface, binding assays were 

performed by infecting the cells at 4°C which allows virus binding but prevents virus internalization. In our 

study, we clearly demonstrate that αVβ3, β1 and β3 integrin subunits are not involved in flavivirus binding 

to the cell surface of MEFs, MKFs and CHO cells expressing either αV or β3 integrin subunits. Even in the 

case of YFV-17D that harbors the RGD motif which is an integrin binding motif, the virus binding to the cell 

surface of MEF and MKF cells was not affected by the deletion of integrin subunits in the respective cells. 

Interestingly, van der Most et al.,(1999) explicitly demonstrated that, by introducing mutations in the RGD 

motif of YFV-17D, the absence of this motif had no impact on YFV-17D binding and infectivity (van der 

Most et al., 1999). These observations are consistent with the results from our study demonstrating that 

the presence of RGD motif in YFV-17D does not affect YFV-17D binding to integrins. Our results rather 

suggest that other molecules than integrins are used by flaviviruses to promote binding. Several other 

molecules were reported as flavivirus binding/attachment receptor such as laminin, DC-SIGN and GAGs 

(Perera-Lecoin et al., 2013). Among those, GAGs have been reported to mediate flavivirus binding to a 

variety of cells (Chen et al., 1997; Chien et al., 2008; Germi et al., 2002; Hilgard et al., 2000; Kim et al., 

2017; Kroschewski et al., 2003; Lee et al., 2004; Lin et al., 2002). Since GAGs are expressed in a wide variety 

of cells, including MEFs and CHO cells (Bame et al., 1989; Bernfield et al., 1999; Cuellar et al., 2007; 

Kraushaar et al., 2013; Llorente-Cortes et al., 2002), the presence of these molecules might overlap the 

interaction of integrins with flaviviruses during the early steps of infection. As a result, flaviviruses might 

preferentially bind to GAGs rather than integrins. The GAG interactions with E-DIII proteins are 

characterized by electrostatic interaction that generally lacks specificity and shows low affinity (Smit et al., 



100 

2011). A few studies have documented that the presence of GAGs on the cell surface of CHO cells mediate 

virus binding. A study with WNV using a derivative CHO cell line deficient for GAGs demonstrated that 

WNV binding to the cell surface was strikingly impaired in comparison with the CHO wild-type cells further 

supporting the role of GAGs in flavivirus attachment  in CHO cells (Schmidt, 2012). In addition to that, Jan 

et al.,(1999) demonstrated that Sindbis virus, an arbovirus in the Alphavirus genus (Togaviridae family) 

bound to the cell surface of CHO cells. Upon CHO cell treatment with heparinase I, virus binding was 

decreased by more than 20% compared to the untreated control, demonstrating that GAGs also act as an 

attachment factor for other arboviruses such as Sindbis virus in CHO cells (Jan et al., 1999).  

Another important issue to be mentioned is the flavivirus strains used in this study. With the exception of 

USUV and ZIKV, all other strains are considered vaccine strains (YFV-17D and WNV-chimerivax) or 

attenuated strains (LGTV). It was previously reported that serial in-vitro passages of flaviviruses raise cell 

culture-adapted viral populations with GAG binding residues in the flavivirus E-DIII protein. This 

characteristic has been attributed to virus attenuation, a desired feature in virus vaccine strains (Lee et al., 

2002; Lee et al., 2006a). In our study, we did not compare wild-type viruses with their respective 

vaccine/attenuated strains. Thus, comparisons between flavivirus vaccine strains and their respective 

virulent strains might be helpful to further elucidate a potential role of integrins in flavivirus binding to the 

host cell. So far, all our observations suggest the presence of a common attachment factor in MEFs/MKFs 

and CHO cells that mediate flavivirus binding. 

In order to verify whether other integrins are involved in flavivirus binding, we performed a binding 

inhibition assay in MEFs using three different integrin ligands: synthetic RGD peptide and vitronectin that 

bind to RGD binding integrins and type-I collagen that binds all collagen-binding integrins. Binding 

inhibition assays using integrin ligands as well as integrin epitope blocking antibodies are widely used to 

test the ability of these molecules to block integrin-mediated virus binding and internalization. For 

example, FMDV uses αvβ8 integrin to mediate binding to and internalization into SW40 cells, a human 

colon cancer cell line. Cell treatment with synthetic RGD motif as well as antibodies against the αv integrin 

subunit completely abrogated FMDV binding and infection of the cells (Jackson et al., 2004). Similarly, 

Berinstein et al.,(1995) demonstrated that αvβ3 integrin was implicated in FMDV binding to the host cell 

and internalization. In this study, antibodies against the αvβ3 integrin inhibited binding and plaque 

formation upon infection in Macaca mulatta kidney (LLC-MK) cells while antibodies against the α5β1 

integrin could not inhibit FMDV binding and plaque formation (Berinstein et al., 1995). 

In our study, cell treatment with the synthetic integrin ligands had clearly no influence on flavivirus binding 

to the cell surface of MEFs. These results strikingly contradict those of two other groups who 

demonstrated that cell treatment with synthetic RGD motif or epitope blocking antibodies inhibited WNV 

and JEV binding to Vero and BHK cells, respectively (Chu et al., 2004b; Fan et al., 2017). Instead, our results 
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are in accordance with those proposed by two groups who demonstrated that WNV binding to the target 

cells is not inhibited by integrin epitope-blocking antibodies and is rather independent of integrins 

(Medigeshi et al., 2008; Schmidt et al., 2013a). A similar assay used in our study to evaluate the ability of 

integrin ligands to inhibit virus infection was also used by other authors for different viruses (Jackson et 

al., 2002; La Linn et al., 2005; Wickham et al., 1993). Taken together, the results provided by the binding 

assay as well as by the binding inhibition assay strongly suggest that integrins are not involved in flavivirus 

binding to the cell surface. 

 

5.4.2) Lack of integrins does not abrogate flavivirus internalization 

 
Due to the fact that integrin activation promotes internalization of several viruses (Hussein et al., 2015; 

Triantafilou et al., 2001), it was hypothesized whether flaviviruses might also use this route to enter the 

host cell. In the present study, the absence of αVβ3 integrin and β1 and β3 integrin subunits did not 

abrogate flavivirus entry. However, we found evidences that the internalization of some flaviviruses into 

MEFs might be affected by the deletion of integrins. To assess the statistical significance between these 

groups, a parametric Student’s t-test was applied since the samples were unpaired and the measured 

values were normally distributed. Although statistical analyses demonstrated significant differences in 

internalization of USUV, WNV and ZIKV (p < 0.001, p < 0.0001, and p < 0.001 respectively) in MEF-WT cells 

compared to MEF-αVβ3-/- cells, the absolute differences observed were modest and have apparently a 

limited biological relevance. The same effect was observed for LGTV (p = 0.0318) in MEF-β3+/+R cells and 

for ZIKV in MEF-β3+/+R cells (p = 0.0341) and MEF-αVβ3-/- cells (p = 0.0007) compared to the respective 

integrin deficient cells. These significant differences might be explained by the fact that each of the 

compared groups had only small standard deviations among their sample values. Therefore, even small 

differences between the mean values of the two compared groups might result in statistical significance. 

Analysis of measurements from RT-qPCR showed clearly that the differences between the compared 

groups were substantially small even before log transformation.  

Since the αVβ3, β1 and β3 integrin deficient cells used in our study express other integrins, we cannot 

definitely exclude the involvement of these other integrins in flavivirus internalization. In the case of 

adenoviruses that have multiple RGD sequences displayed in the adenovirus penton base, αVβ3 and αVβ5 

integrins were shown to mediate virus internalization (Wickham et al., 1993). However, these integrins 

have no influence on adenovirus attachment suggesting that other molecules such as heparan sulfate are 

utilized as attachment factor (Wickham et al., 1993). Thus, similar to what was described for adenoviruses, 

it might be conceivable that flaviviruses first bind to an unspecific attachment factor and then 

subsequently to integrins to promote virus internalization. Another study demonstrated that upon 
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adenovirus binding, virus interaction with αV integrin subunit leads to FAK phosphorylation and virus 

internalization (Li et al., 1998). Moreover, Chu et al.,(2004a) reported that upon WNV binding to αVβ3 

integrin, FAK was phosphorylated indicating an activation of intracellular signaling (Chu et al., 2004a). In 

contrast to these results, another group demonstrated that WNV infectivity is independent of FAK 

phosphorylation by using FAK deficient mouse embryonic fibroblasts (Medigeshi et al., 2008). Whether 

other flaviviruses rather than WNV lead to FAK phosphorylation should be further investigated. 

Since integrin recognition motifs are not required for viruses to interact with integrins as described for 

hantaviruses, it might be possible that flaviviruses still use intergrins for internalization. Neither 

pathogenic nor non-pathogenic hantaviruses have integrin ligand motifs although hantavirus interaction 

with integrins was demonstrated by several studies (Gavrilovskaya et al., 1999; Gavrilovskaya et al., 1998). 

However, another study demonstrated that hantaviruses bind to another integrin region, the plexin-

semaphorin-integrin domain (PSI), which then mediates hantavirus infection in CHO cells (Raymond et al., 

2005). Whether these atypical interactions occur during flavivirus internalization is unknown and should 

be further addressed. 

Interestingly, studies demonstrated that HCMV gB and gH proteins do not display any canonical integrin 

ligand motifs such as RGD but only a highly conserved disintegrin-like domain that mediates interactions 

with integrins (Feire et al., 2004; Feire et al., 2010) and use αVβ3 integrin as co-receptor (Wang et al., 

2005). This is then followed by the activation of integrin intracellular signaling and consequent virus entry 

into human embryonic lung fibroblasts (Wang et al., 2005). Another study demonstrated that integrins are 

not involved in the attachment of HCMV but rather in a post-attachment step mediating HCMV 

internalization into the host cell (Feire et al., 2004). According to these results, one might speculate 

whether flaviviruses use integrins as co-receptor to mediate flavivirus internalization in a similar manner 

as to what was observed for HCMV. In addition, these two studies mentioned above highlight an 

interaction of viruses containing a disintegrin-like domain. According to our knowledge, the presence of a 

disintegrin-like domain in the flavivirus E protein has never been reported and should be further 

investigated.  

In sum, the results provived by our internalization assay suggest that αVβ3 integrin and β3 integrin subnit 

might be involved in the internalization of some flaviviruses (WNV, USUV, LGTV) tested in this study. 

However, the results should be interpreted carefully since i) the absolute differences between wild-type 

and integrin deficient cells were considered to be modest although statistically significant; ii) flavivirus 

species-specific differences in integrin usage might occur and iii) the involvement of other integrins in 

flavivirus internalization cannot be completely excluded. Therefore, further investigations should be 

performed in order to elucidate the role of integrins in flavivirus internalization. 
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5.4.3) Integrins modulate flavivirus replication 

 
In the viral replication kinetics assay, MEFs and MKFs were infected with different flaviviruses at a very 

low MOI which in turn allowed to analyze the permissiveness and replication efficiency in both integrin 

deficient and their respective wild-type cells. All cell lines including the integrin-deficient MEFs and MKFs 

were susceptible and permissive to flavivirus infection. Regardless of the integrin expression, viral 

infection led to production of infectious viruses that were later quantified by TCID50. In the case of CHO 

cells, infection at a very low MOI did not produce detectable viral titers confirming the hypothesis that 

CHO cells are refractory and not permissive to flavivirus infection. This resistance to flavivirus infection is 

also reported by other authors (Berting et al., 2010; Fan et al., 2017). Based on the observations in MEFs 

and MKFs in our replication kinetics experiments, we can however reject the hypothesis that αVβ3 

integrin, β1 or β3 integrin subunits act as flavivirus receptors. These observations were also reported by 

other authors (Medigeshi et al., 2008; Schmidt et al., 2013a). Although all flaviviruses in our study were 

able to infect MEF and MKF cell lines independent of the integrin expression, the replication efficiency in 

the integrin deficient cells was substantially impaired compared to the respective wild-type cells. Most 

notably, in the replication assay, ablation of integrins in MEF-αVβ3-/- cells influenced the flavivirus 

replication efficiency with a reduction of viral load by more than 90% as well as a strong decrease on virus 

titers for all the viruses tested indicating that integrins indeed play a role in flavivirus replication. The 

involvement of αVβ3 integrin in virus infection has been extensively reported for several other viruses 

such as HCMV, HHV-1, FMDV and adenoviruses (Berinstein et al., 1995; Parry et al., 2005; Wang et al., 

2005; Wickham et al., 1993).  

Moreover, we demonstrated that ablation of integrins had a negative effect on flavivirus RNA replication 

by measuring the amount of flavivirus negative-strand RNA in MEF-αVβ3-/- cells. These findings implicate 

that integrins might be indirectly involved in flavivirus RNA replication and may thus serve as a host cell 

factor. Several host cell factors have been described to influence the flavivirus RNA replication including 

the synthesis of flavivirus negative-strand RNA such as the reticulon protein (Aktepe et al., 2017) and 

AUF1p45 chaperone proteins (Friedrich et al., 2017) for DENV, ZIKV and WNV. To our knowledge, this is 

the first study reporting the involvement of αVβ3 integrin in YFV, USUV, LGTV and ZIKV RNA replication. 

Although the exact mechanism of how integrins modulate flavivirus RNA replication is currently unknown, 

we provide strong evidence that integrin expression, in particular the αVβ3 integrin, influences flavivirus 

RNA replication. The integrin-mediated modulatory effects on members of the Flaviviridae family in virus 

infection have also been explored by other authors (Fan et al., 2017; Li et al., 2014; Schmidt et al., 2013a). 

The total loss of αVβ3 integrin in MEF-αVβ3-/- cells profoundly impaired WNV replication in our study 

indicating that both integrin subunits might be fundamental for WNV replication. However, we did not 

observe a very strong inhibition in MEF-β3-/- cells infected with the WNV vaccine strain. Nonetheless, 



104 

Schmidt et al.,(2013a) demonstrated that the replication of four different pathogenic WNV strains was 

indeed impaired in β3 integrin knock-out MEFs suggesting that the β3 integrin subunit plays an important 

role in WNV replication. In the same study, the authors reported that rescue of β3 integrin subunit in the 

knock-out cell line enhanced viral RNA yields by more than 90% (Schmidt et al., 2013a). These 

discrepancies observed between the two studies might be explained by the different WNV strains used.  

Silencing or blocking of αV and β3 integrin subunits substantially impaired JEV replication in two different 

cell lines according to studies performed by Fan et al.,(2017). Similar to what was found in our study, the 

downregulation of either αV or β3 integrin subunits in BHK-21 cells led to a 2-4 fold decrease of JEV 

replication, stressing the importance of αVβ3 integrin in flavivirus replication (Fan et al., 2017).  

CSFV was demonstrated to profit from the expression of β3 integrin subunit enhancing infection and 

proliferation in porcine cells. One study showed that, upon infection, CSFV up-regulated the expression of 

β3 integrin subunit in porcine endothelial cells (Tang et al., 2010). In another study, the authors reported 

that CSFV replicated and proliferated efficiently in cells expressing high levels of β3 integrin subunits (Li et 

al., 2014). Moreover, silencing of β3 integrin subunit mRNA inhibited more than 90% of CSFV replication 

as well as virus dissemination indicating that expression of this specific integrin subunit is beneficial for 

CSFV replication (Li et al., 2014). It remains unclear whether the αV integrin subunit is still expressed after 

downregulation by siRNA in the porcine cell line used in this study and at which step of the CSFV infection 

cycle integrins are required. However, these results are consistent with the results from our study 

suggesting that αVβ3 integrin might be an important mutual factor that modulates replication efficiency 

of certain members within the Flaviviridae family.  

The replication assay with MKF-β1-/- cells demonstrated that deletion of β1 integrin subunit negatively 

affected the replication of YFV-17D and WNV. To our knowledge, besides the present study and the study 

by Schmidt et al.,(2013a) who demonstrated that β1 integrin subunit is important for WNV replication, 

there are no publications highlighting the importance of β1 integrin subunit in flavivirus infection. 

Interestingly, USUV, LGTV and ZIKV did not require the expression of β1 integrin subunit for their 

replication. On the contrary, LGTV and ZIKV replication in MKF-β1-/- cells was clearly increased compared 

to MKF-β1Flox cells resulting in a higher viral load and viral titers. Similar results were described by another 

group for the deletion of β3 integrin subunit in MEFs which led to higher WNV titers in comparison to the 

wild-type cells (Medigeshi et al., 2008). One possible explanation for these effects might be the presence 

of αVβ3 integrin expression in MKF-β1-/- cells as demonstrated by flow cytometry and 

immunofluorescence assay in this study. Further, the replication assays indicated that αVβ3 integrin 

expression is of great importance for the replication of all investigated flaviviruses. Thus, one might 

speculate whether the expression of αVβ3 integrin in MKF-β1-/- cells might compensate for the lack of β1 
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integrin subunit expression thus enhancing the replication of LGTV and ZIKV. Additionally, the deletion of 

β1 integrin might upregulate other integrins potentially affecting replication of LGTV and ZIKV.  

In sum, the results provided from the replication assays indicate that integrins, in particular the αVβ3 

integrin, are of great importance for flavivirus replication in mouse fibroblasts. 

 

We also investigated the involvement of integrins in flavivirus infection by generating CHO cells expressing 

either mouse αV or β3 integrin subunits. Our results demonstrated that flaviviruses are able to bind to 

CHO cells, regardless of the expression of integrins indicating that a binding receptor or attachment factor 

for flaviviruses is present in CHO cells. Replication of investigated flaviviruses in CHO-K1 wild-type cells 

was substantially impaired which is in accordance to the literature where CHO cells are described to be 

non-permissive to several viral agents including flaviviruses (Berting et al., 2010). Interestingly, upon 

ectopic expression of mouse αV or β3 integrin subunits in CHO cells, the flavivirus replication was slightly 

increased upon inoculation with a high MOI (10). The expression of αV integrin subunit increased the 

replication of USUV and YFV-17D whereas expression of β3 integrin subunit increased replication of WNV 

and LGTV. For ZIKV, ectopic expression of either αV or β3 integrin subunits in CHO cells did not enhance 

replication. Similar to our results, Fan et al.,(2017) demonstrated slightly increased JEV replication in CHO 

cells expressing the β3 integrin subunit suggesting a beneficial effect of β3 integrin subunit in JEV 

replication (Fan et al., 2017).  

Genomic analysis revealed that CHO cells lack the expression of 158 important genes that are involved in 

virus entry and replication including integrin genes (Xu et al., 2011). The absence of all these genes in CHO 

cells might explain their remarkable resistance to viral agents including flaviviruses as previously reported 

by Berting et al.,(2010). Taking that into account, we assume that flavivirus entry and replication in CHO 

cells cannot be fully recovered only by ectopic expression of integrins. Thus, in the specific case of CHO 

cells, integrins might only play a minor role in CHO cell susceptibility and permissiveness to flaviviruses. 

Although our results demonstrate that integrin expression in CHO cells increases flavivirus replication, 

these effects were only modest and should be interpreted carefully. Further studies should be performed 

in order to elucidade the CHO cell resistance to flaviviruses, and to determine at which step of flavivirus 

infection cycle the blockade occurs. 

It is well-understood that integrins control several cellular downstream pathways that might culminate in 

diverse cellular responses such as cytoskeleton rearrangments and changes in the cellular environment 

(Harburger et al., 2009). In this sense, it might be possible that the expression of several host cell factors 

which influence virus replication might be directly or indirectly under control of the integrin expression. 

For example, Ebola virus (EBOV - Filoviridae family, Ebolavirus genus) was shown to benefit from the 

expression of integrins to complete its replication cycle. Although integrins are not required for EBOV 
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binding and internalization, integrins regulate the expression of cathepsin B and L, two proteases that are 

necessary to prime EBOV glycoprotein triggering virus fusion with the host cell (Schornberg et al., 2009). 

These results stress the possible influence of integrins on other cellular organelles and in regulating the 

expression of certain genes that may influence the outcome of a viral infection. The magnitude of 

interactions between integrins and several cellular molecules have been continuously describled in the 

literature: these interactions are described as the so-called “Integrin adhesome” which comprises more 

than 200 molecules resulting in more than 690 interactions of integrins with numerous cellular proteins 

(Horton et al., 2016; Zaidel-Bar et al., 2007). Based on these facts, it is easily conceivable that other cellular 

proteins affecting flavivirus replication might be under the control of integrins.  

Taken together, the expression of integrins clearly affected flavivirus replication in the investigated cell 

lines from our study suggesting integrins as a new flavivirus host cell factor. A mechanism of how integrins 

influence flavivirus replication in MEFs, MKFs or CHO cells has not yet been elucidated. However, in this 

study, the integrin-mediated modulation of flavivirus replication in different integrin deficient cells was 

clearly demonstrated by the following findings:  

(i) the deletion of αVβ3 integrin significantly affected the replication of YFV-17D, WNV, USUV, 

LGTV and ZIKV with a reduction of more than 90% on viral RNA yields;  

(ii) the levels of flavivirus negative-strand RNA were strongly reduced in αVβ3 integrin deficient 

cells; 

(iii) the deletion of β1 or β3 integrin subunits had a small and/or no effect on flavivirus replication 

depending on the flavivirus tested and 

(iv) although ectopic expression of integrins in CHO cell had no impact on flavivirus binding, their 

expression slightly increased flavivirus replication 
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5.5) Conclusions and outlook 
 
The present study is the first that demonstrates the involvement of integrins in flavivirus infection for four 

medically relevant flaviviruses (YFV, USUV, LGTV and ZIKV) while this had been described for WNV and JEV 

before. The major findings of the present study are: 

(i) the deletion of either αVβ3 integrin, β3 or β1 integrin subunit in MEFs and MKFs did not affect 

flavivirus binding to the cell surface; 

(ii) the expression of either αV or β3 integrin subunit in CHO cells did not enhance flavivirus 

binding to the cell surface; 

(iii) the internalization of some flaviviruses was impaired by the deletion of αVβ3 integrin and β3 

integrin subunit while the deletion of β1 integrin subunit had no effect; 

(iv) the replication of all flaviviruses tested in this study was strongly inhibited in αVβ3 integrin 

deficient cells with a reduction of more than 90% on viral load; 

(v) the deletion of β1 or β3 integrin subunits resulted only in slightly reduced flavivirus replication;  

(vi) the ectopic expression of αV or β3 integrin subunits in CHO cells slightly increased the 

replication of some flaviviruses. 

The mechanism of how integrins modulate flavivirus replication has not yet been completely elucidated. 

There are some specific aspects in regard to integrins and their modulation of flavivirus infection that 

should be addressed in future: 

(i) to analyze whether the activation of integrin-associated intracellular pathways is triggered 

upon flavivirus infection; 

(ii) to investigate whether the downregulation or ablation of integrins, in particular αVβ3 integrin, 

impairs or downregulates the expression of other molecules that will influence flavivirus 

infection/replication; 

(iii) to examine whether the replication of other flaviviruses including virulent and low-passage 

strains is also disrupted by integrin knock-out; 

(iv) to investigate whether the integrin-mediated effect on flavivirus replication also applies to 

other cell lines from different host species and 

(v) to closely monitor flavivirus replication by usage of replicon systems in order to better 

understand how integrins modulate flavivirus RNA replication.  

In conclusion, the results achieved in the present study provided strong evidence that integrins play a role 

in flavivirus infection, particularly in replication and thus might act as a new flavivirus host cell factor 

modulating the flavivirus infection cycle.  
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7) Appendix 
Appendix I: Chemicals 

1) Chemicals 

Name Manufacturer 

Acetic acid, 100 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Acetone, Rotipuran®, ≥ 99.8 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Agar, Bacteriological Grade MP Biomedicals Inc., Solon, OH, USA 

Agarose, Ultra Pure Invitrogen GmbH, Darmstadt, Germany 

Ammonium chloride, ≥ 99.5 % Carl Roth GmbH & Co, Karlsruhe, Germany 

Ampicillin sodium salt Carl Roth GmbH & Co, Karlsruhe, Germany 

Bovine Serum Albumin fraction V, Chemical grade Merck KGAA, Darmstadt, Germany 

Bromphenol blue, powder Sigma-Aldrich Chemie GmbH, Munich, Germany 

Calcium chloride dihydrate, ≥ 99 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Citric acid, ≥99.5 %, p.a., anhydrous Carl Roth GmbH & Co, Karlsruhe, Germany 

Crystal Violet, powder (Dye content ≥90 %) Sigma-Aldrich Chemie GmbH, Munich, Germany 

4’,6-Diamidino-2-phenylindoldihydrochloride (DAPI) Sigma-Aldrich Chemie GmbH, Munich, Germany 

Dimethyl sulfoxide (DMSO), ≥ 99.5, for microbiology Carl Roth GmbH & Co, Karlsruhe, Germany 

Disodium hydrogen phosphate (Na2HPO4), ≥ 99 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Ethanol, ≥ 96 %, denatured with 1 % MEK ethyl alcohol Carl Roth GmbH & Co, Karlsruhe, Germany 

Ethanol, >99.8%, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Ethidium bromide, solution in water, for electrophoresis 

(10g/l) 

Merck KGAA, Darmstadt, Germany 
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Name Manufacturer 

Ethylenediamine tetraacetatic acid (EDTA), pure, powder Serva Feinbiochemica GmbH & Co, Heidelberg, 

Germany 

Formaldehyde, 37 % (Formalin), p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Glycerine, ≥ 99 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Glycine, ≥ 99 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Hydrochloric Acid, reagent grade, 37% Sigma-Aldrich Chemie GmbH, Munich, Germany 

Kanamycin disulfate salt Carl Roth GmbH & Co, Karlsruhe, Germany 

Magnesium chloride (MgCl2)  hexahydrate, ≥ 99 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Mangan (II) chloride monohydrate Carl Roth GmbH & Co, Karlsruhe, Germany 

2-Mercaptoethanol, 99 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Methanol, , ≥ 99.9 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Paraformaldehyde, ≥ 95 %, pure,powder Carl Roth GmbH & Co, Karlsruhe, Germany 

Polyethylene glycol 6000 Carl Roth GmbH & Co, Karlsruhe, Germany 

Potassium chloride (KCl), ≥ 99.5 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Potassium dihydrogen phosphate (KH2PO4), ≥ 99.5 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

2-Propanol, ≥ 99.8 % Carl Roth GmbH & Co, Karlsruhe, Germany 

Skim milk powder, MAMIPU Hobbybäcker-Versand, Bellenberg, Germany 

BD-Difco Skim Milk BD-Becton-Dickinson,New Jersey, USA 

Sodium azide, ≥ 99 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Sodium carbonate (Na2CO3), p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Sodium chloride (NaCl), ≥ 99.5 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 
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Name Manufacturer 

Sodium dihydrogen phosphate (NaH2PO4) dihydrate, ≥ 99 

%, p.a. 

Carl Roth GmbH & Co, Karlsruhe, Germany 

Sodium hydrogen carbonate (NaHCO3), ≥ 99.5 %, p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Sucrose Carl Roth GmbH & Co, Karlsruhe, Germany 

Tris(hydroxymethyl)-aminomethane (TRIS), Ultra Pure Invitrogen GmbH, Darmstadt, Germany 

Triton® X-100 Sigma-Aldrich Chemie GmbH, Munich, Germany 

Trypton, Casein Hydrolysate Oxoid Deutschland GmbH, Wesel, Germany 

Tween®20, Polyoxyethylene sorbitan monolaureate Sigma-Aldrich Chemie GmbH, Munich, Germany 

Yeast extract Carl Roth GmbH & Co, Karlsruhe, Germany 
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Appendix II: Buffers, solutions, media and antibiotics 

1) Buffers and Solutions 

 

Buffer Composition Storage 

10X Phosphate Buffered Saline (PBS) pH 

7.2 

80 g NaCl 

2.0 g KCl 

14.4 g Na2HPO4 

2.4 g KH2PO4 

 add 1 liter distilled water 

RT 

1M Calcium Buffer (stock solution) 
1.1 g CaCl2 

 add 100 ml distilled water 
RT 

1M Magnesium Buffer (stock Solution) 
508.26 mg MgCl2 

 add 100 ml distilled water 
RT 

Calcium-Magnesium Buffer 

7.5 ml CaCl2 (1M stock solution) 

2.5 ml MgCl2 (1M stock solution) 

add 100 ml distilled water 

RT 

Tris-Acetate- EDTA buffer 50X (pH 8.3) 

242 g Tris-base 

18.61 g Disodiumn EDTA 

57.1 ml Glacial Acetic Acid 

add 1 liter distilled water 

RT 

6X loading Dye buffer 

1 mg/ml Bromphenol blue 

2 mg/ml Xylene cyanol blue 

2 mg/ml Orange G 

10 g Sucrose 

20 mM EDTA 

add 20 ml distilled water 

+4°C 

Trypsin solution (pH 7.2) 

8.5 g NaCl  

0.4 g KCl  

1.0 g Dextrose   

0.58 g NaHCO3   

0.5 g Trypsin 1:250 

0.2 g EDTA  

add 1 liter distilled water  

+4°C 

DAPI stock solution 

2 g 4´, 6-diamidino-2´-phenylindole, 

dihydrochloride (DAPI) 

 add 1 liter distilled water 

-20°C 
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Buffer Composition Storage 

3 % Paraformaldehyde (pH 7.3) 
 

3 g Paraformadehyde, powder 

 add 100 ml distilled water 

-20°C 

Tris-Natrium-EDTA buffer (pH 7.4) (TNE)  
 

50 mM Tris–HCl (pH 7.4) 

100 mM NaCl 

0.1 mM EDTA 

add 1 liter distilled water 

+4°C 

30% sucrose buffer 
30 g Sucrose 

add 100 ml TNE buffer 
+4°C 

60% sucrose buffer 
60 g Sucrose 

add 100 ml TNE buffer 
+4°C 

Luria Bertani medium (LB medium) 

10 g Tryptone 

10 g NaCl 

5 g Yeast extract 

 add distilled water to 1 liter 

+4°C 

Luria Bertani agar (LB agar) 

10 g Tryptone 

10 g NaCl 

5 g Yeast extract 

 add distilled water to 1 liter 

+4°C 

1M EDTA stock solution (pH 8.0) 

372.2 g EDTA (ethylenediamenetetraacetic 

acid) 

 add 1 liter distilled water 

RT/+4°C 

50 mM EDTA solution (pH 7.4) 
5 ml 1M EDTA stock solution 

95 ml 1X PBS 
+4°C 

10 % buffered formalin 
100 ml formalin 

900 ml 1X PBS 
RT 

1% crystal violet fixative/staining solution 

solution 

1 g crystal violet powder 

100 ml 10% buffered formalin 
RT 

1 M ammonium chloride stock solution 
53.5 g ammonium chloride (NH4Cl) 

1 liter distilled water 
RT 

1% crystal violet staining  solution 

1 g crystal violet powder 

20 ml Methanol 

80 ml 1X PBS 

 

RT 

50 mM NH4Cl quenching solution (for 
immunofluorescence) 

5 ml 1 M Ammonium Chloride solution 

95 ml 1X PBS 
RT 
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Buffer Composition Storage 

100 mM acid glycine solution (pH 2.5) 
7.5 g Glycine 

1X PBS to 100 ml 
+4°C 

1M sodium citrate buffer (pH 4.5) 
214.10 g Sodium Citrate 

1 liter distilled water 
+4°C 

Dye removal solution (pH 4.5) 

50 ml Ethanol (absolute) 

10ml 1M sodium citrate buffer 

40 ml 1X PBS 

RT 

Tris-EDTA (TE) buffer (pH 8.0) 

10 ml 1M tTris-HCl 

1 ml 1 M EDTA 

1 liter distilled water 

RT 

RNA Safe Buffer (RSB) – Provide by Dr. Bernard 
Hoffmann (IVD – FLI) 

50 µM Carrier RNA (poly A) 

0.2 µM Tween 20 

0.2 µM sodium acid 

1 liter RNAse free water 

-20°C 

 

2) Cell culture media 

Name Manufacturer Cat n° 

Dulbecco’s Modified Eagle Medium (DMEM), 

powder, high glucose, pyruvate 

ThermoFisher, 

Whaltham, MA, USA 
12800017 

Eagle’s Minimun Essential Medium (E-MEM), 

with Non-essential Amino acids (NEAA), 

powder 

ThermoFisher, 

Whaltham, MA, USA 
41500-018  

 

3) Antibiotics 

Name Manufacturer Cat n° 

Penicillin-Streptomycin 

 (10,000 units penicillin and 10 mg 

streptomycin/mL) 

Sigma-Aldrich Chemie 

GmbH, Munich, 

Germany 

P4333-100ML 

Zeocin™ 
Invivogen, San Diego, 

CA, USA 
ant-zn-5p 

Hygromycin B 
Invitrogen, 

Carlsbad,CA, USA 
10687010 

Ampicillin 
Carl Roth GmbH & Co, 

Karlsruhe, Germany 
HP62.2 

Kanamycin 
Carl Roth GmbH & Co, 

Karlsruhe, Germany 
T832.3 
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Appendix III: Antibodies and cell sorting system 

1) Antibodies used for indirect  immunofluorescence (IF) 

Antibody Host Target Dilution/Concentration Manufacturer 

LEAF™ Purified anti-mouse 

Anti-CD51 (αV integrin) 
Rat Mouse 1:50 

Biolegends, San 

Diego, CA, USA 

LEAF™ Purified anti-mouse 

Anti-CD61 (β3 integrin) 
Hamster Mouse 1:10 

Biolegends, San 

Diego, CA, USA 

LEAF™ Purified anti-mouse 

Anti-CD29 (β1 integrin) 
Hamster Mouse 1:25 

Biolegends, San 

Diego, CA, USA 

AffiniPure Goat Anti-Rat IgG 

Cyanine Cy3 
Goat Rat 1:100 

Jackson 

ImmunoResearch, 

West Grove, PA, 

USA 

AffiniPure Goat Anti-

Armenian Hamster IgG 

Alexa-488 

Goat Hamster 1:400 

Jackson 

ImmunoResearch, 

West Grove, PA, 

USA 

 

 

2) Antibodies used for flow cytometry analysis (FCA) 

Antibody Host Target Dilution/Concentration Manufacturer 

LEAF™ Purified anti-mouse 

Anti-CD51 (αV integrin) 
Rat Mouse 0,5 µl per 106 cells 

Biolegends, San 

Diego, CA, USA 

LEAF™ Purified anti-mouse 

Anti-CD61 (β3 integrin) 
Hamster Mouse 1 µl per 106 cells 

Biolegends, San 

Diego, CA, USA 

LEAF™ Purified anti-mouse 

Anti-CD29 (β1 integrin) 
Hamster Mouse 1 µl per 106 cells 

Biolegends, San 

Diego, CA, USA 

AffiniPure Goat Anti-Rat 

IgG Alexa-647 
Goat Rat 1:400 

Jackson 

ImmunoResearch, 

West Grove, PA, 

USA 

AffiniPure Goat Anti-

Armenian Hamster IgG 

Alexa-488 

Goat Hamster 1:400 

Jackson 

ImmunoResearch, 

West Grove, PA, 

USA 
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3) Antibodies used for cell sorting 

Antibody Host Target Dilution/Concentration Manufacturer 

Biotin anti-mouse CD51 (αV 

integrin) 
Rat Mouse 1 µg/107 cells 

Biolegends, San 

Diego, CA, USA 

Biotin anti-mouse/rat CD61 

Antibody (β3 integrin) 
Hamster Mouse 1 µg/107 cells 

Biolegends, San 

Diego, CA, USA 

Anti-Biotin MicroBeads Mouse Biotin 50 µl/ sorting 

Miltenyi 

Biotec,Teterow, 

Germany 

 

 

4) Cell sorting system and related reagents 

Name Manufacturer Cat n° 

MS Columns Miltenyi Biotec,Teterow, Germany 130-042-201 

OctoMACS Separator Miltenyi Biotec,Teterow, Germany 130-042-109 

Anti-Biotin MicroBeads Miltenyi Biotec,Teterow, Germany 130-090-485 

autoMACS Pro Washing Solution Miltenyi Biotec,Teterow, Germany 130-092-987 

autoMACS Running Buffer – MACS 

Separation Buffer 
Miltenyi Biotec,Teterow, Germany 130-091-221 

 

 

 

 

 

 

 

 

 

 



142 

Appendix IV: Kits  

1) Kits 

Name Manufacturer Cat n° 

Rapid DNA Ligation Kit 
ThermoFisher 

Whaltham, MA, USA 
K1422 

QuantiTect Probe RT-PCR Kit 
Qiagen, Hilden 

Germany 
204443 

SuperScript® III One-Step RT-PCR System 

with Platinum® Taq DNA Polymerase 

ThermoFisher, 

Whaltham, MA, USA 
12574026 

DreamTaq™ Hot Start DNA Polymerase  
(5 U/µl) 

ThermoFisher, 

Whaltham, MA, USA 
EP0701 

Maxima Reverse Transcriptase  
(200 U/µL) 

ThermoFisher, 

Whaltham, MA, USA 
EP0742 

Phusion High-Fidelity PCR Master Mix with 

GC Buffer 

ThermoFisher 

Whaltham, MA, USA 
F532S 

QIAamp Viral RNA Mini Kit 
Qiagen, Hilden 

Germany 
52904 

RNeasy Mini Kit 
Qiagen, Hilden 

Germany 
74104 

QIAquick Gel Extraction Kit 
Qiagen, Hilden 

Germany 
28704 

QIAquick PCR Purification Kit 
Qiagen, Hilden 

Germany 
28104 

QIAprep Spin Miniprep Kit 
Qiagen, Hilden 

Germany 
27106 

QIAprep Plasmid Midi Kit 
Qiagen, Hilden 

Germany 
12145 

QIAquick Nucleotide Removal Kit 
Qiagen, Hilden 

Germany 
28304 

GeneJET Gel Extraction Kit 
ThermoFisher, 

Whaltham, MA, USA 
K0692 
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Appendix V: Vector systems and restriction endonucleases. 

1) Vector systems  

Name Company Cat n° 

pcDNA 3.1 (+) Hygromycin 
ThermoFisher, 

Whaltham, MA, USA 
V87020 

pcDNA 3.1 (+) Zeocin 
ThermoFisher, 

Whaltham, MA, USA 
V86020 

 

2) Restriction Endonucleases and Buffers 

Name Company Cat n° 

BamHI-High Fidelity® 
(20,000 units/ml) 

New England Biolabs, 

Ipswich, MA,USA 
R3136S 

NotI-High Fidelity® 
(20,000 units/ml) 

New England Biolabs, 

Ipswich, MA,USA 
R3189S 

CutSmart® Buffer 
New England Biolabs, 

Ipswich, MA,USA 
B7204S 
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3) Vector: pcDNA 3.1 (+) Hygro  

Source: ThermoFisher, Whaltham, MA, USA 

Catalog Number: V87020 

Plasmid Type: Mammalian Expression 

Promotor:  Cytomegalovirus (CMV) 

Size: 5597 base pairs 

Bacterial Resistance: Ampicillin 

Selectable Marker: Hygromycin 

Notes: Constitutive system, suitable for transient and stable expression 

 

 
Informations about the vector were taken from the manufacturer’s website 

(http://www.thermofisher.com/order/catalog/product/V87020). 

Vector map was designed based on the original sequence available in the above mentioned 

website using the Geneious software. 

 

  



   

145 

4) Vector: pcDNA 3.1 (+) Zeo  

Source: ThermoFisher, Whaltham, MA, USA 

Catalog Number: V86020 

Plasmid Type: Mammalian Expression 

Promotor:  Cytomegalovirus (CMV) 

Size: 5015 base pairs 

Bacterial Resistance: Ampicillin 

Selectable Marker: Zeocin 

Notes: Constitutive system, suitable for transient and stable expression 

 
Informations about the vector were taken from the manufacturer’s website 

(http://www.thermofisher.com/order/catalog/product/V86020). 

Vector map was designed based on the original sequence available in the above mentioned 

website using the Geneious software. 
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Appendix VI: Primers and probes 

1) Primers, probe used for WNV RT-qPCR. 

Orientation Sequence (5’-3’) Target region Reference 

FWR TCAGCGATCTCTCCACCAAAG 1160-1180 

Lanciotti et al., 2000 
REV GGGTCAGCACGTTTGTCATTG 1229-1209 

 Oligonucleotide Probe  

 FAM-TGCCCGACCATGGGAGAAGCTC-TAMRA 1186-1207 

FWR: forward; REV: reverse; FAM: 6-carboxyfluorescein; TAMRA: tetramethylrhodamine 
 

 
2) Primers and probe used for USUV RT-qPCR 

Orientation Sequence (5’-3’) Target region Reference 

FWR CGTTCTCGACTTTGACTA 3294-3311 

Jöst et al., 2011 
REV GCTAGTAGTAGTTCTTATGGA 3384-3364 

 Oligonucleotide Probe  

 HEX-ACCGTCACAATCACTGAAGCAT-BHQ1 3325-3346 

FWR: forward; REV: reverse; HEX: hexachloro-fluorescein; BHQ1: black hole quencher 1 

 
 
3) Primers and probe used for YFV RT-qPCR 

Orientation Sequence (5’-3’) Target region Reference 

FWR TACAACATGATGGGAAAGAGAGAGAARAA 8968-8996** 

Vina-Rodriguez et 

al., 2017* 

REV GTGTCCCAKCCRGCTGTGTCATC 9223-9211** 

 Oligonucleotide Probe  

 FAM-TCAGAGACCTGGCTGCAATGGATGGT-TAMRA 9170-1195* 

FWR: forward; REV: reverse; FAM: 6-carboxyfluorescein; TAMRA: tetramethylrhodamine 

*Probes were designed separately; ** target regions according to YFV virus strain 17D (Genbank: JX949181.1)  

 

 

4) Primers and probe used for LGTV RT-qPCR 

Orientation Sequence (5’-3’) Target region Reference 

FWR TACAACATGATGGGAAAGAGAGAGAARAA 9020-9048** 

Vina-Rodriguez et 

al., 2017* 

REV GTGTCCCAKCCRGCTGTGTCATC 9263-9285** 

 Oligonucleotide Probe  

 FAM-TGAAAAAACTGGCTTCCTTGAGTGGT-BHQ1 9222-9247* 

FWR: forward; REV: reverse; FAM: 6-carboxyfluorescein; BHQ1: black hole quencher 1 

*Probes were designed separately; ** target regions according to Langat virus strain TP21 (Genbank: NC_003690.1) 
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5) Primers and probe used for ZIKV RT-qPCR 

Orientation Sequence (5’-3’) Target region Reference 

FWR CCGCTGCCCAACACAAG 1086-1102 

Lanciotti et 

al., 2008 

REV CCACTAACGTTCTTTTGCAGACAT 1062-1039 

 Oligonucleotide Probe  

 FAM- AGCCTACCTTGACAAGCAGTCAGACACTCAA-TAMRA 1107-1137 

FWR: forward; REV: reverse; FAM: 6-carboxyfluorescein; TAMRA: tetramethylrhodamine 

 

6) Primers and probe used for Beta actin RT-qPCR 

Orientation Sequence (5’-3’) Target region Reference 

FWR CAGCACAATGAAGATCAAGATCATC 1005-1029 

Toussaint et al., 

2007 

REV CGGACTCATCGTACTCCTGCTT 1135-1114 

 Oligonucleotide Probe  

 VIC-TCGCTGTCCACCTTCCAGCAGATGT-TAMRA 1081-1105 

FWR: forward; REV: reverse; VIC: VIC fluorescent dye (ABI) TAMRA: tetramethylrhodamine 

 

7) Primers and PCR cycle used for detection of mouse αV integrin 
*According to the sequence NM_008402.3 

 

8) Primers and PCR cycle used for detection of mouse β3 integrin 
*According to the sequence NM_016780.2 

9) Primers and PCR cycle used for detection of mouse β1 integrin 
*According to the sequence NM_010578.2 

 

Orientation Sequence (5’-3’) Target region Amplicon Size 

FWR CTCCGGCCAACGTCAGTCGG 2173-2192* 
300 bp 

REV CGCACACCACCTGCCGAGTTT 2472-2453* 

Orientation Sequence (5’-3’) Target region Amplicon Size 

FWR GGCTGCCCCCAGGAGAAGGAGCC 1377-1396* 
200 bp 

REV CACATGGACCCCAGCCAGCC 1576-1557* 

Orientation Sequence (5’-3’) Target region Amplicon Size 

FWR GCCAGTCCCAAGTGCCATGAGG 1723-1724* 
500 bp 

REV ACGCCAAGGCAGGTCTGACAGCC 2222-2203* 
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Appendix VII: Equipments 

 

1) Centrifuges 

 

Instrument/Equipment Manufacturer 

Centrifuge 5415D Eppendorf AG, Hamburg, Germany  

Centrifuge 5460 Eppendorf AG, Hamburg, Germany  

Centrifuge Rotina 380 Hettich, Ebersberg, Germany 

Micro-Centrifuge 0.2 ml tube Neo-Lab Migge GmbH, Heidelberg, Germany 

Micro-Centrifuge 1.5 ml tube Neo-Lab Migge GmbH, Heidelberg, Germany 

96-well plates centrifuge MPS-1000 Labnet International, Edison, New Jersey, USA 

Ultracentrifuge Optima L-100 XP Beckman Coulter GmbH, Krefeld, Germany  

Ultracentrifuge TL-100 Beckman Coulter GmbH, Krefeld, Germany  

 

2) Electrophoresis system 

 

Instrument/Equipment Manufacturer 

Agarose gel chamber system Bio-Rad Laboratories GmbH, Munich, Germany 

PowerPac 300 Basic Power Supply Bio-Rad Laboratories GmbH, Munich, Germany 

 

3) Counting Chamber 

 

Instrument/Equipment Manufacturer 

Improved Neubauer chamber Neo-Lab Migge GmbH, Heidelberg, Germany 

 

4) ELISA/microplate reader 

 

Instrument/Equipment Manufacturer 

Tecan Infinite 200 PRO Tecan, Männedorf, Switzerland 
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5) Flow Cytometer 

 

Instrument/Equipment Manufacturer 

BD FACS CAnto II Becton-Dickinson,Franklin lakes, NJ, USA 

 

6) Incubator 

 

Instrument/Equipment Manufacturer 

Incucell (Bacteria)  
MMM Medcenter Einrichtungen GmbH, Planegg, 
Germany  

Thermo Forma 3851 CO2 incubator ThermoFisher Scientific Inc., Waltham, MA, USA 

 

7) Refrigerator, freezer, ultra low temperature tanks and storage equipment 

 

Instrument/Equipment Manufacturer 

Liebherr Premium  Liebherr-Hausgeräte Lienz GmbH,Lienz, Austria  

Liebherr Profi Line  Liebherr-Hausgeräte Lienz GmbH,Lienz, Austria  

High Efficiency Ultra Low temperature freezer 
(-80°C) 

New Brunswick Scientific-Eppendorf 
GmbH,Wesseling-Berzdorf, Germany 

Mr Frosty™, freezing container for cell culture ThermoFisher Scientific Inc., Waltham, MA, USA 

Dewar flasks  for liquid nitrogen KGW Isotherm, Karlsruhe, Germany 

Cryotherm-BIOSAFE, liquid nitrogen tank Cryotherm, Kirchen/Sieg, Germany 

 

 

8) Magnetic stander 

 

Instrument/Equipment Manufacturer 

MACS Magnetic MultiStand Miltenyi Biotec GmbH, Bergisch Gladbach, Germany 
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9) Microscopes 

 

Instrument/Equipment Manufacturer 

Light microscope, Zeiss, Axiovert 25, inverted Carl Zeiss GmbH, Jena, Germany  

Fluorescence microscope Axiovert 200, 
inverted 

Carl Zeiss GmbH, Jena, Germany 

CLSM Leica TCS SP5 setup with inverted 
microscope Leica DMI600 CS  

Leica Camera Microsystems, Mannheim, Germany 

 

10) Pipette, automatic pipette  and  multi-dispenser 

 

Instrument/Equipment Manufacturer 

Pipetboy® comfort IBS Integra Biosciences, Fernwald, Germany 

Pipette 0.5-10μl Eppendorf AG, Hamburg, Germany 

Pipette 2-20μl Eppendorf AG, Hamburg, Germany 

Pipette 10-100μl Eppendorf AG, Hamburg, Germany 

Pipette 20-200μl Eppendorf AG, Hamburg, Germany 

Pipette 100-1000 µl Eppendorf AG, Hamburg, Germany 

Pipette multi-channel 20-200μl Brand, Wertheim, Germany 

Pipette multi-channel 0.5-10μl Brand, Wertheim, Germany 

 

11) Scales, pH meter and spectrophotometer 

 

Instrument/Equipment Manufacturer 

Sartorius M-Power Analytical Scale Sartorius AG, Göttingen, Germany 

pH Meter HI221  Hanna Instruments GmbH, Kehl a. Rhein, Germany  

NanoDrop®  2000c ThermoFisher Scientific Inc., Waltham, MA, USA 

Bio-Photometer 8,5 mm  Eppendorf AG, Hamburg, Germany  
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12) Shakers, rocker, mixers and magnetic stirrer 

 

Instrument/Equipment Manufacturer 

Incubated/Refrigerated Stackable Shaker 
MaxQ 8000 

ThermoFisher Scientific Inc., Waltham, MA, USA 

HulaMixer® Sample Mixer ThermoFisher Scientific Inc., Waltham, MA, USA 

Shaker, horizontal GFL 3006 GFL, Burgwedel, Germany  

Minishaker MS2  IKA, Staufen im Breisgau, Germany  

Stuart Vortex Mixer  Cole Parmer, Staffordshire, ST15 OSA, UK,  

Thermomixer/Thermoblock comfort Eppendorf AG, Hamburg, Germany  

Thermomixer/Thermoblock 5436 Eppendorf AG, Hamburg, Germany 

Magnetic Stirrer VWR VWR/IKA Radnor,PA, USA 

Magnetic Stirrer hot plate IKA Staufen im Breisgau, Germany 

 

13) Thermocyclers 

Instrument/Equipment Manufacturer 

CFX96-Real-Time PCR Detection System Bio-Rad Laboratories GmbH, Munich, Germany 

Thermal cycler C1000TM Bio-Rad Laboratories GmbH, Munich, Germany 

Biometra T3 Thermal Cycler Biometra GmhH, Göttingen, Germany 

 

14) Transilluminator system and documentation apparatus 

Instrument/Equipment Manufacturer 

Transilluminator UV light pulse AGS, Heidelberg, Germany 

Coupled Camera device (CCD) - UV light 
documentation system 

Hama, Monheim, Germany 

Thermal Printer DPU-414 Seiko Instruments GmbH, Neu-Isenburg, Germany 

Mitsubishi P93DW Printer Mitsubishi Electronics, Cypress, CA, USA 
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15) Waterbath 

 

Instrument/Equipment Manufacturer 

Waterbath 0-100°C GFL GmbH, Burgwendel, Germany 

 

16) Workstations, laminar flow and safety cabinets 

 

Instrument/Equipment Manufacturer 

Thermo Herasafe KS12 Sterile Hood (Laminar 
flow) 

ThermoFisher Scientific Inc., Waltham, MA, USA 

UV-CLEANER UVC/T-M-AR Biosan Medical Technologies, Riga, Latvia 
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Appendix VIII: Cell lines and bacteria strains 

1) Mammalian cell lines 

Name Organism Tissue Background Source ATCC n° 

Vero 76  Chlorocebus aethiops Kidney 

A clone 

derivative from 

the original Vero 

cells 

FLI-Cell Bank CRL-1587 

Vero Chlorocebus aethiops Kidney - FLI-Cell Bank CCL-81 

Vero E6 Chlorocebus aethiops Kidney 

A clone 

derivatived from 

the original Vero 

76 cells 

FLI Cell Bank CRL-1586 

Vero-B4 Chlorocebus sabaeus Kidney - FLI-Cell Bank Unknown 

Chinese Hamster 

Ovary Cell (CHO) 

clone K1 

Cricetulus griseus Ovary - FLI-Cell Bank CCL-61 

MEF Wild-type Mus musculus Embryonal C57/BL6 
FLI-Dr. Markus 

Keller 
n.a. 

MEF 24.3 αVβ3-/- Mus musculus Embryonal C57/BL6 
FLI-Dr. Markus 

Keller 
n.a. 

MEF 8.1 β3-/- Mus musculus Embryonal C57/BL6 

Dr. Kairbaan 

Hodivala-Dilke -  

Barts Cancer 

Institute, London, 

UK 

n.a. 

MKF β1flox Mus musculus Kidney C57BL6X 129SV 

Dr. Reinhard 

Faessler, Institute of 

Biochemistry, Max 

Planck 

Society,Munich, 

Germany  

n.a. 

MKF β1-/- Mus musculus Kidney C57BL6X 129SV 

Dr. Reinhard 

Faessler, Institute of 

Biochemistry, Max 

Planck Society, 

Munich, Germany 

n.a. 

MEF: mouse embryonic fibroblast; MKF: mouse kidney fibroblast; n.a.: not available 

 

 

  



154 

2) Bacterial strain 

Bacteria Strain 
Genetic 

Background 
Source Cat n° 

Escherichia coli  DH5α 

F– endA1 glnV44 

thi-1 recA1 relA1 

gyrA96 deoR 

nupG purB20 

φ80dlacZΔM15 

Δ(lacZYA-

argF)U169, 

hsdR17(rK–mK+), 

λ– 

Clontech-
Takara, 

Laboratories, 
USA 

9057 
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Appendix IX: Softwares and databases 

1) Softwares 

Name Application Version Developer 

Graphpad Prism Graphing 6.0 GraphPad Software,La Jolla, CA, USA 

Graphpad Prism Statistics 6.0 GraphPad Software,La Jolla, CA, USA 

Geneious 
Molecular Biology/ 

Bioinformatic Tool 
10 

Biomatters Limited, Auckland, New 

Zealand 

Axiovision AC Release  
 

Microscopy 
4.5  

 
Carl Zeiss, Micro-Imaging GmbH, 

Göttingen, Germany 

LAS AF, Leica Application Suite  
 

Confocal Microscopy 2.4 Leica Microsystems CMS GmbH, 
Mannheim, Germany 

Flowing Software Flow Cytometry Analysis 2.5.1 

University of Turku, Cell Imaging 

Core, Turku Centre for 

Biotechnology, Turku, Finland 

Bio-Rad CFX Manager® 
Software  

Real Time PCR 3.1 Bio-Rad Labaratories GmbH, Munich, 
Germany 

ImageJ 
Picture edition/Image 

processing 
1.49u 

Wayne Rasband, National Institute 

of Health – NIH, Bethesda, MD, USA 

 

2) Database 

Name Developer URL 

PubMed  

United States National 

Library of Medicine (NLM), 

Bethesda, USA 

www.pubmed.com 

GenBank, NCBI Data base  

National Center for 

Biotechnology Information, 

Bethesda,MD, USA 

https://www.ncbi.nlm.nih.gov/genbank/ 

Nucleotide 

National Center for 

Biotechnology Information, 

Bethesda,MD, USA 

https://www.ncbi.nlm.nih.gov/nucleotide/ 

CHO genome.org 
Consortium, several 

partners 
http://www.chogenome.org/ 

BLAST 

National Center for 

Biotechnology Information, 

Bethesda, USA 

https://blast.ncbi.nlm.nih.gov/Blast.cgi 
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Appendix X: Sequences  

1) YFV-17D synthetic RNA synthesis 

       Accession number: JX949181.1 
 

1 10 20 30 40 50 

I I I I I I 

ATTTAGGTGACACTATAGAAGGTGTGTCCATACAACATGATGGGGAAAAG 

AGAGAAGAAGCTGTCAGAGTTTGGGAAAGCAAAGGGAAGCCGTGCCATAT 

GGTATATGTGGCTGGGAGCGCGGTATCTTGAGTTTGAGGCCCTGGGATTC 

GTCAATCACCAGGATTGGGCTTCCAGGGAAAACTCAGGAGGAGGAGTGGA 

AGGCATTGGCTTACAATACCTAGGATATGTGATCAGAGACCTGGCTGCAA 

TGGATGGTGGTGGATTCTACGCGGATGACACCGCTGGATGGGACAC 

 

 

 

2) WNV synthetic RNA synthesis 

       Accession number: AF260967.1 
 

1 10 20 30 40 50 

I I I I I I 

ATTTAGGTGACACTATAGAAGGTGTGTCCATCAGCGATCTCTCCACCAAA 

GCTGCGTGCCCGACCATGGGAGAAGCTCACAATGACAAACGTGCTGACCC 
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3) USUV synthetic RNA synthesis 

       Accession number: KM659877.1 
 

 

1 10 20 30 40 50 

I I I I I I 

ATTTAGGTGACACTATAGAAGGTGTGTCCACGTTCTTGACTTTGACTATT 

GCCCAGGCACCACCGTCACAATCACTGAAGCATGTGGGAAGAGAGGACCC 

TCCATAAGAACCACTACTAGC 

 

 

 

 

4) LGTV synthetic RNA synthesis 

       Accession number: NC_003690.1 
 

 

1 10 20 30 40 50 
I I I I I I 
ATTTAGGTGACACTATAGAAGGTGTGTCCATACAACATGATGGGGAAAAG 

AGAGAAAAAGCTTGGTGAATTTGGAGTAGCCAAGGGCAGCAGGGCCATCT 

GGTACATGTGGCTGGGCAGTCGGTTCCTGGAGTTTGAGGCCCTCGGTTTG 

GTGAATCACCATGAGTGGGCGTCCAGGGCTTCTAGTGGAGCTGGAGTGGA 

AGGAATCAGCCTCAACTACCTGGGGTGGCATTTGAAAAAACTGGCTTCCT 

TGAGTGGTGGTCTGTTTTATGCCGACGACACTGCTGGCTGGGACAC 
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5) ZIKV and MVEV synthetic RNA synthesis 

       Accession number: AY632535 
 

 

1 10 20 30 40 50 
I I I I I I 
ATTTAGGTGACACTATAGAAGGTGTGTCCACCGCTGCCCAACACAAGGTG 

AAGCCTACCTTGACAAGCAATCAGACACTCAATATGTCTGCAAAAGAACG 

TTAGTGG 
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