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Aims and structure of this thesis

This thesis, titled ‘Gyro-kinetic simulations of tokamaks and stellarators including collisions’,
focusses on the modelling of resonant destabilization of Alfvén eigenmodes by fast ions in fusion
plasmas. It especially addresses non-linear simulations of stellarator plasmas in which particle
collisions are retained. This is in contrast to investigations done in the past (see e.g. Refs. [1, 2]),
in which collisions were neglected. Here, it will be shown that collisions are required for a realistic
description of Alfvén waves in plasmas relevant to nuclear fusion. In this sense, this thesis helps
to enhance the level of realism in numerical simulations.

The work presented here was done in a period in which the stellarator Wendelstein 7-X
(W7-X) had its first operation phases. The 2018 experimental campaign, for the first time,
included neutral beam injection (NBI), which could trigger Alfvénic activity. Alfvén eigenmodes
(AEs) present in the plasma can resonantly interact with the NBI ions (or alpha particles) and
could lead to enhanced heat loads on the vessel wall. Such behaviour has been observed in
the past in experiments with significant alpha-particle heating (e.g. in TFTR [3]), but also in
smaller devices such as ASDEX Upgrade [4]. The TFTR example indicates the potentially
destructive behaviour of fast-ion-driven AEs in fusion devices. Avoiding such a scenario is, of
course, desirable in any machine.

For W7-X, there exist numerical predictions of the classical fast-ion losses to the first wall [5]
which have been obtained using the ASCOT code [6,7]. They are currently being validated using
data gathered in the 2018 experimental campaign of W7-X. The question is in what way AE
activity in the plasma, possibly influenced by collisions, changes the loss pattern. To answer
this question, a coupling of ASCOT and EUTERPE is planned in the future. Before that,
the non-linear dynamics and saturation of AEs in W7-X needs to be better understood. Since
collisions play an important role in the formation of the fast-ion distribution function, it is only
natural to also include them in EUTERPE simulations, especially since the saturation levels of
the AEs are a function of collisionality (see article A.2).

At W7-X, experimental data (regarding the destabilization of AEs by fast ions) are produced
now which means that the modelling tools need to be at a stage where simulations can readily be
compared with experimental measurements. In part, this thesis contributed to code development
and benchmarking activities in order to prepare the EUTERPE code for realistic cases. Articles
A.3 and A.4 included in this thesis, in which realistic profiles and distribution functions were
used to describe the plasma, can be viewed as a step in this direction.

For simplified cases, analytical theory regarding the interaction of Alfvén eigenmodes with
fast ions while influenced by collisions is available. The well-established Berk-Breizman paradigm
[8–12] is a prime example. However, the reduction of the complexity of the problem comes at a
cost: The Berk-Breizman model is formulated in coordinates (e.g. a one-dimensional velocity
space) that are not trivially related to tokamaks, let alone a stellarator. Furthermore, numerical
simulations, building upon analytical theory by making use of invariants of the particle motion,
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Aims and structure of this thesis

are often performed in tokamaks. An appropriate description of stellarators is more difficult.
Here, we seek to understand if the effect of collisions on the mode non-linear dynamics in
stellarators is comparable to tokamaks. Again, this is in particular important in order to assess
Alfvén-eigenmode-induced transport of fast ions – an important issue for present-day devices
and future reactors.

A future goal is that numerical simulations can guide the way towards a reduced transport
model for fast ions in stellarators. Such models exist in the form of the so-called ‘Kick model’
[13,14] or the ‘resonance broadened quasi-linear (RBQ) model’ [15] for tokamaks, but are still
lacking for stellarators.

The primary goals of this dissertation can be summarized as follows: It deals with the
implementation of particle collisions into the EUTERPE code, the thorough benchmark of the
implementation, and the application to realistic W7-X plasmas, where we confirm the importance
of collisions in non-linear simulations.

The thesis is structured as follows: In Ch. 1 we give an introduction to the general topics
covered. Ch. 2 summarizes the key findings of each paper and provides links to a number of
appendices that contain additional unpublished material, also intended to bridge the gaps in
between the individual papers. The thesis concludes with a summary and an outlook in Ch. 3.
The published articles are included in App. A.
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Chapter 1

Introduction and fundamentals

1.1 Introduction to nuclear fusion

There are several challenges that mankind will face in the course of the present century. One of
the – still unanswered – questions is how we will satisfy our ever-rising need for more energy.
This increasing demand for energy has two leading causes: Firstly, the population is growing
worldwide. While in the year 2017, 7.6 billion people lived on the planet, the expected population
is 9.8 billion for the year 2050 [16]. More people consume more energy. Secondly, the standard
of living is increasing worldwide [17]. This also leads to more energy being consumed.

But the growing need for more energy is not a recent phenomenon. Since the start of the
industrial revolution the global demand for energy has grown. In the past, we have mainly used
fossil sources to convert to usable energy. This can be seen in Fig. 1.1 which shows the evolution
of the primary energy being consumed globally and the means of its production.

There are two main considerations why we cannot continue like this: On the one hand, fossil
sources will eventually be exhausted. Projections indicate that in approximately 40 (oil) to
130 (coal) years this could be the case [20]. Given the typical time it takes to progress from
basic research to something usable and profitable on the free market, we need to start looking
for alternative means of generating energy now. The second consideration is that we want [21]
to combat global warming. Among other so-called greenhouse gasses carbon-dioxide, which is
emitted into the atmosphere when fossil fuels are burned, is viewed to be responsible for global
warming. Fig. 1.2 shows how the temperature has developed on the northern hemisphere for
the past 4000 years. The last part, starting at approximately 1800 is widely considered to be
man-made climate change. The data are taken from Refs. [22,23] in which a one-dimensional
energy-balance model (including orbital, solar and greenhouse-gas effects on the climate) is used
to calculate the past temperatures from radioactive isotopes contained in air bubbles found in ice
cores. More recent data [24] shows that by 2017 the global temperature had already increased
by 0.9 K compared to the 1951-1980 average.

Nuclear fusion has the potential of providing a clean and virtually inexhaustible source of
energy in the second half of the twenty-first century.

On the other hand, so-called renewable energies, such as solar energy and wind energy, can
play an important role in bridging the time until nuclear fusion becomes available. They suffer
from low energy densities at the production stage and are weather-dependent and thus difficult
to integrate into a power grid and market structure where the consumer wants to decide when
to consume energy.
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Chapter 1. Introduction and fundamentals
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Figure 1.1: Increase of global primary energy consumption partitioned by means of production. Especially
since 1950, energy consumption increases rapidly. Most of it comes from fossil sources. Data are taken from
Refs. [18, 19].
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Figure 1.2: Development of the surface temperature on the northern hemisphere over the last 4000 years. Shown
are the temperature differences compared with the 1961-1990 average. Since approximately 1800 (coloured red)
the temperature increases rapidly. Data are taken from Refs. [22, 23].
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1.2. The tokamak and the stellarator

In nuclear fusion energy is gained by fusing light nuclei into heavier ones. Energy can be
extracted from the binding energies of the fusing nuclei. The products of the fusion reaction are
more stable than the initial nuclei, i.e. they are lighter. This mass difference ∆m corresponds
according to [25]

∆E = ∆mc2 (1.1)

to a difference in binding energy ∆E which is released as kinetic energy of the reaction products.
c denotes the speed of light in a vacuum.

The fusion reaction that is most easily realized [26] is fusing together deuterium and tritium,
two hydrogen isotopes

D + T→ α+ n + 17.58 MeV. (1.2)

Next to the neutron, which carries 4/5 of the total energy away from the plasma, the fusion
reaction produces a very energetic (i.e. fast) helium nucleus or alpha particle, which is magnetically
confined. Thus, if fusion is to be successful, a certain fraction of fast ions in the plasma cannot
be avoided.

On the way to making nuclear fusion work, there still exist a number of unsolved problems.
Towards the edge of the plasma, materials that can withstand the high heat and neutron fluxes
have to be developed. In the plasma core, the mechanisms of turbulent heat and particle transport
need to be understood. The EUTERPE code is a multi-purpose tool originally conceived to
tackle the issue of plasma turbulence in stellarators. It was first designed in Lausanne [27] and
came to Greifswald in 2001, where active development continues. In this thesis, it is used to
address the topic of fast-ion-driven global electromagnetic modes. The problem is that fast ions,
either generated by the fusion reactions or by auxiliary heating systems such as neutral beam
injection (NBI) or ion-cyclotron-resonance heating (ICRH), can excite Alfvénic instabilities in
the plasma. A brief introduction to this process and to the instabilities involved is given in
Sec. 1.3. The interaction of fast ions with Alfvén waves non-linearly influences the orbits of the
particles and typically leads to radial transport [4, 8, 14], i.e. profile flattening [28, 29]. If fast
ions are lost from the plasma before they thermalize, the system looses energy. In severe cases,
plasma-facing components may be damaged [3,30]. This makes it paramount to control Alfvénic
activity, especially with regard to a future fusion reactor.

It is important to note that in Wendelstein 7-X (W7-X), fast ions provided by the NBI
system have the same normalized gyro-radius (normalized to the minor radius of the device) as
alpha particles in ITER [31], the next-generation large tokamak currently being built in southern
France. This makes W7-X a good candidate for studying the confinement of fast ions.

1.2 The tokamak and the stellarator

The challenge of nuclear fusion is to stably confine a plasma with ion temperatures in the
range of several 10 keV. The two main approaches being pursued are magnetic-confinement
and inertial-confinement fusion, with the latter being outside of the scope of this thesis. In the
context of magnetic-confinement fusion, the high temperatures require, in particular, that the
plasma be kept away from the wall of the device.

Magnetically confining a fusion plasma can be accomplished by means of a magnetic field in
the topological shape of a torus. Necessary are furthermore nested surfaces of constant pressure
– so-called flux surfaces [32] – and a twist in the magnetic field lines.

Currently, two leading concepts exist that are able of generating such a magnetic field. They
are called the tokamak and the stellarator, respectively. The two devices are depicted side-by-side
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Chapter 1. Introduction and fundamentals

Figure 1.3: Schematic depiction of the two leading possibilities to magnetically confine a fusion plasma: A
tokamak on the left-hand side and a classical stellarator on the right-hand side. While in the tokamak a central
solenoid induces a plasma current to produce a poloidal magnetic field, only external currents are used in the
stellarator. Both figures courtesy of IPP, Christian Brandt.

in Fig. 1.3. They differ in the way the twisted magnetic field is produced. The strength of the
twist is measured by the rotational transform

ι = lim
Ntor→∞

Npol

Ntor
, (1.3)

which describes the number of Npol poloidal turns a field line performs for Ntor toroidal turns [32]
it takes. In tokamak research, the safety factor q = 1/ι is generally used.

In the tokamak (shown on the left-hand side of Fig. 1.3) so-called toroidal field coils produce
the main toroidal magnetic field. The poloidal magnetic field is generated by changing the
magnetic flux in a central solenoid, which induces a current in the plasma. This current creates
an additional magnetic field in the poloidal direction. The superposition gives the desired twisted
field. A major disadvantage is that the high plasma current can cause instabilities [33]. This can
then trigger a disruption [34], a prompt loss of confinement, after which the plasma is unable to
support the high current any longer. Furthermore, a tokamak operates intrinsically pulsed as, at
some point, it becomes impossible to further change the magnetic flux in the central solenoid.

The stellarator, which is shown on the right-hand side of Fig. 1.3, does not have these
disadvantages. Instead, it has a more complex coil set, i.e. additional helical coils in the case of
a classical stellarator. The twisted magnetic field is produced purely by external currents, which
gives a stellarator steady-state capability. An unavoidable feature of this approach is a magnetic
field B whose magnitude depends on the toroidal angle. Hence, compared to a tokamak, one
continuous symmetry (leading to a conserved quantity [35]) is lost. This requires an intricate
optimization of the magnetic field if the quality of the confinement in a stellarator is to be
comparable to that of a tokamak [36].

Instead of planar toroidal field coils and helical coils, non-planar coils may be chosen. This
approach has been pursued for the modular stellarators W7-AS and W7-X.

1.3 Shear Alfvén waves and gap modes

Most of the articles included in this thesis address the kinetic effect of fast particles on shear
Alfvén waves. Shear Alfvén waves are transverse electromagnetic waves [37] that propagate in
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1.3. Shear Alfvén waves and gap modes

astrophysical and fusion plasmas along the field lines of the confining magnetic field. Ref. [38]
emphasizes the analogy of a shear Alfvén wave and a plucked string: The magnetic field lines
provide the tension and the ion mass the inertia.

In cylindrical geometry, the dispersion relation of shear Alfvén waves is

ω2 = v2
Ak

2
‖, (1.4)

where vA = B/
√
µ0mini is the local Alfvén velocity [37] and k‖ and ω are the parallel wave

vector and the frequency of the mode, respectively. Further, mi and ni are the ion mass and
density, and µ0 denotes the vacuum permeability. This dispersion relation is the ideal-MHD limit
of the more complex dispersion relation of kinetic Alfvén waves, which is derived in App. B.1
from kinetic theory. Waves that fulfil the dispersion relation Eq. (1.4) are called continuum
modes. Typically, they are strongly damped.

In a toroidal fusion device, the strength of the magnetic field varies as B ∼ 1/R [33], where
R measures the distance from the central symmetry axis. For a wave which propagates along a
twisted magnetic field line, this gives rise to a periodic modulation of B and, as a consequence,
of the refractive index. This effect is similar to electrons moving in the periodic potential of the
atomic nuclei in condensed matter physics [39]. Both in solids as well as in fusion plasmas, the
consequence are frequency (or energy) gaps in the otherwise continuous spectrum. A similar
effect is known as the avoided crossing phenomenon in quantum mechanics [40].

As a consequence, the dispersion relation of shear Alfvén waves is more complex in a toroidal
device compared with a slab or a cylinder. In a two-mode model [41], the dispersion relation
(around the toroidicity-induced gap) can be expressed as

(
k2
m,n −

ω2

v2
A

)(
k2
m+1,n −

ω2

v2
A

)
− ε2ω

4

v4
A

= 0. (1.5)

The parameter ε is related to the toroidal geometry and is responsible for the formation of
frequency gaps. In a large-aspect-ratio tokamak it can be expressed as ε = 2(∆′ + a

√
s/R0) [41].

The parallel wave vector with poloidal and toroidal mode numbers m and n is denoted by
km,n = (n+mι)/R0. ∆′ is the radial derivative of the Shafranov shift, R0 denotes the major
radius of the toroidal device, and s is the normalized toroidal flux.

In a stellarator with N field periods, the equation for the continuum is slightly more
complex [42]

(
k2
m,n −

ω2

v2
A

)(
k2
m+µ,n+νN −

ω2

v2
A

)
−
(
ε(µ,ν)ω

2

v2
A

− ε
(µ,ν)
g

2
km,nkm+µ,n+νN

)2

= 0. (1.6)

Here, ε(µ,ν) = ε
(µ,ν)
g /2− 2ε

(µ,ν)
B , with ε

(µ,ν)
g and ε

(µ,ν)
B denoting the Fourier components of the gss

metric tensor component and the magnetic field strength, respectively. The coupling of the two
modes depends on µ and ν.

An example continuum (the parameters are those of the ITPA tokamak benchmark case
[43,44]) is shown in Fig. 1.4. Clearly visible is the continuum (coloured lines) with the continuum
gap around ω = 4.0 · 105 s−1. The corresponding cylindrical continuum (black dashed lines) is
obtained by setting ε to zero. In fusion plasmas, global modes can exist in such frequency gaps.
Because they only experience minimal interaction with the continuum modes, their damping
is minimized.1 This makes them ideal candidates for the excitation by fast ions. On the other

1While continuum damping [41, 45] is absent, other mechanisms such as Landau damping [46] or radiative
damping [47] might still be present.
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Figure 1.4: Shear Alfvén continuum of the ITPA tokamak benchmark case [43,44]. In toroidal geometry the
continuum branches form a gap in the spectrum (coloured lines), while they cross in the cylindrical approximation
(dashed black lines).

hand, if they were to experience an interaction with the continuum modes (for example close to
the edge of the plasma where the Alfvén frequency quickly rises due to the density reducing to
zero in realistic plasmas), the global modes would be damped via continuum damping [41,45].
Gap modes will be the focus of this thesis. They have been observed experimentally in many
tokamaks [48–52] and stellarators [53–55]. Recently, mode activity has been measured in W7-X
in the frequency range expected for shear Alfvén waves [56].

Calculating the mode structure of these global modes can either be done using MHD, multi-
fluid, or kinetic models. In order to describe the resonant interaction of fast ions with the mode
a kinetic treatment of this particle species is required.

In fusion plasmas there exists a whole zoo of different Alfvén eigenmodes [38]. They can be
beta-induced (BAEs), induced by toroidicity (TAEs), ellipticity (EAEs), or by an extremum in
the Alfvén continuum (GAEs). In stellarators, also helicity-induced Alfvén eigenmodes (HAEs)
are possible. With the exception of the GAE, all these gap modes arise from the breaking of
the cylindrical symmetry. Since this symmetry can be broken in different ways, the modes vary
in the way how the different poloidal (and toroidal) Fourier harmonics are coupled together.
Fig. 1.5 shows the radial mode structures of two toroidicity-induced Alfvén eigenmodes (TAEs)
found in the gap of the continuum shown in Fig. 1.4. These modes have been calculated using
the STAE-K code [57].

Within ideal-MHD theory these global modes are neither driven nor damped (i.e. purely
oscillating) as long as they do not interact with the continuum. Density or temperature gradients
of a kinetic particle species, however, can be sources of an instability. Since the interaction of the
particles with the mode is a resonance phenomenon, the particles need to have a very particular
velocity. Among other possibilities (see articles A.4 and A.6 for a discussion), a typical resonance
for TAEs in tokamaks is (see e.g. Ref. [38])

vres
‖ =

vA

3
(1.7)
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Figure 1.5: Even (left) and odd (right) TAE found in the TAE gap of the ITPA tokamak benchmark case [43,44]
using the STAE-K code [57]. Such global modes are prime candidates to be resonantly destabilized by fast ions.

which, given the common Alfvén velocity in fusion plasmas, means that only particles faster
than the bulk can fulfil the resonance condition.

This can be illustrated by considering a typical fusion plasma with B = 2.5 T, n = 2.0 ·
1019 m−3, and T = 2 keV composed of hydrogen (parameters loosely based on first W7-X
plasmas [58]). For such a plasma, the Alfvén speed is vA = 1.22 ·107 m/s, which is about 28 times
faster than the thermal speed of the background-plasma ions. This confirms that a fast-particle
species is required to drive the modes unstable.2

1.4 Gyro-kinetic theory

This section aims to give a brief overview of gyro-kinetic theory, which is the underlying tool
used for the majority of simulations presented in this thesis.

A plasma can be described on various levels of complexity. In practice, magneto-hydrodynamic
(MHD) theory, multi-fluid approaches, and kinetic theory are used. The latter offers the most
rigorous description of a fusion plasma and relies on a statistical treatment. Therefore, the
plasma is described in terms of its particle distribution functions fs, which for each particle
species s is taken to fulfil the Boltzmann equation (see e.g. Ref. [59])

∂fs
∂t

+ ẋ · ∂fs
∂x

+
qs
ms

(E + v ×B) · ∂fs
∂v

=
∂fs
∂t

∣∣∣∣
coll

. (1.8)

Here, E and B are the electric and magnetic field and x and v denote the particle position
and velocity, respectively. The phase-space has six dimensions which makes the problem seven-
dimensional once the time t is included. The term on the right-hand side is the collision integral,
which will be covered in Sec. 1.5. For now, it is ignored. In the absence of perturbed fields, the
particles follow the characteristics of the kinetic equation [60] in a way that is shown in Fig. 1.6:
On the fast time scale, they perform a gyrating motion around a magnetic field line. At much
longer time scales they also drift away from the field line (not shown in the figure). In this thesis
we study the interaction of fast particles with Alfvén eigenmodes. Important information to

2In principle, it is also possible for thermal electrons to excite AEs [38,56], but the excitation by fast ions is
the more prevalent mechanism.
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Figure 1.6: Schematic depiction of the unperturbed motion of a charged particle in the presence of a magnetic
field. The particle performs a spiral motion (called gyration) around a magnetic field line. The radius of the spiral
is given by |ρ|, with ρ being the Larmor or gyro-radius. The gyro-phase is denoted α.

describe the resonant wave-particle interaction are the parallel velocity of the fast ions as well as
their drift. What is unimportant is the fast gyro-motion caused by the Lorentz force

FL,s = qsv ×B (1.9)

around the field line. We can therefore reduce the dimensionality of the problem by transforming
to phase-space coordinates in which the gyro-phase α is ignorable and the associated magnetic
moment µ is constant [61]. A theory constructed that way is called guiding-centre or gyro-kinetic
theory.3 A convenient analogy of this coordinate transformation is to think of the original
particles as charged rings (quasi-particles) moving through phase-space.

The applicability of guiding-centre theory relies on a number of assumptions. Firstly,
phenomena of interest (denoted by their frequency ω) must happen on a timescale much slower
than the inverse ion-cyclotron frequency Ωi = qiB/mi, i.e.

ω

Ωi
= O (εω)� 1. (1.10)

Secondly, the gyro-radius ρ must be much smaller than the length scale on which the background
magnetic field varies (denoted by LB), i.e.

ρ

LB
= O (εB)� 1. (1.11)

This means that the plasma must be sufficiently magnetized. If those requirements are fulfilled,
it is possible to find a coordinate transformation to guiding-centre coordinates, which effectively
eliminates the fast time scale from the equations of motion. A modified magnetic moment, which
is constant, can be found. But, as soon as time-varying electromagnetic fields (e.g. Alfvén waves
with ω � Ωi) are added to guiding-centre theory, the conservation of the magnetic moment
is violated [62] (if k⊥ρ ∼ 1), which requires an additional transformation – the gyro-centre
transformation – be carried out. This will restore the conservation of the magnetic moment in
new coordinates as long as the fluctuations are small compared with the background fields

|δB|
|B| ∼ |δE| = O (εδ)� 1. (1.12)

Thus, the derivation of gyro-kinetic equations is a two-step process [61]. For the description of
Alfvén eigenmodes in the core of a magnetically confined fusion plasma, all of the above conditions

3If finite-Larmor-radius effects are ignored one speaks of drift-kinetic theory.
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are fulfilled. Note however that gyro-kinetic theory is not restricted to magnetically confined
fusion plasmas. Applications in an astrophysical setting are also possible if the conditions above
are met [63].

Research on the derivation of non-linear gyro-kinetic equations has a long history. A good
overview is given in Ref. [61]. While the initial approach [64] was an iterative derivation by
expanding the distribution function and the fields in terms of the various small parameters
defined above, it is also possible [61] to base the derivation on Lie-transform methods.

The transformation to new phase-space coordinates is accompanied by changes in the field
equations for the electromagnetic potentials. There will be polarization and magnetization effects
appearing, which come from the fact that we now treat charged rings rather than point particles.

Thus, while we loose the ability to describe some phenomena (such as for instance ion-
cyclotron-resonance heating which obviously violates the conservation of the magnetic moment),
we gain two important advantages: Firstly, as the gyro-phase becomes ignorable, the dimen-
sionality of velocity space is reduced from three to two. Furthermore, µ is a parameter rather
than a dynamical variable. This reduction of the dimensionality of the problem is particularly
important for grid-based (Eulerian) codes, where it leads to a decrease of numerical cost. While
a grid in the µ-direction is still necessary in order to calculate velocity-space moments, a coarse
resolution can be chosen in practice. The second advantage is most important for particle-in-cell
(PIC) codes. Since the fast gyro-motion has been eliminated, it needs no longer be resolved
numerically. This permits a larger time step ∆t� Ω−1

i than would otherwise be possible, which
again saves numerical resources.

There are several possible choices of variables to express gyro-kinetic theory. They give
rise to the so-called v‖-, p‖-, and mixed formulations. A detailed description of their respective
benefits and drawbacks will be given in App. B.2.

The equations presented in the remainder of the thesis are (unless stated otherwise) expressions
for the gyro-centres of the particles.

1.5 Collisions

The main focus of this thesis is to include collisions in gyro-kinetic simulations of Alfvén
eigenmodes (AEs). The goal is to arrive at a more realistic description of the plasma in general.
This should facilitate a more rigorous comparison with experimental measurements, in particular
for W7-X. Note that the 2018 experimental campaign of W7-X (from July to October) was
the first operation phase that included NBI heating. (Later operation phases will also include
ICRH.) Thus, fast ions that can potentially excite AEs, were present. This thesis shows that
collisions are an important ingredient for the theoretical description and are required for any
quantitative comparison to the experiment.

Very qualitatively, the impact of (pitch-angle) collisions is shown in Fig. 1.7 in a circular
tokamak. While the red curve shows a collisionless orbit of a passing fast ion, the same particle is
subject to pitch-angle scattering in a second simulation shown in blue. A high collision frequency
has been chosen for illustrative purposes. It is clearly visible that the orbit changes dramatically:
Without collisions, the projection of the particle orbit into a poloidal plane is a circle. This
means that the particle is never reflected at local maxima of the magnetic field strength along
its path, which makes it a so-called passing particle. Adding collisions, however, ‘reshuffles’ the
velocity components of the particle. It now is reflected at certain values of B, indicated by the
banana-shaped orbit of a trapped particle. Moreover, the particle crosses the passing-trapped
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Figure 1.7: Schematic view on how (pitch-angle) collisions change the particle motion. Shown is the poloidal
cross section of a large-aspect-ratio tokamak. The red circle shows the orbit of a passing particle in a collisionless
simulation. When collisions are added (blue curve), the topology of the orbit changes. The particle crosses the
passing-trapped boundary.

boundary (banana changes into a circle) during the simulation.

The interaction of AEs with particles is a resonance phenomenon in phase-space. Resonant
ions need to be localized at the position of the AE in real space and fulfil a resonance condition
in velocity space. Collisions directly influence the resonance condition by modifying the particle
velocity. As shown in Fig. 1.7 they also change the position of the particle in real space (in
combination with the magnetic equilibrium). The particle motion visualized in Fig. 1.7 is
calculated in the absence of a mode. This is why the orbit closes poloidally for the red curve.

In this section, we briefly list all the collision operators that are used in the thesis. As
mentioned for the pitch-angle scattering operator in article A.1, they are obtained by transforming
the full Fokker-Planck operator to guiding-centre coordinates and neglecting energy and guiding-
centre diffusion. Ref. [65] elaborates on this procedure. After the collision operator is transformed
to guiding-centre coordinates, it describes diffusion of particles in real and in velocity space.
The diffusion in real space scales with the square of the gyro-radius and can thus be neglected
compared with the much larger orbit changes of the particle induced by changes of the velocity
components during the collision. (The banana half-width is larger than the gyro-radius by
approximately B/Bpol [33], where Bpol is the poloidal magnetic field.)

The general Fokker-Planck collision operator [66,67] for colliding species a and b is defined as

Cab (fa, fb) =
∂

∂vk

[
Aabk fa +

∂

∂vl

(
Dab
kl fa

)]
(1.13)
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and describes drag (Aabk ) and diffusion (Dab
kl ) of particles in velocity space. It simplifies consider-

ably in the case of collisions with a Maxwellian background [66]

Cab
(
fa, f

M
b

)
= νabD L (fa) +

1

v2

∂

∂v

[
v3

(
ma

ma +mb
νabs fa +

1

2
νab‖ v

∂fa
∂v

)]
, (1.14)

where m denotes the mass and νD, νs, and ν‖ are the pitch-angle scattering, slowing-down, and
parallel velocity diffusion frequency, defined in Ref. [66]. The first term in the above equation
denotes the pitch-angle (ξ = v‖/v) scattering operator

νabD L =
νabD

2

∂

∂ξ

(
1− ξ2

) ∂
∂ξ
. (1.15)

Its implementation into the electrostatic version of EUTERPE was first described in Ref. [67] and
is briefly recapitulated in article A.1, where we benchmark it for electromagnetic applications.
It is used in article A.2 to verify the theoretically predicted [8] scaling law of the non-linearly
saturated amplitudes of AEs with respect to the collision frequency. Note that this operator has
the property of keeping the total magnitude of the particle velocity constant, while ‘reshuffling’
the division into v‖ and v⊥ (or µ). Therefore, this operator does not conserve linear momentum.
The implementation and benchmarking of a correction term is discussed in App. B.4.

Since the AEs are resonantly excited by fast ions, a fast-ion collision operator [66]

Cfast (ff) = νfi
DL (ff) +

1

v2

∂

∂v

[
v3 mf

mf +mi
νfi

s ff

]
+

1

v2

∂

∂v

[
v3 mf

mf +me
νfe

s ff

]
(1.16)

≈ νfi
DL (ff) +

1

v2τs

∂

∂v

[(
v3 + v3

c

)
ff

]
(1.17)

has been implemented. It is used in articles A.3, A.4, and A.5. Throughout the thesis, the
indices i, e, and f are used to label ions, electrons, and fast ions, respectively. The derivation
and implementation of the fast-ion collision operator is discussed in article A.5. The correctness
of the implementation is verified for the approximate version in App. B.5.

The final operator that will be used in this thesis is a Krook operator [68]

CKrook

(
f (1)

)
= −νKrookf

(1), (1.18)

which is used to bring back the distribution to its unperturbed value (f (1) = 0) on a timescale
∼ ν−1

Krook. (The perturbed part of the distribution function is labelled f (1).) Thus, as a ‘real’
collision operator, we can use the Krook operator to relax the distribution function towards a
Maxwellian (other choices are also possible). The main benefit of this operator is its versatility
as it can further be used to emulate a particle source. In that sense, the Krook operator is
connected to the frequency chirping of AEs (which we hope to observe in the experiment) and
will be discussed in article A.5. Note however that the Krook operators does not conserve particle
number, linear momentum, and energy.
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Chapter 2

Summary of results

2.1 Initial benchmark of the implementation of collisions (A.1)

Before any tokamak and stellarator cases (possibly with realistic plasma parameters) can be
addressed, it is important to confirm that the numerical tools work reliably. Simulations for
realistic W7-X cases will be performed in the later articles included in this thesis.

Hence, the topic of article A.1 is a thorough benchmark of the implementation of the pitch-
angle scattering operator, as defined in Eq. (1.15), into the EUTERPE code. In this initial test
case, we consider the damping rate of a kinetic Alfvén wave (KAW) in an unsheared plasma slab.
The simple geometry lends itself well to the comparison with the semi-analytical theory outlined
below. We further test the compatibility of pitch-angle collisions with the electromagnetic
version of EUTERPE. As is pointed out in the article, only electrostatic simulations had been
combined with collisions previously [67]. Since this thesis focusses on the influence of collisions
on fast-ion-driven AEs (which are electromagnetic perturbations) it has to be carefully checked
whether the implementation of collisions also works for this case. Additionally, this is the
first time that the mixed formalism of the equations of motion used in EUTERPE (pullback
scheme [69,70]) is combined with collisions. The pullback scheme is used for all fully gyro-kinetic
simulations in EUTERPE. (See App. B.2 for more information on the different formulations
of gyro-kinetic theory.) The long-term goal is to perform fully gyro-kinetic and non-linear
simulations, including also collisions, for W7-X. Thus, article A.1 is a first step in this direction,
testing the basic properties of the integration schemes.

Even the supposedly simple problem of a KAW in slab geometry becomes non-trivial once
collisions are added. Since analytical theory is lacking, a semi-analytical approach (called the
Legendre approach in the article) is constructed and compared to EUTERPE. This method
employs a decomposition of the perturbed distribution function into Legendre polynomials,
which are eigenfunctions of the pitch-angle scattering operator. In this way the problem becomes
much simpler. We find that, even though collisions are treated very differently, both EUTERPE
and the Legendre approach yield the same results for the frequency and damping rate of the
KAW. This key result is shown in Fig. 2.1, which is a combination of Figs. 1 and 2 from article
A.1. Thus, EUTERPE has been verified successfully and is ready to be applied to more difficult
magnetic geometries, i.e. tokamaks and stellarators. This is done in the following articles. As far
as physics is concerned, we find that collisions particularly influence the small scales, i.e. modes
with a high k⊥ρs. This is expected since Alfvén waves are undamped in the limit of ideal MHD,
where k⊥ρs → 0.
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Figure 2.1: Frequency (left) and damping rate (right) of a KAW in slab geometry. Collisionless simulations are
shown in black whereas red is used for the ones including a pitch-angle scattering operator. In any case, EUTERPE
and the Legendre approach agree very well. Collisions do not affect the frequency, but lead to additional damping
which is strongest for high-k⊥ρs modes.

The main point of article A.1 is to stress the good agreement between EUTERPE and the
Legendre approach for the frequency and damping rate of the KAW. But, besides the main
topic, further subjects have been investigated as well. We have performed convergence scans for
the particle number and the time step. The goal is to become familiar with these parameters
before more expensive simulations in a tokamak or stellarator are attempted. We confirm that
choosing a small time step is more important than having many numerical maker particles in
the simulation. The reason is that only a very slowly converging stochastic scheme is used for
the collisional process (weak convergence of order one for the time step). This needs to be kept
in mind for future simulations.

The Legendre approach is also used to calculate the direct influence of pitch-angle collisions
on the perturbed distribution function in velocity space (see Fig. 4 on page 48). As expected,
the inclusion of collisions leads to a more isotropic velocity space as they smooth the structures
generated by Landau damping. The EUTERPE results, which show very good agreement, are
presented in App. B.3 for comparison.

Finally, it needs to be pointed out that different formulations of gyro-kinetic theory are
used in the paper. As mentioned before, EUTERPE uses the mixed formulation, which has
considerable advantages for a PIC code. On the other hand, the p‖- and, to a lesser extent, the
v‖-approaches are used for the Legendre approach. Since article A.1 only provides some detail
about the different choices of variables to construct a gyro-kinetic theory, further explanation is
provided in App. B.2, which may act as an extended introduction to article A.1. While there is
some duplication of information, which cannot be avoided, App. B.2 also confirms that the v‖-,
p‖-, and mixed formulation all yield the same results for the analytically solvable problem that
only includes a Krook operator [68]. Thus, App. B.2 can also be understood as a benchmarking
effort of the Legendre approach itself.

2.2 Collisions influence non-linear saturation levels (A.2)

Having confirmed the correct implementation of pitch-angle collisions into the electromagnetic
version of EUTERPE in simple slab geometry (see article A.1), we now proceed to more realistic
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tokamak and stellarator cases. Note that the way how collisions are treated is independent from
the geometry.

Article A.2 deals with the resonant interaction of AEs with fast ions. We consider the
fast ions to be the collisional species. In order to allow for a straightforward comparison with
analytical theory [8], the collision frequency (considered as input parameter in this article) is
varied over a wide range. We can treat it as an effective collision frequency including fast-ion
self-collisions and collisions with the background plasma. The main topics of article A.2 are the
effects that pitch-angle collisions have on the saturation dynamics of TAEs, both in tokamaks
and in W7-X.

Recall that the non-linear phase of the mode evolution, in particular the saturated levels of
the mode amplitude, determines the transport of the fast ions [4, 14]. Since fast ions need to be
confined in the plasma until they have thermalized, increased transport due to AE activity is
unfavourable. Analytical theory [8] predicts that the saturation level scales as ν2/3, where ν is
the pitch-angle scattering frequency.

In order to extract scaling laws for the saturation amplitudes numerically, many simulations
with various collision frequencies are performed. This would be prohibitively expensive if the fully
gyro-kinetic version of EUTERPE were used. Instead we employ the reduced model implemented
in CKA-EUTERPE [1]. In this model, the thermal species are described by reduced ideal-MHD
equations and only the fast ions are treated gyro-kinetically, which saves computation time and
allows for a larger time step. Furthermore, the model is perturbative as it uses the ideal-MHD
code CKA [71] to compute the mode frequency and structure, which remains unchanged in the
subsequent EUTERPE simulations. Instead of the field equations (Poisson’s equation for the
electrostatic potential and Ampère’s law for the parallel vector potential), so-called amplitude
equations are solved in CKA-EUTERPE. They determine the temporal evolution of the potentials
with a fixed shape. This, again, saves computation time and makes the model more robust
compared with fully gyro-kinetic approaches [72].

Note that collisions can often be neglected in linear simulations of AEs, since the mode
frequency and growth rate typically do not depend on the presence of a collision operator. This is,
for instance, visible on the left-hand side of Fig. 2.2, where it is shown that pitch-angle collisions
barely change the linear phase. The same figure also shows that the non-linear phase, on the
other hand, is sensitive to the value of the collision frequency. This figure is a combination of
the middle panels of Figs. 2 and 3 shown in the article.

In article A.2, we first introduce the numerical tools and then investigate the saturation level
of a TAE for variants of the ITPA benchmark case [43,44]. In the simulations, both the so-called
resonance-detuning and radial-decoupling regimes [73, 74] are covered. These are determined by
different saturation mechanisms: While in the former the saturated amplitude is proportional
to γ2

L, it only scales as γL in the latter. (γL is the linear growth rate of the mode.) We find
that in the resonance-detuning regime, the analytically predicted ν2/3 scaling can be confirmed
by CKA-EUTERPE for small-enough (i.e. smaller than a critical value) pitch-angle collision
frequencies. The numerically extracted scaling law is shown as the red line on the right-hand
side of Fig. 2.2. The validity range of the analytical theory is estimated and found to agree fairly
well with our simulation results. Thus, the paper can, in part, be viewed as another benchmark
against analytical theory, but now in a non-linear setting and in a more complicated magnetic
geometry, which is more relevant to magnetic-confinement fusion.

In the radial-decoupling regime and for higher collision frequencies (outside the validity range
of analytical theory) scaling laws other than the ν2/3 scaling are found numerically.

The pitch-angle scattering operator, introduced in Sec. 1.5 and benchmarked in article
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Figure 2.2: Time trace of the (poloidal) perturbed magnetic field of the mode for the standard ITPA benchmark
case [43, 44] (left). Various collision frequencies are considered. Periodic or steady-state solutions are possible
non-linearly. The right-hand side shows the dependence of the first maxima of δB after the linear phase on the
collision frequency. The analytically predicted [8] scaling law is recovered for small-enough collision frequencies
(red line).
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Figure 2.3: Same as Fig. 2.2, but for W7-X. Main differences compared with the tokamak are that the linear
phase is more strongly influenced by collisions and that the saturation level (first maximum of δB after the linear
phase) becomes a non-monotonic function of the collision frequency.

A.1, does not conserve linear momentum. We therefore use a correction scheme (called the
conservation scheme in the article) which ensures the constancy of all moments of the collision
operator that should be conserved analytically. It is found that neglecting the conservation
of linear momentum leads to an overestimation of the effects of collisions. However, this only
becomes important for very high collision frequencies. A description and benchmark of the
conservation scheme are presented in App. B.4.

The final section of article A.2 is devoted to the stellarator W7-X. The main results are shown
in Fig. 2.3, which appears as Fig. 10 in the article. It is found that W7-X behaves differently in
terms of the scaling law than the tokamak: For very high collision frequencies the saturation
level of the TAE is reduced by pitch-angle collisions and is thus a non-monotonic function of ν.
A follow-up simulation in a quasi-axisymmetric stellarator could bridge the gap between the
tokamak and W7-X investigated in article A.2. Such a simulation could help to isolate the cause
for the changing scaling law.

Throughout the paper, the transport of fast ions is studied by investigating changes in the

18



2.3. Investigating a realistic Wendelstein 7-X case (A.3 and A.4)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

E
=

E
m

a
x

E
=

E
m

a
x
/2

E
=

E
m

a
x
/3

f(
E

) 
/ 
a
rb

. 
u
n
it
s

E / keV

ASCOT distribution function
EUTERPE distribution function

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

n
f
/ 
(1

0
1
8

m
-3

)

s

ASCOT profile
EUTERPE profile

Figure 2.4: Realistic fast-ion distribution function (left) and density profile (right) used in articles A.3 and A.4.
Both have been computed by the ASCOT code [6,7] (black dots) and then fitted to the model implemented in
EUTERPE (red lines).

fast-ion density profile. We confirm that transport takes place and that its strength is correlated
with the saturated amplitude of the TAE. Further, if measurable flattening of the fast-ion density
profile occurs, the range over which the profile flattens radially is roughly equal to the mode
width. Hence, for the narrow mode studied in the tokamak the flattening is very local, whereas
for the broad TAE in W7-X the profile is flattened over the entire minor radius.

2.3 Investigating a realistic Wendelstein 7-X case (A.3 and A.4)

Plasmas with realistic fast-ion parameters (most notably their density profile and distribution
function in energy space) are the topic of articles A.3 and A.4. These investigations were carried
out as part of the preparation of the CKA-EUTERPE model to be applied to realistic plasmas
as expected for the 2018 experimental campaign (July to October 2018), also called operation
phase (OP) 1.2b. We investigate a number of shear Alfvén eigenmodes that could potentially be
driven unstable via the interaction with fast ions. Note that OP 1.2b is the first operation phase
of W7-X to also include NBI heating, which supplies fast ions in order to heat the plasma. Later
operation phases will also feature ion-cyclotron-resonance heating.

As in the previous article A.2, the perturbative model of CKA-EUTERPE [1], with a fixed
MHD mode structure, is used for the non-linear numerical simulations. Due to the low fast-ion
pressure (compared with the pressure of the background plasma), this is considered a good
approximation. The simulations feature a realistic fast-ion distribution function and density
profile as calculated (see Ref. [5]) by the ASCOT code [6, 7] for plasma parameters typical of
the 2018 experimental campaign. Both are shown in Fig. 2.4, where the dots represent results
from the ASCOT simulation and the red lines are the fits used in EUTERPE. Furthermore, the
simulations include a dedicated fast-ion collision operator, which was introduced in Sec. 1.5. All
together, this is the first time that CKA-EUTERPE simulations are performed at such a level of
realism. While articles A.1 and A.2 mainly focussed on initial benchmarking and comparison to
analytical theory, article A.3 is the first application to a realistic W7-X case.

We find that the Alfvén eigenmodes (GAEs [global], TAE [toroidicity-induced], and EAEs
[ellipticity-induced]) investigated in article A.3 are weakly driven unstable by fast ions in the
absence of a physical damping rate. The low growth rates are mainly due to the comparatively
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Figure 2.5: Radial mode structures (top row) and power transfer in arbitrary units in the s-v‖-plane (bottom
row). The modes are (from left to right): (m = 1/n = −1) GAE, (m = 2/n = −2) GAE, (m = 17, 18/n = −16)
TAE, and two (m = 17, 19/n = −16) EAEs with even and odd parity, respectively. In case of the gap modes, the
power transfer is radially localized at the same position as the mode. For the very extended GAEs, the power
transfer coincides with the region of strongest gradient in the mode structure. Toroidal and helical resonances
with the background magnetic field are shown in red and green, respectively.

low injection energy of the fast protons. In particular, their velocity is at most approximately half
the Alfvén velocity, which limits the available resonances for the wave-particle energy exchange.
All AEs saturate in the range of δB/B0 = 10−4 − 10−3. The non-linear simulations show that,
thanks to these low saturation levels, the induced transport is also small.

Since the damping rate is an external parameter in the CKA-EUTERPE model, the code
STAE-K (see article A.6) is used to estimate the radiative damping rates of the gap modes.
We find that the damping exceeds the fast-ion drive for these modes. Unless there are other
destabilizing mechanisms in the experiment (e.g. coming from the background plasma), it seems
unlikely that the fast-ion drive would be sufficient to destabilize the AEs included in this
investigation.

The numerical modelling of this realistic W7-X case is split over two separate publications,
and article A.4 is a direct continuation of the previous article A.3. We reconsider exactly the
same case with the aim of performing a more in-depth survey of possible actuators (ideally
experimentally accessible) that control AE activity in W7-X.

Using article A.3 as a starting point, we first investigate the power transfer in phase space.
The radial mode structures and the power transfer in the s-v‖-plane are shown in Fig. 2.5, which
is a combination of Figs. 1 and 2 from article A.4. Especially for global Alfvén eigenmodes
(GAEs), which extend over the entire minor radius, it was previously not clear where the drive
exactly comes from. In the article we show that the drive is localized to regions of large gradients
in the radial mode structure. Subsequently, we ask the question – from the standpoint of
trying to maximize the fast-ion drive – if hydrogen or helium plasmas should be preferred.
Note that the NBI system of W7-X is designed in a way that for a hydrogen plasma with a
density of 5.0 · 1019 m−3, at most v‖/vA ≈ 0.43 can be reached (corresponding to a maximal
injection energy of 55 keV). In helium plasmas, on the other hand, the mass density is higher,
which leads to a reduction of the Alfvén speed and should make it easier to excite AEs. In
tokamaks this reasoning would be correct, but, as we point out in the paper, stellarators have a
three-dimensional structure of the magnetic field which allows for additional helical resonances
at lower values of v‖/vA. This is the reason why helium plasmas are found to be more stable in
W7-X.
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Figure 2.6: Time trace of the perturbed poloidal magnetic field of the TAE shown in Fig. 2.5 for various
strengths of the fast-ion collision operator (left). The value of δB/B0 at saturation (first maximum) is shown
on the right-hand side. The saturation levels are normalized to the fully self-consistent case. The presence of a
fast-ion collision operator increases the saturation level substantially with both pitch-angle scattering and drag
contributing to the increase.

Next, we turn to the influence of collisions on the non-linear saturation levels of AEs. Recall
that the AE-induced fast-ion transport depends on the saturated amplitudes [4,14]. The fast-ion
collision operator used in the simulations includes two basic effects: Pitch-angle scattering of the
fast ions off the background-plasma ions and slowing-down (drag). In order to disentangle these
two effects, we independently vary the pitch-angle scattering and slowing-down frequency for
two of the modes found by CKA. For the TAE, the results are shown in Fig. 2.6, included in
article A.4 as Fig. 5. Here, the fast-ion collision operator substantially increases the saturation
level, with both pitch-angle collisions and drag contributing to the increase. Including a realistic
collision operator in the simulation is required to accurately predict the non-linear saturation
levels, which increase by more than a factor of ten. Furthermore, the GAE is found to behave
differently compared with the TAE in the paper: The saturated amplitude depends less on
the collision frequencies, and drag acts to decrease the saturation level. Since the collision
frequencies are a strong function of density and temperature (and thus of the radial position
in the plasma), collisions can act to favour a particular AE to be dominant in the experiment.
This is a hypothesis that will be tested when the multi-mode version of CKA-EUTERPE (see
App. B.6) is ready to be used.

Finally, the role of a radial electric field Er on the linear and non-linear dynamics of the AEs
is considered. A radial electric field is usually present in stellarators and ensures the overall
ambipolarity of the plasma transport. For the present case, Er is calculated from the parameters
of the background plasma using the NTSS code [75]. We find that the inclusion of the radial
electric field only very slightly changes the development of the mode amplitudes.

Note that throughout articles A.3 and A.4 each simulation was performed for each AE
individually, as this was the state of the CKA-EUTERPE model at that time. More realistically,
of course, the modes would interact with each other linearly as well as non-linearly. This would
also affect their respective saturation levels. As mentioned in Ch. 3 a so-called multi-mode
version of CKA-EUTERPE, able to handle the exchange of energy between multiple modes
present in a single simulation, is currently being tested. App. B.6 reports on first results.
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Figure 2.7: Frequency chirping for the ITPA tokamak [43,44] (two figures on the left) and W7-X (two figures
on the right). In both cases, periodic chirping events can be simulated using a Krook operator, which is used to
emulate a fast-particle source.

2.4 Collisions and non-linear frequency chirping (A.5)

In article A.5, we investigate how collisions influence the long-term non-linear behaviour of AEs.
Special emphasis is given to their frequency chirping. Throughout the paper a variety of collision
operators are used: We study pitch-angle scattering and fast-ion drag. Both effects together
are described by a dedicated fast-ion collision operator. Furthermore, a Krook operator [68] is
used to emulate a particle source which leads to periodic chirping events. They are frequently
observed in experiments [4, 76, 77] and in numerical simulations [78–81]. In article A.5, they are
simulated for the first time in W7-X, in which a realistic slowing-down distribution function is
used to describe the fast ions.

The numerical simulations are compared with the analytical Berk-Breizman model [8–12],
which predicts a variety of possible non-linear scenarios depending on growth and damping
rates and the collision frequencies. It is, however, a simplified one-dimensional model with the
important difference that the drive comes from velocity-space gradients (bump-on-tail distribution
function). In our case, the gradient of the fast-ion density profile is the source of the instability.

After describing the model (as in the previous articles, CKA-EUTERPE [1] is used) and
deriving the fast-ion collision operator, we start with the familiar ITPA tokamak benchmark
case [43,44] and a W7-X high-mirror configuration in the absence of collisions. This gives us a
baseline scenario in which the linear growth rate can be adjusted such that chirping is nicely
visible. The first and the third panel of Fig. 2.7 shows the collisionless chirping for the ITPA case
and W7-X, respectively. Regarding pitch-angle collisions for the ITPA tokamak case, we find
that they lead to a more narrow chirping parabola and, despite increasing the first maximum of
δB after the linear phase (as was thoroughly described in article A.2), they reduce the long-term
average saturation level of the mode. The role of pitch-angle scattering in W7-X is found to be
slightly different: Due to the much higher collision frequencies in W7-X (a consequence of the low
injection energy of the NBI system), a steady state without any chirping develops non-linearly.
Furthermore, self-consistently calculated collision frequencies lead to an increase of the long-term
average saturation level. This could be of practical relevance for the machine since it could make
detection of AEs easier. It could, however, also lead to enhanced transport.

Next, the role of fast-ion drag is investigated. The Berk-Breizman model predicts (as shown
for example in Refs. [80, 81]) that only branches which are up-chirping in frequency should
remain. Our simulations confirm this prediction both in the tokamak and in W7-X.

Lastly, we use a Krook operator to emulate a fast-particle source. This way, the Krook
operator rebuilds the distribution function, which leads to periodic chirping events. This
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2.5. A simplified model for mode drive and damping (A.6)

mechanism works for the tokamak case and for W7-X, as is shown in the second and fourth
panel of Fig. 2.7, respectively. Within the Berk-Breizman paradigm pitch-angle scattering alone
is sufficient to generate periodic chirping events [80]. The reason is that velocity-space gradients
are the source of the instability in this model. In our case, however, the drive comes from the
fast-ion density gradient in real space. Therefore, a particle source is needed to simulate the
same effect.

To summarize, many features predicted by the Berk-Breizman paradigm are also visible
in our simulations of much more complex systems. Exceptions include the different role of
pitch-angle scattering and the Krook term regarding periodic chirping events. Furthermore, the
Berk-Breizman paradigm is not applicable if a time-dependent damping rate γd is used. A time
dependent damping rate was used in one simulation to show that frequency chirping can also be
influenced by equilibrium changes,1 which might change the ratio of γL and γd.

A future goal is to determine growth and damping rates of AEs observed in W7-X discharges,
as well as collision frequencies, spectroscopically [79] by fitting the simulation results to the
observed time traces of δB and comparing with the theoretically expected frequency change.
This could prove difficult experimentally since a constant mode frequency is expected non-linearly
(no chirping parabola) for W7-X due to the high pitch-angle scattering frequency. In any case,
non-linear simulations are required to predict AE-induced fast-ion transport. In that sense,
article A.5 represents one step towards a transport model for fast ions in W7-X. Lastly, the
paper confirms that CKA-EUTERPE can routinely be used for long non-linear simulations due
to a number of code improvements (discussed in Ch. 3) which make it run very stably.

2.5 A simplified model for mode drive and damping (A.6)

Article A.6 addresses a topic that I started working on for my M.Sc. thesis, but it also includes
additional work done while being a Ph.D. student. This includes, in particular, an extension
of the STAE-K code (described below) to also include the stellarator-specific helical Fourier
components of the magnetic field. In the W7-X high-mirror configuration, the B1,−1 Fourier
component (helical) is larger in magnitude than the toroidal B1,0 component. Thus, this paper
is to be viewed as additional material that is somewhat separated from the other papers in this
dissertation.

Article A.6 introduces a novel code called STAE-K. It is a shooting code able to compute
frequencies and growth rates of TAE modes (and other gap modes) interacting with a kinetic
fast-particle species. The code couples the background plasma (ideal-MHD description) and
the fast ions (drift-kinetic theory) non-perturbatively. Simplifications are made regarding, for
instance, the geometry and the fast-ion distribution function, which can only be a Maxwellian.
Finite-Larmor-radius and finite-orbit-width effects are neglected. (Development of STAE-K is,
however, on-going in order to relax some of the simplifications.) The final product is a code that
is much faster than gyro-kinetic codes and still contains the most relevant physics. STAE-K is
thus suited for parameter scans as the ones performed in article A.6.

After describing the physical model, its formulation as an eigenvalue problem and its
subsequent numerical implementation, the article reports on benchmarking activities for a
number of tokamak cases. As long as the initial approximations are satisfied (small fast-ion orbits
and Larmor radii, i.e. sufficiently cold fast ions) the agreement with more advanced codes is good.

1If the temperature and density of the background plasma change, damping of the mode due to radiative [47],
background-plasma Landau [46], and possibly also continuum damping [41,45] will vary.
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Figure 2.8: Stability diagrams for TAEs in the ITPA tokamak [43, 44] (left) and W7-X (right). The model
includes the fast-ion drive as well as Landau damping of the background plasma and radiative damping. Lines of
equal growth/damping rate are shown in black. W7-X is more stable than the tokamak because the existence of
a helical Fourier component of the background magnetic field allows additional resonances in the temperature
range of the background plasma. Since for the present case the background profiles are flat, these resonances act
stabilizing.

We find that for a continuously increasing fast-ion temperature, a fast-ion-driven TAE can steadily
be transformed into a kinetic Alfvén wave which resembles features of so-called energetic-particle
modes (EPMs). Furthermore, STAE-K can compute the corresponding kinetically modified shear
Alfvén continua, which aide in the interpretation of the other results. Article A.6 concludes with
an application to Wendelstein 7-X.

A major advantage of STAE-K is that, next to the fast-particle drive, it can also compute the
damping rate of the gap mode, which is generally a combination of Landau damping [46], radiative
damping [47], and continuum damping [41,45]. In the paper this advantage is utilized to calculate
stability diagrams by varying the drive and the damping independently. Two example plots,
showing the (in)stability of a fast-ion-driven TAE in the ITPA tokamak benchmark case [43, 44]
and W7-X, are shown in Fig. 2.8 (see Fig. 10 in article A.6). Only thanks to the reduced physics
model can the stability diagrams be computed in a reasonable amount of time. Looking at the
right-hand side of Fig. 2.8, STAE-K predicts that this particular TAE is stable in W7-X, since
the maximal injection energy of the NBI system is 55 keV for hydrogen. Note however that the
results of this stability analysis need to be taken with care due to the reduced physics model
employed by STAE-K, which includes the simplifications outlined above. Experimental data,
which could help to test the region of validity of STAE-K, is still being evaluated.

Note that within the CKA-EUTERPE model (used in articles A.2, A.3, A.4, and A.5) the
damping rate is an external parameter that somehow needs to be specified. This constitutes a
perfect example where guidance from simplified models, such as STAE-K, is helpful to more
advanced codes. That this approach has actively been pursued in article A.3 is the main reason
why article A.6 is included in the dissertation.

Within the newly implemented multi-mode version of CKA-EUTERPE (see App. B.6 for
details) the role of STAE-K becomes more important as we now require a damping rate for each
mode in a combined simulation.
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2.6 Flux-surface variations of the electrostatic potential (A.7)

The last article included in this thesis is different from the others, since it does not address
fast-particle-driven Alfvén eigenmodes. Instead, electrostatic potential and radial electric field
variations on a flux surface are the topic of this work. Still, collisions are an important aspect
of article A.7. This aspect ties the present work to the other articles presented in this thesis.
The radial electric field, which is needed in stellarators to ensure ambipolarity, is an important
ingredient for neoclassical transport theory of high-Z impurities, whose resulting E×B-drift
can reach a comparable magnitude as their magnetic drift.

Article A.7 reports on radial electric field asymmetries that have been observed in the TJ-II
stellarator using Doppler reflectometry, most notably in electron-root plasmas. The neoclassical
version of EUTERPE, including pitch-angle collisions and the momentum-conservation scheme
presented in article A.2 (and benchmarked in App. B.4), is used for numerical simulations that
are compared to the experiment.

Simulations are also performed for plasmas characteristic of the very first operation phase
of W7-X (OP 1.1). Those plasmas were limited (instead of diverted) and only heated by
electron-cyclotron-resonance heating (ECRH), which lead to electron-root conditions in the
plasma centre. For such conditions, a W7-X high-mirror configuration is investigated. Note
that this configuration is optimized to have the best fast-ion confinement and the least direct
fast-ion losses to the wall [5]. It is thus the configuration that is preferably used for fast-ion
studies as reported on in articles A.2, A.3, A.4, and A.5 of this thesis. On the other hand,
this configuration, due to its larger effective ripple, is not optimized from the standpoint of
neoclassical theory, which is the topic of article A.7.

The W7-X simulations are performed using both adiabatic and kinetic electrons. In most
cases, the structure of the electrostatic potential variation on a flux surface, denoted by φ1, does
not depend on whether adiabatic or kinetic electrons are used. This is an encouraging result for
future simulations, since the approximation of adiabatic electrons reduces the numerical cost
considerably. As in TJ-II, significant electrostatic potential variations on a flux surface are also
found in W7-X, especially in the triangular plane and with kinetic electrons. The trend that
such variations are larger in electron-root plasmas is seen in simulations and experiments alike.

It is found in TJ-II that −φ′1 can become comparable to the radial electric field Er = −φ′0
(φ0 denotes the electrostatic potential constant on the flux surface) in certain regions of the
plasma. In the future, this will have to be taken into account in the equations of motion for the
particles.
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Summary and outlook

In this thesis, we have addressed the problem of combining gyro-kinetic particle-in-cell simulations
of fusion plasmas with collisions. Numerical simulations have been performed in tokamaks and
stellarators – the two main approaches being pursued to magnetically confine a plasma. In
general, gyro-kinetic simulations can be performed for a large number of instabilities, differing in
frequency and spatial scales. Here, we have focussed on Alfvén eigenmodes, which are large-scale
electromagnetic perturbations in the plasma. While stable within ideal-MHD theory, these
modes can be resonantly excited by fast ions, which are generated in most fusion devices by
the heating systems. The resonant interaction of fast ions with Alfvén eigenmodes can lead to
enhanced fast-ion transport [4,8,14] and thus reduces plasma performance and can even damage
the device [3, 30].

After carefully verifying our numerical tools, we showed through non-linear simulations that
collisions play an important role as they determine the non-linear dynamics of the mode, including
its saturation level. It is a well-known experimental observation [4] that the saturation level and
the transport of fast ions out of the plasma are correlated. In the thesis, this correlation has been
confirmed numerically in articles A.2 and A.3. Understanding and controlling Alfvén-eigenmode
activity and the induced fast-ion transport will be crucial for a future fusion reactor.

Specifically, the correctness of the implementation of pitch-angle collisions is verified in slab
geometry in article A.1. After this initial benchmark it was possible to apply the EUTERPE
code to geometries and scenarios more relevant to nuclear fusion (see articles A.2, A.3, A.4,
and A.5). In all these articles (i.e. for the majority of this thesis) the reduced model of CKA-
EUTERPE [1] has been used. This is mainly due to the fact that non-linear parameter scans
would be prohibitively expensive with a fully gyro-kinetic model. This is especially true for a
stellarator like Wendelstein 7-X (W7-X).

In article A.2, we could verify the theoretically predicted [8] scaling of the TAE saturation
level δBsat with the pitch-angle collision frequency. This served as another benchmark, this time
in the non-linear regime, of the correctness of the implementation. When applied to a W7-X
high-mirror equilibrium, we find a non-monotonic behaviour of δBsat(ν), which is not predicted
by analytical theory. In the tokamak and W7-X alike, we observed a flattening of the fast-ion
density profile induced by the presence of the mode.

We showed in articles A.3 and A.4 that the CKA-EUTERPE model, including a newly
implemented fast-ion collision operator, can be applied to realistic W7-X cases. They feature
a fast-ion distribution function in energy space and density profile taken from ASCOT [6, 7]
simulations [5]. An approximation is however made by assuming the distribution function to
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be isotropic in the pitch-angle variable. In the meantime a more comprehensive model, which
still needs to be verified, has been implemented (see below). We studied the effects of fast-ion
drag and pitch-angle collisions for a number of Alfvén eigenmodes in this W7-X high-mirror
configuration. Different types of collisions are found to influence the saturation level differently,
and they can be very important for specific modes. For instance, the saturation level of the
TAE in article A.4 is increased tenfold in a simulation using the full fast-ion collision operator
compared with the collisionless reference.

Very long non-linear simulations of Alfvén eigenmodes – simulating several 10 ms of mode
development – have been performed in article A.5. These simulations confirm the high numerical
stability of the CKA-EUTERPE model and its suitability for comparison to experimental
measurements. In the non-linear phase the mode amplitude is large enough to significantly
influence the particle trajectories and their distribution function. The resonant wave-particle
interaction leads to holes (lack of particles) and clumps (surplus of particles) in phase space [10,82].
Both are found to slowly change in frequency giving rise to characteristic chirping parabolas. As
shown in article A.5, critical parameters determining the shape of this parabola are the growth
and damping rates as well as collision frequencies. A Krook operator is used in the simulation
to emulate a particle source. This periodically rebuilds the distribution function as it fills in
the holes and removes the clumps. The comparison to analytical Berk-Breizman theory [8–12]
gives valuable information about the applicability of this simplified model to a real stellarator as
W7-X.

Articles A.6 and A.7 are slightly away from the main topic of this thesis as outlined above.
In article A.6 a novel numerical tool – the STAE-K code – is introduced. It models the resonant
interaction of fast ions with Alfvén eigenmodes (AEs) non-perturbatively but starts from a
drift-kinetic treatment of the fast ions and, among other approximations, neglects finite-orbit-
width effects. Despite this simple model, it is one of very few codes that can estimate the
damping rate of AEs in stellarators. Recognizing that the damping rate is a free parameter in
the CKA-EUTERPE model, STAE-K can provide this information.

The final article, A.7, addresses a topic from neoclassical theory: It uses the neoclassical
version of EUTERPE, including momentum-conserving pitch-angle collisions, to calculate varia-
tions of the electrostatic potential on a flux surface. This is particularly important for high-Z
impurities since, for them, a strong E×B-drift (compared with their magnetic drift) may be the
consequence. The simulations and the experiments agree on the observation that electrostatic
potential variations on the flux surface are stronger in electron-root plasmas (positive radial
electric field) than they are in ion-root plasmas (negative radial electric field).

In summary, various collision operators (pitch-angle collisions with and without momentum
conservation and a fast-ion collision operator) have been implemented into the EUTERPE code.
The implementation has been verified successfully. We could perform linear and non-linear gyro-
kinetic simulations of fast-ion-driven Alfvén eigenmodes in tokamaks and stellarators. Collisions
are found to significantly influence the non-linear dynamics of the modes, which in turn affects
the transport of fast ions. This is a topic of great importance for nuclear fusion as good fast-ion
confinement is needed to achieve fusion in the first place and to avoid damaging the reactor.
Article A.7 shows the application of EUTERPE to a problem from neoclassical theory.

It needs to be stressed that much work on the EUTERPE code itself was performed in
the course of this thesis. This work, which ranges from the correction of minor bugs to rather
substantial changes, has not been reported here, but is nevertheless vital for the success of the
numerical simulations. Examples include improvements to the re-insertion scheme of lost particles
to make the code more stable, a more rigorous coupling of the codes CKA and EUTERPE, and
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an improvement of the slowing-down distribution function previously implemented in the code.
Many changes have also been made to EUTERPE in order to make the code ready for future

tasks. These changes, which still need to be benchmarked and verified, include the following:

• We have implemented a new distribution function aimed at better describing the NBI injec-
tion geometry at W7-X. This distribution function also includes velocity-space anisotropies
in the pitch-angle variable, which will be interesting to study, in particular in connection
with collisions.

• Furthermore, progress has been made in implementing a multi-mode version of CKA-
EUTERPE. This would be an improvement on the current work, which focusses on
non-linear simulations of a single mode. More realistically, of course, multiple modes would
exchange energy and influence each other especially in the non-linear phase. Due to the
modes being localized at different radial positions, also the influence of collisions on the
modes (collision frequencies depend on temperature and density profile) would be different.
Such a model could be used to simulate the cascade-like transport of fast ions from the
core all the way to the edge via the interaction with many modes. The thorough testing of
this model is currently in progress. App. B.6 elaborates on the details of the multi-mode
model. First results, indicating that the mode evolution can indeed change significantly,
are also shown there.

• Lastly, efforts are made to extend the conservation scheme presented in article A.2 and
App. B.4 to be applicable to inter-species collisions. A long-term goal would be to
consistently model the slowing down of NBI-generated fast ions and the heating of the
background plasma at the same time.

In addition to these goals, for which many of the necessary changes have already been made to
the code, there exist a number of other long-term goals:

• We plan a coupling of the ASCOT [6, 7] and EUTERPE codes in order to specifically
model AE-induced fast-ion losses (including heat loads) to the first wall. These simulations
could be compared to measurements from fast-ion loss detectors.

• Furthermore, we aim to further develop the CKA-EUTERPE model into a fast-ion transport
model for stellarators. Note that other transport models such as the ‘Kick model’ [13,14]
or the ‘resonance broadened quasi-linear (RBQ) model’ [15] are especially designed for
tokamaks as they make use of the fact that the canonical toroidal angular momentum Pϕ
is conserved in the absence of a mode.

In the ‘Kick model’, as the name suggests, particles are assumed to experience sudden
changes in energy and Pϕ due to their resonant interaction with the mode. This diffusion in
phase space will eventually lead to particle transport in real space [13]. Within this perturba-
tive model, radial mode structures and frequencies are taken from NOVA-K [83] simulations.
The ‘Kick probability’ in constants-of-motion space, p(∆E,∆Pϕ|E,Pϕ, µ,Amode), is ex-
tracted from ORBIT [84] simulations for a mode amplitude Amode given by experimental
measurements.

The RBQ model is a diffusive transport model which assumes, similarly to the ‘Kick model’,
diffusion of particles along a ωPϕ +nE = const. path [15]. The model contains an equation
linking the diffusion coefficient and mode amplitude, a time-evolution equation for the
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latter, and an equation for the growth rate. Overall, this makes the model similar to the
CKA-EUTERPE model addressed in this thesis.

An even simpler model is implemented into the TGLF code [85–87]. It assumes stiff fast-ion
transport (based on experimental observations reported in e.g. Ref. [88]) near a critical
gradient, for which the mode is exactly marginal. A diffusion coefficient, which is then
used in a one-dimensional radial transport model for the fast-ion density, is defined to
rapidly increase once the critical gradient is exceeded [87]. A steady state relaxed density
profile can be computed by combining this transport model with a realistic source profile
for the fast ions.
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[6] J. A. Heikkinen and S. K. Sipilä. Power transfer and current generation of fast ions with
large-kΘ waves in tokamak plasmas. Physics of Plasmas, 2 (10) 3724–3733 (1995).

[7] E. Hirvijoki, O. Asunta, T. Koskela, T. Kurki-Suonio, J. Miettunen, S. Sipilä, A. Snicker,
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in JT-60U. Nuclear Fusion, 41 (5) 603–612 (2001).

[53] A. Weller, M. Anton, J. Geiger, M. Hirsch, R. Jaenicke, A. Werner, W7-AS Team,
C. Nührenberg, E. Sallander, and D. A. Spong. Survey of magnetohydrodynamic instabilities
in the advanced stellarator Wendelstein 7-AS. Physics of Plasmas, 8 (3) 931–956 (2001).

[54] K. Toi, S. Ohdachi, S. Yamamoto, N. Nakajima, S. Sakakibara, K. Watanabe, S. Inagaki,
Y. Nagayama, Y. Narushima, H. Yamada, et al. MHD instabilities and their effects on

34

http://www-naweb.iaea.org/napc/physics/FEC/FEC2012/papers/437_ITRP134.pdf
http://www-naweb.iaea.org/napc/physics/FEC/FEC2012/papers/437_ITRP134.pdf


plasma confinement in Large Helical Device plasmas. Nuclear Fusion, 44 (2) 217–225
(2004).
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a b s t r a c t

It has been an open question whether for electromagnetic gyro-kinetic particle-in-cell (PIC) simulations
pitch–angle collisions and the recently introduced pullback transformation scheme (Mishchenko et al.,
2014; Kleiber et al., 2016) are consistent.

This question is positively answered by comparing the PIC code EUTERPE with an approach based
on an expansion of the perturbed distribution function in eigenfunctions of the pitch-angle collision
operator (Legendre polynomials) to solve the electromagnetic drift-kinetic equation with collisions in
slab geometry.

It is shown howboth approaches yield the same results for the frequency and damping rate of a kinetic
Alfvén wave and how the perturbed distribution function is substantially changed by the presence of
pitch-angle collisions.

© 2017 EURATOM. Published by Elsevier B.V. All rights reserved.

1. Introduction

The numerical treatment of the gyro-kinetic equation including
collisions and electromagnetic effects is, for instance, necessary
for studying the interaction of Alfvén modes with fast particles. It
has been shown analytically and numerically (see e.g. Refs. [1,2])
that collisions have a particularly strong influence on the
non-linear saturation mechanism of the mode by detrapping reso-
nant particles. Also the multi-phase simulations addressing burst-
ing phenomena for JT 60-U [3] and profile flattening effects for
D III-D [4] rely on the proper treatment of collisions for the fast
particles. Furthermore, trapped electrons can contribute to the
damping of Alfvén waves as has been shown in Ref. [5]. (A more
elaborate discussion can be found in Ref. [6].)

Most computational approaches for solving the gyro-kinetic
equations either rely on a grid-based discretization (Eulerian
codes) or use a particle discretization (particle-in-cell (PIC) codes).
Additionally, the electromagnetic gyro-kinetic equations can ei-
ther be stated in the so-called v∥-formulation or p∥-formulation,
where the former uses thephysical parallel velocitywhile the latter
adopts the parallel canonical momentum p∥ = mv∥ + qA∥ as an
independent variable [7]. For PIC simulations, the v∥-formulation
had serious problems related to the partial time derivative of
the perturbed parallel vector potential (A∥) in the equations of
motion [8]. Therefore, the p∥-formulation [9] became standard de-
spite its notorious cancellation problem (see e.g. Ref. [10]), caused

* Corresponding author.
E-mail address: christoph.slaby@ipp.mpg.de (C. Slaby).

by the appearance of a non-physical current in Ampère’s law.
This problem could be overcome by the adjustable control variate
scheme [11]. A different approach, avoiding some problems of this
method, is the recently proposed pullback transformation scheme
(PT-scheme) [12,13]. This algorithm, loosely speaking, works in v∥.
Thus, it was conjectured that it may provide an optimal framework
for implementing a (pitch-angle) collision operator, which is natu-
rally formulated in v∥.

Here, the gyro-kinetic PIC code EUTERPE is used to investigate
the compatibility of collisions with the PT-scheme (and addition-
ally with the two-weight scheme developed in Ref. [14]) as well
as its convergence properties. In the past, electrostatic calculations
including collisions, neoclassical impurity transport studies aswell
as electromagnetic simulations without collisions were success-
fully performed with EUTERPE [15–18].

In the present work, the PT-scheme is combined with a lin-
earized electron pitch-angle collision operator. Since such a combi-
nation is reported for the first time, the main focus of this paper is
on verification and not on validation. In order to concentrate on
the essential properties of the numerical scheme, (drift-)kinetic
Alfvén waves in a homogeneous slab are considered. Addition-
ally, only electron pitch-angle collisions are included. Ion finite-
Larmor-radius (FLR) effects are retained in the ion polarization
density with a Padé approximation whereas the ion dynamics,
electron FLR effects, and gyro-averaging of the fields over the gyro-
ring are neglected. Gyro-averaging may contribute significantly to
the damping from ion collisions when k⊥ρi ≳ 1 (with k⊥ and
ρi denoting the perpendicular wave vector of the mode and the
ion gyro-radius, respectively). Notwithstanding the simplifications

http://dx.doi.org/10.1016/j.cpc.2017.04.011
0010-4655/© 2017 EURATOM. Published by Elsevier B.V. All rights reserved.
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made for the collision operator, this problem is non-trivial and
only few analytical results are available. Moreover, recent com-
parisons of frequencies and damping rates from analytical theory
with direct measurements revealed striking discrepancies [19].
This additionally motivates the need for accurate algorithms to
gain physical insight.

Since there are no reliable analytical theories available, the
results of the PIC approach will be benchmarked against results
from a numerical method (here called ‘Legendre approach’) us-
ing a decomposition of the perturbed distribution function into
eigenfunctions of the pitch-angle scattering operator, which are
Legendre polynomials.

2. Theory and algorithms

The theoretical description of kinetic Alfvén waves in a slab
starts with the gyro-kinetic equation for the electrons
∂ fe
∂t

+ Ṙ · ∇fe + v̇∥

∂ fe
∂v∥

= L (fe) (1)

in its v∥-form. For simplicity, gyro-averaging and the dynamics
of the ions have been neglected. The ions just provide a uniform
background charge density to satisfy quasi-neutrality. fe = fe(R, v)
is the electron distribution function, R denotes the spatial position,
and v∥ = b · v is the velocity along the magnetic field B = Bb. To
treat the collisional influence on the distribution function, a pitch-
angle (ξ = v∥/v) collision operator

L =
ν

2
∂

∂ξ

(
1 − ξ 2

) ∂
∂ξ

(2)

is used. This operator follows from transforming the full Fokker–
Planck operator to guiding-centre coordinates (see e.g. Ref. [20])
followed by neglecting energy and guiding-centre diffusion. For
the electron–electron pitch-angle collisions considered here, this
is well justified.

In the collision operator, ν is the electron self-collision fre-
quency [21]

ν = ν0
Φ (x)− G (x)

x3
, x =

v
√
2vth,e

, (3)

where Φ and G denote the error function and the Chandrasekhar
function, respectively. (vth,e =

√
kBTe/me is the electron thermal

velocity.)
The characteristics of the kinetic equation are

Ṙ = v∥b +
1
B⋆

∥

b × ∇
[
φ − v∥A∥

]
(4)

v̇∥ = −
qe
me

(
∇∥φ +

∂A∥

∂t

)
(5)

with

B⋆ = ∇ × A⋆ (6)

A⋆ = A0 +

(
me

qe
v∥ + A∥

)
b (7)

in a straight and constant magnetic field. (Here, qe and me are the
electron charge and mass, and A0 denotes the fixed background
vector potential, respectively.) The electrostatic potentialφ and the
parallel component of the vector potential A∥ are denoted as usual.

Eqs. (1), (4), and (5) are solved together with the gyro-kinetic
Poisson equation

− ∇ ·

(min0

B2 ∇⊥φ

)
= (1 − ∇ · ρ2

i ∇⊥)qene (8)

(with ρi =
√
kBTimi/(qiB) being the ion gyro-radius) and Ampère’s

law

− ∇
2
⊥
A∥ = µ0j∥,e (9)

for the fields. Since collisions are expected tomainly influence high
k⊥ρi modes, a Padé approximation for the ion polarization density
was employed in Eq. (8). In the equations above,mi is the ionmass,
n0 denotes the background density,µ0 is the vacuumpermeability,
and j∥ stands for the parallel current density. The electron density
and current are obtained by taking the appropriatemoments of the
distribution function

ne (R) =

∫
d3v fe (R, v) (10)

j∥,e (R) = qe

∫
d3v v∥fe (R, v) . (11)

The kinetic equation together with the field equations will be
solved in two differentways. Firstly, a particle-in-cell (PIC)method
will be employed. Numerical marker particles, which move along
the characteristics (Eqs. (4) and (5)) through phase-space, are
used to represent the actual electrons. Secondly, the equations
will be solved by employing a decomposition of the distribution
function into Legendre polynomials (‘Legendre approach’), which
are eigenfunctions of the collision operator L. A similar strategy
was recently used in Ref. [22] for an electrostatic system.

The following subsections elaborate on the individual
approaches.

2.1. A short description of the pullback transformation scheme

The PT-schemewas introduced in Refs. [12,13] in the absence of
collisions. Since those papers give a good overview of the general
idea and of the implementation into a PIC code, only the key
elements are repeated here. The implementation [23] of pitch-
angle collisions into EUTERPE is discussed briefly.

The PT-scheme is based on an arbitrary splitting of A∥ into a
Hamiltonian and a symplectic part, A∥ = Ah

∥
+ As

∥
. Furthermore,

an ‘incomplete’ transformation

ũ∥ = v∥ +
qe
me

Ah
∥

(12)

is employed. This transformation is similar to the one transforming
to the canonical momentum p∥, but ‘incomplete’ in the sense that
it only contains the Hamiltonian part of A∥. The resulting equations
of motion are

Ṙ =

(
ũ∥ −

qe
me

Ah
∥

)
b +

1
B⋆

∥

b × ∇
[
φ − ũ∥

(
Ah

∥
+ As

∥

)]
(13)

˙̃u∥ = −
qe
me

{
∇∥

[
φ − ũ∥Ah

∥

]
+
∂As

∥

∂t

}
(14)

with

A⋆ = A0 +

(
me

qe
ũ∥ + As

∥

)
b (15)

for a plasma slab with constant magnetic field. While the Poisson
equation for the PT-scheme is the same as Eq. (8), Ampère’s law
changes to

− ∇ · ∇⊥Ah
∥
+ Ah

∥

µ0n0q2e
me

= µ0j∥,e + ∇ · ∇⊥As
∥
. (16)

It is important to note that, because of the arbitrary splitting of
A∥, an additional equation is needed to close the system. One thus
gains an additional degree of freedom to fix As

∥
. This is done by

postulating the equation

∂As
∥

∂t
+ b · ∇φ = 0, (17)

which is similar to the ideal Ohm’s law from MHD (magneto-
hydrodynamic) theory. The idea is that, when simulating MHD
modes (such as shear Alfvén waves) the majority of A∥ will be
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contained inAs
∥
. Hence,Ah

∥
will be small. In thisway the cancellation

problem is mitigated.
In the simulation, Ah

∥
is chosen to be zero at t = 0. However,

as the simulation proceeds, Ah
∥
increases, which could eventually

lead to the reappearance of the cancellation problem. Therefore,
after each time step, a resetting procedure (the actual pullback
transformation) is performed: Before Ah

∥
is reset to zero its value

is added to As
∥
, Eq. (12) is used to go back from ũ∥ to v∥, and the

distribution function is transformed fe(v∥) = fe(ũ∥).
Thus, at its core, the PT-scheme is amethod for solving the gyro-

kinetic equations in the v∥-formulation. As the collision operator
is given in v∥, the PT-scheme should be well suited to incorporate
collisions.

In EUTERPE, the collision step is performed after the advection
step, inwhich a fourth-order Runge–Kutta is used for time integra-
tion. The collisions themselves change the pitch–angle and mag-
netic moment of each particle. This involves rotating the velocity
vector on a spherical shell (the magnitude of the velocity remains
unchanged) according to randomly generated numbers with spe-
cific statistical properties. Denoting the cosine of the pitch-angle
before and after the collision by ξin and ξout one finds

ξout = sinχ sin λ
√
1 − ξ 2in + ξin cosχ, (18)

where χ = R
√
2ν∆t [23]. Both λ and R are random numbers.

λ is drawn from a uniform distribution between 0 and 2π , while
R comes from a Gaussian distribution with expectation value 0
and variance 1 [23]. This scheme was reported in Refs. [24,25] and
can be regarded as a variant of the method presented in Ref. [26].
It is important to note that this particular collisional implemen-
tation corresponds to a first-order (weak convergence) scheme.
The often-used Euler–Maruyamamethod (see e.g. Ref. [27]) for the
integration of stochastic differential equations is also only of first
order.

2.2. Solving the system by a decomposition into Legendre polynomials

While EUTERPE solves the kinetic equation in themixed formal-
ism, the p∥-formalismwill be used for the Legendre approach. This
means that, in contrast to Eqs. (4) and (5), the characteristics of the
kinetic equation are now given as

Ṙ =

(
u∥ −

qe
me

A∥

)
b +

1
B⋆

∥

b × ∇ψ (19)

u̇∥ = −
qe
me

∇∥ψ (20)

ψ = φ − u∥A∥ (21)

with

A⋆ = A0 +
me

qe
u∥b. (22)

Note that in this formalism, u∥ = p∥/me = v∥ + (qe/me)A∥ is not
the physical velocity along the magnetic field lines.

Using the left-hand side of Eq. (1) in its p∥-form and transform-
ing it via

u =

√
u2

∥
+ 2µB, ξ ′

=
u∥

u
(23)

to a (u, ξ ′)-coordinate system (µ denotes the magnetic moment
per mass) yields

∂ f (1)e

∂t
+ uξ ′

∇∥f (1)e −
qe
me
ξ ′

∇∥ψ
∂F
∂u

= L (F)+ L(f (1)e ). (24)

The ansatz fe = F + f (1)e , with F being the uniform Maxwellian
background and f (1)e denoting a small perturbation, has also been

used to linearize the kinetic equation. The∇F-term vanishes, since
there are no gradients in density and temperature.

Note that L still acts in (v, ξ )-space. The termwith the collision
operator acting on the Maxwellian background is important as F
has to be transformed from u∥ to v∥ as will be discussed below.
With a plane-wave ansatz f (1)e ∼ exp(ik∥z) the kinetic equation
becomes

∂ f (1)e

∂t
+ uξ ′ik∥f (1)e = −

qe
me

u
v2th,e

ξ ′F ik∥ψ + L (F)+ L(f (1)e ) (25)

using the representation

f (1)e =

Nl∑
l=0

fl (u, t) Pl
(
ξ ′
)
F , (26)

where Pl is the lth Legendre polynomial, and the fl are coefficients
of the decompositionwhich have yet to be determined. One arrives
at∑

l

∂ fl
∂t

PlF + uξ ′ik∥

∑
l

flPlF

= −
qe
me

u
v2th,e

ξ ′F ik∥ψ + L (F)+

∑
l

flFL (Pl) ,
(27)

where it still must be specified how the collision operator acts on
the Maxwellian. In the p∥-formulation F is given as

F =
n0(

2πv2th,e
)3/2 exp

(
−

u2

2v2th,e

)

∼=
n0(

2πv2th,e
)3/2 exp

(
−
v2 + 2vξ (qe/me)A∥

2v2th,e

)
.

(28)

Hence,

L (F) =
ν

2
∂

∂ξ

(
1 − ξ 2

) ∂F
∂ξ

∼= ν
qe
me

vξ

v2th,e
A∥F

∼= ν
qe
me

uξ ′

v2th,e
A∥F ,

(29)

where terms quadratic in A∥ have been neglected. Finally, this
transformation of the Maxwellian leads to a correction propor-
tional to the collision frequency and A∥, a fact already reported in
Ref. [28].

Next, the collision operator acting on the perturbation, L(f (1)e ),
is transformed from ξ to ξ ′ neglecting all non-linear terms in A∥

and f (1)e . The result has the same form as the original L but with ξ
replaced by ξ ′.

In summary, one thus arrives at a linear equation fully acting in
(u, ξ ′)-space.

Eq. (27) is now multiplied by Pl′ and integrated over the pitch-
angle variable (ξ ′

∈ [−1, 1]). In this process the orthogonal-
ity relations of the Legendre polynomials are used. After some
straightforward algebra one finds the final result

∂ fl
∂t

+ ik∥u
(

l + 1
2l + 3

fl+1 +
l

2l − 1
fl−1

)
= ν

qe
me

u
v2th,e

A∥δl,1

−
ν

2
l (l + 1) fl −

qe
me

ik∥

u
v2th,e

[
φδl,1 −

uA∥

3

(
δl,0 + 2δl,2

)]
. (30)

This is the electromagnetic extension of a very similar equation
recently derived in Ref. [22].

The first term on the right-hand side of the above equation is
the correction described by Eq. (29), the second and the third term
result from the pitch-angle scattering operator and the parallel
electric field, respectively.
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An expression very similar to Eq. (30) can also be obtained for a
simple Krook-type [29] collision operator C. In that particular case
the numerical implementation of Eq. (30) and the correctness of
its solution could be verified, since the dispersion relation can be
solved analytically. It is noteworthy to mention that only in the
v∥-formulation the Krook operator has the simple Cv∥ = −νf (1)e
form. In the p∥-formulation, however, the Krook operator still has
to relax the whole distribution function towards a Maxwellian
defined with the physical parallel velocity. This gives rises to a
(linearized) correction,

Cp∥
= −νf (1)e + ν

qe
me

u∥

v2th,e
A∥F (31)

in the p∥-formulation, which is the same as the one associatedwith
the pitch-angle collision operator.

The initial condition for Eq. (30) is chosen as f0(t = 0) = 1,
fl(t = 0) = 0 for l > 1, which corresponds to f (1)e (t = 0) = F .

The field equations for φ and A∥ in the p∥-formulation, using a
Padé approximation, are

min0

B2

k2
⊥

1 + k2
⊥
ρ2
i
φ = qene,

(
k2
⊥

+
µ0neq2e
me

)
A∥ = µ0j∥,e. (32)

The second term on the left-hand side of Ampère’s law is the skin
term only present in the p∥-formulation. (Consequently, this term
does not appear in Eq. (9).)

In Eq. (30) the variable u is simply a parameter, which will be
defined on an equidistant grid in the numerical implementation. To
obtain ne and j∥,e integrals over (u, ξ ′)-space have to be performed.
The results are

ne = 4π
∫

du u2f0F (33)

j∥,e =
4π
3

qe

∫
du u3f1F . (34)

3. Case definition

A plasma slab (x, y, z) is simulated, with the magnetic field
pointing in the z-direction and periodic boundary conditions ap-
plied in the x- and y-directions. EUTERPE was built to work in
geometries topologically equivalent to a torus, hence also the slab
has to be treated as if it were a torus. In the following, the usual
nomenclature for a toroidal system will be used, i.e. (x, y, z) corre-
sponds to the radial, poloidal and toroidal coordinates (r, θ, ϕ).

All background quantities, such as temperatures, densities, and
the magnetic field are chosen to be constant. The slab has a length
L = 2π m in z. Its cross-section is quadratic with the length of
one side being ∆ = 1.4 m. The parallel and the perpendicular
wave-vector, expressed through the toroidal and poloidal Fourier
numbers n and m and the radial mode number o, are given by

k∥ =
2πn
L

=
n

100ρs
(35)

k2
⊥

= k2r + k2θ =
4π2

∆2

(
o2 + m2)

=
4π2

1402ρ2
s

(
o2 + m2) (36)

with the normalization quantity ρs = 1 cm (ρs =
√
kBTemi/(qiB)

denotes the sound gyro-radius). Slightly different kinetic Alfvén
waves with a fixed value n = 1, but varying in their poloidal mode
numberm are considered in the numerical simulations. The radial
mode number is chosen as o = 1/2, because the initial pertur-
bation used in the EUTERPE runs is a half sine-wave in r . Several
other parameters of this case are listed in Table 1. If collisions are
used, the velocity-independent part of the collision frequency is
ν0 = 0.15Ωi (with the ion gyration frequencyΩi = qiB/mi).

Table 1
Plasma parameters.

Magnetic field B/T 1.0
Electron density ne/m−3 1.037 · 1019

Ion density ni/m−3 ne
Electron temperature Te/keV 9.579
Ion temperature Ti/keV 20 Te
Gyration frequencyΩi/s−1 9.579 · 107

All EUTERPE calculations are performed using a phase-factor,
exp (imθ + inϕ), to extract the dominant poloidal and toroidal
Fourier harmonics from all perturbed quantities. The spatial res-
olution was chosen as nr = 16, nθ = 8, and nϕ = 1 (parallel
direction). This leads to a radial resolution of 8.75 cm. This is circa
50 times larger than the electron skin depth δe = ρs

√
2me/(miβe),

which does not need to be resolved in the EUTERPE simulations.
(βe is the electron plasma beta defined as usual.)

For the Legendre approach, f (1)e is decomposed into the first 20
(40 to obtain Fig. 4) Legendre polynomials. As for the EUTERPE
simulations, a fourth-order Runge–Kutta method is used for the
time-integration. The time step is ∆t Ωi = 0.02 (0.005 to obtain
Fig. 4). The integration over u-space is performed on an equidistant
grid (400 grid points) with umax ≈ 9.33 vth,e using the trapezoidal
rule. All results are converged with respect to those parameters.

4. Results

4.1. Collisional influences on the dispersion relation

In the case of the EUTERPE simulations, the kinetic equation,
Eq. (1), is solved by a PIC-method. The equations of motion (see
Eqs. (13) and (14)) are advanced in time using a fourth-order
Runge–Kuttamethod. At each time step, the field equations (8) and
(16) are solved.

A very similar strategy is pursued for the Legendre approach,
where themodified kinetic equation (30) is instead solved together
with the field equations given by Eq. (32).

The real frequencyω and the damping rate γ of themode can be
seen in Fig. 1 for ν0 = 0. Differentmode numbersm, corresponding
to different k⊥ρs, have beenused to obtain this dispersion relation.

For k⊥ρs ≳ 3.5 Fig. 1 shows frequencies that are larger than
the ion cyclotron frequency which contradicts one of the basic
assumptions of gyro-kinetics. However, since the focus of this
paper is to verify the correctness of the numerical algorithm (and
not to validate the physics) the benchmark can be performed in
that parameter range to illustrate clearly the effect of collisions (see
below).

As can be seen in the figure, the mode is Landau-damped with
a maximum damping rate around k⊥ρs ≈ 3. While γ varies over
three orders of magnitude, the change in ω is smaller. The dotted
line corresponds to the Legendre approach. The full circles have
been obtained by EUTERPE. As expected, the agreement between
the two different approaches is very good.

Both numerical implementations have also been compared
with analytical theory in the collision-less case. For ν0 = 0 it is
straightforward to obtain the analytical dispersion relation

1 −
miβe

me

1
k2
⊥
ρ2
s

{
ζ 2 −

me

miβe

(
1 +

Ti
Te

k2
⊥
ρ2
s

)}
[1 + ζZ (ζ )]

= 0 (37)

that can be solved for ζ numerically. Here, ζ = (ω +

iγ )/(
√
2k∥vth,e) and Z denotes the plasma dispersion function.

Both numerical approaches agree very well with Eq. (37) in the
collision-less limit.

Having verified EUTERPE and the Legendre approach for ν0 =

0, a case where collisions are included (ν0 = 0.15 Ωi) may be
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Fig. 1. Real frequency (left) and damping rate (right) of the kinetic Alfvén wave without collisions. EUTERPE and the decomposition of the perturbed electron distribution
function into Legendre polynomials (‘Legendre approach’) yield virtually the same result.

Fig. 2. Real frequency (left) and damping rate (right) of the kinetic Alfvénwave under the influence of collisions. The agreement between EUTERPE and the Legendre approach
is still very good. Collisional damping mainly affects large k⊥ρs . Compared with the case without collisions, the time step had to be reduced for small values of k⊥ρs .

investigated next. Note that, in particular, the implementation
of collisions is very different in the Legendre approach and the
PIC-method.

Fig. 2 shows how the dispersion relation changes if collisions
are taken into account. While there is no noticeable change in the
frequency ω, the damping rate is modified substantially. γ is now
a combination of pure Landau damping and collisional damping.
In comparison with Fig. 1, the mode is a little bit stronger damped
due to collisional damping for small k⊥ρs. The largest differences,
however, are seen at high k⊥ρs > 4, where the mode is nowmuch
stronger damped than before. Pitch-angle collisions randomize the
velocity distribution to a certain degree and thus have a smoothing
effect on the perturbations. It is thus not surprising that the colli-
sions have a larger effect on the small scales, i.e. high k⊥ρs. Again,
the agreement between the Legendre approach (dotted line) and
EUTERPE (full circles) is very good for all values of k⊥ρs.

It usually takes several collision times until the effects of colli-
sions become apparent in a numerical simulation. Thus, a relatively
high ν0 was chosen. This leads to a short collision time τcoll =

1/ν and therefore to a reduced over-all time span required to be
simulated.

A numerical study showing the effect of increasing collision
frequency ν0 on the damping rate is presented in Fig. 3. This has
been done for a fixed mode number m = 290, which corresponds
to k⊥ρs = 13. Whereas the frequency stays roughly the same for
different collision frequencies, the damping rate increases linearly
with rising ν0. This is the expected behaviour as the collision
operator L also scales linearly with ν0.

Apart from the influence on the damping rate of the kinetic
Alfvén wave, the effect of collisions becomes most apparent when
investigating the perturbed distribution function f (1)e in velocity-
space (u, ξ ′). Fig. 4 shows the results obtained by the Legendre

Fig. 3. Influence of an increasing collision frequency on the damping rate of the
kinetic Alfvén wave. While the frequency (not shown) stays almost the same, the
damping rate scales linearly with ν0 .

approach. For this particular case the mode number m = 25 has
been used, corresponding to an intermediate k⊥ρs ≈ 1.12. In
Fig. 4, f (1)e is plotted at different times in the simulation without
(left-hand side) and with (right-hand side) collisions. In all dia-
grams the resonance condition

ω − u∥k∥ = 0 (38)

is indicated as a solid black line using the ω obtained from the
simulation.

Starting from the same initial condition, which is a Maxwellian
and therefore isotropic in ξ ′, it can be seen that collisions have
a strong effect on the structure of f (1)e . Without collisions the
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Fig. 4. The perturbed distribution function (at k∥z = π/4) in velocity-space at different simulation times. Collisions are included only on the right-hand side. While f (1)e

peaks around the resonant velocities (black line) without collisions, velocity-space becomes more isotropic in ξ ′ for the case including collisions. All solutions for f (1)e were
obtained by the Legendre approach.

perturbed distribution function becomes highly non-isotropic in
pitch–angle. f (1)e peaks around those velocities fulfilling Eq. (38),
as expected. As time progresses, the structures in velocity-space
become even finer.

When collisions are included, the velocity-space becomesmore
isotropic with respect to ξ ′ for tΩi ≥ 35. The strong peaking of
f (1)e around the resonant velocities has almost vanished, but the
perturbed distribution function is still localized in the vicinity of
the resonances. The small scales in velocity-space are effectively
damped. Furthermore, the shape of f (1)e in velocity space seems to
have quickly reached a nearly converged state, nevertheless the
amplitude is growing slightly (less than in the collision-less case)
between tΩi = 35 and tΩi = 70.

Another feature of collisions is related to the long-time be-
haviour of f (1)e . Without collisions, the perturbed part of the dis-
tribution function never vanishes. The damping of the poten-
tials φ and A∥ comes from the integration over velocity-space in
combination with the developing fine-scale structure. Pitch–angle
collisions, on the other hand, have the property of relaxing the
distribution function towards a Maxwellian in this linear problem.

Hence (because of the splitting fe = F + f (1)e applied to the
distribution function), f (1)e has to vanish for t → ∞.

It was observed in long-time simulations (about five times
longer than the longest time shown in Fig. 4) that f (1)e integrated
over all velocities (using the L2-norm) saturates at a finite value in
the collision-less case, but vanishes if collisions are included.

4.2. Convergence studies

4.2.1. Convergence study for∆t and small k⊥ρs
As can be seen in Figs. 1 and 2, the frequency of the mode

increases with rising values of k⊥ρs. In order to fully resolve the
ever-faster oscillatory behaviour, the time step had to be decreased
with increasing values of the poloidal mode number m. Fig. 1
confirms that the time stepswere chosenwell for the caseswithout
collisions. With collisions, however, ∆t had to be chosen smaller
at low values of k⊥ρs (at high values of k⊥ρs the time step was
already small enough). This is due to the fact that, when collisions
are included in the EUTERPE simulations, a stochastic scheme is
chosen. As this scheme only has a weak convergence of order one
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Fig. 5. Convergence of the real frequency (left) and of the damping rate (right) determined by EUTERPE with decreasing time step under the influence of collisions. The grey
region on the left-hand side corresponds to an uncertainty level of 0.1%. Since it is more difficult to resolve the damping rate, the grey region indicates 5% uncertainty on the
right-hand side. Since increasing the particle number by a factor of 10 leads to nearly the same behaviour, the convergence seems to be bound by∆t . The convergence with
respect to∆t is of first order.

(in ∆t) and is thus less accurate than the fourth-order Runge–
Kutta, a smaller time step needs to be chosen.

A convergence scan with respect to the time step ∆t was per-
formed for the EUTERPE calculation including collisions at m = 3
(k⊥ρs ≈ 0.14). Fig. 5 shows the results. Using the same time
step ∆t Ωi ≈ 0.83 with and without collisions does not lead to
accurate results for ω and γ in the collisional case: The damping
rate is for instance wrong by a factor of two. This is due to the
aforementioned change in the time-integrator from a fourth-order
Runge–Kutta to a first-order stochastic method. Note that for this
small value of k⊥ρs collisions have nearly no influence on ω and γ
(see Fig. 2), but they still determine the time step.

However, Fig. 5 also shows how EUTERPE converges to the re-
sult obtained by the Legendre approach with decreasing values of
∆t . Thus, when including collisions into the simulations, it should
be carefully checked if the result is converged with respect to the
time step. Especially since the numerical error of the integration
scheme increases that drastically.

4.2.2. Convergence study for Ne and high k⊥ρs
Figs. 2 and 3 nicely demonstrate the correct implementation of

collisions in the electromagnetic version of EUTERPE. However, to
obtain the results presented in Fig. 2 rather high particle numbers
have been chosen in order to ensure numerically converged results.
Now, a convergence study (for the last point of Fig. 2 at k⊥ρs = 13,
m = 290) has been conducted with the aim to reduce the required
particle number. Fig. 6 summarizes the results.

It can be seen that particle numbers greater than 4 million are
not necessary for an accurate determination of ω and γ . Reducing
the particle number by a factor of 2 to 2 million still gives a fre-
quency that is approximately only 0.2% (≈5% for γ ) off compared
with the Legendre approach. For particle numbers greater than 2
million the agreement between both approaches is very good. This
is even less than the 4 million numerical marker particles used in
the case without collisions (Fig. 1). This hints on the fact that not
the optimum particle number may have been used in that case.

Seeing how on the left-hand side of Fig. 6 nearly all points
scatter around the 0.1% uncertainty interval emphasizes again that
the frequency is more robust than the damping rate for this case.

4.3. Comparison of p∥- and v∥-formulation

All the EUTERPE results have been obtained using the
PT-scheme. For the second strategy presented in this paper,
using the Legendre approach to solve the kinetic equation, the
p∥-formalism has been used exclusively so far. This avoids the
numerically difficult ∂A∥/∂t-term inherent to the v∥-formulation,
but requires the introduction of a correction resulting from L (F).

It is not required to change the collision operator (given in v∥)
directly, because all corrections are non-linear in the perturbations
and therefore negligible.

When comparing the results obtained with the Legendre ap-
proach with the EUTERPE results it should be pointed out that
the collision step in EUTERPE is performed while being in the
v∥-frame. It is therefore worthwhile to examine what happens to
the Legendre approach when going from p∥ to v∥.

This transition requires the u̇∥ equation to be replaced by

v̇∥ = −
qe
me

(
∇∥φ +

∂A∥

∂t

)
. (39)

Consequently, the skin term inAmpère’s lawandL (F)dono longer
appear. Hence, in the kinetic equation only the A∥-terms change
and Eq. (30) must be transformed to

∂

∂t

(
fl +

qe
me

v

v2th,e
A∥δl,1

)
+ ik∥v

(
l + 1
2l + 3

fl+1 +
l

2l − 1
fl−1

)
= −

ν

2
l (l + 1) fl −

qe
me

ik∥

v

v2th,e
φδl,1. (40)

Contrary to the p∥-formulation, f1 is now integrated together with
the vector potential, i.e.

f̃1 = f1 +
qe
me

v

v2th,e
A∥ (41)

and after each Runge–Kutta sub-step f1 is computed from f̃1
using the A∥ from the previous step. This emphasizes that the
v∥-formulation is numerically indeed more challenging.

In Fig. 7 it is shown that also for electromagnetic simulations
including collisions the agreement between the p∥- (dotted line)
and v∥-implementation (full circles) is very good. However, this
comparison could only be carried out for three data points with
high mode numbers, because the integration scheme became nu-
merically unstable in v∥ for smaller values of k⊥ρs. Using an im-
plicit scheme for the time integrationmight prevent the numerical
instability.

5. Summary and conclusions

The applicability of the pullback transformation scheme [12,13]
to an electromagnetic system influenced by electron pitch-angle
collisions has been investigated using the gyro-kinetic PIC code
EUTERPE. For comparison, a decomposition of the perturbed elec-
tron distribution function into Legendre polynomials was used as
a second strategy to solve the equations.
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Fig. 6. Convergence of the real frequency (left) and of the damping rate (right)with increasing number of electronmarkers in EUTERPE. Collisions are present. The uncertainty
levels are the same as in Fig. 5.

Fig. 7. Comparison of the p∥- and v∥-formulation of the equations. Good agreement is found for values of k⊥ρs for which the v∥-formulation was numerically stable.

The widely used p∥-approach has the drawback that the col-
lisional and non-collisional parts of the kinetic equation operate
in different coordinates. This is counter-intuitive and necessitates
the introduction of a correction term. On the other hand, the PT-
scheme, apart from its other advantages, operates in v∥-space.
Here we showed by comparing the PIC and the Legendre approach
that this scheme is a natural choice for including collisional ef-
fects in electromagnetic PIC simulations and is compatible with a
two-weight scheme.

After the successful benchmark between EUTERPE and the Leg-
endre approach the effects of collisions on f (1)e were studied in
greater detail. It was found that because of collisions, the velocity-
space becomes much more isotropic with respect to the pitch-
angle. f (1)e is completely different with and without collisions,
which might be the reason why perturbative theories on this topic
are scarce.

All simulations have been performed in slab geometry in order
to concentrate on the essential properties of the numerical scheme.
The parameters of this case were chosen in a way to facilitate a
straightforward comparison between EUTERPE and the Legendre
approach with the focus of the benchmark being on verification
rather than on validation.

The convergence scans showed that, when collisions are in-
cluded, choosing a small time step is more important than having
a high particle number. This could easily be understood as the
integration scheme changes from a fourth-order Runge–Kutta to a
first-order (weak convergence) stochastic scheme. For more com-
plex systems with higher constraints on the time step, it could be
worthwhile to test stochastic integrators of higher order.

For simplicity, only results excluding the ion dynamics have
been presented in this paper. A fully kinetic extension is straight-
forward.

The consequent next steps would be performing simulations
in more interesting parameter regimes and in more realistic ge-
ometries, e.g. in tokamaks or stellarators. Moreover, since only
electron–electronpitch-angle collisionswere considered so far, the
collision operator should be extended accordingly.
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1. Introduction

In fusion devices, present-day experiments or future fusion 
reactors, there typically exists a supra-thermal population of 
fast ions. Today, these particles are created mainly by heating 
methods, such as neutral beam injection (NBI) or ion cyclo-
tron resonance heating (ICRH). In future fusion reactors also 
self-generated alpha particles (coming from the fusion reac-
tion) will be present. The fast ions are supposed to be confined 
for a time of the order of the slowing-down time (the time 

it takes the fast particles to thermalize) in order to heat the 
plasma. However, the resonant interaction of fast ions with 
shear Alfvén modes can lead to their destabilization [11, 25] 
and to increased fast-ion transport with potentially dangerous 
consequences for plasma-facing components [7, 35]. Typical 
Alfvén eigenmodes excited in tokamaks are toroidicity-
induced Alfvén eigenmodes (TAEs), beta-induced Alfvén 
eigenmodes (BAEs), or—at high fast-particle pressures—
energetic-particle modes (EPMs). Because of the more com-
plex geometry of stellarators, other classes of modes, e.g. 

Nuclear Fusion

Effects of collisions on the saturation 
dynamics of TAEs in tokamaks  
and stellarators

Christoph Slaby1, Axel Könies1, Ralf Kleiber1 and José Manuel  
García-Regaña2

1 Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald, Germany
2 Laboratorio Nacional de Fusión Ciemat, Av. Complutense 40, 28040 Madrid, Spain

E-mail: christoph.slaby@ipp.mpg.de

Received 4 December 2017, revised 31 January 2018
Accepted for publication 13 February 2018
Published 29 June 2018

Abstract
The non-linear saturation dynamics of TAEs (toroidicity-induced Alfvén eigenmodes) 
is investigated numerically in tokamaks and stellarators. Special attention is given to the 
influence that pitch-angle collisions among the fast ions have in the non-linear regime.

For this investigation a perturbative model is used. We employ the 3D ideal reduced MHD 
eigenvalue code CKA to obtain the mode frequency and mode structure. This information 
is given to the non-linear gyro-kinetic particle-in-cell code EUTERPE, which calculates 
the growth rate of the mode and the temporal evolution of the mode amplitude. The mode 
structure remains fixed for the entire calculation.

In the tokamak, analytical predictions regarding the transition from periodic non-linear 
behaviour to a steady-state solution and the scaling of the saturated amplitude are available. 
Both are influenced by collisions. The numerical results are in agreement with the theoretical 
predictions within the validity range of the theory (Berk et al 1992 Phys. Rev. Lett. 68 3563). 
Beyond the validity range of the theory different scaling laws are found numerically.

We show that using a momentum-conserving collision operator does not change the scaling 
significantly for small ν, but is important for high collision frequencies.

The stellarator case, a Wendelstein 7-X high-mirror configuration, shows some differences 
when compared with the tokamak. Most notably, the saturated perturbed magnetic field 
becomes a non-monotonic function of ν.

Keywords: non-linear simulations, pitch-angle collisions, shear Alfvén waves, tokamak, 
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helicity-induced Alfvén eigenmodes (HAEs), can be destabi-
lized in these devices.

In order to predict transport-induced losses, the non-linear 
saturation levels of Alfvén eigenmodes (AEs) need to be com-
puted. This paper investigates TAEs as an example for the zoo 
of AEs in general. For tokamaks, it has been shown analyti-
cally [2, 3] and numerically [20] that the saturation amplitude 
is influenced by particle collisions. Recently, the influence 
of pitch-angle col lisions on the saturation level of TAEs in 
NSTX [9] has been investigated [37].

In TJ-II the non-linear dynamics of Alfvén modes, in par-
ticular the transition between chirping and steady state, was 
recently investigated experimentally [22, 23]. It was found 
that the magnetic configuration plays a larger role for the 
transition than collisions. Large-scale numerical simulations, 
aimed at numerically reproducing bursts of AEs observed in 
the LHD experiment, have also been performed recently [30]. 
There, collisions are needed to restore the fast-ion gradient 
after it has been flattened by an AE  burst. They are needed to 
accurately reproduce exper imental measurements.

This paper reports on a systematic numerical study of 
the non-linear dynamics of TAEs in the saturated phase for 
various collision frequencies. The simulations are carried 
out for a tokamak and for a stellarator case. We use a well-
established benchmark case devised for tokamaks to compare 
our numerical results to a theoretically predicted scaling law. 
The purpose of the tokamak case is two-fold: Firstly, it will 
serve as a benchmark for our numerical implementation in the 
parameter range where the analytical theory can be applied. 
Secondly, the effect  of pitch-angle collisions on the saturation 
dynamics can be studied in other parameter regimes. We find, 
in particular, that the analytical theory is only applicable in 
the so-called resonance detuning regime and for low enough 
collision frequencies.

The numerical model can then be applied to stellarators. 
As an example, we use the optimized stellarator Wendelstein 
7-X (W7-X)—the largest and most sophisticated stellarator 
in the world [24]. In part, this case is chosen to illustrate 
the capability of CKA-EUTERPE (described below) to also 
treat real geometries and realistic plasmas. One of the optim-
ization goals of W7-X is good confinement of fast particles, 
in particular at high beta (plasma pressure dived by magnetic 
pressure). The NBI and ICRH systems are currently being 
installed at W7-X and will be ready for future experimental 
campaigns. Thus, now is a natural time to confirm the predic-
tive capabilities of our numerical tools.

We use the CKA-EUTERPE code for our numerical 
simulations. It combines the eigenvalue code CKA (Code 
for Kinetic Alfvén waves) with the gyro-kinetic particle-in-
cell (PIC) code EUTERPE. The coupling of the two codes 
is perturbative in the sense that an MHD mode is calculated 
by CKA and then passed to EUTERPE which calculates the 
motion of fast ions in the pre-calculated field and their power 
transfer to the mode. Knowing this, the amplitude of the mode 
can be advanced in time. The mode structure remains fixed 
throughout the simulation. It is well known that the MHD 
mode structure may react to the kinetic influence of the fast 
particles (see e.g. [28, 34]). Furthermore, the linear mode 

structure can change in the non-linear phase since it may react 
to changes of the fast-particle drive [36]. Such effects are not 
included in the CKA-EUTERPE model. Fully gyro-kinetic 
simulations, that allow for mode structure variations, would 
provide a solution to the problem, but suffer from the fact that 
they are numerically very challenging and expensive. At the 
moment, they are not suited for parameter scans.

Being a PIC code, EUTERPE is very well suited to com-
pute the collisions between the fast ions. The implementation 
of collisions into the electromagnetic version of EUTERPE 
has been benchmarked recently [27]. This reference also 
serves as a brief introduction to the EUTERPE code. We use a 
pitch-angle scattering operator acting on the fast-ion distribu-
tion function to capture the influence of collisions on the non-
linear dynamics (spatial diffusion is neglected). Furthermore, 
we can choose whether or not the collision operator should 
conserve momentum. The analytical scaling laws were derived 
without taking momentum conservation into account. It will 
be investigated to what extent the inclusion of a momentum-
conserving collision operator affects the scaling laws.

This paper is organized as follows. In section 2 we recapit-
ulate the analytical theory available and briefly introduce the 
numerical scheme used by CKA-EUTERPE. Section 3 reports 
on our results for the tokamak case and for the stellarator case, 
respectively. Finally, conclusions are drawn in section 4.

2. Theory and algorithms

To compute the various aspects of (collisional) fast particles 
interacting with TAEs, the CKA-EUTERPE [10] code package 
is used. The eigenvalue code CKA [8] computes the real fre-
quency and eigenmode structure of the TAE in the framework 
of ideal (zero resistivity) magneto-hydrodynamic (MHD) 
theory. This information is then given to the EUTERPE code 
which follows numerical marker particles and computes the 
power transfer from the fast ions to the mode. The wave-
particle power transfer is used to calculate a (time-depen-
dent) growth rate γ, which determines the time evolution of  
the electromagnetic potentials. Throughout the calculations, 
the spatial shape of the mode structure remains fixed. Only the 
complex amplitude is affected by the resonant interaction with 
the fast particles. In this sense, CKA-EUTERPE is a perturba-
tive model that cannot capture non-linear mode structure mod-
ifications. However, this also means that no field equations for 
the potentials need to be solved, which accounts for the higher 
speed and the enhanced robustness of CKA-EUTERPE com-
pared with fluid or fully gyro-kinetic approaches.

The individual codes are briefly described in the following 
sections. A more elaborate discussion can be found in [8, 16] 
and [15, 19] for CKA and for EUTERPE, respectively.

2.1. The CKA code

CKA (Code for Kinetic Alfvén waves) [8] is a 3D eigen-
value code solving the ideal and reduced MHD equations. It 
uses a B-spline discretization in all three directions (PEST 
coordinates), a phase factor to extract the dominant Fourier 
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harmonic, and the electrostatic potential is expressed as 
φ (r, t) = φ (r) exp (iωt) (ω is the frequency of the mode). 
The code solves an eigenvalue equation

ω2D2φ = D1φ (1)

where D1 and D2 are linear differential operators defined as 
[10]

D2φ = ∇ ·
(

1
v2

A
∇⊥φ

)
+∇2

⊥

[
1

v2
A

(
3
4
ρ2

i + ρ2
s

)
∇2

⊥φ

]

 (2)

D1φ = ∇ ·
{

b∇2
⊥

[(
1 − µ0p(0)

B2

)
b · ∇φ

]}

+∇ ·
{

b × κ
2µ0b ×∇p(0)

B2 · ∇φ

}

−∇ ·





µ0j(0)
‖

B
[∇× (b (b · ∇φ))]⊥



 .

 
(3)

The notation is conventional: vA = B/
√
µ0nimi  denotes 

the Alfvén speed of the background plasma (characterized by 
density ni and ion mass mi). B is the magnetic field with mag-
nitude B and direction b. The subscripts ‖ and ⊥ are used to 
denote vector components parallel and perpendicular to the 
background magnetic field, respectively. µ0 is the vacuum 
permeability. ρi =

√
kBTimi/(qiB) and ρs =

√
kBTemi/(qiB) 

denote the ion gyro-radius and the sound gyro-radius, respec-
tively. T and kB are the temperature and Boltzmann’s  con-
stant, respectively. The charge of a bulk-ion is denoted by qi. 
The equilibrium pressure and current density are labeled as 

p(0) and j(0)
‖ , respectively. κ = (∇× b)× b denotes the cur-

vature of the magnetic field lines.
After equation  (1) has been solved for φ, the condition 

E‖ = 0 can be used to easily obtain the parallel component of 
the vector potential

A‖ =
i
ω

b · ∇φ. (4)

The solutions φ and A‖ together with ω are then passed to 
EUTERPE to calculate the growth rate of the mode in the 
presence of energetic particles.

2.2. The EUTERPE code

EUTERPE, a global non-linear delta-f particle-in-cell code 
suited for 3D geometries, solves the gyro-kinetic equation

∂fs
∂t

+ Ṙ · ∇fs + v̇‖
∂fs
∂v‖

+ µ̇
∂fs
∂µ

= C ( fs) (5)

of a distribution function fs for species s. μ denotes the spe-
cific magnetic moment, µ = v2

⊥/(2B) and C ( fs) is a collision 
operator that will be specified later. Equation  (5) is solved 
together with field equations for the potentials, where particle 
and current density are calculated by taking moments of the 
distribution function.

In CKA-EUTERPE, however, typically only one fast-ion 
species is simulated (s = fast). Therefore, the species index 
will be omitted for the remainder of the paper, except where 
needed to avoid confusion.

The equations of motion (characteristics of equation  (5)) 
are solved in the so-called v‖-formulation in the absence of 
collisions:

Ṙ = v‖b +
m
q

[
µB + v2

‖
BB�

‖
b ×∇B +

v2
‖

BB�
‖
(∇× B)⊥

]

+
v‖

BB�
‖
[b ×∇B + (∇× B)⊥]

〈
A‖

〉
+

1
B�
‖

b ×∇〈ψ〉

 (6)

v̇‖ = − µ∇B ·
[

b +
m
q

v‖
BB�

‖
(∇× B)⊥

]

− v‖
BB�

‖
[b ×∇B + (∇× B)⊥] · ∇ 〈φ〉

− µ

B�
‖

[
b ×∇B · ∇

〈
A‖

〉
+

1
B
∇B · (∇× B)⊥

〈
A‖

〉]

 (7)

µ̇ = 0 (8)

with

ψ = φ− v‖A‖ (9)

B�
‖ = B +

[
m
q

v‖ +
〈
A‖

〉]
b · ∇ × b. (10)

〈. . .〉 denotes the gyro-average. The ideal Ohm’s law

∂
〈
A‖

〉

∂t
+ b · ∇ 〈φ〉 = 0 (11)

has been used to eliminate the partial time derivative of the 
vector potential in the equation for v̇‖. Equations (6)–(8) are 
the full equations of motion with all non-linearities retained. 
Note that the structure of the potentials (φ and A‖) is pre-
calculated by CKA. Therefore, no field equations need to be 
solved. Instead, the amplitude equations

∂φ̂ (t)
∂t

= iω
(

Â‖ − φ̂
)
+ 2 (γ (t)− γd) φ̂ (12)

∂Â‖ (t)
∂t

= iω
(
φ̂− Â‖

)
 (13)

describe the temporal evolution of the potentials. φ̂ denotes 
a complex amplitude. The amplitude equations  come from 
taking the time derivative of the quasi-neutrality condition, 
where the bulk plasma is described using the ideal and reduced 
MHD equations. The fast ions are treated gyro-kin etically. 
Furthermore, the ansatz φ (r, t) = φ̂ (t)φ0 (r) exp (iωt) (and 
similar for A‖ and the pressure) has been used. Averaging 
over the fast oscillation of the mode (with frequency ω) 
yields equations  (12) and (13) for the complex amplitudes 
that evolve on a much longer time scale. The details of the 
derivation are described in [8, 16]. Note that the amplitude 
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equation  for φ̂ includes an ad-hoc damping rate γd used to 
summarize the various damping mechanisms that would be 
present in a fully gyro-kinetic simulation. The time-dependent 
growth rate γ (t) = T (t) /(2W) is calculated from the wave-
particle power transfer ( f (1) denotes the perturbed part of the 
distribution function.)

T (t) = −
∫

d3r
∫

dΓ B�
‖

[ m
ZeB

b ×
(

v2
‖κ+ µ∇B

)
·
(

Ze∇⊥φ
∗ (r, t) f (1)

)]

 (14)
and divided by the wave energy

W =

∫
d3r

ρi+f

B2 |∇⊥φ|2 . (15)

2.3. Treatment of collisions

EUTERPE offers the possibility of including a collision oper-
ator on the right-hand side of the kinetic equation (5). Here, 
we study the influence of pitch-angle collisions on the satur-
ation dynamics. Therefore, the (test-particle) collision oper-
ator is given as

Ctp =
ν

2
∂

∂ξ

(
1 − ξ2) ∂

∂ξ
 (16)

with ξ = v‖/v being the pitch-angle variable. This collision 
operator is obtained by transforming the full Fokker–Planck 
operator to guiding-center coordinates and neglecting energy 
and guiding-center diffusion, as illustrated in e.g. [13]. The 
collision frequency ν is the self-collision frequency of the fast 
ions defined as [12]

ν = ν0
Φ (x)− G (x)

x3 , (17)

where x = v/(
√

2vth) and vth =
√

kBT/m . Φ and G denote the 
error function and the Chandrasekhar function, respectively. 
ν0 is not calculated self-consistently from the temperature and 
density profile of the fast ions, but rather set as a constant. In a 
typical fusion experiment, the fast particles collide much more 
frequently with the background plasma than with themselves. 
We can therefore treat ν0 as an ‘effective’ collision frequency 
that mainly includes collisions with the bulk.

The collisional process itself is easily implemented into a 
PIC code. After the ‘non-collisional’ part of the trajectories 
(the characteristics of the kinetic equation in the absence of a 
collision operator) are advanced in time using a fourth-order 
Runge–Kutta method, a Monte-Carlo collision step is per-
formed. EUTERPE uses a scheme that was (first) reported in 
[5, 31] (an earlier version was published in [29]). The scheme 
employs a (random) rotation of the velocity vector on a spher-
ical shell. This is done by changing the pitch-angle variable of 
a particle according to

ξout = sinχ sinλ
√

1 − ξ2
in + ξin cosχ. (18)

Here, ξin and ξout denote the pitch-angle variable before and 
after the collision and χ = R

√
2ν∆t. λ is a random number 

drawn from a uniform distribution between 0 and 2π, whereas 
R is drawn from a Gaussian distribution with expectation 

value 0 and variance 1 [14]. After the collision, the new values 
for v‖ and μ are calculated from ξout using the fact that the 
energy remains unchanged.

A collision operator constructed in such a fashion has the 
obvious drawback that it does not conserve linear momentum. 
Also the conservation of particle number and kinetic energy 
(guaranteed analytically) may be lost numerically due to 
rounding errors. The reason is that the test-particle term has 
been retained, but the field-particle term Cfp, describing the 
reaction of the background particles, was neglected

C ( f ) = Ctp ( f ) + Cfp ( f ) ∼= Ctp ( f ) . (19)

In EUTERPE a scheme, presented in detail in [1, 26, 32], that 
ensures the conservation of particle number, linear momentum, 
and kinetic energy to machine precision is implemented. The 
idea is that an appropriate ansatz for the field-particle term can 
be made such that the contribution of this term cancels exactly 
the errors made in the conservation laws. The field-particle 
term is written as

Cfp

(
f (1)

)
= [N (v)N + P (v)P + E (v) E ]F (20)

with coefficients N , P , and E that have to be determined. F is 
the Maxwellian background and

N (v) = ν − 3
√

π

8
νEx2 (21)

P (v) = νs
v‖
v2

th
 (22)

E (v) = νEx2. (23)

For self-collisions, with an externally prescribed collision 
frequency ν0, the slowing-down frequency and the energy-
diffusion frequency are defined as

νs = 4ν0
G (x)

x
 (24)

νE = −2ν +

(
2 +

1
2x2

)
νs. (25)

The deflection frequency ν is given by equation (17).
Writing the field-particle operator in this form, the numer-

ical conservation of the desired quantities can be ensured 
while keeping the self-adjointness of the collision operator. 
To determine the coefficients N , P , and E the 3 × 3 linear 
system

−



∆N
∆P
∆E


 =

∫
d3v


F




N (v) P (v) E (v)
v‖N (v) v‖P (v) v‖E (v)
v2N (v) v2P (v) v2E (v)







N
P
E




 (26)
needs to be solved in each spatial bin. The size of one 
spatial bin is given naturally by the resolution in radial, 
poloidal, and toroidal direction needed for the represen-
tation of the potentials. The quantity ∆P, for example, 
denotes the ‘amount of non-conservation’ of momentum P, 
∆P = Pafter collision − Pbefore collision summed over all particles 
in the spatial bin (similar for particle number N and kinetic 
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energy E). Note that in order for the matrix in equation (26) to 
be regular and thus invertible at least two particles are needed 
in a spatial bin. The scheme can only be applied if this condi-
tion is satisfied. Since inverting the 3 × 3-matrix is very fast, 
nearly no increase in runtime is noticeable when the conserva-
tion scheme is used.

3. Results

Here, we present the results of our non-linear simulations. 
First, results for a simple circular tokamak are presented. In 
the second part of this section we show results for a more real-
istic and more complex W7-X scenario.

3.1. A tokamak case

First, the influence of pitch-angle collisions on the satur-
ation dynamics of a TAE in tokamak geometry is presented. 
We use the well-established ITPA benchmark case [17] for 
simplicity and because it has become a well-established 
source for comparison within the fast-particle community. 
This case therefore provides a link both to recent numerical 
work [4, 20, 33] as well as to analytical theory [2, 3], which 
we also use to benchmark our code. For this test, only pitch-
angle collisions of the fast-ions with each other are kept. 
The collision frequency (meaning ν0 in equation  (17)) is 
considered a parameter and varied over several orders of 
magnitude (recall that this models also the collisions of fast 
particles with the background plasma) in order to clearly 
show all the various non-linear scenarios that may emerge. 
The non-linear dynamics and eventual saturation will be 
illustrated based on the temporal behaviour of the perturbed 
magnetic field of the mode δB (more precisely its poloidal 
component). The value of δB at saturation (first maximum) 
is denoted by δBsat.

The magnetic equilibrium is that of a circular, large-aspect-
ratio tokamak with concentric circular flux surfaces. The 
q-profile is given by q (s) = 1.71 + 0.16 s, with s being the 
flux-surface label (normalized toroidal flux). In this geometry 
we investigate a TAE located near the avoided crossing of the 
m = 10, n = −6 and m = 11, n = −6 continuum branches. 
The mode amplitude is zero at s  =  0 and s  =  1. The TAE 
mode is driven unstable by the interaction with a Maxwellian 
population of fast ions (hydrogen) with a non-uniform density 
profile given by (see appendix A for the coefficients)

Nfast (s) = c1 · Nfast,0 exp

[
−c2

c3
tanh

(√
s − c4

c2

)]
. (27)

The density gradient is the source of free energy to drive the 
mode unstable. The temperature of the fast ions is uniform 
with Tfast = 400 keV. Numerical simulations are performed 
for three different values of the fast-ion peak density

Nfast,0 = {0.721, 1.44, 7.21} · 1017 m−3. (28)

Varying the fast-ion density corresponds to changing the 
linear growth rate γL, which is constant for a given case.

Without collisions we compute

γL ∼= {0.280, 1.52, 9.53} · 104 s−1. (29)

Thus, both the resonance detuning and the radial decoupling 
regime [4, 33] are covered (see figure 1) in the simulations. It 
will be investigated if the change of the saturation mechanism 
(δBsat ∝ γ2

L transitions to δBsat ∝ γL) also changes the scaling 
of the saturated amplitude with respect to ν0.

Since the saturation mechanisms are different in the reso-
nance detuning regime versus the radial decoupling regime, 
it cannot necessarily be expected that collisions will have the 
same influence on the saturation dynamics in both regimes. 
Saturation is reached in the resonance detuning regime, 
because the radial excursions of particles from a flux surface 
become comparable to the (finite) resonance width where 
wave-particle power transfer is possible. In the radial decou-
pling regime, the mode width limits the power transfer. We 
expect that collisions have a stronger impact on the satur ation 
amplitude in the resonance detuning regime, because this is 
the regime in which the wave-particle resonance condition 
is important. The resonance condition includes the parallel 
velocity of a particle which is directly influenced by col-
lisions. On the other hand, in the radial decoupling regime, 
saturation is reached because the resonance region becomes 
wider than the mode-localization region. This is a mechanism 
that is less sensitive to the individual particles and it should 
therefore be less influenced by collisions.

Figure 2 shows the perturbed component of the poloidal 
magnetic field for various collision frequencies and for the 
three different fast-ion densities investigated. (The fast-ion 
density, and therefore also the linear growth rate, increases 
from top to bottom.)

All sub-figures clearly show that the non-linear dynamics 
is influenced by collisions. This includes not only the satur-
ation level itself, but also the dynamics in the saturated phase 
(saturated phase refers to all times after the first maximum of 

Figure 1. Transition from the resonance detuning regime to the 
radial decoupling regime without collisions as described in e.g.  
[4, 33]. The saturation levels indicated by the black dots have been 
taken from [16]. The green dots indicate the cases investigated in 
the present paper for various collision frequencies. We will refer 
to them as low-density, medium-density, and high-density case, 
respectively. Both the resonance detuning and the radial decoupling 
regime are covered.
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δB). While the first and the second diagram of figure 2 show 
a similar non-linear dynamics, the high-density case on the 
bottom is different because any periodic non-linear behaviour 
is completely absent. Between the first two plots and the last 
one of figure 2 the saturation mechanism changes from reso-
nance detuning to radial decoupling. In the high-density case 
the damping rate (a free input parameter in CKA-EUTERPE, 
γd = 1.05 · 104 s−1 for all cases) is much smaller than the 
linear growth rate. Therefore a steady-state solution develops 

after saturation. It was shown in [3] that a sufficiently high γd 
is required for a periodic scenario to develop.

For the two cases with lower Nfast,0 that show periodic 
solutions in the non-linear phase, the transition to a more 
steady-state dynamics happens for a collision frequency 
ν0  that is consistent with analytical theory [3]. Note that 
only for those two cases the analytical theory is valid in the 
first place. The transition from the periodic regime to the 
steady-state regime is determined by the relative strength of 
damping effects compared with the rate at which the distri-
bution function is rebuilt, νeff,0 = νω2/γ2

L, [3]. Thus, a good 
indication of whether a steady-state or a periodic saturation 
should be expected is to compare νeff,0 with the damping 
rate γd. For νeff,0 > γd  a steady state is expected, whereas 
the saturation should be periodic for νeff,0 < γd  [3]. For 
the ITPA case investigated here, the damping rate equals 
νeff,0 for ν0 ≈ 3.35 · 10−7ωA  (low-density case) and for 
ν0 ≈ 9.89 · 10−6ωA  (medium-density case). (ωA = vA/R0 is 
the on-axis Alfvén frequency.) Hence, these are the col-
lision frequencies for which the transition between the 
two regimes should be happening. Re-examining figure 2, 
this is exactly what is found by CKA-EUTERPE. For the 
low-density case the periodic solution is predicted to dis-
appear for very low collision frequencies. Hence, even for 
the lowest frequency shown in the plot, ν0/ωA = 2.0 · 10−6 
(i.e. the red line), the oscillations have already vanished. 
For the medium-density case (middle plot of figure 2), the 
transition is nicely visible for ν0/ωA = 9.8 · 10−6  (see the 
yellow line) which is close to the theoretically predicted 
value.

3.1.1. The scaling law. In order to extract a scaling law, 
δBsat (ν0), from the simulation data,  we take the first maxi-
mum in the time-trace of the perturbed magnetic field (Note 
that, to account for the noisiness of the simulation and to 
calculate error bars, an average around the presumed loca-
tion of the maximum is taken.). The analytical theory [3] has 
been derived for the value of the first maximum. The value 
δBsat (ν0 = 0) without collisions is subtracted, and the result-
ing quantity is plotted as a function of the collision frequency. 
This has been done in figure 3 for the three different fast-ion 
densities under investigation.

The figure show the simulation results (black dots and dia-
monds) and numerical fits to the data (coloured lines). Note 
that numerical simulations for more collision frequencies than 
shown in figure 2 have been performed. The cases already pre-
sented in figure 2 are indicated as diamonds in figure 3. For all 
fits a function of the type

y = a · x + b (30)

with y = log [(δBsat (ν0)− δBsat (0)) /B0] and x = log (ν0/ωA)  
is used. The parameters a and b are determined by the fitting 
routine. The complete results for all fit parameters (showing 
also their uncertainties) are given in appendix B.

In all three cases different scaling laws emerge. The gen-
eral trend is that small collision frequencies influence the 
satur ation level more strongly if the linear growth rate is small 
(i.e. if the fast-ion density is small). In the opposite limit, for 

Figure 2. Time trace of the poloidal component of the perturbed 
magnetic field for the low-density (top), medium-density (middle), 
and high-density case (bottom) for various collision frequencies. 
Depending on the linear drive and collisionality either a steady-state 
or a periodic non-linear dynamics develops. The saturation levels 
(i.e. the first maxima of δB) increase monotonically with ν0.
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high growth rates, a ‘plateau’ forms for small ν0 indicating 
that in this regime the saturation level is almost independent 
of the collision frequency. This fact strengthens our initial 
assumption that the scaling δBsat (ν0) should be stronger in the 
resonance detuning regime. Note that if δBsat (ν0)− δBsat (0) 
became negative, we took the absolute value in order to cal-
culate the logarithm. Furthermore, the error bars are large if 
δBsat (ν0) and δBsat (0) are close together.

Analytical theory [3] predicts a ν2/3-scaling of the satur-
ated amplitude. Here, the term ‘saturated amplitude’ is used to 
refer to the first maximum after the linear phase. This scaling 
is valid for γL � γd, νeff . νeff is the rate of reconstruction of 
the distribution function after it has been flattened by particle 
trapping in the wave [3]. Figure 2 confirmed that, depending 
on the value of νeff,0, either a steady state or a periodic sce-
nario emerges. This, however, has no influence on the scaling 
law, since up until the first maximum of δB (corresponds to 
the first flattening of the distribution function) the physical 
processes in both regimes are similar and they only differ in 
the rate of reconstruction of the distribution function after the 
initial flattening.

Looking at the medium-density case, for which the satur-
ation mechanism is resonance detuning (see figure 1), the ana-
lytically predicted scaling can be confirmed very well for low 
enough collision frequencies. For large collision frequencies, 
on the other hand, a different scaling is obvious. We specu-
late that the condition γL � νeff  is violated before the mode 
reaches saturation in this cases and, therefore, the theory 
breaks down. It is intuitively clear that if ν0 is arbitrarily high 
this is the case. A precise prediction of the collision frequency 
for which the scaling changes, hinges on a good estimate of 
ωb, which is necessary to calculate νeff = νω2/ω2

b  [3].
An instructive estimate for ωb can be found in a cylindrical 

plasma. In the absence of a mode a particle just follows the 
magnetic field lines. On the other hand, if a mode with a high 
enough amplitude is present, the resulting E × B-drift may 
significantly influence the particle trajectory. A calculation, 
detailed in appendix C, provides the estimate

ω2
b
∼= −m2

R0

v‖
rB0

∂ι

∂r
φ0 (31)

for the bounce frequency of a particle trapped in the wave. 
(ι = 1/q is the rotational transform.) Substituting the param-
eters of the ITPA benchmark case (medium density) yields a 
critical collision frequency νcrit/ωA ≈ 1.3 · 10−4 above which 
the analytical theory can no longer be valid. This critical col-
lision frequency is in the same order of magnitude as the fre-
quency for which the scaling changes in figure  3 (middle). 
Note that the simplified analytical model only provides a qual-
itative estimate for when the scaling law might change. For 
the low-density case we estimate νcrit/ωA ≈ 1.2 · 10−6.

For the low-density case the estimated value for νcrit is less 
successful in describing the numerical findings. The trend 
remains, however, that the region of validity of the analytical 
theory is much smaller since the linear growth rate is signifi-
cantly reduced. Therefore, the transition from one scaling law 
to another happens on the very left of the curve for low col-
lision frequencies. The scaling found numerically for small 
collision frequencies is still close to the analytical prediction 
albeit the large uncertainties in the numerical simulations.

Compared with the first two diagrams, the last plot in 
figure  3 is qualitatively different. Since the growth rate is 
high, the saturation mechanism is radial decoupling and is not 
described by the analytical theory. Therefore, the estimate for 
νcrit is not applicable to that case. For these reasons, it is not 

Figure 3. Scaling laws δBsat (ν0) extracted from the simulation 
data for the low-density (top), medium-density (middle), and high-
density case (bottom). The theoretically predicted ν2/3-scaling is 
confirmed in the resonance detuning regime (top two plots) for low 
enough collision frequencies (red curves) within the validity range 
of the theory. For higher collision frequencies different scaling laws 
are found numerically. The plot on the bottom (radial decoupling 
regime) shows a characteristic plateau for small ν0 where the 
saturation level scales very weakly with collisionality.
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surprising that the scaling laws found numerically deviate sig-
nificantly from theoretical predictions. As was shown in [4], 
the saturated amplitude of the perturbed magnetic field scales 
linearly with the growth rate in the radial decoupling regime. 
It remains to be investigated whether this is the reason why 
also the scaling law for δBsat changes.

3.1.2. The influence of the conservation scheme. So far, all 
results presented in this section  were obtained without the 
use of the parallel-momentum conservation scheme. Such 
a scheme is also absent in [3, 20, 37]. With the predicted 
ν2/3-scaling confirmed for the medium-density case, it is 
worthwhile to investigate how the non-linear dynamics and 
the scaling law change when the conservation of momentum 
is properly taken into account. Figure 4 shows the scaling of 
the saturated amplitudes for the same collision frequencies 
investigated before for the medium-density case.

For small values of ν0, the saturated amplitudes are very sim-
ilar with and without the conservation scheme. Consequently, 
also the scaling is only influenced slightly. On the other hand, 
for large ν0 the conservation of momentum by the collision 
operator becomes important. The scaling changes in the sense 
that if the momentum correction is included in the collision 
operator, the saturation levels depend less on ν0. Neglecting the 
momentum correction leads to an overestimation of collisional 
effects just as it does in other areas of tokamak physics, such 
as neoclassical transport and micro-instability theory [14]. We 
find that conservation of momentum only changes the satur-
ation levels, but does not affect  the non-linear dynamics. For 
example, the transition from the periodic non-linear behaviour 
to the steady-state solution remains unchanged.

Note that the conservation scheme is designed for self-col-
lisions. Even though ν0 contains fast-fast collisions as well as 
fast-ion collisions, no momentum is transferred to the back-
ground ions.

3.1.3. Saturation mechanism—density flattening. All the 
numerical simulations share the feature that the mode ampl-
itude saturates because the density profile of the fast ions 

flattens in the region of interest. The cases with non-vanishing 
collision frequency exhibit a stronger flattening of the density 
profile. We attribute this only to a ‘secondary’ effect of col-
lisions. As has been shown, collisions lead to a higher satur-
ation level, i.e. a larger mode amplitude, which in turn leads to 
enhanced fast-particle transport.

The high-density case with the highest ν0-value is taken as 
an example in figure 5, since this case has the highest satur-
ation level of all cases investigated.

Flattening of the density profile over the region where the 
mode is localized (characteristic for the radial decoupling 
regime) is very obvious for later times in the simulation. Note 
that due to numerical inaccuracies, about 4% of the fast-ion 
density is lost over the course of the simulation.

For the medium-density case without collisions the initial 
profile and the saturated profile at the end of the simulation 
(in the time-asymptotic limit) are compared in figure 6 on the 
left-hand side.

Since the saturation level is low, transport is low and no 
significant changes can be seen in the saturated density profile. 
Note that in the resonance detuning regime the flattening of the 
density profile can be restricted to a very narrow region, which 
is challenging to resolve numerically. It is, however, possible 
to investigate the instantaneous change in the fast-ion density 
profile, as shown in figure  6 on the right-hand side, caused 
by the presence of the TAE. The change in particle density is 
investigated at the radial position s  =  0.25 where the mode is 
peaked. Clearly, particles are transported away from the mode-
localization region. By the end of the simulation, the particle 
density at s  =  0.25 has decreased by approximately 0.6%. 
This is why the change is not visible by looking directly at 
the profile. The fast-ion density is oscillating in time in such a 
way that the fast-ion density is minimal (local minima in time) 
whenever the mode amplitude is largest (see the middle plot of 
figure 2). This corresponds to a flattening of the density gra-
dient, followed by a phase of mode decay. In this phase, the 
density gradient can recover and the whole process starts anew.

Figure 4. Same as figure 3 (middle plot), but taking into account 
also momentum conservation for the collision operator. Again, 
two regions with different scaling laws are observed. Momentum 
conservation is mainly important for the large collision frequencies. 
The lowest collision frequency was excluded from the numerical fit.

Figure 5. Flattening of the fast-ion density profile at various times 
in the simulation for the high-density case with the highest collision 
frequency. Since the saturation mechanism is radial decoupling 
flattening of the profile occurs in broad region comparable to the 
mode width. The flattening is significant because the saturation 
level is enhanced due to collisions.
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3.2. Convergence scan

A convergence test with respect to time step and marker 
number has been performed for the medium-density case at 
the highest collision frequency. Figure  7 shows the results 
in terms of the perturbed magnetic field as calculated by 
the code. Both diagrams (time step halved on the left-hand 
side and numerical marker number doubled on the right-
hand side) confirm that the standard resolution was chosen 
well. The standard time step for all tokamak calculations is 
∆tωA = 0.1. We used Np = 106 numerical marker particles 
in the standard runs.

It has been reported before that for the particular collisional 
scheme used in EUTERPE the time step is more critical than 
the number of markers [27]. Nevertheless, the relative devia-
tions in the linear growth rate (compared with the standard 
resolution) are well below 1%, which is very acceptable.

3.3. A stellarator case

Having confirmed the theoretically predicted scaling law 
in tokamaks (in the resonance detuning regime and for low 

enough collision frequencies), we now apply the CKA-
EUTERPE code to a Wendelstein 7-X (W7-X) high-mirror 
equilibrium with an on-axis magnetic field B0 = 2.44 T . This 

Figure 6. Left: Flattening of the fast-ion density profile for the medium-density case without collisions at a late time in the simulation. 
Since the saturation mechanism is resonance detuning flattening of the profile occurs in a narrow region. Right: Instantaneous fast-ion 
density at s  =  0.25. Overall, particles are transported away from the mode-localization region. The particle density oscillates in time with 
the maxima and minima being correlated to the amplitude of the perturbed magnetic field as shown in figure 2 in the middle.

Figure 7. Convergence scan with respect to time step (left) and maker number (right). Since the deviations between the curves are below 
1% (measuring γL), the standard resolution was chosen well.

Figure 8. ι-profile and fast-ion density profile (normalized to 
on-axis value) for the Wendelstein 7-X (W7-X) high-mirror 
configuration.
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confirms that CKA-EUTERPE can handle realistic geom-
etries and plasmas. Due to favourable properties regarding the 
confinement, the so-called high-mirror case (characterized by 
a large B1, −1 Fourier component of the magnetic field) has 
become standard for performing numerical simulations. It is 
characterized by an ι-profile close to unity as can be seen in 
figure 8, which also shows the density profile of the fast ions 
used in the numerical simulations. The on-axis fast-ion den-
sity is Nfast,0 = 5 · 1018 m−3. The fast-particle temperature 
profile is flat with a value Tfast = 55 keV. Since stellarators are 
numerically more challenging than tokamaks, the time step is 
chosen as ∆tωA = 0.08 and marker number is increased to 
Np = 5 · 106.

The continuous Alfvén spectrum (neglecting sound modes) 
as well as the MHD mode structure are shown in figure 9.

In the continuum, which was calculated by the CONTI code 
[18] for a flat bulk-ion density profile (Nbulk = 1020 m−3), 
only the relevant continuum branches (m = 6, n = −6 and 

m = 7, n = −6) are coloured. The TAE (frequency indicated 
by a black horizontal line) resides in the TAE gap.

The real frequency and linear growth rate of the mode 
in the absence of collisions are ω = 3.36 · 105 s−1 and 
γL = 1.76 · 104 s−1, respectively. We now increase the col-
lision frequency as we did before for the ITPA case and 
investigate the non-linear dynamics of the mode in stellarator 
geometry. The results are presented in figure 10.

The left-hand side of the figure shows the time trace of the 
poloidal component of the perturbed magnetic field for a few 
selected collision frequencies. It can be observed that any peri-
odic behaviour in the non-linear phase is completely absent. 
(Note that the medium-density tokamak case, which showed 
periodic behaviour, has a similar growth rate as the stellarator 
case.) The reason could be that the external damping rate is 
only γd = 1.05 · 103 s−1 and that therefore the case is too far 
away from marginality. We speculate that the saturation mech-
anism is radial decoupling. This assessment is also supported 

Figure 9. Left: Shear Alfvén wave continuum for the W7-X high-mirror configuration. The relevant continuum branches (6,−6, red) and 
(7,−6, blue) are coloured. The TAE frequency is indicated as a solid black line. Right: Radial TAE mode structure (electrostatic potential) 
as calculated by CKA. The mode extends over a broad radial region.

Figure 10. Left: Time trace of the poloidal component of the perturbed magnetic field for the W7-X case. Simulations are performed for 
various collision frequencies. Any periodic non-linear solutions are absent. The linear growth rate is influenced for high ν0. Unlike in the 
tokamak case, the saturation level is a non-monotonic function of ν0. Note that the very high fast-ion density accounts for the unrealistically 
large saturation amplitude. Right: Scaling law δBsat (ν0) extracted from the simulation data. For low collision frequencies the saturation 
level only scales weakly with ν0 which could mean that the saturation mechanism is radial decoupling. Note that c1 and c2 are parameters of 
the fit (see table B4 in the appendix).
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by the fact that the flattening of the density profile happens 
over an area of large radial extent comparable to the mode 
width, see figure  11. Shown is the case without collisions. 
Including collisions makes no qualitative difference.

About 5% of the fast-ion density is lost due to numerical 
errors.

Since the ι-profile of this specific W7-X configuration is 
very flat (low shear), there is very little variation in ωres (as 
defined in [4]). Thus, even for very small growth rates, the 
resonance width can be of the same order as the mode width 
which then leads to radial decoupling.

It was found in the tokamak case that if the saturation mech-
anism is radial decoupling, the saturation level scales very 
weakly with collisionality for low values of ν0. Examining the 
right-hand side of figure 10, a similar observation can be made 
for W7-X. However, a striking difference between tokamak 
and stellarator is that δBsat is a non-monotonic function of 
ν0. Large collision frequencies clearly lead to a reduction of 
the saturation level. It even drops below the the collision-less 
value.

Unlike in the tokamak cases, the linear growth rate is 
reduced substantially by collisions (reduction of approx. 
42% for the highest collision frequency compared with the 
collision-less case). In the tokamak cases, γL only changes by 
20%, 7%, and 3% for the low-density, medium-density, and 
high-density cases, respectively.

The saturated amplitude of the magnetic field is a func-
tion of many parameters with γd, γL , and ν0  being the most 
important ones. Disentangling the various contributions of 
the individual parameters to the overall scaling law proved 
to be successful for the ITPA case, since γd is an external 
parameter and γL  was found to not depend significantly 
on ν0 .

In the stellarator, γL and ν0 cannot be varied indepen-
dently (at least for high collision frequencies). This may be 
the reason why δBsat is a non-monotonic function of ν0. This 
issue remains to be investigated.

4. Summary and conclusions

We have studied the non-linear saturation of TAEs in toka-
maks and stellarators. Special emphasis is given to the role of 
pitch-angle collisions of the fast ions and how the collisions 
influence the saturation level and the subsequent non-linear 
dynamics in the saturated phase. As a tokamak representa-
tive, the ITPA benchmark case was chosen. We performed 
numerical simulations for the standard case as well as with 
half of the standard density and a five-times increased value. 
In doing so, we cover both the resonance detuning and the 
radial decoupling regime by the simulations.

It is seen that features predicted by analytical theory are 
recovered by the simulations, if they are performed in the 
validity range of the theory. We showed that the transition 
from a periodic dynamics in the non-linear phase to a steady-
state solution occurs for a collision frequency that is con-
sistent with analytical predictions. In the resonance detuning 
regime (i.e. for cases that are closer to marginal stability) the 
theoretically predicted ν2/3-scaling of the saturation level is 
confirmed numerically. In this sense, this case also serves as 
a benchmark of the implementation of collisions into the non-
linear and electromagnetic version of CKA-EUTERPE.

Outside the validity range of the theory (for γL � νeff ) scaling 
laws deviating from the ν2/3-prediction are found numerically. 
The critical collision frequency νcrit for which the scaling is 
supposed to change can (roughly) be estimated by calculating 
the bounce frequency ωb of particles trapped in the potential 
of the wave. A simple cylindrical calcul ation for ωb leads to 
an estimate for νcrit that qualitatively matches the numerical 
findings.

Analytical theory and previous numerical simulations 
did not include a momentum-conserving collision operator. 
We investigated the implications that conserving linear 
momentum in the collision step has on the scaling law. It turns 
out that neglecting momentum conservation leads to an over-
estimation of collisional effects. However, this only becomes 
important for large collision frequencies. As expected, for 
small values of ν0 the scaling laws found numerically with and 
without the momentum-conservation scheme are the same.

After having confirmed the analytical predictions in 
tokamaks, the code was applied to a Wendelstein 7-X (W7-X) 
high-mirror equilibrium. Similarly to the ITPA case a TAE, 
now with a broader radial structure, is investigated in stel-
larator geometry. Several differences become apparent when 
comparing the tokamak and the stellarator case. The stellarator 
case shows no periodic non-linear behaviour, which might be 
a consequence of the relative values of γL and γd used for 
this simulation. The second difference is that the scaling of 
the saturation level with ν0 is now non-monotonic. Again, this 
might be related to a closer entanglement of the various factors 
influencing the non-linear dynamics in stellarators. The weak 
scaling of δBsat (ν0) coupled with a flattening of the fast-ion 
density profile over the whole mode-localization region sug-
gests that the saturation regime in W7-X is radial decoupling. 
Notwithstanding the above, the mode is found to saturate due 
to profile flattening in the tokamak and stellarator alike.

Figure 11. Flattening of the fast-ion density profile at various times 
in the simulation for the W7-X high-mirror case without collisions. 
The saturation mechanism resembles radial decoupling and a 
flattening of the profile over the whole mode-localization region is 
observed.
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Finally, it must be pointed out that it is too soon to draw 
any final conclusions about the non-linear dynamics of shear 
Alfvén modes in W7-X. Many more gap modes existing in 
stellarator geometry (HAEs, EAEs, MAEs, but also EPMs) 
with different mode numbers and radial profiles need to be 
studied to determine if the findings reported here prevail in 
general. Especially with neutral beam injection becoming 
available at W7-X for the next operation phase, also the effect 
of using a slowing-down distribution function for the fast-
ions and a proper slowing-down collision operator should be 
studied. The implementation of proper distribution functions 
for such scenarios is in progress.

All numerical simulations reported in this paper were per-
formed in a perturbative sense with the mode structure held 
fixed throughout the simulations. Future investigations with 
fully gyro-kinetic models (allowing for the evolution of the 
mode structure) should be carried out in order to confirm 
the results of the perturbative models. Such simulations are, 
however, still very expensive and numerically challenging 
and at the moment not suited for parameter studies as the one 
reported in this paper.

Finite A⊥-effects have been neglected in this paper. While 
CKA as a reduced MHD code contains A⊥, the equations of 
motion in EUTERPE do not. A more complete coupling of CKA 
and EUTERPE in this regard is a matter of ongoing research.

As has been pointed out in [6, 21], when compared to 
models or numerical predictions, experimentally diagnosed 
properties of chirping solutions can provide information on 
plasma parameters which are otherwise difficult to diagnose. 
Hence, a next step should be to investigate stellarator cases 
that are closer to marginality and thus allow for chirping 
behaviour.
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Appendix A. Parameters of the ITPA density profile

The coefficients of the density profile are listed in table A1.

Appendix B. Parameters of the numerical fits

Tables B1–B3 list all resulting parameters of the numerical 
fits shown in figure 3 in section 3. For all fits a function of 
the type

y = a · x + b (B.1)

with y = log [(δBsat (ν0)− δBsat (0)) /B0] and x = log (ν0/ωA)  
is used.

In the case of W7-X (see figure 10) the data are fitted to

y = b · xa + c (B.2)

with y = δBsat (ν0) /B0 and x = ν0/ωA. Table  B4 lists the 
results.

Appendix C. An analytical estimate for ωb

Consider a particle moving in a cylindrical plasma. The magn-
etic field is given by

B = B1eΘ + B0ez, (C.1)

where eΘ and ez  are unit vectors in cylindrical coordinates. 
The equations of motion are

Ṙ = v‖b +
B ×∇φ

B2 (C.2)

Table A1. Parameters of the ITPA fast-ion density profile.

coefficient c1 c2 c3 c4

value 0.521 298 0.198 739 0.298 228 0.491 23

Table B1. Parameters of the numerical fits for the low-density case.

a b

small ν0 (red curve) 0.59 ± 0.15 −3.60 ± 2.20
large ν0 (blue curve) 0.36 ± 0.01 −6.63 ± 0.05

Table B2. Parameters of the numerical fits for the medium-density 
case.

without conservation 
scheme

with conservation  
scheme

a b a b
small ν0 
(red curve)

0.61 ± 0.03 −3.41 ± 0.30 0.60 ± 0.01 −3.53 ± 0.08

large ν0 
(blue curve)

0.30 ± 0.01 −5.82 ± 0.04 0.23 ± 0.02 −6.26 ± 0.06

Table B3. Parameters of the numerical fits for the high-density 
case.

a b

small ν0 (red curve) 0.19 ± 0.36 −9.54 ± 4.17
large ν0 (blue curve) 0.46 ± 0.03 −4.72 ± 0.14

Table B4. Parameters of the numerical fits for the W7-X case.

a b c

small ν0 
(red curve)

0.28 ± 0.03 0.013 ± 0.002 0.009 ± 7.7 · 10−5

large ν0 
(blue curve)

0.49 ± 0.16 −0.008 ± 8.0 · 10−4 0.012 ± 6.0 · 10−4
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v̇‖ = 0 (C.3)

if all ∇B terms are ignored. For the spatial coordinates of the 
particle one thus finds

ṙ =
1

B2

(
B1φ,z −

B0

r
φ,Θ

)
 (C.4)

Θ̇ =
v‖B1

Br
+

B0φ,r

B2r
 (C.5)

ż =
v‖B0

B
− B1φ,r

B2 . (C.6)

Suppose that B ≈ B0 and introduce the rotational transform as

ι =
R0B1

rB0
. (C.7)

The equations of motion then reduce to (terms that scale with 
the inverse aspect ratio can be neglected)

ṙ =
r

R0
ιφ,z −

1
rB0

φ,Θ ∼= − 1
rB0

φ,Θ (C.8)

Θ̇ =
ιv‖
R0

+
1

rB0
φ,r (C.9)

ż = v‖ −
r

R0
ιφ,r ∼= v‖. (C.10)

The ż-equation is easily integrated. When transforming to a 
new coordinate p = B0r2/2 it can be seen that the remaining 
system can be cast into Hamiltonian form

ṗ = −∂H
∂Θ

 (C.11)

Θ̇ =
∂H
∂p (C.12)

with H = v‖ψ/R0 + φ and ∂ψ/∂p = ι. Obviously, the 
Hamiltonian of the co-moving frame,

H =

(
v‖
R0

n − ω

)
p + mH, (C.13)

is an invariant of the (perturbed) motion. Suppose that the poten-
tial varies as φ = φ0 cos (mΘ+ n/R0z − ωt). Then, a phase

χ = mΘ+
n

R0
z0 +

(
n

R0
v‖ − ω

)
t (C.14)

can be defined in the co-moving frame of the wave. The equa-
tions of motion in the reference frame of the wave are thus

ṗ = −∂H
∂χ

= mφ0 sinχ (C.15)

χ̇ =
∂H
∂p

=
n

R0
v‖ − ω +

m
R0

ιv‖ + m cosχ
∂φ0

∂p
. (C.16)

Calculating the second time derivative of the phase and 
Taylor-expanding around χ = 0 yields

χ̈ =

[
m
R0

∂ι

∂p
v‖ + m cosχ

∂2φ0

∂p2

]
mφ0 sinχ− m sinχ

∂φ0

∂p

×
[

n
R0

v‖ − ω +
m
R0

ιv‖ + m cosχ
∂φ0

∂p

]

 (C.17)

∼=
[

m2

R0

∂ι

∂p
v‖φ0 + m2φ0

∂2φ0

∂p2

−m
∂φ0

∂p

(
v‖k‖ − ω

)
− m2

(
∂φ0

∂p

)2
]
χ

 

(C.18)

≡ −ω2
bχ. (C.19)

Using the resonance condition v‖k‖ = ω, the square of the 
bounce frequency is defined as

ω2
b ≡ −

[
m2

R0

∂ι

∂p
v‖φ0 + m2φ0

∂2φ0

∂p2 − m2
(
∂φ0

∂p

)2
]

 (C.20)

and includes terms both linear and quadratic in the field 
amplitude. This is contrary to conventional Berk–Breizman 
theory and could hint on the transition from the resonance 
detuning regime (terms linear in φ0) to the radial decoupling 
regime (quadratic terms). The estimate for ωb presented in the 
main text (see equation (31)) is obtained by keeping only the 
linear term and transforming back to the radial coordinate r.

Figure C1. Resulting values of the cylindrical ωb estimates (blue) for the low-density (left) and medium-density cases (right). The 
calculated values for νeff are shown in red. The primary assumptions of the analytical theory [3] exclude the gray region.
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We can use that equation  to try to estimate the validity 
range of the analytical theory [3]. In order to compare with 
the numerical simulations, we substitute the parameters of 
the ITPA benchmark and use v‖ = vA/3. The results of this 
simple estimate for ωb are shown in figure C1 in blue for the 
various collision frequencies using the value for φ0 at satur-
ation. Given the value for ωb it is then possible to calculate 
νeff (red curve in figure  C1). Two regimes are visible. For 
νeff � γL the assumptions of [3] are valid. In this regime the 
theoretically predicted scaling is confirmed numerically (in 
the resonance detuning regime). For νeff � γL, on the other 
hand, the initial assumptions are violated and a new scaling 
law is found numerically. This simple cylindrical estimate is 
able to qualitatively predict the transition from one regime to 
the other. It fits fairly well with our simulation results.
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Introduction

Heating methods such as neutral beam injection (NBI) or ion cyclotron resonance heating

(ICRH) generate fast ions in fusion plasmas. In order to effectively heat the plasma, the fast

ions need to remain confined for a time period on the order of the slowing-down time. While

slowing down, the fast ions may resonantly interact with Alfvénic perturbations, which can lead

to enhanced fast-ion transport [1] and premature ejection of fast ions from the plasma.

Here, we numerically investigate the interaction of Alfvén waves and fast ions in a Wendel-

stein 7-X (W7-X) high-mirror configuration. Note that one of the optimization goals of W7-X

is good fast-ion confinement [2].
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Figure 1: Fast-ion distribution function (top)

and density profile (bottom) provided by AS-

COT (black dots) and used in EUTERPE (red

line).

The simulations are performed using the non-

linear CKA-EUTERPE code package [3]. It com-

bines the ideal MHD code CKA, which provides

a mode structure, and the gyro-kinetic code EU-

TERPE, which computes the power transfer from

the fast ions to the mode. This approach is pertur-

bative since the mode structure remains fixed for the

entire calculation.

Even though non-linear simulations, using CKA-

EUTERPE, have been conducted in the past for

W7-X [4], this is the first time that a realistic fast-

ion distribution function and density profile, as ex-

pected for plasmas in operation phase 1.2b (July-

October 2018), are considered. Both are obtained

using the ASCOT code [5, 6]. As can be seen in

Fig. 1 (top), we use a slowing-down distribution

function with two intermediate steps to describe the

fast ions. Those steps are at Emax/2 and Emax/3 and

come from the acceleration of molecular hydrogen.

The black circles are computed by ASCOT while
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Figure 2: Alfvén eigenmodes found in the W7-X high-mirror configuration. From left to right: GAE

(m = 1;n = −1), GAE (m = 2;n = −2), TAE (m = 17,18;n = −16), even EAE (m = 17,19;n = −16),

odd EAE (m = 17,19;n =−16).

the red line is the fit that is used in EUTERPE. The distribution function provided by AS-

COT is non-uniform in the pitch-angle variable ξ = v‖/v. For our EUTERPE simulations, on

the other hand, a uniform distribution is used as a first approximation. The generalization to a

pitch-angle-dependent distribution function is straightforward and will be reported elsewhere.

The fast-ion density profile used in all simulations is shown in Fig. 1 (bottom). The density

gradient provides the source of free energy that can potentially drive Alfvén eigenmodes (AEs)

unstable. Note that the density profile computed by ASCOT is noisy close to the magnetic axis.

Therefore, the density profile is smoothed for usage in EUTERPE. Since the AEs that will be

studied later are localized at larger radii (see Fig. 2), it is a reasonable assumption that the

growth rates are independent of the exact shape of the density profile in the core of the plasma.

The profiles of the background plasma are determined by NTSS [7] calculations. The on-axis

values ni,0 = ne,0 = 5.0 · 1019 m−3 (hydrogen), Ti,0 ∼= 2.5 keV, Te,0 ∼= 4.5 keV are close to the

parameters envisaged for W7-X OP 1.2b plasmas where NBI will be available.

Table 1: Frequencies and linear growth rates

of the Alfvén eigenmodes shown in Fig. 2.

ω/s−1 γL/s−1

m = 1 GAE 2.772 ·105 1.149 ·103

m = 2 GAE 3.029 ·105 2.505 ·103

TAE 4.436 ·105 1.008 ·103

even EAE 8.306 ·105 5.033 ·102

odd EAE 8.522 ·105 5.852 ·102

Eigenmodes found by CKA

Several AEs – possible candidates for the desta-

bilization by fast ions – are found in this W7-X

high-mirror configuration using CKA. The radial

mode structures (indicating also the mode num-

bers) are shown in Fig. 2. Of lowest frequency are

two global Alfvén eigenmodes (GAEs) that ful-

fil |m| = |n|. Therefore, they are classified as so-

called isomon modes [8]. At higher frequencies, a

toroidicity-induced Alfvén eigenmode (TAE) and

two ellipticity-induced Alfvén eigenmodes (EAEs)

are found by CKA. All these AEs are located at different radial positions and have different

frequencies. It is therefore expected that they will react differently to the fast-ion drive. The
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mode frequencies ω and growth rates γL obtained from a linear calculation are listed in Tab. 1.

Since the growth rate is predicted to scale as [9, 10]

γL ∼ m
ω?

ω
−1, (1)

where ω? denotes the diamagnetic drift frequency of the fast ions, it is not surprising that modes

at higher frequency have a smaller linear growth rate. Finite-Larmor-radius effects reduce the

growth rate and become more important for high-m modes.
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Figure 3: Time traces of the perturbed

poloidal magnetic field associated with the

modes shown in Fig. 2. The non-linear sim-

ulations include a fast-ion collision operator.

Non-linear results

In order to numerically determine the saturation

levels of the modes in non-linear calculations, a

damping rate γd must be present. For γd = 0, a sub-

exponential drift after the initial linear phase is ob-

served. Note that in CKA-EUTERPE, γd is an ex-

ternally specified parameter.

Since the growth rates of the modes are small,

and still we want to save computation time, the

following approach is pursued: We artificially in-

crease the growth rate by a factor α > 1. We then

specify a damping rate γd = (α − 1)γL, such that

αγL−γd = αγL−(α−1)γL = γL is the original lin-

ear growth rate. For practical purposes, α = 5.5 has been chosen. Since the physical damping

rate is missing, this approach corresponds to a maximal estimate of the saturation levels.
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Figure 4: Change of the fast-ion density pro-

file at the radial positions where the modes

shown in Fig. 2 have their respective maxi-

mum.

Fig. 3 shows the time traces of the perturbed

poloidal magnetic field associated with the mode.

A fast-ion collision operator was present in the nu-

merical simulations, since collisions play an impor-

tant role in the formation of the distribution func-

tion and can also influence the non-linear dynam-

ics of AEs [4]. At s = 0.5, the critical velocity

and slowing-down time are vc ∼= 2.23 ·106 m/s and

τs ∼= 60 ms, respectively. All modes saturate in the

range of δB/B0 = 10−4−10−3.

The modes cause radial transport of fast ions as

is indicated in Fig. 4. The flattening of the fast-ion
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density profile is on the order of δn ∼= −1014 m−3

at the maximum position of the mode and thus four orders of magnitude lower than the value

of the fast-ion density profile at this point. Higher saturation levels lead to an increased fast-ion

transport. A similar observation has been made in Ref. [4].

So far only the drive of the modes due the presence of fast ions has been addressed. However,

to make a prediction whether the modes will be unstable in the experiment requires also knowl-

edge of the damping rates. The radiative damping rates of the gap modes have been estimated

using the reduced model of STAE-K [10]. The GAEs cannot be addressed using STAE-K. For

the TAE we find γd/ω =−6%. The even and odd EAEs have lower normalized damping rates

of−0.7% and−0.5%, respectively. In any case, the damping rate exceeds the linear growth rate

which means that, for the case studied, the fast-ion drive is likely not sufficient to destabilize

gap modes.

Summary

We have investigated possible fast-ion driven modes in a Wendelstein 7-X high-mirror configu-

ration for plasmas expected in the up-coming operation phase 1.2b.

Of all AEs investigated here the GAEs have the highest saturation levels and normalized

growth rates. Our results are in agreement with the value of γL/ω = 10−3− 10−2 given in

Ref. [8]. Due to their radially extended mode structure, they might be the easiest to be excited

by fast ions. In order to predict which modes will be unstable in the experiment, more work is

needed to accurately compute damping rates.
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Abstract. In the 2018 experimental campaign, fast ions in the stellarator Wendelstein 7-X
will be generated by neutral beam injection. Later operation phases will also include ion
cyclotron resonance heating. The fast ions may excite instabilities in the plasma which can
lead to enhanced fast-ion transport and can, in severe cases, cause damage to plasma-facing
components.

We present a numerical study of fast-ion-driven Alfvén eigenmodes in a Wendelstein 7-X
high-mirror equilibrium. Realistic fast-ion parameters are obtained using the ASCOT code. To
model the instabilities, we use the CKA-EUTERPE code package. This model is perturbative,
since a fixed mode structure – computed by the ideal-MHD code CKA – is used throughout the
calculation. The non-linear gyro-kinetic code EUTERPE computes the power transfer from the
fast particles to the mode which defines the growth rate of the instability.

We show that having a fast-ion collision operator present in the simulations is required to
accurately predict the non-linear saturation level of the mode. The scaling of the saturated
amplitude with respect to fast-ion drag and the pitch-angle collision frequency is investigated
and found to vary for different Alfvén eigenmodes.

Furthermore, we study the impact of several other actuators that might be of experimental
relevance for finding operation windows that show Alfvén-eigenmode activity. Examples are the
effects of a radial electric field and the composition of the background plasma (hydrogen versus
helium). While growth rates are found to be reduced in helium plasmas, including a radial
electric field, typically present in Wendelstein 7-X, seems to have little influence on the modes.

1. Introduction
The 2018 experimental campaign of Wendelstein 7-X (W7-X), for the first time, includes neutral
beam injection (NBI). This system supplies energetic ions, which heat the plasma via collisional
energy exchange. The fast ions thermalize and eventually become part of the background plasma,
thus contributing to fuelling. While slowing down, the parallel velocity of a fast ion can become
resonant with the phase velocity of Alfvén eigenmodes (AEs) present in the plasma. In that case
a resonant transfer of energy from the fast ion to the mode takes place [1]. The mode can grow
in amplitude and influence the particle trajectories. This re-distribution of highly energetic ions
could potentially damage the device [2].

A number of AEs, and their possible destabilization by fast ions, was recently investigated [3]
(see that reference for details). We used a realistic fast-ion density profile and a slowing-down
distribution function in energy space, both calculated by the ASCOT code [4, 5] for plasma
parameters expected for the 2018 experimental campaign. While Ref. [3] reported on first

Parametric study of fast-ion-driven modes in Wendelstein 7-X (A.4)

79



2

1234567890 ‘’“”

Varenna2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1125 (2018) 012019  doi :10.1088/1742-6596/1125/1/012019

results, we now aim to investigate further effects and possible experimental actuators that could
influence the non-linear behaviour of the modes.

Firstly, we will describe the CKA-EUTERPE model used for the simulations. Secondly, we
will investigate the wave-particle power transfer in phase space and compare the linear growth
rates of the modes in hydrogen and helium plasmas. We will then study the effects of pitch-angle
collisions and fast-ion drag on the non-linear saturation. Furthermore we investigate the effects
of a radial electric field on the mode evolution, with emphasis on the non-linear phase. Finally,
conclusions will be drawn.

2. The CKA-EUTERPE model
The CKA-EUTERPE code package [6] has recently been described in detail in Ref. [7]. For the
sake of brevity, only the key aspects are repeated here.

CKA-EUTERPE combines the ideal-MHD eigenvalue code CKA and the global non-linear
gyro-kinetic particle-in-cell code EUTERPE. A spatial mode structure and frequency are
calculated using CKA by solving the eigenvalue problem

ω2D2φ0 (r) = D1φ0 (r) (1)

with linear differential operators D1 and D2 defined in Refs. [6, 7]. ω0 and φ0 denote the mode
frequency and its electrostatic potential (spatial part), respectively. r is the spatial position.
Since ideal-MHD theory is employed, we can use the fact that the parallel electric field has to
vanish in order to determine the vector potential

A‖,0 =
i

ω
b · ∇φ0, (2)

where b is a unit vector tangent to the background magnetic field.
φ0, A‖,0, and ω are given to EUTERPE, which solves the gyro-kinetic equation

∂f

∂t
+ Ṙ · ∇f + v̇‖

∂f

∂v‖
+ μ̇

∂f

∂μ
= C (f) (3)

for the distribution function f of the fast particles (if the species index is omitted, fast ions
are meant) moving in the external magnetic field as well as in the self-excited electromagnetic
fields. Thus, the model is non-linear. The right-hand side of the kinetic equation includes a
collision operator, which will be specified below. μ is the specific magnetic moment defined as
μ = v2⊥/(2B). The distribution function is split, f = f (0)+f (1), with f (0) being the slowing-down

distribution function of the fast ions and f (1) denoting the perturbation.
In the framework of CKA-EUTERPE no field equations need to be solved. The fast ions

simply contribute to a time-dependent power transfer (see below), which is used to calculate
the time development of the mode with a fixed spatial structure. Therefore, we can use the
so-called v‖-formulation of gyro-kinetic theory. The corresponding equations of motion for the
marker particles can be found in Ref. [7].

Note that in the CKA-EUTERPE model the mode structure remains fixed, and only a
complex amplitude is allowed to evolve in time. Thus, the model is perturbative and cannot
capture fast-ion-induced mode structure modifications, but is much faster and more stable than
fully gyro-kinetic approaches. The equations for the amplitudes of the electromagnetic potentials
(denoted by a hat symbol) are

∂φ̂

∂t
= iω

(
Â‖ − φ̂

)
+ 2 (γ (t)− γd) φ̂ and

∂Â‖
∂t

= iω
(
φ̂− Â‖

)
. (4)
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Figure 1. A selection of modes found by CKA. From left to right: (m = 1/n = −1) GAE,
(m = 2/n = −2) GAE, (m = 17, 18/n = −16) TAE, (m = 17, 19/n = −16) EAE (even),
(m = 17, 19/n = −16) EAE (odd). s is the normalized toroidal flux. Reproduced from Ref. [3].

They are derived from the quasi-neutrality equation – describing the background plasma with
MHD theory and the fast ions gyro-kinetically – and Ampère’s law. Ref. [8] will describe the
details of the model. The frequency of the mode may change as long as δω/ω � 1 is fulfilled.
This separation of time scales, where the oscillation of the mode is faster than the evolution of
the amplitudes, has been used in the derivation of Eqs. (4). The time-dependent growth rate
γ(t) = T (t)/(2W ) is defined as the quotient of the resonant wave-particle power transfer

T (t) = −
∫
dΓ B�

‖
[ m

ZeB
b×

(
v2‖κ+ μ∇B

)
·
(
Ze∇⊥φ∗ (r, t) f (1)

)]
(5)

and the wave energy

W =

∫
d3r

ρ

B2
|∇⊥φ|2 . (6)

The notation is conventional: B�
‖ denotes the Jacobian, κ is the curvature of the magnetic field

B with magnitude B, and ρ is the mass density of the plasma. The particle mass and charge are
denoted by m and Ze, respectively. Finally, dΓ indicates the integration over all of phase space.
Note that the electrostatic potential (and similarly the parallel vector potential) is written as

φ(r, t) = φ̂(t)φ0(r) exp(iωt). The damping rate γd, describing continuum, radiative, and Landau
damping, is a free parameter of the model. The choice of γd is outlined in Ref. [3].

The collision operator

C (f) = νfiDL (f) +
1

v2
∂

∂v

[
v3

mf

mf +mi
νfis f

]
+

1

v2
∂

∂v

[
v3

mf

mf +me
νfes f

]
(7)

used in this paper is a fast-ion collision operator that describes pitch-angle collisions with
the background ions (the first term, L, is the Lorentz operator) and friction with the entire
background plasma (second and third term), respectively. In Eq. (7), νD labels the deflection
frequency and νs is the slowing-down frequency. Energy diffusion is neglected. The labels i, e, f
are used to denote ions, electrons, and fast ions, respectively.

This collision operator is the same as the one used in Ref. [3]. The implementation of the
Lorentz operator into the electromagnetic version of EUTERPE has been benchmarked in Ref. [9]
and was used for non-linear simulations in Ref. [7].

3. Modes
As in Ref. [3], we investigate a W7-X high-mirror equilibrium with plasma profiles as expected
for the 2018 experimental campaign. In this magnetic configuration, five different AEs are
studied, which are possible candidates to be destabilized by fast ions generated by the NBI
system. The same modes have been investigated in Ref. [3], with the focus on the linear growth
rates and non-linear saturation levels. Ref. [3] showed that the fast-ion drive could be insufficient
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Figure 2. Absolute value of the wave-particle power transfer (arb. units) in the s-v‖-plane for
the modes shown in Fig. 1. The power transfer is strong where the gradient of the mode is large.
The toroidal and helical resonances are shown as solid red and green lines for the gap modes. As
shown for the TAE, the higher-order resonances (dashed red line) can play an important role.

to destabilize those modes. However, also the background plasma may contribute to the drive
of the mode [10].

The radial mode structures are shown in Fig. 1. We study GAEs, EAEs, and a TAE.
The latter two are gap modes (little continuum damping), but the GAEs could be subject
to continuum damping. They are nevertheless added to our investigation, because they are
expected to be easily destabilized in W7-X plasmas [11]. Since they fulfil |m| = |n|, they are
called Isomon modes in Ref. [11].

4. Power transfer
It can be seen in Fig. 1 that especially the GAEs have a broad radial mode structure. In
order to assess at which spatial position the drive is strongest, we investigate the wave-particle
power-transfer in the s-v‖-plane (integrating over poloidal and toroidal angle, and the magnetic
moment). The results are shown in Fig. 2 for the same modes that were presented in Fig. 1.
For the narrow gap modes, the drive is localized at the same radial position as the mode itself,
which is expected. The broad GAEs, on the other hand, are not uniformly driven over their
entire extent. Rather, the power transfer is restricted to a region where the mode structure
exhibits the largest gradient. Comparing with Eq. (5), this is the expected behaviour.

In Fig. 2, the resonances (toroidal and helical Fourier components of the background magnetic
field) are shown as solid red and green lines. They can be computed using

v‖
vA,�

=

∣∣∣∣1± 2
ι� − νN

μ0ι� − ν0N

∣∣∣∣
−1

(8)

for the well-localized gap modes [12]. Eq. (8) is not applicable to the GAEs, since for them a local
approximation fails. Here, ι is the rotational transform, N denotes the number of field periods,
μ0, ν0 determine the mode coupling, and ν relates to either the toroidal or helical resonance.
Values that have to be taken at the mode localization region are indicated by a star.

For the TAE, the agreement with the simulated power transfer is not perfect. A possible
explanation is that the drive could also come from higher-order resonances. This is shown for
the TAE (middle plot), where the v‖/vA = 1/5 resonance (dashed red line) is found to agree
well with the simulation.

It needs to be pointed out that the destabilization of the EAEs is particular to W7-X being
a stellarator. The usual tokamak resonance of v‖/vA = 1/2 is not reached. Only the helical
structure of the magnetic field provides additional resonances at lower velocities.

5. Growth rates in helium plasmas
While previous operation phases of W7-X relied on helium plasmas for high-density operation
the 2018 experimental campaign will feature mostly hydrogen plasmas. There are however
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proposals to study the effects of the background-plasma mass density on Alfvén-wave activity.
Fig. 3 shows the linear growth rates of the five AEs shown in Fig. 1 normalized to their

respective mode frequency for hydrogen as well as helium plasmas. The fast ions injected into
those plasmas are always protons. It can be seen that the normalized growth rates are generally
reduced in helium plasmas. This effect is most pronounced for the GAEs. The EAEs, on the
other hand, are barely influenced.

The reduction of the normalized growth rates in helium plasmas can be explained by a shift
of the resonances. Given the injection parameters of the NBI system, at most v‖/vA ≈ 0.43
can be reached for hydrogen. Taking the TAE as an example, v‖/vA = 1/3 and v‖/vA = 1/5
(higher-order resonance) are included, but the primary v‖/vA = 1 resonance is not. If helium is
used instead, the Alfvén velocity drops, and the v‖/vA = 1 resonance becomes almost reachable.
This mechanism would increase the drive in a tokamak. In a stellarator, however, the magnetic
field also has helical Fourier harmonics, which in W7-X are larger than the toroidal Fourier
harmonic. The additional helical resonances modify the shape of the resonance curve [13, 14]

γ

ω
∼

∑

j=±1

[
ε2tF

(
w

(j)
t

)
+ ε2hF

(
w

(j)
h

)]
(9)

F = w
(
1 + 2w2 + 2w4

)
exp

[
−w2

]
(10)

so that the modes are more stable in helium than they are in hydrogen. Here, w is the resonant
velocity and εt and εh denote the toroidal and helical Fourier components of the magnetic field,
respectively.

This finding suggests that hydrogen plasmas could be more suitable for observing AE activity
in W7-X in up-coming experimental campaigns.

6. The influence of collisions
It was reported in the past (see e.g. Refs. [7, 15, 16]) that collisions can influence the non-
linear saturation levels of AEs. The fast-ion collision operator used here includes the effects of
pitch-angle scattering and drag. In order to disentangle their contributions to the non-linear
saturation, we vary the strength of both terms individually for the m = 2 GAE and the TAE.
The results can be seen in Figs. 4 and 5, respectively. Both figures confirm the potentially strong
influence of collisions on the saturation level. For the GAE, a 50% increase is possible. For the
TAE, it is even possible to increase δBsat (value of δB at the first maximum) by a factor of
approximately 10. This emphasizes the tremendous importance of having a fast-ion collision
operator present in non-linear simulations. At the radial position where the TAE is localized,
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the basic collision frequencies (see Ref. [17] for their definition and relation to νD and νs) are
νfi0 = 48.8 s−1 and νfe0 = 38.3 s−1.

Fast-ion drag and pitch-angle scattering are found to act differently on different AEs. In
case of the GAE, there is a clear division: Pitch-angle scattering increases the saturation level
while fast-ion drag lowers it, which means that the highest saturation level is not achieved with
the self-consistent collision operator. The role of drag is different for the TAE, where it also
acts to increase δBsat. There seems to be a synergy between pitch-angle scattering and fast-ion
drag, which is weakest at intermediate values of the pitch-angle collision frequency. The highest
saturation level is obtained with the full fast-ion collision operator.

Pitch-angle scattering counteracts wave-particle trapping [15], the mechanism for saturation
[15, 18], and thus allows for a higher saturation level. For the TAE, fast-ion drag has a similar
effect. It needs to be pointed out that the radial positions of the m = 2 GAE and TAE are
different. In this realistic scenario the density and temperature profiles are not flat, which makes
the collision frequencies strong functions of the radial position. This could explain why fast-ion
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drag acts differently on the two AEs. Another possibility is that the behaviour is due to the
differences in the resonances.

7. The influence of a radial electric field
We would also like to investigate the impact of a radial electric field on the non-linear dynamics
of the m = 2 GAE and the TAE. Here, we combine the calculations including Er with the
fully self-consistent fast-ion collision operator in order to progress to a more realistic case. Note
however that the E×B Doppler shift of the mode frequency and a possible change of the MHD
mode structure due to the radial electric field are neglected. Here, we just retain the influence
of Er on the particle motion. A more accurate treatment will be left for future work.

The radial shape of Er is shown in Fig. 6 on the left-hand side. Over a wide radial range
the radial electric field is negative (ion root). In the core, however, the radial electric field is
positive, which corresponds to electron-root conditions. This is characteristic for low-plasma-
density discharges in first operation phases of W7-X, in which core-localized electron heating
usually dominates. The radial electric field leads via the E ×B-drift to a further modification
of the particle trajectories. This could potentially alter the wave-particle trapping mechanism
and thus influence the saturation. How a radial electric field influences fast-ion-driven AEs has
been considered in the past [20] for linear simulations. Here, we also consider the non-linear
development of the mode.

The right-hand side of Fig. 6 shows the non-linear development of the amplitudes of the
m = 2 GAE and of the TAE, respectively. Simulations including Er are shown as solid lines, the
ones without the radial electric field as black dashed lines. The figure shows that the saturation
level stays nearly identical. (The other modes shown in Fig. 1 are found to behave similarly.)
The linear growth rate reduces by 5% for the m = 2 GAE if the radial electric field is included.
Overall, the impact of Er on the mode dynamics is very small.

8. Summary and Conclusions
In this paper we studied several possible actuators that could be of experimental relevance for
finding (or avoiding) operational conditions that show Alfvén-wave activity in Wendelstein 7-X
(W7-X). Among the actuators investigated are the composition of the background plasma
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(hydrogen vs. helium), fast-ion collisions, and the presence of a radial electric field. The present
paper can be viewed as a continuation of Ref. [3] with the aim of testing the sensitivity of the
results to the specifics of the input.

Five different Alfvén eigenmodes (AEs) in a W7-X high-mirror configuration were
investigated. They are driven unstable by fast ions generated by neutral beam injection.
The fast-ion density profile and distribution function in energy space were computed using
the ASCOT code [4, 5]. The profiles of the background plasma were calculated by NTSS [19]
for plasmas expected in the 2018 operational campaign of W7-X.

When looking at the power transfer in phase space, we saw that for the gap modes the drive
comes from regions where the mode is localized. For the GAEs, the region of the drive coincides
with the strongest gradient of the mode. We found that, due to the limited injection energy of
the fast ions, EAEs can only be excited via the helical couplings present in a stellarator such as
W7-X.

We also showed that the normalized growth rates of all AEs are lower in helium than in
hydrogen. This could be explained by a shift of the resonances coupled with the existence
of stellarator-specific helical Fourier components in W7-X. This result indicates that hydrogen
plasmas might be a better candidate for observing AE activity. Furthermore, we could confirm
that the role of the fast-ion collision operator is different for different AEs. Fast-ion drag
increases the saturation level for the TAE, but decreases it for the m = 2 GAE. Since the
collision frequencies are a strong function of density and temperature, this is a mechanism
which could select a specific AE to be visible in specific experimental conditions. Finally, the
role of a radial electric field was investigated. We found that for the specific case looked at, the
presence of Er does not affect the non-linear dynamics significantly. This may change if the full
effect of the radial electric field is taken into account in CKA, which we plan for the future.

All simulations were carried out using the CKA-EUTERPE model [6]. It is a perturbative
model that does not include fast-ion-induced mode-structure modifications. But since the fast-
ion beta is low, such an approach seems justified. In a future work, the present results should
nevertheless be compared to a fully gyro-kinetic simulation.
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Abstract
The non-linear behaviour of toroidicity-induced Alfvén eigenmodes, destabilized by fast ions,

is investigated in tokamak geometry and for a Wendelstein 7-X high-mirror equilibrium. Both
cases show frequency chirping in the non-linear phase. The focus of this paper is on how particle
collisions influence the non-linear dynamics and the associated frequency chirping. Pitch-angle
scattering and fast-ion drag, which together are described by the fast-ion collision operator, are
considered. We study the effect of a Krook operator, relaxing the distribution function to its
unperturbed value, on the non-linear dynamics. The Krook operator leads to a periodic re-
appearance of the chirping. This is also observed in experiments in which a fast-particle source
is usually present.

The simulations are carried out using the non-linear and fully three-dimensional CKA-
EUTERPE model. The model is perturbative in the sense that a fixed mode structure is used.
Since such an investigation is undertaken for the first time for the stellarator Wendelstein 7-X,
the tokamak case as well as analytical theory are used for comparison. The parameters of the
fast-ion distribution function in Wendelstein 7-X are inspired by the 2018 experimental campaign
which, for the first time, includes neutral beam injection to supply fast ions.
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I. INTRODUCTION

In plasmas that are relevant for nuclear fusion, there typically exists a small popu-
lation of fast ions that are much hotter than the bulk of the plasma. In today’s fu-
sion experiments such particles are created by neutral beam injection (NBI) or ion cy-
clotron resonance heating (ICRH). In future fusion reactors, alpha particles created by
the deuterium-tritium fusion reaction will be present. In order to heat the plasma, the
fast ions need to remain in the plasma long enough to thermalize.
However, in the process of slowing down, the fast ions may resonantly interact with
Alfvénic perturbations [15, 34]. This can lead to enhanced fast-ion transport and also
to the ejection of fast ions from the confinement region, which implies energy losses
[11, 37]. In severe cases, damage to plasma-facing components is possible [10, 11].
It depends on the magnetic equilibrium as well as on the fast-ion distribution function
which Alfvén eigenmode (AE) in particular is most easily destabilized by the fast parti-
cles. A good overview is given in Ref. [18]. Typically, so-called gap modes that reside
in frequency gaps of the shear Alfvén spectrum are likely to be unstable, because they
experience only small continuum damping.
Especially with regard to future fusion reactors, an understanding of AE-induced fast-
ion transport and redistribution has to be developed. Since the modes responsible for
the redistribution are excited by the energetic ions themselves, the problem is non-linear.
Analytical theory is available in the form of the simplified Berk-Breizman paradigm
[1–4] which shows that a variety of non-linear behaviours – ranging from explosive,
chirping, and periodic solutions to a steady-state dynamics – are possible. The analytical
theory is able to identify some key parameters that govern the non-linear dynamics: The
relative strength of damping and drive as well as diffusion and drag (i.e. collisions) are
found to be important. Also the presence of particle sources can change the non-linear
dynamics.
Frequency chirping has also been investigated experimentally in stellarators and toka-
maks. AEs chirping in frequency are seen in the TJ-II stellarator in discharges that
combine NBI and electron cyclotron resonance heating [31, 32]. A transition from a
chirping state to a steady state is linked to variations of the magnetic configuration [31],
i.e. equilibrium changes. The fast-ion transport induced by frequency-chirping AEs
has been investigated in the ASDEX Upgrade tokamak [16]. Comprehensive non-linear
simulations of chirping AEs, including equilibrium changes and collisions, have been
carried out for JT-60U plasmas [6].
This paper reports on non-linear simulations of toroidicity-induced Alfvén eigenmodes
(TAEs) in tokamak and stellarator plasmas. We choose the TAE modes destabilized
by fast particles as an example, standing in for the class of all AEs. We focus on the
frequency chirping of TAEs excited in realistic geometry. All cases chosen for this inves-
tigation show frequency chirping in the absence of collisions. We will then investigate
the impact of various collision operators on the frequency chirping. This is the first time
that such an investigation is undertaken for Wendelstein 7-X (W7-X). This study is of
practical relevance for W7-X, since it is one step needed towards the development of a
full fast-ion transport model, which is still lacking.
We use the CKA-EUTERPE code package [14] for our numerical simulations. The re-
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duced ideal-magnetohydrodynamic (MHD) code CKA [13, 21] calculates the eigenmode
(frequency and mode structure). In a separate step, the global non-linear gyro-kinetic
electromagnetic particle-in-cell (PIC) code EUTERPE [20, 24] is used to compute the mo-
tion of marker particles in the pre-calculated field and the power transfer of the fast
particles to the mode, which determines the temporal evolution of the mode amplitude.
This approach is applied to two different magnetic configurations: We start by inves-
tigating how collisions influence the chirping in tokamaks. As an example, the ITPA
benchmark case [22, 23] is used. Secondly, chirping TAEs influenced by collisions are
simulated in a Wendelstein 7-X high-mirror equilibrium.
Various collision operators are explored in the paper. We start by using a simple pitch-
angle scattering operator. The effect of pitch-angle scattering on the saturation ampli-
tudes of TAEs in the ITPA tokamak and in W7-X was recently computed in Ref. [36].
The pitch-angle-scattering operator is, of course, just a first approximation of the full
fast-ion collision operator, which also includes slowing-down drag. The effect of drag
will be studied separately from the pitch-angle collisions. Finally, we will use a Krook
term [5], emulating a particle source, to relax the distribution function towards its initial
state. The Krook operator is linked to periodic, well separated chirping events that are
routinely observed in experiments [16, 31, 32] and numerical simulations [25–27, 29].
Note that the effects of collisions on chirping have been studied extensively [3, 4, 25–
30] in one-dimensional models that are related to the original Berk-Breizman paradigm.
Relatively little work has been invested to study non-linear frequency chirping in two-
dimensional (see e.g. Ref. [6] for simulation results on frequency chirping in JT-60U
plasmas) or even tree-dimensional devices. This is the reason why we start this in-
vestigation with the (relatively simple) ITPA benchmark case: We recover many features
predicted by the Berk-Breizman theory, but now in a two-dimensional system. The mag-
netic geometry is still simple enough that this case can bridge the gap to the complex
W7-X case, where it is investigated whether the fully three-dimensional system leads to
differences compared with the analytical theory.
The paper is organized as follows: Sec. II elaborates on the existing theory and intro-
duces our numerical tools. Sec. III describes both the tokamak and the W7-X case. The
non-linear dynamics in the collisionless limit is, for comparison, given in this section.
How these results change when collisions are taken into account is shown in Secs. IV
and V. Finally, conclusions are drawn in Sec. VI.

II. THEORY AND ALGORITHMS

A. The numerical model of CKA-EUTERPE

The theory behind the model of CKA-EUTERPE has recently been described in Ref. [36].
Therefore, only the defining characteristics of the model will be repeated here.
The CKA-EUTERPE code package combines the reduced ideal MHD code CKA (Code
for Kinetic Alfvén waves) with the global non-linear δf particle-in-cell code EUTERPE.
Both are suited for fully three-dimensional geometries.
CKA is an eigenvalue code used to solve for the frequency ω of the mode as well as
the mode structure (in terms of the electrostatic potential φ). Note that for vanishing
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parallel electric field, the electrostatic potential and the parallel component of the vector
potential, A‖, are linked via

A‖ =
i
ω

b · ∇φ. (1)

(b denotes a unit vector in the direction of the magnetic field, B = Bb.) The Coulomb
gauge is used and the perpendicular component of the vector potential (related to com-
pression of the magnetic field) is neglected. No kinetic fast-ion effects are considered in
CKA.
The mode frequency, electrostatic potential, and vector potential are passed to EU-
TERPE, which solves the gyro-kinetic equation

∂ fs

∂t
+ Ṙ · ∇ fs + v̇‖

∂ fs

∂v‖
+ µ̇

∂ fs

∂µ
= Css ( fs, fs) (2)

for the distribution function of a species s including a collision operator Css( fs, fs). In
the CKA-EUTERPE model only the fast ions are treated gyro-kinetically. Therefore the
species index will be omitted hereafter. µ denotes the specific magnetic moment µ =
v2
⊥/(2B). EUTERPE as a PIC code solves the kinetic equation by following numerical

marker particles that move along the characteristics of Eq. (2). We split the distribution
function into two parts, f = f (0) + f (1), where f (0) is a time-independent background
and f (1) denotes a perturbation, respectively. CKA-EUTERPE uses the so-called v‖-
formulation of gyro-kinetics. Hence, in the collisionless limit and with the non-linear
terms retained the equations of motion for the particles (characteristics of Eq. (2)) are

Ṙ = v‖b +
m
q

[
µB + v2

‖
BB?‖

b×∇B +
v2
‖

BB?‖
(∇× B)⊥

]

+
v‖

BB?‖
[b×∇B + (∇× B)⊥]

〈
A‖
〉
+

1
B?‖

b×∇
〈

φ− v‖A‖
〉 (3)

v̇‖ = − µ∇B ·
[

b +
m
q

v‖
BB?‖

(∇× B)⊥

]

−
v‖

BB?‖
[b×∇B + (∇× B)⊥] · ∇ 〈φ〉

− µ

B?‖

[
b×∇B · ∇

〈
A‖
〉
+

1
B
∇B · (∇× B)⊥

〈
A‖
〉]

(4)

µ̇ = 0 (5)

with

B?‖ = B +

[
m
q

v‖ +
〈

A‖
〉]

b · ∇ × b. (6)

Here, m and q denote the particle mass and charge, respectively. The angular brackets,
〈. . .〉, denote the gyro-average. Note that the equation for v̇‖ does not contain a time
derivative of A‖ as we have used the E‖ = 0 constraint to replace this time derivative
with the parallel gradient of φ.
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We emphasize again that the mode structure is fixed throughout the calculation. There-
fore, neither Poisson’s equations nor Ampère’s law have to be solved. We only need to
consider the temporal evolution of the amplitudes (denoted by a circumflex below) of
the electromagnetic potentials. The equations for the amplitudes are given as (We refer
to Refs. [21, 36] for details.)

∂φ̂ (t)
∂t

= iω
(

Â‖ − φ̂
)
+ 2 (γ (t)− γd) φ̂ (7)

∂Â‖ (t)
∂t

= iω
(

φ̂− Â‖
)

, (8)

where γ(t) = P/(2W) is a time-dependent growth rate that is computed from the wave-
particle power transfer

P = −
∫

dΓ B?‖
[ m

ZeB
b×

(
v2
‖κ + µ∇B

)
·
(

Ze∇⊥φ∗ (r, t) f (1)
)]

(9)

and wave energy

W =
∫

d3r
ρ

B2 |∇⊥φ|2 . (10)

Here, ρ is the mass density of the plasma, the particle charge is denoted by Ze, κ is the
curvature of the magnetic field, and dΓ denotes an infinitesimal phase-space element.
The electrostatic potential is given by φ(r, t) = φ̂(t)φ0(r) exp(iωt), where φ0 denotes the
MHD eigenfunction of the electrostatic potential calculated by CKA (similar for A‖).
In Eqs. (3) and (4), the real parts of the potentials are taken to compute the particle
trajectories. γd is an externally specified damping rate. Note that while the mode varies
on a short time scale, the amplitudes in Eqs. (7) and (8) evolve much more slowly. This
fact has been used in the derivation of the amplitude equations. Thus the model is only
applicable for chirping which satisfies δω/ω � 1.

B. Collision operators

Throughout this paper various collision operators will be used and compared with each
other. Since the focus is on TAEs excited by fast ions, we start with the general expression
for a collision operator of test particles a colliding with a Maxwellian background [19]
of particles b

Cab
(

f (1)a , f M
b

)
= νab

D L
(

f (1)a

)
+

1
v2

∂

∂v

[
v3

(
ma

ma + mb
νab

s f (1)a +
1
2

νab
‖ v

∂ f (1)a

∂v

)]
. (11)

The first term in this general collision operator describes pitch-angle scattering of species
a with species b

νab
D L = Cab

pitch =
νab

D
2

∂

∂ξ

(
1− ξ2

) ∂

∂ξ
. (12)

ξ = v‖/v denotes the pitch-angle variable,

νab
D = νab

0
Φ (xb)− G (xb)

x3
a

(13)
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is the deflection frequency of species a colliding with species b [19], and xs = v/(
√

2vth,s)
with vth,s =

√
kBTs/ms. T denotes the temperature. Φ and G are the error function and

the Chandrasekhar function, respectively. With n being the density, Z the charge num-
ber, e the electron charge, ε0 the vacuum permittivity, and ln Λ the Coulomb logarithm,
we will use [19]

νab
0 =

nbZ2
a Z2

be4 ln Λ
4πε2

0m2
a23/2v3

th,a
, (14)

with the density and temperature evaluated at the particle position, to determine the
collision frequencies from the profiles. We will call this the self-consistent approach.
However, in some cases it is enlightening to modify νab

0 in order to enforce a different
non-linear behaviour of the system. Cases where this approach is pursued are indicated
below. Note that in a realistic setting, the fast particles do not just collide among them-
selves. For typical fusion plasmas, the collision frequency with the bulk is many orders
of magnitude larger, i.e. νff

0 � νfi
0 . This motivates our approach to treat ν0 = ∑s νfs

0 as an
‘effective’ collision frequency that contains different physics, depending on the case and
which species are considered collisional. The letters ‘i’, ‘e’, and ‘f’ are used to label ions,
electrons, and fast ions, respectively.
The implementation of the pitch-angle collision operator into EUTERPE is described in
detail in Refs. [9, 36].
Furthermore, going back to Eq. (11), νab

s is the slowing-down frequency defined as [19]

νab
s = νab

0
2Ta

Tb

(
1 +

mb
ma

)
G (xb)

xa
, (15)

and νab
‖ denotes the parallel velocity diffusion frequency [19]. To arrive at a fast-ion

collision operator, we employ the following approximations:

1. The combination a = f, b = f can be neglected due to the high temperature and
small density of the fast particles.

2. Parallel velocity diffusion can be neglected in general, since its frequency is typi-
cally very small.

3. Pitch-angle scattering of the fast ions off electrons can be neglected due to the mass
difference.

Under these circumstances the original operator can be significantly simplified to

Cfast

(
f (1)f

)
= ∑

s=i,e
C f s
(

f (1)f , f M
s

)
(16)

∼= νfi
DL
(

f (1)f

)
+

1
v2

∂

∂v

[
v3 mf

mf + mi
νfi

s f (1)f

]
+

1
v2

∂

∂v

[
v3 mf

mf + me
νfe

s f (1)f

]
. (17)

The first term describes pitch-angle collisions between fast and bulk ions. The second
and the third term describe the drag that the fast ions experience with the background
ions and electrons, respectively.
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It is tempting to further simplify the operator by using the fact that in fusion plasmas
the fast particles are faster than the bulk ions, but still slower than the electrons. There-
fore, one often uses the large-argument expansion of the Chandrasekhar function in the
second term of Eq. (17). Accordingly, the third term is treated using the small-argument
expansion, so that the operator can finally be written in the well-known form

Cfast

(
f (1)f

)
≈ νfi

DL
(

f (1)f

)
+

1
v2τs

∂

∂v

[(
v3 + v3

c

)
f (1)f

]
, (18)

where τs and vc denote the slowing-down time and the critical velocity (below which
ion drag is stronger than electron drag), respectively:

τs =
3 (2π)3/2 ε2

0mfkB
3/2T3/2

e

Z2
f e4√mene ln Λ

(19)

vc =
√

2vth,e

(
niZ2

i
ne

3
√

πme

4mi

)1/3

. (20)

However, the approximated operator given in Eq. (18) presents certain challenges in
practical applications. The approximation is only valid as long as vth,e � vth,f � vth,i
is fulfilled. In a PIC code, however, the particles are loaded with a velocity distribution
where some ‘fast’ particles will have velocities comparable to the bulk ions making the
classification as fast particles misleading. Especially for those slow particles, the effect
of drag is greatly enhanced by the approximations. In a stellarator this can lead to
a localization (trapping) of particles in regions of low magnetic field strength. This
localization of particles with respect to the toroidal angle of the device conflicts with the
parallelization scheme (domain decomposition) and can lead to a severe load imbalance.
This is the reason why we do not use the simplified fast-ion collision operator often cited
in the literature, but instead use the one given by Eq. (17).
Recall that this operator is composed of a pitch-angle part and a drag part. In the
code, an operator splitting is employed. The pitch-angle part can be treated in the way
described in Refs. [9, 36]. The drag part, which contains only a first-order derivative
with respect to velocity, can be incorporated into the regular equations of motion, i.e.
the derivative ∂/∂v is translated into ∂/∂v‖ and ∂/∂µ derivatives that are added to
Eqs. (4) and (5). One finds that the changes of v‖ and µ due to drag are

v̇‖,drag = −23/2Tfvth,f

[
νfi

0
Ti

G (xi) +
νfe

0
Te

G (xe)

]
ξ (21)

µ̇drag = −23/2Tfvth,f

[
νfi

0
Ti

G (xi) +
νfe

0
Te

G (xe)

]
v
(
1− ξ2)

B
. (22)

The last operator that will be used in this paper is a simple Krook operator [5]. The role
of this operator is to relax the distribution function to its unperturbed state by damping
the perturbation at rate νKrook.
Since we use the so-called v‖-formulation of gyro-kinetics, the Krook operator is defined
as

CKrook

(
f (1)
)
= −νKrook f (1) = −νKrook

(
f − f (0)

)
. (23)
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Figure 1: Mode structure (left) and normalized fast-ion density profile (right) for the ITPA case.

The motivation of using a Krook operator is as follows: Recall that in the one-
dimensional Berk-Breizman paradigm a gradient in velocity space is the source of the
instability. This explains the very strong influence of pitch-angle collisions (acting in
velocity space) within that model. In our case, the TAE is destabilized by a density gra-
dient in real space. Accordingly, pitch-angle collisions will have a different effect on the
non-linear dynamics in the present case. Therefore, we use a Krook operator to relax the
distribution function to its initial state and thus to rebuild the gradients in real space.
In this way the Krook operator can play a comparable role in our model as pitch-angle
collisions do in the Berk-Breizman framework.
Throughout the paper, guiding-centre diffusion due to collisions is neglected.

III. CASES AND COLLISIONLESS RESULTS

In this section, we investigate the non-linear chirping behaviour of the ITPA tokamak
case [22, 23] as well as that of a Wendelstein 7-X high-mirror case. The magnetic equi-
librium and properties of the fast-particle distribution function are described briefly in
this section. For later comparison, we will present the collisionless results here.

A. Case description

The ITPA tokamak case [22, 23] has been studied extensively in the past. The radial
mode structure and the fast-ion density profile are shown in Fig. 1. The radial coor-
dinate s denotes the normalized toroidal flux. The background-plasma density and
temperature profiles are flat with ni = ne = 2.0 · 1019 m−3 and Ti = Te = 1 keV, respec-
tively. We take the usual TAE mode, but vary the fast-ion content in the plasma in order
to change the linear growth rate γL = γ(t) + γd and thus cause different non-linear
scenarios. γ(t) is the instantaneous growth rate as measured by the code. It is constant
in the linear phase and drops when saturation is reached. Thus, γL is only meaningful
in the linear phase and corresponds to the growth rate without damping. The on-axis
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Table I: Fast-ion densities and resulting linear growth rates for the tokamak cases.

case Density nf (0) / m−3 Linear growth rate γL / s−1

tokamak case 1 7.24 · 1016 1.25 · 104

tokamak case 2 2.51 · 1017 4.05 · 104

tokamak case 3 5.03 · 1017 7.53 · 104
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150

f
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Figure 2: The shear Alfvén continuum for the W7-X high-mirror configuration. While most of
the continuum branches are shown in grey, the relevant branches have been coloured. The TAE
frequency is shown as a solid black horizontal line and lies at the lower edge of the TAE gap.
The mode is radially located near the avoided crossing of the coloured branches.

values of the fast-ion density and the resulting linear growth rates γL for the different
cases (denoted as tokamak case 1, 2, and 3) are given in Tab. I. They all share a common
value for the damping rate γd = 1.05 · 104 s−1. This value for γd is chosen, because it is
the standard value for the ITPA benchmark case.
For W7-X, a high-mirror configuration is studied. The shear Alfvén wave continuum for
this equilibrium is shown in Fig. 2. The relevant continuum branches (m = 17 in blue
and m = 18 in red) are coloured and the TAE frequency is indicated as a solid horizontal
line. The toroidal mode number is n = −16. Note that, while the magnetic equilibrium
is the same as in Ref. [36], not the same mode is investigated. We follow Ref. [21] and
study a slightly more core-localized TAE with higher mode numbers (which leads to a
more narrow radial mode structure) that is more readily comparable with the tokamak
case. The radial mode structure and fast-ion density profile for W7-X are shown in
Fig. 3. For simplicity, the background-plasma density and temperature profiles are flat.
We choose ni = ne = 1020 m−3 and Ti = Te = 3 keV, respectively.
Also for W7-X, two cases are compared with each other. They are denoted as W7-X
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Figure 3: Mode structure (left) and normalized fast-ion density profile (right) for the W7-X case.

Table II: Fast-ion densities and resulting linear growth rates for the W7-X cases.

case Density nf (0) / m−3 Linear growth rate γL / s−1

W7-X case 1 1.2 · 1019 1.19 · 104

W7-X case 2 6.0 · 1018 5.90 · 103

case 1 and 2. Again, the on-axis values of the fast-ion density as well as the linear
growth rates are given in Tab. II. The damping rates are chosen as γd = 9.6 · 103 s−1

and γd = 4.8 · 103 s−1 for cases 1 and 2, respectively. Choosing these values is motivated
by trying to make the ratio γL/γd similar to the tokamak case 1. Note that the fast-ion
density is very high for the W7-X cases. This is done to make the drive comparable to
the ITPA tokamak case in which a high fast-ion temperature of 400 keV is used. Since
the fast-ion temperature in W7-X is much lower (see below), the density needs to be
increased accordingly.
Note that the velocity-dependent part of the fast-ion distribution function is different
for the ITPA case and the W7-X case: We use a Maxwellian distribution function for the
ITPA case. The fast particles, which are deuterium ions, have the standard temperature
of Tf = 400 keV. The fast-ion temperature profile is flat so that the density gradient is
the only source of free energy for the instability.
For the W7-X case, on the other hand, a more realistic slowing-down distribution func-
tion with three distinct energy levels

f (0) = C
3

∑
i=1

wi

v3 + v3
c

H (vb,i − v) (24)

is used (H denotes the Heaviside step function). As is well known, not only atomic
hydrogen, but also molecules can be accelerated in the NBI system. This leads to the
step-like shape of the distribution function, whose parameters (beam velocity levels and
corresponding weights) are listed in Tab. III. The highest beam velocity corresponds
to an energy of 55 keV of the injected protons. The critical velocity vc is computed
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Table III: Parameters of the fast-ion distribution function for the W7-X cases.

i Velocities vb,i / ms−1 Weights wi

1 3.28 · 106 0.398
2 2.34 · 106 0.347
3 1.92 · 106 0.255
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Figure 4: Time traces of the perturbed poloidal magnetic field for the tokamak cases investigated.
Calculations are carried out for a long time into the non-linear phase. The left-hand side shows
the whole simulation, while the right-hand side shows a zoomed-in view at the time when the
initial saturation occurred.

according to Eq. (20) taking into account the temperature and density dependencies.
The normalization constant C is determined numerically. Again, the fast-ion density
gradient is the source of free energy that drives the instability.
It has to be mentioned here that the collision frequencies are very different for the ITPA
case and for W7-X, respectively. To illustrate this fact, we give here the fast-ion self-
collision frequencies (see Eq. (14)) at the respective mode maxima. While for the ITPA
case the collision frequency is νff

0 = 2.8 · 10−4 s−1, the collision frequency is about four
orders of magnitude higher for W7-X, νff

0 = 7.1 s−1. This is due to the higher density
and lower temperature of the fast ions.

B. Collisionless results

All these cases have been chosen because they exhibit frequency chirping in the non-
linear phase of a collision-less simulation. Before showing how collisions can potentially
alter the behaviour of the mode in the non-linear phase and how this affects the chirping,
we will present the collisionless results for later comparison.
The temporal evolution of the perturbed magnetic field attributed to the mode (δB is
defined as global maximum of the perturbed poloidal magnetic field) is shown in Fig. 4
for the ITPA case. Fig. 5 depicts the W7-X high-mirror case. In either case, the simu-
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Figure 5: Same as Fig. 4, but for W7-X.
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Figure 6: Spectrograms of the perturbed electrostatic potential for the different tokamak cases.
The linear growth rate increases from case 1 to 3. This clearly influences the frequency chirping.
While the chirping is only slightly asymmetric for case 1, it becomes very asymmetric for case 2
and has finally completely vanished for case 3.

lations extend for a long time into the non-linear phase. This is necessary in order to
capture the frequency chirping with sufficient accuracy. Note that especially for W7-X
it is crucial to check the time step for convergence.
The time trace of the perturbed electrostatic potential (whose envelope is directly pro-
portional to δB(t) for CKA-EUTERPE) is used to generate the spectrograms shown in
Figs. 6 and 7 for the ITPA case and the W7-X case, respectively. Throughout this work
the so-called S-method [7] is used to generate the spectrograms. This methods includes a
parameter λ, which can be used to ‘interpolate’ between a short-time Fourier transform
(λ→ 0) and the Wigner distribution (λ→ ∞). For the ITPA case, we use every 5th value
in the time trace of the electrostatic potential and λ = 10 to generate the spectrograms.
For W7-X, since the time step is smaller, we use every 10th value and λ = 5 instead.
Even though the time traces of the perturbed magnetic field (see Figs. 4 and 5) do not
look very different in the non-linear phase, the frequency chirping is strikingly different
(see Figs. 6 and 7). Symmetric, asymmetric, and vanishing chirping are possible for
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Figure 7: Spectrograms of the perturbed electrostatic potential for the different W7-X cases. Case
1 has twice the linear growth rate and twice the damping rate compared to case 2. It therefore
shows a wider chirping parabola.

both the tokamak and the stellarator. Which chirping scenario is realized depends on
the linear growth rate and the damping rate. (That all the cases have a different linear
growth rate is clearly visible on the right-hand side of Figs. 4 and 5.) Ref. [21] will
discuss the influence of γL and γd on the frequency chirping in greater detail.
In the following, we pick only the cases that showed the most symmetric chirping (toka-
mak case 1 and W7-X case 1) in order to assess the influence of different collision oper-
ators on the non-linear dynamics.

IV. NON-LINEAR BEHAVIOUR INCLUDING COLLISIONS – ITPA TOKAMAK CASE

A. Changes induced by pitch-angle collisions

After having established a solid baseline of what scenarios to expect non-linearly with-
out collisions, we now include pitch-angle collisions in the simulations and investigate
how the frequency chirping changes. Different cases are considered: Firstly, we will use
the self-consistently calculated self-collision frequency of the fast ions given by Eqs. (13)
and (14). Subsequently, in order to emulate the fact that the fast ions do not only collide
with themselves, but mainly with background ions and electrons, we will multiply the
self-consistent value by 10 and by 100.
As a representative of the ITPA case, we investigate the symmetric tokamak case 1.
Fig. 8 shows how the time trace of the perturbed magnetic field changes when pitch-
angle collisions with varying collision frequency are taken into account. The right-hand
side of Fig. 8 shows a zoomed-in view on the initial saturation. Several observations
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Figure 8: Similar as Fig. 4, but only for tokamak case 1 with a varying pitch-angle collision
frequency. νD denotes the self-consistent value. Higher collision frequencies tend to lead to lower
average δB values in the long-term non-linear phase. The right-hand side shows a zoomed-in
view on the initial saturation.

can be made: Firstly, the linear phases in each simulation are very similar. Therefore,
any changes in the frequency chirping can directly be attributed to the presence of the
pitch-angle scattering operator and not to changes of γL. Furthermore, as predicted by
analytical theory [1] (and numerically confirmed for the same magnetic equilibrium in
Ref. [36]), the first maximum of δB after the linear phase increases with νD due to the
prevention of wave-particle trapping.
The non-linear phases are completely different. Even when the fast-ion self-collision
frequency is multiplied by 100, the collision frequency is still small enough to allow
for a periodic non-linear behaviour of the mode. It is striking that even though the
initial saturation level (first maximum of δB) increases with νD, this is not true for the
long-term non-linear saturation level: It clearly decreases with νD.
Fig. 9 shows the spectrograms for the self-consistent case and two cases with artificially
increased collision frequency by either a factor 10 or 100. Recall that in the standard
ITPA tokamak case the fast-ion temperature is high (Tf = 400 keV). Hence, the fast-ion
self-collision frequency is very low. This is reflected in the spectrograms, where the
self-consistent case still very closely resembles its collisionless counterpart in Fig. 6. For
increased collision frequencies, pitch-angle collisions tend to blur the ‘internal structure’
within the chirping parabola. Furthermore, they lead to a more narrow chirping in
general. Fig. 8 shows that high pitch-angle collision frequencies significantly reduce the
mode amplitude for long times, which is also visible in Fig. 9 where the chirping fades
out in the high-collisionality case.

B. Changes induced by a fast-ion collision operator

We will now discuss the influence of a fast-ion collision operator on the non-linear
dynamics. Still, a Maxwellian background is used, since the ITPA benchmark is defined
that way.
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Figure 9: Different non-linear chirping scenarios for tokamak case 1 with varying collisionality
(only pitch-angle collisions are considered). The self-consistent value for νD is rather low (fast-
ion temperature is high and density is low), so that the first plot shows no significant deviation
from its counterpart in Fig. 6. Higher collision frequencies damp the mode and lead to a more
narrow chirping.
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Figure 10: Time traces of the perturbed magnetic field for the reference case without collisions,
a case where only the drag-part of the fast-ion collision operator was included, and for the full
fast-ion collision operator. The non-linear dynamics is different in each case. The right-hand side
shows a zoomed-in view on the time of initial saturation.

Fig. 10 shows how the time trace of the perturbed magnetic field changes when the fast-
ion collision operator (either just drag or the full operator including also pitch-angle
collisions) is taken into account. One can see that the non-linear phases are different,
both with respect to the long-term averaged saturation level and the period of the non-
linear oscillations. As shown in the expanded view on the right-hand side, the linear
phases are still similar. However, the first maximum of δB after the linear phase in-
creases due to fast-ion drag. We speculate that the friction force experienced by the fast
ions pushes them in and out of the resonance. This could be a mechanism that prevents
(or at least impedes) wave-particle trapping. While the addition of pitch-angle collisions
in the case of the full fast-ion operator very slightly increases the initial saturation am-
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Figure 11: Spectrograms of the perturbed electrostatic potential for a case where just drag is
included (left-hand side) and for the full fast-ion collision operator (right-hand side). Comparing
with the collision-less result shown on the left-hand side of Fig. 6, we find that, as soon as drag
is included, only the up-chirping branches remain.

plitude (first maximum), the just-drag case (without any pitch-angle collisions) shows
the highest saturation level for long times.
The spectrograms of the perturbed electrostatic potential, including only drag on the
left-hand side and the full fast-ion collision operator on the right-hand side, are shown
in Fig. 11. In these spectrograms, the effects of the drag term are visible with their char-
acteristic signature (see, for example, Refs. [25, 29]) and only the branches that show an
up-chirping frequency remain. This is due to the fact that the fast-ion collision opera-
tor is not symmetric around the resonant velocity. The non-linear frequency evolution
changes significantly in the case with the full fast-ion collision operator. As in the drag-
only case, the frequency is just (slightly) chirping up, but pitch-angle collisions now lead
to a ‘modulated’ behaviour after some time. As discussed before, they again reduce the
width of the chirping parabola. Pitch-angle scattering leads to the de-trapping of parti-
cles from the phase-space structure, which reduced the overall chirping. Note that the
pitch-angle collision frequency used in this case is close to the νD → 100νD-case shown
in Fig. 9 on the far right. Therefore, the width of the chirping parabola is comparable.
Nevertheless, the non-linear behaviour is different in the sense that now the mode am-
plitude does not decrease for long times, which can only be attributed to the presence
of the drag term.

16

Appendix A. Thesis articles

106



C. Using a time-dependent damping rate γd(t)

It has been studied in the literature (see, for example, Refs. [3, 25, 29]) how the choice
of γd influences the non-linear dynamics and frequency chirping. However, these inves-
tigations were done with a fixed, but different, value for γd in each simulation. Here,
we investigate the influence of a time-dependent damping rate γd(t) on the non-linear
dynamics in a single simulation.
The reason for this investigation is that two effects have to be distinguished: Firstly,
the frequency of the mode may change on a short time scale, much shorter than the
evolution of the equilibrium. This is the effect that is traditionally referred to as chirp-
ing. Secondly, the equilibrium may change on a longer time scale. Such equilibrium
changes could, for instance, lead to a change in the shear Alfvén continuum gap struc-
ture, which could influence γL/γd, a critical parameter that determines the frequency
chirping. Distinguishing these effects is important, especially for future comparisons
with experimental measurements. Below, we use a time-dependent damping rate in
order to simulate possible equilibrium changes.
We perform the substitution γd → γd f (t) in the amplitude equations of CKA-EUTERPE
(see Eqs. (7) and (8)) with a time-dependent function

f (t) = −εγd sin [ωγd (t− ∆tγd)]

(
erfc [t− ∆tγd ]

2
− 1
)
+ 1. (25)

The parameters in f (t) are chosen as

εγd = 0.8 (26)

ωγd = 430.1 s−1 (27)
∆tγd = 3.14 ms. (28)

With this choice of parameters, γd will not vary in the linear phase. This ensures that
the linear growth rate will be the same as in the regular collisionless reference case.
This way, any changes in the non-linear phase cannot have their origin in a different
linear phase. The resulting time trace of the perturbed magnetic field, including the
time-dependent damping rate, is shown in Fig. 12. The figure shows that, in the non-
linear phase, the average value of δB now oscillates with γd(t). Even when γd(t) is at
its maximum (see maxima of red curve), the mode does not return to its initial value so
that a new linear phase may start.
Analytical theory [3, 25] predicts that the frequency change scales as δω(t) = ω(t) −
ω(0) = ±αγL

√
γdt with α ≈ 0.44 (for the one-dimensional Berk-Breizman paradigm).

Substituting the parameters of the collisionless reference case, γL = γ + γd = 1.25 ·
104 s−1, γd = 1.05 · 104 s−1, and α = 0.25, one arrives at the red curves in Fig. 13 (left-
hand side). One can see that the fit works rather well for the upper branch for the case
where γd is constant. The fit is worse for the lower branch, since the chirping parabola is
slightly asymmetric. When γd changes over time, the analytical theory does not apply.
This may be due to the fact that one of the assumptions of the Berk-Breizman model,
that the mode is close marginal stability, is violated when γd(t) is at its minimal values.
Hence, the theory predicts a non-monotonic behaviour of δω, whereas we find a slightly
modulated, but always monotonic behaviour in the simulations.
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Figure 12: Temporal evolution of γd and the induced temporal behaviour of the perturbed mag-
netic field (left-hand side). The right-hand side shows the spectrogram of the perturbed electro-
static potential, which is now also modulated (parabola is either narrow or wide) with the same
period as γd.
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Figure 13: Fits of δω(t) = ω(t) − ω(0) using analytical theory [3, 25]. The standard case is
shown on the left-hand side. While the upper branch is fitted rather well, the chirping is slightly
asymmetric so that the fit works less well for the lower branch. The right-hand side shows the
case in which γd is not a constant. For a time-dependent γd(t), the analytical theory fails to
predict the numerically observed behaviour.
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Figure 14: Influence of a Krook operator on the non-linear dynamics. The left-hand side shows
the time trace of the perturbed magnetic field. The Krook operator periodically rebuilds the
distribution function such that δB becomes modulated. The effect on the chirping can be seen
on the right-hand side. The Krook operator leads to periodic chirping events.

D. The influence of a Krook operator

We now study the influence of a Krook operator on the non-linear dynamics. Since
this operator acts to rebuilds the initial distribution function, it should lead to periodic
chirping events.
It was shown in Ref. [30] that such events are linked to a local flattening of phase-space
gradients, followed by the emission of holes and clumps [4], and finally a restoration of
the initial gradient so that the process can repeat again. Note that our case is different
from the simple Berk-Breizman paradigm: In the Berk-Breizman model a gradient in
velocity space is the source of the instability. After this gradient in velocity space is
flattened non-linearly, pitch-angle collisions (acting in velocity space) can rebuild it and
thus restore the initial distribution function. In the present case, instead of velocity-
space gradients, the spatial fast-particle density gradient is the source of instability. We
found previously in Sec. IV A that pitch-angle collisions cannot (sufficiently) rebuild the
gradient of the density profile and therefore we do not observe periodic chirping. What
would be needed is a source of particles in real space. Therefore, a Krook operator is
now used to emulate such a source (as would be present in a real experiment via e.g.
neutral beam injection), which acts to restore the distribution function to its initial value.
This leads to a periodic re-appearance of the mode with intermediate phases of lower
mode amplitude, which is a common feature of non-linear systems in general. For
instance, the fishbone burst cycle [8] is closely related.
Fig. 14 shows the resulting non-linear dynamics for νKrook = 114.7 s−1. This value is
chosen since it should guarantee several chirping events during a 60-ms-long simulation.
Even though the Krook operator is present from the beginning of the simulation, it does
not significantly change the first maximum of δB, frequency and growth rate of the
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Figure 15: Influence of both Krook collisions and fast-ion drag on the non-linear dynamics. As
before, the left-hand side shows the time trace of the perturbed magnetic field. When the drag
term is included, the mode amplitude rises on average and is no longer modulated (even though
the Krook term is still present). On the right-hand side, which shows the spectrogram of the
perturbed electrostatic potential, the drag term now prevents individual, periodic events. The
chirping is more narrow.

mode compared with the reference case. (For example, the linear growth rate is reduced
by less than 0.1 %.) Clearly, the presence of the Krook operator lowers the long-term
saturation level. But, as expected, it also leads to a periodic modulation of δB and
therefore to periodic chirping events as can be seen on the right-hand side of Fig. 14.
The initial chirping parabola fades away such that individual chirping events become
visible. The average period in between the major chirping events is roughly 27.5 ms.
This is about three times longer than ν−1

Krook, which indicates that in this complex system
other processes, such as the particle motion itself, influence the rate of construction
of the distribution function. In the Berk-Breizman model, the Krook operator can be
connected to the diffusive processes taking place at the phase-space resonance surface
separating the fast ions trapped by the wave from passing particles. In that case, νKrook
should reflect the characteristic de-trapping frequency of fast ions.
It may now be attempted to combine the Krook operator with a fast-ion collision op-
erator. We already showed (see also Fig. 11) that the pitch-angle-scattering part of the
full fast-ion collision operator leads to a narrowing chirping parabola. Otherwise, pitch-
angle collisions do not significantly change the non-linear behaviour. Therefore, we
restrict ourselves to the combination of the Krook operator and the drag term. The re-
sults can be seen in Fig. 15. As observed before (see Fig. 10), the inclusion of drag leads,
on average, to a rising mode amplitude in the non-linear phase. Somewhat surprisingly,
the long-term oscillations in the signal – induced by the presence of the Krook term that
acts to rebuild the distribution function – are no longer present when fast-ion drag is
included. We may again speculate that this is because particles are shifted in and out of
the resonance as the simulation progresses. The absence of these long-term non-linear
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oscillations also manifests itself in the spectrogram (see right-hand side of Fig. 15). The
chirping does no longer ‘tear off’ in such a way that individual events are visible. On
the other hand, the drag term presents itself with its usual signature (only up-chirping
remains). After chirping initially, the frequency stays roughly constant in the non-linear
phase. Ref. [33] argues that this corresponds to a state in which the effects of drag and
relaxation of the distribution function due to the Krook term, balance each other.

V. NON-LINEAR BEHAVIOUR INCLUDING COLLISIONS – WENDELSTEIN 7-X CASE

The stellarator cases have been introduced in Sec. III. We will only focus on W7-X case 1
as it nicely showed almost symmetrical frequency chirping in the absence of collisions.
Now we will investigate how the non-linear dynamics changes when particle collisions
are included.

A. Changes induced by pitch-angle collisions

We now investigate for W7-X how pitch-angle collisions between the fast particles in-
fluence the frequency chirping and the non-linear dynamics in general. The results are
compared to the collisionless reference case. The self-consistently calculated pitch-angle
collision frequency νD is given by Eqs. (13) and (14). Since for W7-X the fast-ion temper-
ature is much lower than for the ITPA tokamak case (and, simultaneously, the fast-ion
density is much higher), the collision frequency is also larger. (Recall that we use a
slowing-down distribution function. The temperature is therefore computed by calcu-
lating the pressure from the distribution function and then dividing by the density. Note
that a Maxwellian with roughly the same shape as the slowing-down distribution func-
tion would have an equivalent temperature of approximately 20 keV.) The effect of the
high collision frequency is, as can be seen in Fig. 16, that a steady-state develops after
the initial saturation. This is in line with Refs. [35, 36] were it was shown recently that
a steady-state develops in the non-linear phase for high collision frequencies. Further
simulations are performed at one tenth and one hundredth of the original value of the
collision frequency. The results are summarized in Fig. 16. The figure shows the time
traces of the perturbed magnetic field for the reference case and for the collisional cases.
The long-term saturation level is periodic only for the collisionless case. For the lowest
collision frequency investigated, the behaviour is still close to being periodic. In that
case, however, the damping of the wave in the early non-linear phase is severe. The first
maximum of δB increases with increasing collision frequency νD (see Fig. 16 right-hand
side).
Fig. 17 shows the associated spectrograms of the perturbed electrostatic potential for
the cases including collisions. (The collisionless reference case is depicted in Fig. 7
on the left-hand side.) Note that the spectrograms contain less data for the collisional
cases, since the time simulated is much shorter. Recall that the collisionless reference
case nicely shows almost symmetric chirping (although, comparing δω/ω, on a much
smaller level than the ITPA case). However, as soon as collisions are added, the fre-
quency basically becomes constant in time (see Fig. 17). Only for the lowest collision
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Figure 16: Time traces of the perturbed magnetic field of a TAE mode in Wendelstein 7-X geome-
try. The pitch-angle collision frequency is varied. νD denotes the self-consistent value. Except for
the lowest collision frequency at early times, the non-linear dynamics resembles a steady-state
when collisions are added. Contrary to the ITPA case, higher collision frequencies lead to a
higher long-term-average saturation level. The right-hand side shows a zoomed-in view on the
initial saturation.
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Figure 17: Effect of pitch-angle collisions on the non-linear chirping behaviour for the W7-X case
1. The self-consistent value for νD is high (low fast-ion temperature), so that the frequency be-
comes constant. Reducing the collision frequency (left-most sub-figure) leads to a re-appearance
of the initial chirping, but significantly damps the mode.

frequency in this set (the left-most sub-figure) are traces of frequency chirping still vis-
ible in the early non-linear phase. Nevertheless, because the mode amplitude strongly
decreases after the linear phase (see Fig. 16), the chirping eventually disappears.

B. The influence of fast-ion drag

It is a major goal of the W7-X physics program to assess the influence of fast particles
on plasma performance, especially since good fast-ion confinement is an optimization
criterion of W7-X [12, 17]. A realistic treatment of the fast ions requires not only realistic
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Figure 18: Time traces of the perturbed magnetic field for the W7-X case including a drag term
of various strengths. The self-consistent case shows a very high saturation level. Reducing the
strength of the drag term brings the curves closer to the collisionless reference. The right-hand
side shows a zoomed-in view on the time of initial saturation.

distribution functions, but also the inclusion of a fast-ion collision operator. This is in
particular important for non-linear simulations as they are performed here. As described
in Sec. II, the fast-ion collision operator combines pitch-angle collisions and drag. Since
the influence of pitch-angle collisions has already been addressed, we will now focus on
drag only.
The effect of fast-ion drag on the frequency chirping in tokamaks was already discussed
in Sec. IV B. This section aims at showing the differences and similarities in stellarators.
The slowing-down distribution function described by Eq. (24) is the steady-state solution
of the gyro-kinetic equation including a fast-ion collision operator and a beam-like fast-
ion source. The formation of such a distribution function happens on a time scale that
is much longer than the Alfvén wave dynamics. Therefore, we use the aforementioned
Eq. (24) as a static background and simulate only the deviations from this distribution
function caused by the presence of the mode.
The time traces of the perturbed magnetic field, while varying the strength of the drag
term, are shown in Fig. 18. If the fast-ion drag is computed self-consistently, the non-
linear saturation level is increased substantially compared with the collisionless refer-
ence case. This strong influence of the drag term is, again, due to the high collision
frequencies in W7-X compared with the tokamak case. Note that self-consistently cal-
culated drag quickly leads to a steady state with no signs of periodic behaviour. It is
therefore excluded from further analysis.
Reducing the drag term by a factor of 10 or 100 leads to results that preserve the chirping
nature of the solution in the non-linear phase. After the mode has initially saturated,
there is still a sub-exponential drift. The same behaviour was seen before in the tokamak
case.
The frequency spectrograms associated to these time traces are shown in Fig. 19. They
show the expected behaviour: The chirping becomes asymmetric with the upper branch
dominating in intensity over the lower branch. On the right-hand side of the figure,
where the strength of the drag term is higher, the lower branch vanishes completely
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Figure 19: Spectrograms of the perturbed electrostatic potential for the W7-X cases that include
fast-ion drag. Compared with Fig. 18, only the cases with reduced strength of the drag term
are shown as they preserve the chirping behaviour. As before in the tokamak, drag leads to the
disappearance of the down-chirping branches.

and the upper branch, after chirping initially, transitions to a new steady state. This is
very similar to Fig. 14 of Ref. [29], even though the the dimension-less parameters that
determine the frequency chirping (normalized growth rate and collision frequencies)
are different in this publication.

C. The influence of a Krook operator

Finally, we want to demonstrate the effect of a Krook operator in stellarator geometry.
We choose νKrook = 86.7 s−1. The results are shown in Fig. 20. The linear phase re-
mains nearly unaffected (the growth rate changes by less than 0.05 %). As before in
the tokamak case (see Fig. 14 for comparison) the average saturation level in the non-
linear phase is lower when the Krook operator is included. This is most clearly visible
up until t ∼= 20 ms. Especially in the late non-linear phase (t > 30 ms) a modulation
of the δB signal due to the presence of the Krook term is visible. These modulations
translate into individual chirping events as shown in the spectrogram on the right-hand
side of Fig. 20. The average period between the major chirping events is approximately
19.7 ms, which is about twice ν−1

Krook. It has to be pointed out that the reduction of the av-
erage saturation level and the modulation of the δB signal is less pronounced compared
with the tokamak case. Note, furthermore, that this one choice of νKrook corresponds
to a proof-of-principle calculation aimed at showing that periodic chirping is possible
in W7-X. Details about this process (e.g. how the time in between chirping events in
influenced by γL and νKrook) will be investigated in a future publication.
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Figure 20: Influence of a Krook operator on the non-linear dynamics of a TAE in W7-X. The
left-hand side shows the time trace of the perturbed magnetic field. As for the tokamak case, the
Krook operator leads to a periodic modulation of δB via rebuilding of the distribution function.
In the spectrogram on the right-hand side the Krook operator leads to periodic (and separated)
chirping events.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the influence of various collision operators on the
non-linear frequency chirping of fast-ion-driven TAEs in two different magnetic geome-
tries. A tokamak case as well as a Wendelstein 7-X (W7-X) high-mirror equilibrium have
been considered. The effects of pitch-angle collisions and fast-ion drag on the non-linear
dynamics of the mode were discussed separately. Pitch-angle collisions together with
fast-ion drag constitute the fast-ion collision operator. A particle source was emulated
using a Krook operator.
Starting with the tokamak case, we found that pitch-angle collisions lead to a reduction
of the long-term saturation level and a more narrow frequency chirping compared with
the collisionless case. The situation is different for the W7-X case, where the fast-ion
temperature is lower while, at the same time, the fast-ion density is higher. Both ef-
fects lead to higher collision frequencies. Consequently, the non-linear dynamics of the
TAE in W7-X becomes stationary for self-consistently calculated pitch-angle scattering
frequencies. Contrary to the tokamak case, the long-term saturation level is enhanced
in W7-X, when (self-consistently calculated) pitch-angle collisions are considered. This
could be of practical relevance for the operation of the machine.
Many of the features we see in our simulations (in the tokamak as well as in the stel-
larator) are very similar to features observed in the one-dimensional Berk-Breizman
paradigm. The drag term, for example manifests itself in the usual way that only
up-chirping frequency branches (also dubbed holes in phase space [4]) remain. The
so-called clumps disappear. For some collision operators, however, differences become
apparent. This concerns the influence of pitch-angle collisions on the non-linear devel-
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opment of the mode. It makes a difference whether a phase-space gradient or a density
gradient in real space is considered. Furthermore, the Berk-Breizman model was found
to not be applicable when a time-dependent damping rate γd(t) is used, which is likely
caused by violating the assumption of a marginal mode.
In order to simulate periodic chirping events, a particle source that restores the original
distribution function needs to be present. Since the inclusion of a ‘real’ particle source
into EUTERPE is a matter of on-going research, we use a Krook operator to emulate
a particle source in the present work. The rate of reconstruction of the distribution
function, νKrook, was chosen in a way to have periodic chirping events nicely visible
in proof-of-principle calculations. Experimental measurements are needed to constrain
this parameter. The Krook operator is found to have the same effect in the tokamak and
in the stellarator.
The issue of frequency chirping is of practical relevance for operation phases of W7-X
that include NBI heating. We hope that, when experimentally measured time traces of
δB become available, we can spectroscopically determine γL, γd, and collision frequen-
cies in W7-X by choosing critical input parameters of the simulations such that they fit
the measurements. Such an approach has, for instance, been suggested in Ref. [27].
There could, however, be a number of problems: The Berk-Breizman model predicts
[3, 25] that during a frequency chirp the frequency changes as δω = ±αγL

√
γdt. This

means that, in order for the chirping to be nicely visible, both γL and γd should be
large. However, the simulations presented in this paper indicate that the fast-ion drive
in W7-X is rather small (and smaller than for the ITPA tokamak case). This leads to a
narrow chirping parabola, which could be hard to resolve experimentally.
Furthermore, it was found that the collision frequencies in W7-X are high. For that rea-
son, the periodic non-linear behaviour of δB is suppressed. Finding parameter regimes
that allow for frequency chirping could be an experimental challenge. Nevertheless, this
paper shows that collisions, especially in dense W7-X plasmas with a low fast-ion tem-
perature, significantly influence the non-linear dynamics and the saturation level. They
have thus to be included in the non-linear modelling of any AE instability.
From a numerical and theoretical standpoint, this paper confirms that CKA-EUTERPE
can routinely be used to perform non-linear simulations for W7-X.
Finally, we want to point out that here we considered the interaction of fast ions with
a single mode. In realistic experiments, however, multiple modes – possibly close to-
gether in frequency – may be present. In that case the assumption of a fixed mode
structure would need to be revisited. Work on a multi-mode version of CKA-EUTERPE
is currently in progress. Thus, frequency chirping in more complex systems will be
investigated in the future, once this version is operational.
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The resonant interaction of shear Alfv�en waves with energetic particles is investigated

numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid

approach. The focus lies on toroidicity-induced Alfv�en eigenmodes (TAEs), which are most eas-

ily destabilized by a fast-particle population in fusion plasmas. While the background plasma is

treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as

Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation

without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been devel-

oped to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which

can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X.

High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into

kinetically modified TAEs and kinetic Alfv�en waves via continuum interaction. To better under-

stand the physics of this conversion mechanism, the connections between TAEs and the shear

Alfv�en wave continuum are examined. It is shown that, when energetic particles are present, the

continuum deforms substantially and the TAE frequency can leave the continuum gap. The inter-

action of the TAE with the continuum leads to singularities in the eigenfunctions. To further

advance the physical model and also to eliminate the MHD continuum together with the singular-

ities in the eigenfunctions, a fourth-order term connected to radiative damping has been included.

The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces

higher-order derivatives to the model. Thus, it has the potential to substantially change the nature

of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping,

and radiative damping have been modelled together in tokamak- as well as in stellarator geome-

try. [http://dx.doi.org/10.1063/1.4961916]

I. INTRODUCTION

In a burning fusion plasma, alpha particles are produced

with a velocity that exceeds the typical Alfv�en speed. In the

process of slowing down, these fast particles may transfer

energy to Alfv�en waves, which thus become unstable.1,2

Also heating methods, such as ion cyclotron resonance heat-

ing (ICRH) and neutral beam injection (NBI), can supply

energetic particles with similar consequences. The resonant

interaction of the fast particles with Alfv�en waves, in partic-

ular, with toroidicity-induced Alfv�en eigenmodes (TAEs),

may lead to a degraded confinement of the energetic par-

ticles and thereby to particle loss and high heat loads on the

first-wall components.3,4 As pointed out in Ref. 5, an ener-

getic particle mode (EPM), determined by the properties of

the energetic particle distribution function, may form.

In this paper, the resonant particle-wave interaction is

studied analytically and numerically using a non-perturbative

MHD-kinetic hybrid model, in which the background plasma

is modelled using an ideal-MHD theory, whereas the fast par-

ticles are treated kinetically.

The aim is not to provide predictive results but to inves-

tigate general trends in the change of frequency, growth rate,

and radial structure of the eigenfunction when energetic ions

are present.

To assess the stability or instability of a given mode,

various damping mechanisms such as Landau damping,

radiative damping, and continuum damping are just as

important as the kinetic drive of the energetic particle spe-

cies.6 Therefore, a numerical tool, namely, a shooting code

for toroidicity-induced Alfv�en eigenmodes with kinetic

extensions (STAE-K), has been developed, which is able to

take into account all these different stabilizing and destabi-

lizing contributions (but cannot completely describe colli-

sional damping). The model used here is a consequent

further development of analytical theory, which usually

needs to assume highly localized modes and a perturbative

ansatz (see, e.g., Refs. 2 and 7). Our numerical treatment,

on the other hand, does not require such assumptions.

Nevertheless, the equations are solved in the large-aspect-

ratio and a low-beta approximation in either tokamak-

(circular flux surfaces) or stellarator geometry.

At the moment, other codes that can perform such

calculations in three-dimensional stellarator geometry

either work perturbatively (CAS3D-K,8 CKA-EUTERPE,9

or AE3D-K10) or employ a complex fully kinetic theory

(EUTERPE), which requires a lot of computing power.

STAE-K, with its non-perturbative but a simplified model,

is speed-optimized and still captures key elements impor-

tant for the modeling of especially stellarators. For
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completeness, we note that a three-dimensional version of

the MEGA code11 is currently benchmarked.

The structure of the paper is as follows. First, the MHD-

kinetic hybrid model will be introduced by discussing the

MHD and the kinetic part separately. The numerical methods

employed and the implementation of the model will be

described in Sec. III. After the shooting code is benchmarked

in Sec. IV, further results will be presented in Sec. V.

Finally, conclusions are drawn in Sec. VI.

The three Appendixes elaborate on details of the theory

outlined in Sec. II and summarize the various background-

plasma and fast-particle parameters used in the numerical

calculations, respectively.

II. THEORY

In this section, a simple MHD-kinetic hybrid model

will be developed, which is well suited for fast and efficient

numerical calculations. To this end, some simplifying

assumptions are made. For both the tokamak and stellarator,

large-aspect-ratio devices are considered. This simplifies the

metric tensor, because only contributions due to toroidicity

and helical shaping have to be taken into account. In addition,

a low-beta plasma is assumed, and only shear Alfv�en waves

are included in this analysis by taking Að1Þ ¼ A
ð1Þ
k b, where A

is the vector potential and b is the unit vector along the mag-

netic field B. In the following, the superscripts (0) and (1) will

be used to label equilibrium and perturbed quantities, respec-

tively. The symbols k and ? indicate vector components paral-

lel or perpendicular to the direction of the equilibrium

magnetic field. The perturbations, which are assumed to be

much smaller than the equilibrium quantities, are supposed to

vary in time as exp ð�ixtÞ with the mode frequency x 2 C.

In order to improve the performance of the numerical

implementation, as many calculations as possible are per-

formed on an analytical level.

The eigenmode equation is derived from the quasi-

neutrality condition r � jð1Þ ¼ 0, which can be split into an

MHD part and the kinetic contribution of the fast particles

r � jð1ÞMHD þr � j
ð1Þ
fast ¼ 0: (1)

Here, the perturbed energetic-particle current density can be

calculated using

j
ð1Þ
fast ¼ Zfaste

ð
d3v f ð1ÞvD þr�m

ð1Þ
fast; (2)

with f (1) being the perturbed distribution function of the

kinetically treated fast-particle species and vD being their

drift velocity (Zfaste is the charge of the fast particles). The

second term on the right-hand side of Eq. (2) is the magneti-

zation current of the fast particles,12 which is unimportant,

because it is divergence-free. In the following, the two terms

in Eq. (1) will be discussed separately.

A. MHD part

As the MHD-terms of the model have already been

derived by others,13–15 those calculations need not be repeated

in the present paper. Thus, just a brief overview is given here.

The linearized MHD momentum equation is used to

solve for j
ð1Þ
? . Using Maxwell’s equations gives

r � j 1ð Þ
MHD ¼ B 0ð Þ � r

� � B 0ð Þ � j 1ð Þ

B2

� �
þ B

1ð Þ
? � r

� �

� B 0ð Þ � j 0ð Þ

B2

� �
þ ix

l0

r � r?U
1ð Þ

v2
A

 !
; (3)

if the perturbed plasma flow is approximated by the E� B-

drift. Here, vA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l0nimi
p

is the Alfv�en velocity of the

background-plasma ions with mass mi and density ni. l0 is

the vacuum permeability, and the electric potential is denoted

by U. Following Ref. 14, the term with the equilibrium cur-

rent density is dropped for simplicity in the case of stellarators

like Wendelstein 7-X (W7-X).

In the large-aspect-ratio and small-plasma-beta limit, sev-

eral possible simplifications of Eq. (3) have been discussed

extensively in Ref. 13. They involve expressing Bð0Þ � jð1Þ and

B
ð1Þ
? in terms of the perturbed vector potential. The ideal-

MHD condition Ek ¼ 0 leads to ixA
ð1Þ
k ¼ ðb � rÞU

ð1Þ and

provides the necessary connection to Uð1Þ. After using these

simplifications, a Fourier transform finally leads to

FT
ixl0

ffiffiffi
g
p

rR0

r � j 1ð Þ
MHD

� �
¼ 1

r

d

dr
r k2

m;n �
x2

v2
A

 !
d

dr
� 1

r

d

dr
k2

m;n

� �
� m2

r2
k2

m;n �
x2

v2
A

 !" #
U 1ð Þ

m

þ � 2

r

d

dr
r
x2

v2
A

D0 þ r

R0

� �
d

dr
� 2

r2

x2

v2
A

D0m mþ 1ð Þ
" #

U 1ð Þ
mþ1

þ � 2

r

d

dr
r
x2

v2
A

D0 þ r

R0

� �
d

dr
� 2

r2

x2

v2
A

D0m m� 1ð Þ
" #

U 1ð Þ
m�1; (4)

where
ffiffiffi
g
p

is the determinant of the metric tensor used in

Ref. 13 and km;n ¼ ðn� m=qÞ=R0 denotes the parallel

wave vector with poloidal and toroidal mode numbers m
and n, respectively. R0 is the major radius of the toroidal

device and q ¼ 1=i is the safety factor (i being the rota-

tional transform). The Shafranov shift is denoted by D,

and primes label a derivative with respect to the radial

variable r.
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An equation very similar to Eq. (4) has been derived in Ref. 14 for stellarators

FT ixl0r2

a2d0

r � j 1ð Þ
MHD

� �
¼ Qm;nU

1ð Þ
m;n þ

1

r2

d

dr
r3

(
k2

m;n �
x2

v2
A

 !
1

r

d

dr
� 1

r2

� �
U 1ð Þ

m;n

þ
X
l;�

km;nkmþl;nþ�NP

�
l;�ð Þ

g

2
� x2

v2
A

� l;�ð Þ

" #
1

r

d

dr
� 1

r2

� �
U 1ð Þ

mþl;nþ�NP

þ
X
l;�

km;nkm�l;n��NP

�
l;�ð Þ

g

2
� x2

v2
A

� l;�ð Þ

" #
1

r

d

dr
� 1

r2

� �
U 1ð Þ

m�l;n��NP

)
: (5)

Here, �ðl;�Þ ¼ �ðl;�Þg =2� 2�
ðl;�Þ
B determines the strength of the

mode coupling due to geometry. It is given in the following

representations for the rr-component of the metric tensor:

grr ¼ d0 1þ
X
l;�

�ðl;�Þg cos ðlH� �NPuÞ
	 


(6)

(d0 is connected to the elongation of the plasma) and for the

magnetic field strength14

B ¼ B0 1þ
X
l;�

�
ðl;�Þ
B cos ðlH� �NPuÞ

	 

¼ B0a: (7)

Here, l and � characterise the mode coupling in poloidal and

toroidal directions, respectively. The corresponding angles

are H and u, and NP denotes the number of field periods.

Furthermore,

Qm;n ¼
1

r2
k2

m;n �
x2

v2
A

 !
1� m2ð Þ � 1

r

d

dr

x2

v2
A

 !
: (8)

Taking into account only the toroidal coupling l ¼ 1; � ¼ 0

reduces Eq. (5) to its tokamak equivalent, Eq. (4).16

In any case, a coupled system of ordinary second-order

differential equations in r has to be solved. The system

becomes larger the more poloidal (and toroidal) modes of

Uð1Þ are taken into account.

B. Fast-particle part

The contribution of the energetic particles to Eq. (1) is

given by

r � jð1Þfast ¼ Zfaste

ð
d3vr � ðf ð1ÞvDÞ ffi Zfaste

ð
d3vr � ðhð1ÞvDÞ:

(9)

Note that the perturbed fast-particle distribution function can

be approximated by its non-adiabatic part hð1Þ, because the

particle-wave resonance condition is only contained in

hð1Þ.17 The adiabatic part of f ð1Þ, on the other hand, would

only contribute to the fluid part. hð1Þ is given by

h 1ð Þ
m;n ¼

Zfaste vD;0

2

1

x� vkkm;n

@F

@e
1� m

x?

x

� �

� d

dr
� m� 1

r

� �
U 1ð Þ

m�1 �
d

dr
þ mþ 1

r

� �
U 1ð Þ

mþ1

	 

(10)

for tokamaks.13 Here, vD;0 is the magnitude of the toroidal

drift at r¼ 0, and F is the equilibrium distribution function

of the fast particles, whose kinetic energy is denoted by e. At

present, F is taken to be an isotropic Maxwellian, which is a

good assumption for, e.g., alpha particles being produced by

fusion reactions. For plasmas heated by neutral beam injec-

tion, F could be a pitch-angle dependent slowing-down dis-

tribution function. x? is the energetic-ion diamagnetic drift

frequency defined as

x? ¼
@F=@r

@F=@e
1

MX0r
; (11)

with mass M and on-axis gyration frequency X0. Note that

for stellarators Eq. (10) is generalized to

h 1ð Þ
m;n ¼

R0Zfaste vD;0

2r

1

x� vkkm;n

@F

@e

"
1� m

x?

x

� �

�
(X

l;�

d�
l;�ð Þ

B

dr

h
m� lð ÞU 1ð Þ

m�l;n��NP

þ mþ lð ÞU 1ð Þ
mþl;nþ�NP

i
�
X
l6¼0;�

�
l;�ð Þ

B

� d

dr
U 1ð Þ

m�l;n��NP
� U 1ð Þ

mþl;nþ�NP

h i)#
: (12)

After some straightforward algebra, where it must be pointed

out that the integration over velocity space in Eq. (9) has

been performed analytically for the Maxwellian F, one

arrives also for the fast particles at a coupled system of

second-order differential equations in r. The resulting

equation for r � jð1Þfast is given in Appendix A for the stellara-

tor case.

C. Radiative damping

Up to now, the model only contains second-order differ-

ential operators. Radiative damping by the background-

plasma is described by a fourth-order operator.18,19 Here, a

term derived in Ref. 18 that takes into account finite-

Larmor-radius (FLR) effects as well as a parallel electric

field that arises due to the kinetic modelling of the electron

dynamics will be included. This term enables the coupling of

TAEs to kinetic Alfv�en waves (KAW) and opens up a new

energy loss channel, i.e., damps the TAEs. Following Ref.

18, this term is added to Eq. (1) and reads as
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D ¼ r � r? drad

1

mini

r � minir?U 1ð Þ
� �� �	 


(13)

with

drad ¼ k2
m;n

3

4
q2

i þ q2
s

1þ i�̂Z xð Þ
1þ xZ xð Þ

	 

(14)

and

x ¼ xþ i�

km;nvth;e
; (15)

where qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTimi

p
=ðZieBÞ is the ion gyroradius, qs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTemi

p
=ðZieBÞ is the sound gyroradius, and �̂ ¼ �=

ðkm;nvth;eÞ is a normalized collision frequency with � being

the electron-ion collision frequency. vth;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTe=me

p
is

the electron thermal velocity, and Z is the well-known

plasma dispersion function.20

Subsequently, the radiative damping term is treated

under the assumption that the derivatives do not act on the

equilibrium quantities, i.e.,

D ffi dradðr � r?Þ2Uð1Þ; (16)

implying that the equilibrium does not change much over the

radial extent of the mode. Then it only remains to perform a

Fourier transform of the simplified term, taking into account

the poloidal dependence of the metric tensor components in

the large-aspect-ratio approximation. (A cylindrical approxi-

mation has been used for the stellarator.) This yields a cou-

pled system of differential equations in r, but now every

single equation is of fourth order.

III. NUMERICAL IMPLEMENTATION

A. General scheme

Depending on whether radiative damping is taken into

account, a system of second-order or fourth-order ordinary

differential equations in the radial variable r has to be solved.

Considering, for simplicity, a tokamak with the fourth-order

radiative damping term being present, results in the follow-

ing system of equations (with the superscript (1) omitted

from this point on):

M4U
ðivÞ þM3U

000 þM2U
00 þM1U

0 þM0U ¼ 0; (17)

which is obtained by combining Eq. (4) with the Fourier trans-

formed versions of Eq. (9) (see Appendix A) and Eq. (16).

The Mi, (i¼ 0,…,4) are complex Dm�Dm-matrices, and

the vector U ¼ ð/m;n;…;/mþDm;nÞT contains the Dm poloidal

modes of the perturbed electric potential that are taken into

account. For a stellarator, there would be an additional

variation in the toroidal mode number n, leading to a larger

system.

One aim of the STAE-K code is to survey the effects of

changing fast-particle parameters (e.g., fast-ion temperature

or fast-ion density) on the properties (e.g., growth rate and

mode structure) of a TAE. Therefore, a shooting code mak-

ing use of the method of invariant imbedding (often called

the Riccati method, see Refs. 21 and 22) has been used for

this purpose, as it is especially suited for such parameter

scans.16 For instance, because of the matrix formulation,

only the eigenvalue and not the slope of the vector U at a

boundary has to be iterated. This is especially advantageous

for larger systems.

Since the Riccati method can be used to solve any sys-

tem of ordinary differential equations, consider for the

moment a general linear system

v01 ¼ Av1 þ Bv2 v02 ¼ Cv1 þ Dv2; (18)

where it is shown below how the matrices A, B, C, and D
and the vectors v1 and v2 are related to the Mi and U of the

original system given in Eq. (17).

In the Riccati method, the vectors v1 and v2 are linked

by the so-called Riccati matrix R via

v1 ¼ Rv2: (19)

From Eqs. (18) and (19), it is possible to infer a matrix dif-

ferential equation (Riccati equation)

R0 ¼ ARþ B� RCR� D (20)

for R,21 which is to be solved instead of the original system.

The Riccati equation is integrated from both end points of the

interval [0, a] (a is the minor radius of the toroidal device)

simultaneously towards an arbitrarily chosen fit point n at

which R equals Rleft and Rright, respectively.16,21 The eigen-

value is found by iterating x until detðRleft�RrightÞ ¼0 holds

at the fit point. The code uses a complex secant method to

find the roots of the determinant and an accurate integration

scheme with adaptive step size for the integration of Eq. (20).

The eigenfunctions are computed using Eq. (19) once x
and therefore also Rðx; rÞ have been found. The initial value

for v2 at n comes from a singular value decomposition of

Rleft � Rright.
16

B. Boundary conditions

By employing the Riccati scheme, the boundary condi-

tions of the physical problem are transformed into initial

conditions for R.21 The initial conditions are always chosen

as Rð0Þ ¼ RðaÞ ¼ 0, which can via Eq. (19) be translated to

v1ð0Þ ¼ v1ðaÞ ¼ 0. It therefore depends on the definition of

v1 and v2 which physical boundary conditions are realized.

For the fourth-order system, the physically correct

boundary conditions are given as

Uð0Þ ¼ 0; UðaÞ ¼ 0;

U00ð0Þ ¼ 0; EkðaÞ ¼ 0; (21)

if an ideally conducting wall surrounds the plasma. But since

it is difficult to access the parallel electric field directly in the

code, the condition U00ðaÞ ¼ 0 is chosen instead of EkðaÞ ¼ 0

(making the boundary conditions symmetric). According to

Ref. 23, the parallel electric field can be approximated by

Ek ffi �iq2
s ð1� idÞkm;nðr � r?ÞU; (22)
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where d� 1 is related to the imaginary part of drad given in

Eq. (14). Taking into account that

r � r? ¼ d0 1þ
X
l;�

�
l;�ð Þ

g cos lH� �NPuð Þ
	 
 @2

@r2
þ d0

r2

@2

@H2

(23)

for the stellarator, it can easily be verified that choosing

UðaÞ ¼ U00ðaÞ ¼ 0 indeed ensures EkðaÞ ¼ 0 and that there

is no conflict of boundary conditions. Generally, the condi-

tions at r¼ a are “real” boundary conditions determined by

the nature of the plasma boundary, whereas the conditions at

r¼ 0 are regularity conditions. They ensure a finite ampli-

tude of the solution at the origin and are valid for jmj > 0.

Thus, it is feasible to define

v1 ¼ ðU;U00Þ
T

and v2 ¼ ðU0;U000Þ
T; (24)

making it straightforward to find expressions for the matrices

A, B, C, and D in terms of the Mi. These calculations yield

A ¼
0 0

0 0

 !
B ¼

1 0

0 1

 !

C ¼
0 1

�M�1
4 M0 �M�1

4 M2

 !

D ¼
0 0

�M�1
4 M1 �M�1

4 M3

 !
; (25)

where 0 und 1 denote the zero and unity matrix of size

Dm�Dm, respectively.

IV. BENCHMARKS

STAE-K with its simplified physical model is primarily

intended to be a numerically robust tool to quickly scan a

certain region in parameter space for interesting fast-particle

physics. The same region needs then to be investigated with

more advanced gyrokinetic codes (such as GYGLES24–26 or

EUTERPE, which require much more time for their simula-

tions than STAE-K) to check whether the results from the

simplified model hold. In order to check STAE-K within its

range of validity, we present several benchmarks.

A. Benchmark with KIN-2DEM and others

This benchmark (referred to as benchmark-1 in Ref. 9

and introduced originally as a benchmark for KIN-2DEM27)

investigates the change of the real frequency of the mode and

the development of the growth rate c for different fast-particle

temperatures. While repeatedly solving the eigenvalue prob-

lem, the fast-particle beta (using the usual symbols)

bfast;0 ¼
2l0kBNfast;0Tfast;0

B2
0

(26)

on the magnetic axis will be held fixed by keeping Nfast;0Tfast;0

¼ 7:578� 1020 keV m�3 constant. The two modes (m1¼ 2,

n1¼ 2 and m2¼ 3, n2¼ 2) considered in this tokamak scenario

form an MHD continuum that can be seen in Fig. 1. The

background-plasma density profile and the fast-particle tem-

perature profile are chosen to be flat, so that the drive of the

mode only arises from the density gradient of the fast par-

ticles. All other bulk-plasma parameters are listed in Table I

(see Appendix C). Note that the bulk plasma is treated within

an ideal and reduced MHD framework with negligible plasma

beta. This means that pressure terms and consequently any

term including a finite bulk-plasma temperature have been left

out. The remaining parameters of the energetic particles,

which have a Maxwellian equilibrium distribution function,

can be found in Table II.

The growth rate calculated by all the different codes is

depicted in Fig. 2. As the fast-particle beta is kept constant

here, the growth rate increases rather slowly, especially

compared with the ITPA benchmark presented below. One

can see that all MHD-kinetic hybrid codes (STAE-K,

CAS3D-K, and NOVA-K) predict nearly the same result. In

its general behaviour, STAE-K is closest to NOVA-K. Note

that for this comparison, an older version of NOVA-K,28,29

which does not include finite-orbit-width (FOW)- and FLR

FIG. 1. The Alfv�en continuum without fast particles for the benchmark with

KIN-2DEM and others as calculated by STAE-K. The TAE frequency

(dashed line) lies in the continuum gap. The locations of the maxima of both

eigenmode components Um and Umþ1 have been indicated by a square and a

diamond, respectively.

FIG. 2. Calculated growth rate of the TAE as a function of the fast-particle

thermal velocity normalized to the on-axis Alfv�en velocity. All the codes agree

in their qualitative behaviour, and STAE-K especially matches the results of

other hybrid codes (such as NOVA-K). The marginal point c¼ 0 is the same

for all codes. Curves other than STAE-K are taken from Refs. 27 and 30.

092501-5 Slaby, K€onies, and Kleiber Phys. Plasmas 23, 092501 (2016)

Numerical investigation of non-perturbative kinetic effects of energetic particles on... (A.6)

127



effects, was used, which makes the underlying physical

model very similar to that of STAE-K. CAS3D-K is an

eigenvalue code which relies on a model of ideal MHD for

the background plasma and, similarly to STAE-K, treats the

fast particles kinetically. However, CAS3D-K is a perturba-

tive code, whereas STAE-K is non-perturbative. Just like

STAE-K, LIGKA30 is a non-perturbative eigenvalue code

but with a much more complex model, and it is not surpris-

ing that these two codes show differences.

It can also be noted that for fast-ion velocities less than

approximately vA;0=2, the mode is still damped. All the

codes agree very well in determining the location of the mar-

ginal point where the growth rate becomes zero. The exis-

tence of such a marginal point can be understood from

Eq. (10). At the marginal point, the condition mx? ¼ x is

fulfilled, making hð1Þm exactly zero. Thus, there is no contribu-

tion of the energetic particles to the perturbed electric current

density jð1Þ in the plasma, and c thus vanishes. In order to

allow for a non-vanishing growth rate, the diamagnetic drift

frequency of the energetic particles (multiplied by m) must

exceed the mode frequency. As x? is given by

x? ¼ �
kBTfast lnNfast �

3

2
lnTfast

� �0
þe lnTfastð Þ0

MX0r
(27)

for a Maxwellian distribution function of the energetic particles,

it is possible to increase x? by having steeper gradients in both

the density and temperature profile, or by having a higher fast-

particle energy e if the temperature profile is not flat.

For the purpose of this benchmark, radiative damping

and electron Landau damping have not been taken into

account as they would modify the position of the marginal

point and the total growth rate. The change of the real fre-

quency, dx ¼ ReðxÞ � xMHD, is shown in Fig. 3. All codes

show a good qualitative agreement. It can be observed that

the mode frequency decreases rapidly in the beginning and

that it increases again with rising fast-particle temperature.

Due to the low aspect ratio of this case and the large radial

extent of the MHD eigenmode, FOW effects are negligible

for all the considered Tfast. This can be understood from a sim-

ple analytical estimate: The full width of a passing-particle

orbit is given by d ¼ 2qfast=i, where qfast is the energetic-

particle Larmor radius. Neglecting FOW effects, and their

respective averaging effect, is only possible while d� DM,

with DM being the width of the mode. Using d ¼ DM as a

rough upper bound, we define a “critical” temperature

Tcrit ffi
ZfasteB0DMð Þ2

4MkBq2
a

: (28)

In fact, Eq. (28) yields a very high Tcrit ¼ 16 MeV.

Hence, there are no substantial differences between calcula-

tions with and without FOW effects.

With this first benchmark, the numerical feasibility of

the Riccati shooting method used to solve the equations has

been confirmed. STAE-K is able to calculate the curves in

all the figures above in less than half an hour on a single

2.3 GHz core, making STAE-K one to two orders of magni-

tude faster than the other codes.

B. ITPA benchmark

The ITPA benchmark31 is one of the most rigorous

benchmarks that have been performed of codes calculating

fast-ion-driven instabilities. It consists of a rather idealized

scenario, which involves only two modes with poloidal and

toroidal mode numbers m1¼ 10, n1¼ 6 and m2¼ 11, n2¼ 6.

They form a gap in the Alfv�en continuum at exactly r=a
¼ 0:5 as can be seen in Fig. 4. In this scenario, a large-

aspect-ratio tokamak with circular flux surfaces is used. The

background-plasma parameters are listed in Table III. For

simplicity, the background-plasma density as well as the

fast-particle temperature profile are again chosen to be flat.

Hence, the only free energy source to drive the TAE unstable

is the fast-particle density gradient. The fast-particle parame-

ters can be found in Table IV. The energetic particles possess

a Maxwellian equilibrium distribution function.

Starting with the real eigenfrequency of an ideal-MHD

calculation, fast particles with increasing temperature are

added. As the energetic-particle density profile has its maxi-

mum gradient in the region where the mode is localized,

FIG. 3. Calculated real part of the TAE frequency as a function of the fast-

particle thermal velocity normalized to the on-axis Alfv�en velocity. Again

STAE-K is close to other hybrid codes (especially CAS3D-K) in this case.

The fully kinetic codes predict a much stronger frequency change for high

temperatures. Curves other than STAE-K are taken from Refs. 27 and 30.

FIG. 4. The Alfv�en continuum without fast particles for the ITPA benchmark

as calculated by STAE-K. The TAE frequency (dashed line) lies in the contin-

uum gap. The locations of the maxima of both eigenmode components Um

and Umþ1 have been indicated by a square and a diamond, respectively.
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energy transfer from the fast particles to the mode by means

of inverse Landau damping is possible, driving the mode

unstable. The results of this benchmark can be seen in Fig. 5,

where STAE-K is compared with various other codes.

CAS3D-K and STAE-K, although differing in detail, possess

enough analogies that it is possible to expect a good agree-

ment between the two codes, at least for low enough temper-

atures, where the perturbative approach of CAS3D-K is

valid. CKA-EUTERPE and GYGLES are both particle-in-

cell (PIC) codes, but while GYGLES is fully kinetic, CKA-

EUTERPE employs an MHD-kinetic hybrid model.

In Fig. 5, one can see that, not taking into account FLR

effects, all codes predict a strong increase in the growth rate c
for temperatures up to Tfast ffi 250 keV. For higher tempera-

tures, finite-orbit-width (FOW) effects lead to a saturation of c
for CKA-EUTERPE and GYGLES. The reason is that FOW-

and FLR effects introduce an averaging effect over the per-

turbed potential.9,28 This means that the effective particle-wave

energy transfer is smaller, leading to a reduced growth rate. As

expected, the quantitative agreement between CAS3D-K and

STAE-K (both codes neglect FOW- and FLR effects) is good

between zero and 250 keV, and they qualitatively agree in pre-

dicting a strong growth rate for higher fast-ion temperatures.

For the ITPA benchmark, Eq. (28) predicts Tcrit to be

around 255 keV, indicated by a dashed vertical line in Fig. 5.

For Tfast < Tcrit, the models provide similar answers, while

for Tfast > Tcrit the orbit-related discrepancies are obvious.

Though being a rough upper estimate for the validity range

of the model, Eq. (28) works quite well for the growth rate.

In this benchmark not only c but also the change in the

real frequency due to the presence of energetic particles has

been calculated. The results are shown in Fig. 6, where the

same codes (with the same colours) have been compared as

in Fig. 5. (Again, the critical temperature is indicated by a

dashed vertical line.) As before, STAE-K and CAS3D-K

show the best agreement for low enough temperatures, which

is to be expected due to the similarities in their mathematical

models. The result from GYGLES shows a different behav-

iour because of its higher level of complexity: As mentioned

before, GYGLES includes FOW effects that influence not

only cðTfastÞ but the behaviour of the frequency as well.

While deviations in the growth rate are small below Tcrit, the

frequencies computed by GYGLES and STAE-K only agree

to about 100 keV. Comparing with the analytical estimate,

which worked well for the growth rate, this means that the

frequency reacts more sensitively to FOW effects than c
does, a fact deserving further investigation.

In summary, it can be stated that the crucial factors

determining the low Tcrit in this case are the high aspect ratio

and thus the narrow mode width. Nevertheless, we will con-

tinue to track the development of this mode into the region

of higher Tfast in order to show some generic features of the

model, which we also observed for cases with different

parameters, like the benchmark presented in Sec. IV A,

where the model is valid up to much higher Tfast.

Please note that an initial-value approach like the PIC

method converges to the fastest growing mode, which is not

necessarily identical to the initial MHD eigenmode. STAE-

K, on the other hand, is able to track the development of the

same mode during a parameter scan.

On the left-hand side of Fig. 6, it is shown how the mode

frequency decreases rapidly with increasing Tfast and thus

quickly escapes from the MHD continuum gap. As soon as

the mode frequency intersects the continuum, continuum

damping sets in and the eigenfunctions develop singularities.

Since these singularities in position space can be treated in

FIG. 5. Calculated growth rates of the TAE as a function of the fast-particle tem-

perature within the ITPA framework. All the codes that exclude FOW- (and FLR-)

effects show qualitatively the same strong increase in the growth rate. If those

effects are taken into account, they substantially decrease the growth rate. The

dashed vertical line shows the critical temperature from Eq. (28) over which FOW

effects cannot be neglected. Curves other than STAE-K taken from Refs. 9 and 31.

FIG. 6. Real part of the TAE frequency as a function of the fast-particle temperature within the ITPA framework. (The colours are the same as in Fig. 5.) The

dashed vertical line shows the critical temperature from Eq. (28) over which FOW effects cannot be neglected. Left: Since the frequency is initially decreasing

rapidly with increasing fast-ion temperature, the mode quickly leaves the MHD continuum gap. Right: Even though the frequency varies rapidly, the kinetic

continuum mimics this behaviour so that the mode frequency remains longer inside the gap. For higher fast-particle temperatures, the mode sinks deeply into

the continuum. GYGLES curve taken from Ref. 26.
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formal analogy to the singularities in velocity space present in

conventional Landau damping, the path of integration was

extended into the complex plane.16 The diagram on the left-

hand side of Fig. 6 is inspired by the figures in Ref. 26, from

where the results of GYGLES have been taken. As the mode

frequency always stays inside the continuum gap for this

curve, such a representation next to the MHD continuum is

valid. The right-hand side of Fig. 6 shows the same results

from the codes, but this time together with the kinetic contin-

uum. (The reader is referred to Sec. V A and Fig. 8 for more

details on the calculation of the continuum.) In contrast to the

MHD continuum, the kinetic continuum changes with Tfast.

For low Tfast, it moves together with the mode frequency. At

larger temperatures, however, the gap gets narrower and the

mode again leaves the continuum gap and becomes singular.

C. Landau damping in the ITPA benchmark

In this benchmark, only the contributions of Landau

damping32 on the modes will be investigated. All gradients

are therefore set to zero (corresponding to x? � 0) and thus

only kinetic terms that act stabilizing are retained.

In Ref. 7, an analytic formula, capable of making a theo-

retical prediction about the Landau damping rate of gap

modes, has been derived. A very similar equation

dx ¼ � b?fast

8k?2
m;nr?2

x
r?2

R2
0

X
j¼61

G xjð Þ; (29)

with

GðxjÞ ¼ 3x2
j þ 2x4

j þ xjReðZðxjÞÞ½1þ 2x2
j þ 2x4

j � (30)

and

xj ¼
jq?R0k?m;njv?A

jq?R0k?m;n þ jjv?fast

(31)

can also be found for the change of the real frequency. The

superscript ? indicates that the quantity in question should

be evaluated in the centre of the TAE gap, i.e., where the

continua would cross in the cylindrical limit. Hence, Eq.

(29) is valid in the limit of very small inverse aspect ratio.

Here, this is achieved by choosing a large major radius. The

comparison of STAE-K with the analytic theory of Ref. 7

as well as with Eq. (29) is shown in Fig. 7 for the parame-

ters of the ITPA benchmark. While the top diagram shows

the normalized damping rate, the normalized deviation

from the MHD frequency is depicted in the diagram on the

bottom.

It can be observed that, even for small major radii, the

qualitative behaviour of the damping rate calculated by

STAE-K matches that from the analytic theory. If R0 is

increased further, the curves converge to the theoretical result.

In the top diagram of Fig. 7, it can be seen that the

damping rate possesses two distinct minima. These corre-

spond to resonances of the fast-particle thermal velocity with

respect to the Alfv�en velocity.7,8

V. RESULTS

A. Changes in the MHD continuum due to energetic-
particle influences

STAE-K is not only able to calculate the growth rate,

frequency, and the structure of the eigenfunction of the

mode, but also the shear Alfv�en wave continuum. This is

done by computing the frequencies for which detM2 ¼ 0,

with M2 from Eq. (17) in the absence of radiative damping,

is satisfied. The continuum of M2, together with the MHD

continuum, is resolved if the fourth-order term is taken into

account, which leads to a discretization of the continuum as

reported in Ref. 6.

Here, the influence of the fast particles on the MHD con-

tinuum without radiative damping is studied. The same mag-

netic geometry as in the ITPA benchmark has been used.

Fig. 8 shows that the continuum can be deformed sub-

stantially if the pressure of the energetic particles becomes

comparable to the bulk-plasma pressure. (Kinetic continua

considering also bulk-plasma effects in tokamaks have

recently been computed in Ref. 33.) This happens for Tfast

> Tcrit, where the results from STAE-K differ from those

obtained by fully gyrokinetic codes, but are close to those of

perturbative codes like CAS3D-K (see Sec. IV B). As indi-

cated before, the investigation of the mode is nevertheless

carried on in this parameter range to study cases that exhibit

FIG. 7. Comparison of STAE-K to analytic theory in the limit of very

small inverse aspect ratio for various fast-particle temperatures.

Normalized Landau damping rate (top) and normalized change of the real

frequency (bottom) as a function of the energetic-particle thermal veloc-

ity. STAE-K converges to the theoretical result (black curve) for increas-

ing major radii.
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this mode-continuum interaction. This deformation of the

continuum is useful to explain the results of the simplified

models utilized in STAE-K and CAS3D-K. Since both the

continuum as well as the discrete TAE frequency within

the gap are shifted to lower frequencies, the mode can stay lon-

ger inside the gap and is not subject to continuum damping.

This maximizes the kinetic drive of the mode. Note that even-

tually, for Tfast � 300 keV, the TAE intersects the continuum,

so that the TAE transfers energy to singular continuum modes.

Strong deformations of the continua in the plasma center

can be observed. This is a consequence of the fast-ion den-

sity profile chosen in the ITPA benchmark. This density pro-

file has a small, but non-vanishing, gradient in the plasma

center. If the profile was flat, just a beta-related up-shift

would be observed. It is shown in Appendix B that the adia-

batic part of the perturbed distribution function does not

influence the kinetic continuum.

B. Contribution of radiative- and background-plasma
Landau damping

The singular eigenfunctions resulting from the contin-

uum interaction indicate that the MHD-kinetic hybrid model

is not well suited to explain the physics on very short spatial

scales. The model can be improved by including kinetic

effects of finite Larmor radii of the background-plasma ions,

as well as a kinetically arising parallel electric field. They

cause the so-called radiative damping, governed by the

fourth-order operator given in Eq. (13).18

Since the addition of this term discretizes the MHD

continuum (including also the fast-particle influences), it

resolves any continuum interaction as can be seen in Fig. 9

for the parameters of the ITPA benchmark. A constant

bulk-plasma temperature of 1 keV was chosen. The eigen-

functions show no singularities indicative of continuum

damping. Instead, the figure shows the smooth transition of

a TAE into a kinetically modified TAE (KTAE) and later

into a kinetic Alfv�en wave (KAW). Short-scale oscillations

start to appear on the mode structure precisely when the

fast-particle temperature is such that the mode would inter-

sect the Alfv�en continuum, if radiative damping were not

present. The oscillations are only present in the real and

imaginary part (not shown in the figure) of the eigenfunc-

tion. They are absent in the absolute value of the potential

perturbation, which thus resembles the results of Ref. 26

very closely. Note that no short-scale oscillations in the

eigenfunction are observed in Ref. 26. We conjecture that

they are an effect of the much larger growth rate of this

model due to the absence of FOW- and FLR effects.

Additionally, the mode frequency in Ref. 26 never inter-

sects the continuum, which is found to be an essential con-

dition for the appearance of oscillations.

The final mode structure is broader, shifted towards the

position of the maximal gradient in Nfast, and one poloidal

harmonic dominates over the others. While these criteria have

FIG. 8. Evolution of the shear Alfv�en continuum with increasing tempera-

ture of the energetic particles for the parameters of the ITPA benchmark

(see Tables III and IV). The TAE gap as well as the discrete eigenfrequency

(dashed lines) are shifted to lower values. For Tfast � 300 keV, the mode fre-

quency intersects the continuum, leading to continuum damping.

FIG. 9. Development of the eigenfunc-

tions in the ITPA case including radia-

tive damping. The mode transforms

from a TAE into a KTAE and later

into a KAW. Black and red curves

show the real parts of both eigenmode

components, whereas green and blue

have been used for the absolute values.
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been used to characterize EPMs in Ref. 26, they are also use-

ful for the description of the presently computed KAWs.

The model includes the kinetic drive of the energetic

particles as well as damping mechanisms such as Landau

damping (of both the bulk ions and electrons), radiative

damping, and, if the continuum gap is closed, continuum

damping. In order to assess the overall stability of a mode,

damping is just as important as the drive. For the ITPA case

introduced above, calculations have also been performed

without fast particles. The combined damping rate of radia-

tive damping and Landau damping of the background-

plasma electrons, whose damping dominates over that of

bulk-ions for the present case, was c ¼ �2:33� 103 s�1,

which is very close to results from more advanced codes like

LIGKA and GYGLES giving c ¼ �2:34� 103 s�1 and

c ¼ �3:9� 103 s�1, respectively.31

C. Stability diagrams

The properties of the damping terms are mainly deter-

mined by the background plasma, making it feasible to vary

fast-particle parameters and background-plasma parameters

independently. In doing so, it is possible to scan a whole

region in parameter space and to answer the question

whether the mode is stable or unstable in this region.

Such stability scans have been performed for the ITPA

benchmark case and for a W7-X scenario (introduced below).

The bulk and the energetic-particle temperature have been var-

ied independently (Nfast and Nbulk were kept constant) to obtain

the stability diagrams shown in Fig. 10 (ITPA benchmark on

top and W7-X on the bottom). All calculations include the

kinetic drive from the fast-particle species as well as Landau

damping of the bulk ions/electrons and radiative damping. The

W7-X calculation on the bottom left has been simplified to

only include the toroidal coupling. Hence, it is very similar to

the large-aspect-ratio tokamak directly above. For the W7-X

calculation on the bottom right, also the helical coupling

(l¼ 1, �¼ 1) and the helical side bands have been included.

Apart from the toroidal (l¼ 1, �¼ 0) resonances

vres=vA ¼ 1=3 and 1, additional ones according to

vres

vA

¼
16

li? þ �NP

mi? þ n


�1

(32)

are possible.8 The helical resonances are well within the tem-

perature range of the bulk ions and, because of the lack of

any gradients, act stabilizing.

Thus, this second (more realistic) stability diagram for

W7-X shows a much more stable mode. For the tokamak,

the radiative damping term, which outweighs Landau damp-

ing, significantly increases the region of stability.

The stability scans are performed by repeatedly solving

the eigenvalue problem in the plane spanned by Tfast and

Tbulk. As such, computation of the scans parallelizes perfectly.

Depending on whether radiative damping was included, these

calculations typically take three to twelve hours on 128 pro-

cessors for a resolution of about 256 points in each direction.

D. Application to W7-X

The code will be applied to the stellarator W7-X in more

detail. The background-plasma and fast-particle parameters for

the W7-X case are summarized in Tables V and VI, respec-

tively, and they lead to an MHD continuum shown in Fig. 11.

As a first step, the influence of a rising energetic-particle

temperature on the structure of the eigenfunction is studied.

Only the fast particles have been treated kinetically. Note that

the radiative damping term, with a background temperature of

Tbulk ¼ 1 keV, has been present in all the calculations in this

section. The results can be seen in Fig. 12, where the kinetic

continuum and the eigenfunction for a high fast-particle tem-

perature of 750 keV are shown. The kinetic continuum exhib-

its only minor differences compared with the ideal-MHD

continuum. Furthermore, these changes are located at radial

positions where the mode amplitude is almost vanishing.

Consequently, the influence of the fast particles on the

FIG. 10. Stability diagrams taking into

account the kinetic drive of a fast-

particle species, Landau damping by the

background-plasma ions/electrons, and

radiative damping. Black lines connect

points of equal growth/damping rate.

Top: ITPA benchmark. Bottom: W7-X

case. For the W7-X case on the bottom

right also the additional effects of the

helical coupling were included.
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structure of the eigenfunction is negligible. It must also be

pointed out that while Tfast ¼ 750 keV < 1:35 MeV ¼ Tcrit

(see Eq. (28)), such a temperature will most likely not be

reached in W7-X. The specific case that has been chosen for

this investigation is very insensitive to an increasing Tfast.

The fast-particle pressure can also be raised by increas-

ing the fast-particle density. The eigenfunction depicted in

Fig. 13 again shows no significant deviation from its ideal-

MHD counterpart. As previously, this is due to the fact that

the continuum only changes in the center and at the edge and

that therefore the nature of the coupling between the poloidal

harmonics remains unaffected.

In all the stellarator calculations, the helical side bands

as well as the helical couplings have been included. It is

important to distinguish both: The inclusion of helical side

bands means that aside from the main Fourier harmonics that

make up the TAE, /m;n and /mþ1;n (/m�1;n has also been

included), additionally /m�1;n�NP
and /mþ1;nþNP

are consid-

ered in the calculations. In the present case, the helical side

bands are negligible, as can be seen from Figs. 12 and 13. It

then is a good approximation just to retain /m;n and /mþ1;n,

while the operators (in case of the Riccati formulation the

matrices Mi) still contain the helical couplings. Those come

from the Fourier decomposition of the equilibrium magnetic

field and provide the resonances. In summary, it may be

stated that a combination of �g and �B determines the MHD

mode structure, while �B alone gives the coupling to the

kinetic term and is thus responsible for the instability.

In the calculation of the stability diagrams, the helical res-

onances as well as the helical side bands were included to dem-

onstrate the capability of the code to handle a larger system.

Generally, the transition of the TAE into a KTAE happens

because the mode frequency gets close to the continuum and

because the radiative damping term is present. For the two pre-

vious cases with increasing Tfast and Nfast, the mode frequency

was nearly unaffected by the fast-particle population.

Furthermore, the continuum only changed in regions where the

mode was not localized. Thus, no transition into a KTAE could

be observed. However, the influence of radiative damping on

the structure of the eigenfunction can also be studied in the

absence of fast particles by simply modifying the density pro-

file of the background plasma in such a way that the TAE gap

closes. Then a combined damping rate of continuum damping

and radiative damping is calculated. Since the focus of this cal-

culation is on the TAE gap and no fast particles are present,

the helical coupling as well as the helical side bands will be

neglected. The density profile is chosen as

nprofile
bulk ¼ 1

2
1� tanh

sh � r

0:1a

� �	 

(33)

with a shift parameter sh. It represents the extreme case of a

hollow density profile, where at r¼ sh the density has

increased to half the value at the edge. Note that hollow den-

sity profiles are a topic for W7-X34 as a result of localized

on-axis ECRH in combination with the outwards directed

thermo-diffusion. Here, the profile described in Eq. (33) is

used as a proof of principle how radiative damping influen-

ces the case of extreme continuum damping. The results of

this investigation, together with the different continua for

various values of sh are depicted in Fig. 14. Even though the

continuum closes in a region where the mode has a finite

amplitude, no singular eigenfunctions are observed. They are

instead completely regularized by the presence of the fourth-

order damping operator. Now, short-scale oscillations (less

prominent than in Fig. 9) develop in the eigenfunctions, and

the amplitude of one poloidal harmonic becomes much

larger than that of the other one. This investigation without

fast particles shows that such behaviour must not necessarily

be interpreted as a sign of an EPM. It is merely a conse-

quence of the TAE frequency leaving the continuum gap

towards a region where mode coupling becomes less impor-

tant. However, as can be concluded from the ITPA case,

energetic particles may have a similar influence on the mode

frequency and the continuum. These results are in qualitative

FIG. 11. The Alfv�en continuum (showing the TAE gap) without fast par-

ticles for the W7-X case as calculated by STAE-K. The TAE frequency

(dashed line) lies in the continuum gap. The locations of the maxima of both

eigenmode components Um,n and Umþ1,n have been indicated by a square

and a diamond, respectively.

FIG. 12. Kinetic continuum with the

TAE gap (left) and eigenfunction

(right) for the W7-X case in the pres-

ence of energetic particles with high

Tfast of 750 keV. The fast-particle den-

sity is Nfast ¼ 4:0� 1017 m�3. The

helical side bands m¼ 10, n¼ 5 and

m¼ 12, n¼ 15 have been included in

the calculation. The eigenfunction is

nearly unchanged compared with the

ideal-MHD case.
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agreement with Ref. 35. For the extreme case of sh¼ 0.3 m,

a damping rate of ðccontinuum þ cradiativeÞ=xMHD ¼ �2:32% is

measured, where the majority comes from continuum damp-

ing as can be observed in Fig. 15. Radiative damping alone

accounts for approximately �0.12%.

The figure shows a strong increase of the damping rate

ccontinuum for sh � 0:225 m when just the MHD terms are pre-

sent. The path of integration has been extended into the com-

plex plane to retain the contribution of the pole. Note that in this

logarithmic plot the initial level of ccontinuum for small values of

sh is not exactly zero only because of the numerically specified

tolerance for convergence. In this initial phase, radiative damp-

ing outweighs continuum damping by many orders of magni-

tude. At some point, however, continuum damping also sets in

when the fourth-order term is taken into account. In this case, it

was not necessary to leave the real axis when integrating Eq.

(20). As expected, there still are some slight differences in both

curves of Fig. 15 for sh¼ 0.3 m, but they seem to converge to

the same damping rate in the limit of very strong damping.

VI. SUMMARY AND CONCLUSIONS

In this paper, the resonant interaction of fast particles

with shear Alfv�en waves, especially TAEs, leading to KTAEs

and KAWs has been investigated in tokamaks and stellarators.

The non-perturbative and non-local model used for this pur-

pose treats the background plasma within the ideal MHD-

theory and the fast particles kinetically. Furthermore, a

higher-order differential operator, which describes radiative

damping, has been added to the model. (To the best

FIG. 13. Kinetic continuum with the

TAE gap (left) and eigenfunction

(right) for the W7-X case in the pres-

ence of energetic particles with a high

ratio of Nfast=Nbulk ¼ 11:25%. The

fast-particle temperature is

Tfast ¼ 100 keV. The helical side bands

m¼ 10, n¼ 5 and m¼ 12, n¼ 15 have

been included in the calculation. The

eigenfunction is nearly unchanged

compared with the ideal-MHD case.

FIG. 14. Influence of the radiative

damping term on the eigenfunctions

for a closing TAE gap (see top left).

The eigenfunctions for values of

sh¼ 0.0 (top right), sh¼ 0.275 (bottom

left), and sh¼ 0.3 (bottom right) are

shown. The fourth-order term prevents

the development of singularities. No

fast particles are present in this

calculation.

FIG. 15. Normalized continuum damping rate only taking into account the

MHD terms (full curve) and a combination of radiative damping and contin-

uum damping (dashed line). The shift parameter sh used to control the den-

sity profile determines the strength of the damping.
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knowledge of the authors, this is the first time that radiative

damping has been addressed in stellarators.) Throughout this

work, the large-aspect-ratio and low-plasma-beta approxima-

tions have been used.

The eigenvalue problem is solved by the novel code

STAE-K, using a numerically robust and efficient shooting

algorithm. Thanks to its high speed and its physically simpli-

fied model, the code is particularly well suited to perform

parameter scans for varying fast-particle parameters.

After a scan has been conducted, specific regions in

parameter space can be investigated by more advanced codes

with physically more complex models. It can then be

checked if the predictions from the simplified model utilized

by STAE-K hold.

The behaviour of the shear Alfv�en wave continuum in

the presence of energetic particles was studied. It was found

that the structure of the continuum may be influenced sub-

stantially. In particular, continuum resonances in regions

where the mode has a finite amplitude become possible. In

this case, continuum damping occurs and the TAE may

smoothly be converted into a KAW, if radiative damping is

accounted for.

Especially in the W7-X case, it could be observed that

the structure of the MHD-eigenfunction is insensitive to

changes of Tfast and Nfast. Thus, perturbative hybrid models

like CAS3D-K and CKA-EUTERPE with a fixed mode

structure might be applicable for a wide range of fast-

particle parameters in regimes where fast-ion FOW effects

are negligible.

The ITPA benchmark showed that FOW effects play a

critical role in determining the growth rate and frequency of

the mode. While gap modes are treated well within the sim-

plified model, the proper treatment of the orbits is important

to study EPMs, which is not possible with the present version

of the code. However, the simple analytical expression Eq.

(28) gives an estimate for the validity range of the simplified

model. A topic left for future work will be to properly

include FOW effects into STAE-K. Nevertheless, even in its

present form STAE-K is one of the very few codes that can

perform calculations for stellarators.
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APPENDIX A: FAST-PARTICLE CONTRIBUTION IN
DETAIL

Using Eqs. (9) and (12), the Fourier transformed fast-

particle contribution to Eq. (1) is obtained as

FT ixl0r2

a2d0

r � j 1ð Þ
fast

� �
ffi xl0ZfasteR2

0d0

4
Am;nU

1ð Þ
m;n þ Bmþ2r;nþ2sNP

U 1ð Þ
mþ2r;nþ2sNP

þ Cm�2r;n�2sNP
U 1ð Þ

m�2r;n�2sNP

� �
; (A1)

with

Am;n ¼ gr;0r �
r;sð Þ

B

� �2

�C zþð Þ � C z�ð Þ
� �� �

d2

dr2
þ
n
gr;0�

r;sð Þ
B �

r;sð Þ0
B �A zþð Þ þ A z�ð Þ

� �
þ gr;0r

�
�

r;sð Þ
B

�2

�B zþð Þ � B z�ð Þ
� �

þr�
r;sð Þ

B �
r;sð Þ0

B m� gr;0ð ÞC zþð Þ � mþ gr;0ð ÞC z�ð Þ
� �o d

dr
þ m �

r;sð Þ0
B

� �2

A zþð Þ þ A z�ð Þ
� �

þmr�
r;sð Þ

B �
r;sð Þ0

B B zþð Þ � B z�ð Þ
� �þ mr�

r;sð Þ
B �

r;sð Þ00
B C zþð Þ � C z�ð Þ

� �
; (A2)

Bmþ2r;nþ2sNP
¼
h
gr;0r

�
�

r;sð Þ
B

�2

C zþð Þ
i d2

dr2
þ
h
gr;0�

r;sð Þ
B �

r;sð Þ0
B A zþð Þ þ gr;0 �

r;sð Þ
B

� �2

B zþð Þ þ r�
r;sð Þ

B �
r;sð Þ0

B mþ 2rþ gr;0
� �C zþð Þ

i d

dr

þ mþ 2rð Þ
h
�

r;sð Þ0
B

� �2

A zþð Þ þ r�
r;sð Þ

B �
r;sð Þ0

B B zþð Þ þ r�
r;sð Þ

B �
r;sð Þ00

B C zþð Þ
i
; (A3)

and

Cm�2r;n�2sNP
¼ gr;0r �

r;sð Þ
B

� �2

C z�ð Þ
	 


d2

dr2
þ
h
�gr;0�

r;sð Þ
B �

r;sð Þ0
B A z�ð Þþgr;0 �

r;sð Þ
B

� �2

B z�ð Þ�r�
r;sð Þ

B �
r;sð Þ0

B m�2r�gr;0
� �C z�ð Þ

i d

dr

þ m�2rð Þ �
r;sð Þ0

B

� �2

A z�ð Þ�r�
r;sð Þ

B �
r;sð Þ0

B B z�ð Þ�r�
r;sð Þ

B �
r;sð Þ00

B C z�ð Þ
	 


: (A4)

Here, r and s represent the particular mode coupling, z6 ¼ ðm6r; n6sNpÞ and gr,0 is a “reversed” Kronecker-delta:

gr;0 ¼ 1� dr;0.

The operators A;B, and C are defined as

A �m; �nð Þ ¼ �m 1þ �m

x
a

� �
I 1 �m; �nð Þ þ

�m2

x
bI 2 �m; �nð Þ; (A5)
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B �m; �nð Þ ¼ � 1

r
1þ �m

x
a

� �
þ c 1þ �m

x
a

� �
þ �m

x
d � a

r

� �" #
I 1 �m; �nð Þ þ � 1

r

�m

x
bþ �m

x
cbþ e 1þ �m

x
a

� �
þ �m

x
f � b

r

� �" #

� I 2 �m; �nð Þ þ
�m

R0

q0

q2
1þ �m

x
a

� �
I 3 �m; �nð Þ þ

�m

R0

q0

q2

�m

x
bI 4 �m; �nð Þ þ

�m

x
ebI 5 �m; �nð Þ; (A6)

and

C �m; �nð Þ ¼
A �m; �nð Þ

�m
: (A7)

While the quantities a,…, f contain the density and tempera-

ture gradients of the energetic particles

a ¼ d2
0kB

MX0r
T ln Nð Þ0� 3

2
T0

	 

; (A8)

b ¼ d2
0

MX0r
ln Tð Þ0; (A9)

c ¼ ln Nð Þ0� 5

2
ln Tð Þ0; (A10)

d ¼ d2
0kB

MX0r
T0 ln Nð Þ0þT ln Nð Þ00� 3

2
T00

	 

; (A11)

e ¼ 1

kBT
ln Tð Þ0; (A12)

f ¼ d2
0

MX0r
ln Tð Þ00; (A13)

the different integrals over velocity space are denoted by

I1 �m; �nð Þ ¼
ð

d3v
v2

D;0

x� vkk �m;�n

@F

@e
; (A14)

I 2 �m; �nð Þ ¼
ð

d3v
v2

D;0

x� vkk �m;�n

@F

@e
e; (A15)

I3 �m; �nð Þ ¼
ð

d3v
v2

D;0

x� vkk �m;�n
� �2

vk
@F

@e
; (A16)

I 4 �m; �nð Þ ¼
ð

d3v
v2

D;0

x� vkk �m;�n

� �2
vk
@F

@e
e; (A17)

I 5 �m; �nð Þ ¼
ð

d3v
v2

D;0

x� vkk �m;�n

@F

@e
e2: (A18)

Note that the equations presented in this Appendix are

valid for the stellarator. Their tokamak equivalents may be

recovered by setting r¼ 1, s¼ 0 (toroidal coupling), d0¼ 1

(circular flux surfaces), and �
ð1;0Þ
B ¼ �r=R0.

APPENDIX B: HOW THE ADIABATIC PART OF f (1)

INFLUENCES THE CONTINUUM

In Section II B, it was mentioned that only the non-

adiabatic part of f (1) (denoted by h(1)) was retained in the

kinetic description of the energetic ions. In the more com-

plete expression

f 1ð Þ ¼ b�r?U 1ð Þ

ixB
� @F

@R


e;l

� B 1ð Þ

B

@F

@l


R;e

þ h 1ð Þ; (B1)

the first two terms are the adiabatic part. Note that

within the reduced ideal-MHD theory B(1)¼ 0 holds,

hence the second term vanishes. Thus, the adiabatic part

of f (1) is only determined by one term proportional to

the gradients of the equilibrium distribution function F
and the E�B-drift. Working out the vector and the dot

product in the large-aspect-ratio approximation, one

finds

f 1ð Þ ¼ rB0

qg

1

ixB2

@F

@r
gHH

@U 1ð Þ

@u
�qguu

@U 1ð Þ

@H

 !
þh 1ð Þ: (B2)

Here, gHH and guu are components of the covariant metric

tensor.13 Note that the adiabatic part contains no radial deriv-

ative of U(1). The reason is that F only depends on r and not

on the angular variables.

If this adiabatic part were retained in the integral

over velocity space described by Eq. (9), it would only

lead to new terms proportional to zero and first-order

radial derivatives of U(1). (The term integrated over

velocity space is vD � rf ð1Þ.) But since the continuum is

determined by the prefactors of the second-order deriva-

tives, the adiabatic part of f(1) does not change the

kinetic continuum.

APPENDIX C: PARAMETERS OF THE NUMERICAL
CALCULATIONS

Below, the parameters which have been used in the

various benchmarks and in the W7-X calculation are

listed.

TABLE I. Background-plasma parameters for the benchmark with

KIN-2DEM and others.

Major radius R0/m 4.0

Minor radius a/m 0.9

Mode numbers (m1, n1) and (m2, n2) (2, 2) and (3, 2)

Magnetic field B0/T on axis 5.0

Type of ions Deuterium

Density ni;0=m�3 on axis 5.0 � 1019

Density profile Flat

q-profile qðrÞ ¼
P6

i¼0 cir
i

Coefficients c0¼ 1.048, c1¼ 0.101, c2¼ 0.077

c3¼ 3.334, c4¼�6.748, c5¼ 5.965

c6¼�2.024
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TABLE II. Fast-particle parameters for the benchmark with KIN-2DEM and

others.

Type of ions Hydrogen

Density Nfast;0

on axis

Chosen to keep Tfast;0Nfast;0 ffi 7:6� 1020 keV �m�3

constant

Density profile NfastðrÞ ¼ exp ½�ðc0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c2r2
p

Þ=c3�
Coefficients c0 ¼ �1:75; c1 ¼ 3:063; c2 ¼ 5:556; c3 ¼ 0:09

Temperature Tfast;0

on axis

Chosen to keep Tfast;0Nfast;0 ffi 7:6� 1020 keV m�3

constant

Temperature profile Flat

TABLE III. Background-plasma parameters for the ITPA benchmark.

Major radius R0/m 10.0

Minor radius a/m 1.0

Mode numbers (m1, n1) and (m2, n2) (10, 6) and (11, 6)

Magnetic field B0/T on axis 3.0

Type of ions Hydrogen

Density ni;0=m�3 on axis 2.0 � 1019

Density profile Flat

q-profile q(r)¼ 1.71þ 0.16r2

TABLE IV. Fast-particle parameters for the ITPA benchmark.

Type of ions Deuterium

Density Nfast;0=m�3

on axis

1.44 � 1017

Density profile NfastðrÞ ¼ c3 exp ½�c2=c1 � tanhfðr � c0Þ=c2g�
Coefficients c0¼ 0.491, c1¼ 0.298, c2¼ 0.199, c3¼ 0.521

Temperature Tfast,0/keV

on axis

1…800

Temperature profile Flat

TABLE V. Background-plasma parameters for the W7-X case.

Major radius R0/m 5.5

Minor radius a/m 0.53

Mode numbers (10, 5), (10, 10), (11, 10), (12, 10), (12, 15)

Magnetic field B0/T on axis 2.31

Type of ions Hydrogen

Density nbulk;0=m�3 on axis 2.0 � 1019

Density profile Flat

q-profile qðrÞ ¼
P6

i¼0 cir
2i

Coefficients c0¼ 1.175, c1¼ 0.521, c2¼�13.150

c3¼ 101.17, c4¼�435.05, c5¼ 947.01

c6¼�831.19

TABLE VI. Fast-particle parameters for the W7-X case.

Type of ions Hydrogen

Density Nfast;0=m�3 on axis 4:0� 1017…3:0� 1018

Density profile NfastðrÞ ¼
P9

i¼0 cir
2i

Coefficients c0¼ 0.99988, c1¼�4.5984

c2¼ 42.474, c3¼�473.91

c4¼ 606.59, c5¼ 66734

c6¼�855490, c7¼ 4647400

c8¼�11936000, c9¼ 11835000

Temperature Tfast,0/keV on axis 10…1000

Temperature profile Flat
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Abstract
In the present work we report recent radial electric field measurements carried out with the
Doppler reflectometry (DR) system in the TJ-II stellarator. The study focuses on the fact that,
under some conditions, the radial electric field measured at different points over the same flux
surface shows significantly different values. A numerical analysis is carried out considering the
contribution arising from the radial dependence of Φ1 as a possible correction term to the total
radial electric field. Here Φ1 is the neoclassical electrostatic potential variation over the surface.
The comparison shows good agreement in some aspects, like the conditions under which this
correction is large (electron-root conditions) or negligible (ion-root conditions). But it disagrees
in others like the sign of the correction. The results are discussed together with the underlying
reasons of this partial disagreement. In addition, motivated by the recent installation of the dual
DR system in Wendelstein 7-X (W7-X), Φ1 estimations for W7-X are revisited considering core
electron-root confinement plasmas from its first experimental campaign. The simulations show
larger values of Φ1 under electron-root conditions than under ion root. The contribution from the
kinetic electron response is shown to become important at some radii. All this results in a
potential variation size in W7-X noticeably larger than estimated in our previous work (García-
Regaña et al 2017 Nucl. Fusion 57 056004), for other plasma parameters and another
configuration.

Keywords: stellarators, neoclassical transport, tangential electric fields, impurity transport

(Some figures may appear in colour only in the online journal)

1. Introduction

The radial electric field is one of the physical quantities with
significant prominence in stellarator transport physics pro-
blems. In particular, for the radial transport of impurities and
their accumulation, its role becomes more important as the
charge state of the impurity increases. In stellarators, the
explanation for this is framed by the standard neoclassical
formalism. There, one can express the flux-surfaced-averaged

fluxes as a linear combination of thermodynamic forces and
the so-called thermal transport matrix coefficients Lij
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with a the species index, na the density, Ta the temperature, Za
the charge state, e is the proton charge, aG the particle flux
density and ...á ñ the flux surface average operator. In the
present work r is a flux surface label with the character of an

Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 60 (2018) 104002 (14pp) https://doi.org/10.1088/1361-6587/aad795

0741-3335/18/104002+14$33.00 © 2018 CIEMAT Printed in the UK1

On-surface potential and radial electric field variations in electron root stellarator plasmas (A.7)

141



effective radial coordinate such that the volume enclosed by a
flux surface is V R r2 2

0
2p= , and R0 is the major radius of the

stellarator. The prime ′ denotes differentiation with respect to
r. The radial electric field vector is E rEr r=  with
Er 0= -F¢ and r0 0F = F ( ) the part of the electrostatic
potential constant on the flux surface. An important well-
known difference between particle transport in stellarators
respect to that in (axi-symmetric) tokamaks is that the particle
transport of the different species does not obey ambipolarity
at any Er. In other words, the total radial flux-surface-aver-
aged current does not vanish and quasi-neutrality is not pre-
served along the radial direction. Then, the radial electric field
in stellarators is determined by imposing this ambipolarity
condition, that reads, see e.g. [1]

Z e r 0. 2
a

a aå Gá  ñ =· ( )

Despite the apparently explicit linear dependence of the fluxes
on Er, see equation (1), the role that the radial electric field
plays on the confinement of the trapped particle orbits in the
long-mean-free-path regimes, makes the matrix transport
coefficients depend also on Er. This leads the ambipolarity
condition to become a non-linear equation with multiple roots
[2, 3]. However, only two of them are usually identified in
laboratory plasmas. For simplicity, assuming the presence of
only bulk ions and electrons, when the collisionality of both
species is such that the radial particle flux of the ions needs to
be reduced in order to satisfy ambipolarity, the ambipolar
electric field typically points radially inward and Er<0. If,
on the contrary, the electron radial particle flux needs to be
retarded to fulfill ambipolarity the radial electric field points
radially outwards, Er>0. These two situations are referred to
as ion and electron root regimes respectively. In general,
standard neoclassical theory predicts ion root conditions for
all collisionalities when the ion and electron temperatures are
comparable, Ti∼Te, and fairly large and positive (electron
root) Er values at low collisionality with strongly localized
electron heating that leads to Te?Ti, see e.g. [4, 5]. The
concern for the intrinsic character of the impurity accumula-
tion in stellarators and ion root conditions has been tradi-
tionally tight together, since the inward convection related to
Er can, for sufficiently high Za, exceed in most situations the
outward counterparts driven by the temperature and density
gradients. This has also been observed in numerous stellarator
experiments, see e.g. [6] and references therein.

However, this simple explanation concerning impurity
accumulation has been broadened in recent years motivated
by a few experiments that question it, like the hollow impurity
density profiles observed in LHD [7] or the exceptionally low
impurity confinement time of the HDH mode in W7-AS
plasmas [8]. For decades it has been known that a variation of
the electrostatic potential over the flux surface Φ1=Φ1(r, θ,
f) can be relatively large for low collisionality plasmas in
non-omnigeneous stellarators [2, 9, 10]. Here θ and f are
some angular poloidal and toroidal coordinates, respectively.
This piece of the electrostatic potential is necessary in order to
restore quasi-neutrality over the flux surfaces, which the
cumulative effect of the non-vanishing bounce-averaged

radial displacement of the particle drift orbits violates.
Although it can be in most situations negligible for main ion
and electron transport, the importance of Φ1 for impurities
resides in the fact that the radial component of the E×B
drift, Bv BE1 1

2= -F ´ , can become of the same order as
the radial component of the magnetic drift vm, basically
because the latter scales as Za

1- while the former does not.
Consequently, its role as source of radial transport can
become as important as the inhomogeneous confining
magnetic field for sufficiently high charge state. Since the first
numerical calculations of Φ1 [11] performed with the code
EUTERPE [12, 13] and the experimental measurement in a
stellarator [14], other works have followed this line: the
estimation of its effect on the radial flux of impurities for
some selected ion-root plasmas for different stellarator con-
figurations in [15]; the analytical development of the form-
alism [16] and the code (KNOSOS) [17] that integrates the
drift kinetic equation and transport quantities of interest,
including Φ1, for optimized stellarators; new LHD impurity
plasmas analyzed under the effect of Φ1 with the SFINCS
code [18], including the self-consistent modification of Er by
Φ1 and including non-trace impurities [19]. Apart from these
works, others have looked into the screening of impurities in
stellarators, like [20] where high Ti plasmas with negative but
small Er∣ ∣ are shown to coexist with outward impurity flow.
Finally, [21] has analytically addressed the radial particle flux
of highly collisional impurities in low collisional bulk plas-
mas, concluding that in the case without Φ1, the radial
transport of impurities may only weakly depend on Er and
temperature screening can arise; and [22] where the previous
derivation is generalized including Φ1, which makes the
impurity radial particle flux to depend strongly on Er.

The conclusions from the works dealing with Φ1

[15, 17, 19] coincide on their prediction about its magnitude, that
reaches for LHD values of up to e T 0.1i1DF ~ , with

1 1
max

1
minDF = F - F( ) and 1

maxF and 1
minF the maximum and

minimum values, respectively, of the potential over a given flux
surface. The direction and magnitude of the impact of Φ1 on the
impurity radial transport is not trivial. It depends on the charge
state of the impurities, the collisional regime where the impurity
is, how its distribution function couples to Φ1, etc. However,
based on the available numerical simulations it can be stated
without too much lack of generality that variations of that
magnitude undeniably introduces a strong correction to the
standard neoclassical prediction in LHD, even considering low-Z
impurities like carbon. For TJ-II similar values of the normalized
potential variation are also predicted [15], despite the higher
collisionality of its plasmas. Moreover, the estimations in TJ-II
qualitatively agree with the experimental measurements of the
plasma floating potential difference at the plasma edge [14].
Regarding W7-X, the variations are typically shown one order
of magnitude lower than those for LHD plasmas at comparable
collisionality. However, as noted below only few simulations are
available, in particular, for the magnetic configurations and
plasma parameters from the experimental campaigns.

The present work aims at broadening the scanned para-
meter space with a comparative view between ion root and

2
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electron root conditions in TJ-II and W7-X, with the focus
mainly on the second of these regimes. There are several
reasons for this: first, all the numerical effort has looked so far
into ion root plasmas, with the underlying hope that Φ1 could,
at least, cancel the predicted Er-driven inward pinch. A
similar analysis for electron-root plasmas is missing despite
the fact that Φ1 can indeed be larger than in ion-root for the
same absolute value of Er, as pointed out in [14]; second,
although its impact is predicted to be large for impurities, the
value of Φ1 is still small compared to the lower order part of
the potential Φ0, and its direct detection is instrumentally
difficult. In the present work, under the light of recent Dop-
pler reflectometry (DR) measurements of the radial electric
field in TJ-II, where strong differences over the same flux
surfaces have been found under electron root conditions, we
investigate whether the radial dependence of the calculated Φ1

can explain those differences; and finally, since the config-
uration and parameter space of W7-X is rather large [23], the
results obtained for the few configurations and parameters
considered in [15, 19] should not be generalized. In the pre-
sent work, we have based our calculations in typical para-
meters of OP1.1 [24] core-electron-root-confinement (CERC)
plasmas considering a configuration with large effective rip-
ple. We show numerically that Φ1 can then be as large as in
the reported LHD cases. This exercise has also been per-
formed considering adiabatic and kinetic electrons, in order to
provide explicitly a validity check for the adiabatic electron
approximation, that for codes like EUTERPE can result in
considerably less computation time.

After this section, a brief overview of the equations and
tools employed are described in section 2. The TJ-II results,
both numerical and experimental, are presented and discussed
in section 3. The numerical analysis for W7-X CERC con-
ditions is shown in section 4. Finally, the conclusions are
summarized in section 5.

2. Equations and numerical methods

In this section we give an overview of the numerical method,
the relevant equations of the problem and the numerical code
used, EUTERPE [12, 13]. The content of this section con-
cerns the neoclassical version of the code. For a more com-
plete description of how the present problem is approached
we refer the reader to section 2 of [15]. Other aspects dealing
with the neoclassical version can be found in [11, 25, 26], and
those closer to the numerical implementation in [27–29].

EUTERPE is a δf particle-in-cell (PIC) Monte Carlo
code. For a given kinetic species, it considers a splitting of the
distribution f=f0+f1, with f0 an analytically known expres-
sion with the role of a control variate, which does not have to
be necessarily linked to any approximation. The code solves
for each of the kinetic species of the problem the equation
for the f1 part: f t f t C fd d d d1 0= - + ( ), with C( f ) a collision
operator. The choice of phase space coordinates is the follow-
ing: in real space, in order to characterize the guiding center
position R of the Monte Carlo markers, the magnetic PEST [30]

poloidal and toroidal angles θ and f, and a flux surface
label r are employed. In velocity space the parallel component
of the velocity v and normalized magnetic moment m =
v B22
^ are considered. Here f f Ze TexpM0 1= - F( ), with
f n v v v v2 expM 0

3 2
th
3 2 2

th
2p= - + ^[ ( ) ] [ ( ) ] the Maxwellian

distribution, v⊥ the perpendicular component of the velocity,
n0=n0(r) the constant part of the density of the flux surface,
T the temperature, v T m2th = the thermal speed,m the mass
and B the magnetic field strength. With these definitions, the
kinetic equation takes the form:
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The overdot ˙ denotes differentiation with respect to time t.
Finally, the following equations of motion enter the left-hand
side of equation (3):

v
B

R b
b

, 40= +
´ F

˙ ( )

v m B
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B
B

Ze

m
b b b ,

5

2 0 1m= -  - ´  F - F
· ( ) · ·

( )
0, 6m =˙ ( )

with Bb B= . In order to obtain Φ1, quasi-neutrality among
all the species is imposed up to first order: Z en 0a a aå = , with
n n r Z e T nexpa a a a a0 1 1= - F +( ) ( ) the density of the differ-
ent species. Considering singly charged bulk ions (i) and
electrons (e) and assuming e T 11F  , quasi-neutrality yields:
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Note that in [15] the assumption of adiabatic electrons, i.e.
n n r e Texpe e e0 1» F( ) ( ), implies that on the right-hand side of
expression (7) only n1i appears. In the present work, in
section 4, this approximation is relaxed and the results with
adiabatic and kinetic electrons are compared with each other.

Another difference between [15] and the present work is
the treatment of the collision operator C( f ). While in [15]
pitch angle scattering collisions without momentum con-
servation were applied, in the present work, a momentum-
restoring field particle term similar to that implemented in
other codes [31, 32] is added to the self-collisions. The
detailed description of the conservation scheme implemented
in EUTERPE can be found in [33] but we reproduce it here
for convenience. The collision operator that describes the self-
collision of any species can be expressed as

C f C f C f , 8tp fp= +( ) ( ) ( ) ( )
where C f C f f, Mtp 1=( ) ( ) is the usually referred to as test-
particle term, that describes the collisions of the perturbed
part of the distribution function against the background part,
and C f C f f,Mfp 1=( ) ( ) is the field particle term, which
captures the background reaction. In the simulations
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presented in next sections, both for the bulk ion and electron
self-collisions, the test-particle term used has been the pitch
angle collision operator:

C f f
2

1 , 9tp 1
2

1
n

x
x

x
=

¶
¶

-
¶
¶

( ) ( ) ( )

with v vx =  the pitch-angle variable, v the particle velocity
and ν the deflection collision frequency of the colliding
species

x G x
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erf
, 100 3

n n=
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and ne m vln 40
4

0
2 2

th
3n p= L for bulk ions with Z=1 and

electrons, x=v/vth, ln L the Coulomb logarithm, erf the
error function and G the Chandrasekhar function. On the
other hand, the field particle term has the following form in
order to fulfill self-adjointness of the collision operator [34]
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and G x x4s 0n n= ( ) the slowing down frequency and
x2 2 1 2E s

2n n n= - + +[ ( ) ] the energy-diffusion collision
frequency. Evaluating at each spatial bin of the simulation
domain the non-conserved number density ΔN, parallel
momentum ΔP and energy ΔE after performing the
test-particle collisional step, the coefficients  ,  and  are
obtained by imposing conservation of the respective moments
of the collision operator (8), which results in
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Finally, in section 4, where kinetic electrons have also
been considered, the collision operator employed for the
electrons colliding against the background ions, assumed to
be at rest with respect to the former, has been

C f f
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with n e m vln 4ei i e e
4

0
2 2 3n p= L , ni the bulk ion density, ve

velocity of the electrons and me their mass.

3. Potential variations in TJ-II: comparison between
ion- and electron-root plasmas

3.1. TJ-II DR system

TJ-II is a heliac-type stellarator where, for the standard con-
figuration considered for this work, the average magnetic field
is 0.95 T on axis, the rotational transform is 1.5i » at the
center of the plasma and 1.6 approximately at the edge and

the effective minor radius and major radius are a=0.2 m and
R0=1.5 m, respectively. The available heating power con-
sists of two gyrotrons delivering 300 kW each (operated both
in X-mode at the second harmonic of the electron cyclotron
frequency) and two NBI heating systems, one co- and another
counter-injecting each a port-through power of up to 700 kW.
For the results presented below, only ECH on-axis was used.
With this heating scheme the central electron density typically
reaches values of n 0.5 1 10 me

19 3» ´ -– , the electron
temperature is Te≈1–2 keV and the ion temperature Ti≈
80–100 eV.

For the experimental results discussed in this section the
technique used has been DR. It allows the measurement of
density fluctuations and their perpendicular rotation velocity
at different turbulence scales, with good spatial and temporal
resolution. From the perpendicular rotation velocity the radial
electric field, the central quantity in this section, can be
obtained. The DR system in operation at TJ-II [35] works in a
frequency hopping mode in the Q-band: 33–50 GHz, covering
typically the radial region from r/a=0.6 to r/a=0.9. Its
front-end consists of a compact corrugated antenna and an
ellipsoidal mirror. The mirror can be tilted to probe different
perpendicular wave-numbers of the turbulence in the range
k 1 14 cm 1»^

-– , at different plasma regions poloidally
separated, as both positive and negative probing beam angles
with respect to normal incidence can be selected, see figure 1.
Assuming that the electron density is constant on each flux
surface, this characteristics makes it possible to access dif-
ferent points of measurement over the same flux surface.
Apart from its interest for studying the spatial localization of
instabilities predicted in stellarators by gyro-kinetic simula-
tions [12, 36, 37], for the results presented in this work this
feature has been exploited to characterize the radial electric
field measured on the left and right regions with respect to the
incidence angle where the launched beam is normal to the last
closed flux surface. Throughout the present section these
regions are referred to as ‘left’ and ‘right’ regions, see
figure 1.

Figure 1. Schematic representation of the TJ-II vacuum vessel with
DR antenna-mirror arrangement showing the two plasma regions
that can be probed by the system. Here R R R0= -^ , with R the
cylindrical radial coordinate used below and R0 the major radius of
the device.
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3.2. Experimental and numerical results

Two pairs of TJ-II discharges are considered. The main dif-
ference between them is the sign of the radial electric field.
The first couple of discharges (#43387 and #43388) are
representative for ion root regime while the second couple of
discharges (#43391 and #43392) are for electron root. The
plasma parameters for each of these pairs are represented
in figure 2 (left) and (right) respectively. The difference
in the density profiles determines what regime is accessed.
TJ-II plasmas exhibit this ion-to-electron root change
when the line-averaged density, obtained with a microwave
interferometer [38], is close to the critical value of
n 0.6 10 me

cr 19 3~ ´ -¯ (for the standard magnetic configura-
tion and the used heating power), which standard neoclassical
calculations capture without difficulty, see e.g. [39, 40]. The
characteristic of the DR analysis that has motivated the
numerical simulations is the difference that the radial electric
field value for each set of profiles, shows when the mea-
surement is taken on the left probing region and on the right.
Or in other words, the different values of the radial electric
field measured at different points over the same flux surface.

The radial electric field was obtained for the first dis-
charge of each pair (this is for the shots#43387 and#43391)
on the left side of the DR measurement plane. For the second
of the discharges of each pair (this is for shots #43388 and
#43392) the DR beam was launched to measure the radial
electric field on the right side. It is worth recalling that the
radial electric field provided by the Doppler reflectometer,
Er

DR, is obtained from the measured plasma background
perpendicular flow u⊥ and relates to it as E u Br

DR = ^ (B the
modulus of the local magnetic field at the point where the
beam is reflected). Assuming the phase velocity of density
fluctuations much smaller than the E×B flow velocity,

E r Bv BE r0
2=  ´ , u⊥ is assumed to be equal to the latter.

Typically the value provided, Er
DR, is that of the local radial

electric field, which carries with the local dependence of the

flux expansion term r . This term is comparable in the two
plasma regions the system can access, and cannot lead to
large differences in the local radial electric field. But, since
the present work focuses on the different value of the radial
electric field at points located over the same flux surface, the
modulus of the flux expansion term has been divided out from
the experimental Er

DR in order to work with, strictly speaking,
the supposedly flux function quantity Er. This is indeed the
quantity neoclassical codes require as input. The radial elec-
tric field is represented as a function of the normalized
effective radius r/a in figure 3 (left) for the ion root dis-
charges and 3 (right) for the electron root discharges. The
points with errorbars show the experimental data, and
the solid lines correspond to different fitted curves used in the
EUTERPE simulations presented in next subsection. The
values obtained at the left side of the plane of measurement
are represented with red open squares while those taken at the
right side are represented by blue open circles. Note that the
DR system can measure over different flux surfaces by
scanning the frequency of the launched microwaves. Due to
their X-mode polarization and the dependence of the X-mode
cutoff not only on the electron density but also on the
magnetic field strength, the accessible radial range when
the beam is oriented toward the left and right regions of the
plane of measurement is not exactly the same. This fact is
reflected in the measurements shown in figure 3 and when the
numerical analysis is addressed considering the estimated
measurement positions with ray tracing techniques. As it is
observed in figure 3 (left), for the ion-root plasmas (shots
#43387/8) the difference between the radial electric field
measured at each side is small, in all the accessible radial
domain. Only around r/a=0.6 a slight separation between
them can be appreciated. On the contrary, under electron root
conditions (shots #43391/2), see figure 3 (right), the mea-
sured radial electric field is appreciably larger on the right side
than on the left side on a wide portion of the accessed radial

Figure 2. Left: radial profiles of electron density (ne, solid black line), electron temperature (Te, dashed red line) and ion temperature
multiplied by 10 (Ti, dotted blue line) considered for the EUTERPE simulations based on the TJ-II discharges #43387 and #43388 and the
data from the Thomson Scattering diagnostic (ne and Te) and the NPA (Ti) systems. Right: same quantities as on the left but considering the
TJ-II discharges #43391 and #43392.
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range. In the interval r/a=0.6–0.8 discrepancies of up to
1 kVm−1 can be observed. In the numerical analysis that
follows we try to quantify to what extent the radial depen-
dency of the potential Φ1 can introduce corrections in the total
radial electric field through the term rd d1 1-F¢ = - F .

For the numerical simulations different fitting curves for
the input ambipolar electric field have been considered. They
are depicted with solid lines in figure 3. For the ion root
scenario only one case has been used while for electron root
three have been considered, due to the ambiguity in the choice
of Er given the disparate values measured at each measure-
ment region. One of the curves considers the data measured
on the left side of the probing plane (‘fit 1’), another the data
measured on the right side of the plane (‘fit 2’) and a third one
the mean value of the previous two (‘fit 3’).

The numerical results for the ion root case are shown in
figures 4(a)–(c), where the following quantities are repre-
sented: (a) the potential variation Φ1 in a corona of the
measurement plane that covers approximately the same radial

range as the experimental data; (b) the radial electric field
term 1-F¢ resulting from the potential represented in the
previous figure. The DR measurement positions on the right
and left regions are indicated with red and blue points (these
positions have been obtained with the ray tracing code
TRUBA [41]); (c) 1-F¢ at the positions indicated in the pre-
vious plot. The results estimated on the left regions are
indicated in red color, while those concerning the right
side are indicated in blue. In figure 4(a) it is observed that
the normalized potential e Ti1F takes at different poloidal
positions near the outermost radii of the simulated region
minimum and maximum values of around −0.3 to 0.15,
respectively. This leads the modulus of 1F¢ to reach up to 400
Vm−1 approximately, comparable to the input Er at that
position, see figure 3(a). In such situation, neglecting the
radial drift Bb 1´ F at the time that the tangential
drift Bb 0´ F is retained in equation (4) is not justified.
Then, apart from the fact that the radial region with r/a0.7
has exceptionally large values of 1F¢, further quantitative

Figure 3. Left: radial electric field Er as a function of the normalized effective radius for the TJ-II ion root plasmas, discharges #43387 and
#43388. Right: the same but for the electron root plasmas from discharges #43391 and #43392. In both cases the measurements performed
on the left and right sides of the DR measurement plane are represented with red squares and blue circles, respectively. The solid lines
correspond to the input radial electric field profiles used for the Φ1 EUTERPE simulations.

Figure 4. For the ion root conditions TJ-II plasmas: (a) potential variation normalized to the ion temperature eΦ1/Ti at the Doppler
reflectometry probing plane in the range of simulated radii; (b) over the same plane, radial electric field component rd d1- F , together with
the specific positions of measurement on the left and right DR probing regions, estimated with ray tracing; (c) value of rd d1- F at those
positions where, as before, red squares and right blue circles correspond to the estimations along the left and right measurement positions
respectively.
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conclusions can difficultly be drawn from these results. On
the other hand at more internal r/a regions, where Φ1 and 1F¢
have more moderate values, one can observe in figure 4(c)
that there is barely no difference between the value of 1-F¢ on
the left measurement positions and those on the right region.
Only at around r/a=0.6 the curves in figure (c) separate
from each other a few tens of V m−1

—like in the exper-
imental measurements, see figure 2(a)—which is well below
the value of the ambipolar electric field at that position
Er≈−600 Vm−1. In that sense the numerical results agree
relatively well with the experiment.

For the electron-root plasmas the same (a)–(c) plots are
represented from top to bottom in the set of figures 5, for each
of the input Er considered for EUTERPE in a different col-
umn. Looking at the figures (1–3.c), in contrast to the ion-root
case, a more appreciable difference is observed between the
results for the left and right regions. In the three cases the

correction term 1-F¢ would make the total radial electric field
larger on the left side than on the right side, as the curve of

1-F¢ indicating the left side values is situated almost at all
radii above the curve indicating the values on the right region.
The difference between the results with different input Er are
given only on the location where the maximum differences on

1-F¢ are found. Considering the fit 1, the difference reaches up
to values of around 200 Vm−1, and these take place in the
interval r/a=0.6–0.7 and the outermost radial region. For
the fit 2 differences of up to around 250 Vm−1, larger on the
left than on the right side, are observed at around r/a∼0.75;
and finally fit 3 leads to differences that only show up
at the outermost represented radii, reaching values of around
200 Vm−1. The numerical difference for the three cases
considered are neither as large as those found in the DR
measurements shown in figure 3 (right) nor the sign coincides
numerically and experimentally. In the simulations the radial

Figure 5. For the electron root conditions TJ-II plasmas: (1–3.a) potential variation normalized to the ion temperature eΦ1/Ti at the Doppler
reflectometry probing plane in the range of simulated radii, from left to right for the input Er denoted as fit 1–3 in figure 3(b); (1–3.b) over the
same plane, radial electric field contribution rd d1- F , together with the specific positions of measurement on the left and right DR probing
regions, estimated with ray tracing techniques, for the three Er fits considered; (1–3.c) value of rd d1- F at those positions where, as before,
red squares and right blue circles correspond to the estimations along the left and right regions, respectively.
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electric field becomes larger on the left than on the right
probing regions, while in the experiments the opposite hap-
pens. However, out of the measurement positions, along any
flux surface contour over the probing plane much larger
values of 1-F¢ are achieved. See for instance the reddish
areas at the bottom right part of the DR section and the top
blue areas the contour r/a=0.5 passes through in figures 5
(1–3.b) plots. As it has been already discussed regarding the
outermost flux surfaces of the ion-root case, these large
deviations cast strong doubts about the applicability of the
trajectories, equations (4)–(6) assumed in our simulations,
since all terms related to 1F¢ have been neglected. The cor-
rection to the total radial electric field arising from 1-F¢
represents in these electron root TJ-II plasmas a significant
fraction compared to the input ambipolar electric field. In
contrast to the ion-root case, where this happened near the
outermost radial boundary only, in this electron-root example
the problem shows up at almost any of the represented flux
surfaces regardless of the considered profile of Er. This limits
our conclusion substantially, and reduces it to the statement
that in TJ-II electron root plasmas the magnitude of Φ1

and related contribution to the total radial electric field 1-F¢
can become locally a non-negligible fraction of Φ0 and Er,
respectively.

4. Potential variations in W7-X: CERC plasmas and
effect of kinetic electrons

Variations of the electrostatic potential on the flux surfaces
have so far been estimated small in W7-X plasmas and its
impact on impurity transport negligible. However, these
conclusions, drawn from the results presented in [15, 19],
cover still a very narrow parameter and configuration window
of W7-X. In particular all plasmas studied in those references
are ion root plasmas foreseen during the future W7-X

operation phase OP2. The calculations in [15] were performed
for one of the W7-X configurations with lowest neoclassical
transport, whose low effective ripple, the target figure of merit
for the neoclassical optimization and design of W7-X, is
lower than in the configurations for which most of the
experiments have been performed so far. The case studied in
this work widens the parameter window considering CERC
plasma parameters from the operation phase OP1.1 [42], in
particular the physics program 20160309.010 at the time
t=0.320. The radial profiles based on that program and
instant, used for the simulations discussed below are repre-
sented in figure 6 (left). The represented profiles are fitted to
the Thomson Scattering system [43] data for the electron
density ne and temperature Te, while the bulk ion density Ti
considers the XICS [44] experimental data. The radial profile
of Er used as EUTERPE input has been provided by the
SFINCS code and is represented in figure 6 (right).

The reasons for choosing this plasma are the following.
On the one hand, it is an example of CERC plasma [45]
where a root transition takes place. Er is positive (electron
root) at the inner core and negative (ion root) at the outer part
of the core and edge. This feature is interesting since, as
pointed out in [14], under ion root conditions the thermo-
dynamic force related to the ambipolar radial electric field
opposes to the density and temperature gradients, while in
electron root all thermodynamic forces have in general for the
ions (except deeply hollow profiles, which is not the case
here) the same sign. This leads to a larger source term in the
drift kinetic equation that forces the perturbed part of the
distribution function f1i to be larger. Since the lack of quasi-
neutrality among the charge density related to this piece of the
distribution function is what gives rise to the potential Φ1, this
reasoning should lead to expect larger Φ1 too. In addition, the
change in the direction of the E×B precession from electron
to ion root should introduce appreciable changes on the phase
of the potential. These two statements can be checked by

Figure 6. (a) Electron density (ne, solid black line), electron temperature (Te, dashed red line) and ion temperature (Ti, dotted blue line)
considered for the EUTERPE simulations based on those of W7-X program 20 160 309.010 at t=0.32 ms measured with the Thomson
Scattering (ne and Te) and the XICS (Ti) systems. (b) ambipolar radial electric field obtained with the SFINCS code (dots) considering the
profiles on the left, and the curve used as input for EUTERPE.
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comparing how Φ1 looks on each side of the radial electric
field root transition.

Furthermore the fact that the temperature of the electrons
is significantly higher than that of the ions leads to a situation
where the electron contribution ECH to Φ1 eventually may
become important. Note that in [15] the electrons are con-
sidered adiabiatic, based on the condition Ti∼Te and the
higher density of the plasmas there, and thus the electron
contribution to Φ1 is neglected. In order to know whether the
electrons may contribute to Φ1, let us recall first that for a
given magnetic configuration and for one single kinetic
energy or velocity v, the parameters to find in which colli-
sional regime each species is, are the normalized Er×B drift
velocity v E vBE r 0* = and the normalized collision frequency

R v0*n n i= ( ). See for instance [46], where several config-
urations are considered and the main thermal transport matrix
coefficients are represented as a function of *n for different
values of vE*. In particular, in the scalings depicted for the
normalized transport matrix coefficient D11*, helpful visual
references of the collisionality interval at which the 1/ν
scaling begins and when transits to the n regime are found.
This so-called mono-energetic view is somewhat limited since
the Maxwellian velocity distribution function covers a range
of velocities and not just one. In figure 7 the range of *n and
vE* values as a function of r/a are represented for electrons
and ions (H+) with velocity between v=vth and v=2vth,
considering the plasma parameters of figure 6. Looking at the
values of *n and vE* for the ion parameters and comparing
with the scanned ranges in [46] for W7-X, one can conclude
that the ions should mostly be in the n regime at the
innermost radial positions and in the plateau regime at the
edge, passing through a practically inexistent 1/ν regime.
Regarding the electrons, their much lower normalized colli-
sionality compared to that of the ions at the core make them
mainly reside in the n regime in that region as well. They

also exhibit *n values at the edge characteristic of the plateau
regime but, contrarily to the ions, the much lower vE* places
them on a more robust and wider (in collisionality) 1/ν
regime in between. This consequently should make the
electrons to be deep in the 1/ν regime on a radially wide
region of the core. Finally, since the perturbed part of the
distribution function (and consequently the perturbed part of
the density entering in the equation for the potential variation)
scales in the 1/ν regime with * *r n while in the n regime is
independent of *r and *n (with *r the normalized Larmor
radius to the stellarator size) [16, 47], the core of these
plasmas are particularly favorable to show differences
between considering kinetic or adiabatic electrons in the
calculations of Φ1. This is the numerical comparison pre-
sented and discussed in the following paragraph.

The calculations of Φ1 have been performed for nine
radial positions, approximately separated between each other
Δr/a=0.1. These radii are r/a={0.12, 0.22, 0.33, 0.41,
0.51, 0.60, 0.72, 0.80, 0.90}. As in section 3.2, the simula-
tions are local and each considers a different value of the
ambipolar radial electric field. In particular the following
values are given for each of the flux surfaces just mentioned:
Er={0.59, 3.89, 8.16, 10.95, 11.14, 9.98,−1.38,−8.52,
−10.0} kVm−1. As it is well known any local code that
keeps the tangential Er×B drift but neglects the tangential
component of magnetic drift, as it is our case, has problems
when approaching the value of Er=0, where an unphysically
large magnitude of f1 is obtained [16, 17]. For this reason we
have avoided the exact root transition flux surface where
Er=0. However, the figures of the potential on the toroidal
planes have been obtained by interpolation using the value
over the simulated flux surfaces, which passes through the
entire transition region. For this reason the results represented
in the vicinity of that radius must be taken indicatively. In
figure 8 the potential variation is represented, from top to

Figure 7. Left: normalized collision frequency as a function of the normalized effective radius for the electrons (red shadowed area) and main
ions (blue shadowed area) with velocities in the range of one and two thermal velocities considering the profiles of figure 6(a). Right:
normalized Er×B velocity for electrons (red shadowed area) and main ions (blue shadowed area) with velocities in the range of one and two
thermal velocities considering the profiles of figures 6(a) and (b).
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Figure 8. For the simulations with adiabatic electrons (left column) and kinetic electrons (right column), from top to bottom: calculated
potential for the W7-X (KJM configuration) at the toroidal planes ζ=0°, 15°, 36° and 54°. Note the different color scales on the left and
right plots, employed to appreciate the changes in the shape of Φ1 when considering adiabatic instead of kinetic electrons.
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bottom, for the toroidal planes f=0°, 15°, 36° and 54°. The
first of these toroidal planes has the practical interest that a
Doppler and a correlation reflectometer probe that plane in
order to characterize the experimental radial electric field. At
f=15° a second Doppler reflectometer is also installed. The
other two planes have been considered since the distance
between them in f is one fourth of a the machine period.
The first of them corresponds to the frequently represented
triangular plane where other essential diagnostics for impurity
transport are installed, like the soft-x rays multi-camera
tomography system [48] or the bolometry cameras [49]. The
difference between the figures on the left, with labels (a)–(d),
and on the right, with labels (e)–(h), is that while the former
show the results assuming adiabatic electrons, the latter do it
for the cases considering kinetic electrons. First of all, note
that the range in the color scale changes from plot to plot, in
order to make appreciable the changes in the shape of the
potential, that keeping the same scale for all cross sections
would not allow to appreciate. Looking at those color scales
and their ranges, it can be seen that the largest Φ1 values are
very localized on the triangular plane, where they become
much larger than on the other planes. Second, the size of the
potential for the case with kinetic electrons is roughly up to
twice as large as the results with adiabatic electrons. This is
evident on the triangular plane while on the other the differ-
ence is not remarkable. Looking at the potential at the trian-
gular plane, it is also observed that the shape experiences
appreciable changes when the electrons are considered as a
kinetic species compared to the case with adiabatic electrons.
In particular, the negative values of Φ1, that in the case with
adiabatic electrons 8(c) are located on the low field side
and below the equatorial plane, are displaced towards the
high field side when electrons are kinetic 8(g). This is also
compatible with what is known about the symmetry proper-
ties of Φ1 [50]. When only the contribution from the ions is
considered, since they must be mostly in the n regime, Φ1

must necessarily have cosine components dominating its
spectrum, leading to the clear in-out asymmetry as figure 8(c)
illustrates. When kinetic electrons are considered, since they
must, as we have hypothesized, add their contribution from
the 1/ν regime, the consequent introduction of sine comp-
onent leads that in-out asymmetry to blur as 8(g) shows.
Other changes in the shape are observed in other planes,
although not as clear as on the triangular plane.

Other features can more clearly be observed in figure 9,
where the maximum normalized potential difference ( 1DF =

T2 i1
max

1
minF - F( ) ) is represented. The results are shown for

both calculations, with adiabatic electrons and with kinetic
electrons. Roughly speaking the potential variation size is
shown to be considerably larger in the portion of the plasma
in electron root than in that under ion root. In addition, a
much larger contribution of the kinetic electron response is
observed in the first of these regions than in the second.
However, the point located in ion root immediately after the
root transition at r/a=0.6 exhibits a large value as well. A
vertical line represents the exact position where the root
changes. At that point the ambipolar electric field is rather low

Er=−1.38 kVm−1, compared to the value at the other
positions in ion root where E 7 kVr >∣ ∣ m−1. This low value
of Er can be the cause of adding a large contribution to Φ1

from ions in the 1/ν regime. Another interesting feature
results from the large variations at each side of the root
transition together with the abrupt change of its phase. To
appreciate this one can look at the triangular plane repre-
sented in figure 8(g) for the calculation including kinetic
electrons. This change is present at almost any poloidal
position in the vicinity of that radius and is given in a rela-
tively narrow region (the two radii simulated immediately
before and after the root change are separated by Δr/a=
0.09). It is then natural to ask whether this can introduce some
important contribution to the radial electric field. This cor-
rection, 1-F¢, is represented at the triangular plane, con-
sidering kinetic electrons, in figure 10. Moderate values of a
few hundreds of V m−1 are present on that cross section but
near to the root change the value is considerably larger,
reaching around 1 kVm−1, both positive and negative. In our
characteristic trajectories, see equations (4)–(6), the E×B
drift related to this component of the radial electric field is not
kept to lowest order. This is applicable since, as it happens at
almost all positions, Er is substantially larger than the repre-
sented 1-F¢. However, it becomes of the same order at the
innermost simulated radius under ion root conditions (where
as above-mentioned Er was −1.38 kVm−1). Then, to this
respect the calculations on that specific position should be
taken, as well as the conclusions drawn from it, cautiously.

5. Conclusions

The present work has addressed the calculation of the neo-
classical potential variation, with the emphasis on electron-root

Figure 9.Maximum difference of the potential 1 1
max

1
minDF = F - F

on each of the simulated flux surfaces normalized to the ion
temperature Ti as a function of the normalized effective radius r/a
for the calculations with adiabatic electrons (circles connected with
blue segments) and kinetic electrons (squares connected with red
segments). The dashed vertical line indicates the radial position
where Er=0. On the left and right of this line the input radial
electric field is positive and negative, respectively.
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plasmas. The standard configuration for TJ-II and a high mirror
configuration of W7-X have been used, considering plasma
parameters of discharges from their recent experimental
campaigns.

In TJ-II, the DR radial electric field measurements and, in
particular, the strong difference of its value at different points
over the same flux surface, has motivated looking into the
radial dependence of Φ1 and investigating to what extent the
term 1-F¢ can contribute to the total radial electric field. What
has been found by numerical simulations agrees qualitatively
with the experimental results. The difference in the total
electric field that the potential variations can make is large in
the electron root cases, although still a non-negligible factor
smaller than the experimental one. On the other hand this
correction is practically not present in the ion root plasmas,
both numerically and experimentally. These conclusions are
drawn from the comparison made at the specific measurement
positions of the DR system over the same flux surface. Out of
these locations 1-F¢ is found large both under ion and electron
root conditions. This fact questions the applicability of the
characteristic trajectories of the simulated particles, since
terms containing 1-F¢ are neglected based on its size com-
pared to 0-F¢ , although a posteriori the former is not found
that small compared to the latter. This and the possibility that
the kinetic electrons could introduce a non-negligible
contribution to the potential, as proven in the section by the
numerical simulations results for W7-X, are possible reasons
that may have frustrated a better agreement.

Regarding W7-X we have considered a configuration
with significantly larger effective ripple than the standard
configuration analyzed in past works [15]. The plasma para-
meters correspond to a standard CERC plasma from OP1.1.
The analysis has demonstrated that W7-X can access regimes
with potential variations significantly larger than what has
already been reported. In this occasion the simulations have
been performed with adiabatic and kinetic electrons. The
comparison between them have shown that the contribution
from the kinetic electron response, when the parameters are
such that in the 1/ν regime, can be significant in the size and

shape of the potential. This occurred mostly in a broad portion
of the plasma in electron root, where in addition, the resulting
size of Φ1 was considerably larger than in ion root. Other
features have been found, like the localization of these large
variations on the triangular plane of W7-X, and the smaller
values near the boundaries of the machine period. Interest-
ingly, on that triangular plane, at each side of the root
transition and at the closest radii the potential reaches its
maximum values. This, together with the fact that the phase is
the opposite on one side and the other of the root change,
gives rise to a large radial electric field term 1-F¢.
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Appendix B

Additional unpublished material

B.1 An analytical dispersion relation including Krook collisions

In cylindrical geometry with constant magnetic field and constant background-plasma profiles
an analytical dispersion relation for kinetic Alfvén waves (KAWs) can easily be calculated. Even
when a Krook-type collision operator [68], which does not add any derivatives, is present an
analytical solution can still be found. It is a very good approximation to only treat the electron
dynamics while the ions just provide a static background to satisfy quasi-neutrality, i.e. ni = ne.
The kinetic equation for this problem is given by

∂fe

∂t
+ Ṙ · ∇fe + v̇‖

∂fe

∂v‖
= −ν (fe − Fe) , (B.1)

where the index e is used to denote electrons. As usual, this equation is linearized by splitting the

distribution function into fe = f
(1)
e + Fe and keeping only the terms linear in the perturbation.

(Fe denotes the constant background.) Furthermore, using conventional notation, a plane-wave
ansatz for the perturbation

f (1)
e ∼ exp

[
i
(
k⊥ · r⊥ + k‖z − ωt

)]
(B.2)

is applied. The magnetic field is taken to point in the z-direction. This leads to

− iωf (1)
e + v‖ik‖f

(1)
e =

qe

me

(
ik‖φ

(1) − iωA
(1)
‖

) ∂Fe

∂v‖
− νf (1)

e , (B.3)

where the equations of motion

Ṙ = v‖b +
1

B
b×∇

[
φ(1) − v‖A(1)

‖

]
(B.4)

v̇‖ = − qe

me


b · ∇φ(1) +

∂A
(1)
‖
∂t


 (B.5)

have been used. Note that many terms do not contribute in a straight and constant magnetic
field or because they would be non-linear in the perturbations. The equations of motion are
those of the v‖-formulation, which has been used for the derivation presented in this section.
The calculation could however be repeated in p‖-formulation with exactly the same dispersion
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relation being found in the end. An overview of the different formulations of gyro-kinetic theory
is presented in App. B.2.

Defining a shifted frequency ω̃ = ω+iν, the kinetic equation may be recast into an expression
for the perturbation

f (1)
e =

qe

me

(
k‖φ

(1) − ωA(1)
‖

) 1

v‖k‖ − ω̃
∂Fe

∂v‖
. (B.6)

Neglecting the ion dynamics, this expression can now be inserted into the equation for the
electrostatic potential (including a Padé approximation)

mini

B2
k2
⊥φ

(1) =
(
1 + ρ2

i k
2
⊥
)
qe

∫
dv‖ f

(1)
e (B.7)

and Ampère’s law

k2
⊥A

(1)
‖ = µ0qe

∫
dv‖ v‖f

(1)
e (B.8)

in order to obtain a coupled system of equations for both potentials. The ion gyro-radius is
denoted by ρi =

√
kBTimi/(qiB). Two integrals over velocity space need to be calculated. If Fe

is chosen as a Maxwellian, one finds

I1 =

∫
d3v

1

v‖k‖ − ω̃
∂Fe

∂v‖
= − ne

v2
th,e

1

k‖

[
1 + ζ̃Z

(
ζ̃
)]

(B.9)

I2 =

∫
d3v

v‖
v‖k‖ − ω̃

∂Fe

∂v‖
=
√

2vth,eζ̃I1 (B.10)

with vth,e =
√

kBTe/me, ζ̃ = ω̃/(
√

2vth,ek‖) and Z the plasma dispersion function. After
substituting the integrals over velocity space into the field equations, the whole system may be
written in matrix form (eigenvalue problem) as



mini
B2

k2⊥
1+ρ2i k

2
⊥
− q2e

me
k‖I1

q2e
me
ωI1

−µ0
q2e
me

√
2vth,eζ̃k‖I1 k2

⊥ + µ0
q2e
me

√
2vth,eζ̃ωI1



(
φ(1)

A
(1)
‖

)
= 0. (B.11)

As usual, the dispersion relation is obtained by setting the determinant of the coefficient matrix
to zero. After some straightforward algebra the final dispersion relation is found to be

1− βe
Ti

Te

mi

me

1

ρ2
i k

2
⊥

{
ζ̃ζ − me

mi

1

βe

(
1 + ρ2

i k
2
⊥
)} [

1 + ζ̃Z
(
ζ̃
)]

= 0. (B.12)

This dispersion relation has been used in article A.1 and App. B.2 in order to compare both the
Legendre approach as well as EUTERPE to analytical theory.

Note that for setting ζ̃ = ζ (corresponding to ν = 0) the collisionless limit of the dispersion
relation given by Eq. (B.12) is recovered.

This complex dispersion relation for kinetic Alfvén waves also includes the much simpler
dispersion relation of shear Alfvén waves, which can also be obtained using, for example, MHD
theory. Here, we derive it by taking the collisionless limit (ζ̃ → ζ) of Eq. (B.12) and expanding
the plasma dispersion function for ζ → 0, which is valid for low-frequency waves. One thus
arrives at a simpler form

ω2 = v2
Ak

2
‖

[
1 + ρ2

i k
2
⊥

(
1 +

Te

Ti

)]
(B.13)
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of the KAW dispersion relation. If one finally considers the limit ρik⊥ → 0, the result is the
familiar equation [37]

ω2 = v2
Ak

2
‖. (B.14)

B.2 The different formulations of gyro-kinetic theory

Depending on the choice of independent variables to describe the reduced velocity space, there
are several different formulations of gyro-kinetic theory (see e.g. Ref. [61] for an overview). All of
them have their benefits and shortcomings. This section aims to give a short overview of some
possible formulations and tries to emphasize why certain approaches were chosen for the various
articles in this thesis.

B.2.1 The v‖-formulation

The most intuitive way to describe the reduced velocity space is to use the parallel velocity v‖
and the magnetic moment µ as coordinates. The kinetic equation for species s then becomes

∂fs
∂t

+ Ṙ · ∇fs + v̇‖
∂fs
∂v‖

+ µ̇
∂fs
∂µ

= 0 (B.15)

neglecting the collision operator. The equations of motion for the numerical marker particles are
the characteristics of the kinetic equation [60]. They can be written as

Ṙ = v‖b +
ms

qs

[
µB + v2

‖
BB?

‖
b×∇B +

v2
‖

BB?
‖

(∇×B)⊥

]

+
v‖
BB?

‖
[b×∇B + (∇×B)⊥]

〈
A‖
〉

+
1

B?
‖
b×∇〈ψ〉

(B.16)

v̇‖ = − µ∇B ·
[
b +

ms

qs

v‖
BB?

‖
(∇×B)⊥

]
− qs
ms

∂
〈
A‖
〉

∂t

− qs
ms

{
b +

ms

qs

v‖
BB?

‖
[b×∇B + (∇×B)⊥]

}
· ∇ 〈φ〉

− µ

B?
‖

[
b×∇B · ∇

〈
A‖
〉

+
1

B
∇B · (∇×B)⊥

〈
A‖
〉]

(B.17)

µ̇ = 0 (B.18)

with

ψ = φ− v‖A‖ (B.19)

B?
‖ = B +

[
ms

qs
v‖ +

〈
A‖
〉]

b · ∇ × b. (B.20)

m and q denote the particle mass and charge, respectively. In this formulation the field equations
for the electromagnetic potential (i.e. Poisson’s equation and Ampère’s law) are

−∇ ·
(min0

B2
∇⊥φ

)
=
(
1−∇ · ρ2

i∇⊥
)∑

s

qs 〈ns〉 (B.21)

−∇ · ∇⊥A‖ = µ0

∑

s

〈
j‖,s
〉
, (B.22)
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using a Padé approximation in Poisson’s equation. The field equations are easily implemented
into numerical codes as the so-called cancellation problem (see App. B.2.2) is absent, which
is the main benefit of this approach. Furthermore, v‖ is the actual physical parallel velocity
which simplifies the interpretation of any numerical results. It also facilitates the straightforward
inclusion of collisions. The main disadvantage (from a numerical point of view) of this formulation
is the partial time derivative of A‖ in the equations of motion (see Eq. (B.17)), which prevents
the use of any straightforward explicit numerical integration scheme [89, 90], for instance a
Runge-Kutta algorithm (see e.g. Ref. [91]) which is usually used in EUTERPE.

The v‖-formulation is nevertheless used in the CKA-EUTERPE model [1]. The reason is
that an ideal-MHD approximation is employed. (See articles A.2, A.4, and A.5 for details.) In
ideal-MHD theory the parallel electric field vanishes

E‖ = −b · ∇φ−
∂A‖
∂t

= 0, (B.23)

which gives a condition that can be used to eliminate the partial time derivative of the vector
potential from the equations of motion, which thus become easily usable. The simplified equation
for v̇‖ can be found in article A.2 (see page 57).

B.2.2 The p‖-formulation

Another possibility of expressing the equations is to use the so-called p‖-formulation, in which
the parallel canonical momentum (divided by the mass)

u‖ =
p‖
ms

= v‖ +
qs
ms

A‖ (B.24)

is used as coordinate in velocity space. The kinetic equation

∂fs
∂t

+ Ṙ · ∇fs + u‖
∂fs
∂u‖

+ µ̇
∂fs
∂µ

= 0 (B.25)

still has the same form (albeit living in a different space), but the equations of motion

Ṙ = u‖b +
ms

qs

[
µB + u2

‖
BB?

‖
b×∇B +

u2
‖

BB?
‖

(∇×B)⊥

]

− qs
ms

{
b +

ms

qs

u‖
BB?

‖
[b×∇B + (∇×B)⊥]

}
〈
A‖
〉

+
1

B?
‖
b×∇〈ψ〉

(B.26)

u̇‖ = − µ∇B ·
[
b +

ms

qs

u‖
BB?

‖
(∇×B)⊥

]

− qs
ms

{
b +

ms

qs

u‖
BB?

‖
[b×∇B + (∇×B)⊥]

}
· ∇ 〈ψ〉

(B.27)

µ̇ = 0 (B.28)

change. Here, the abbreviations

ψ = φ− u‖A‖ (B.29)

B?
‖ = B +

ms

qs
u‖b · (∇× b) (B.30)
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have been used. Since the transformation from v‖ to p‖ also affects the current density,1 Ampère’s
law changes to

−∇ · ∇⊥A‖ +
∑

s

µ0n0q
2
s

ms
A‖ = µ0

∑

s

〈
j‖,s
〉
. (B.31)

Comparing the p‖-formulation with the v‖-approach, it can be confirmed that the equations of
motion are simpler in the p‖-formulation. Especially the partial time derivative of the vector
potential has disappeared. In this regard, those equations are more suitable for the numerical
treatment. The drawback of the variable transformation is that Ampère’s law has gained an
additional term, the so-called skin term. The problem is that the skin term can be much larger
than the actual physical current and thus threatens to overpower the relevant dynamics. It
should, however, be cancelled exactly by the adiabatic part of j‖ [2], which is numerically not
necessarily the case. This is the origin of the so-called cancellation problem, which plagues the
p‖-approach in practice [69,92,93].

The p‖-formulation is not used in any of the EUTERPE simulations performed in this thesis.
This is partly due to the numerical issues mentioned above, but mainly because the collision
operators are formulated with the physical parallel velocity. Hence, as article A.1 showed, they
would need to be transformed to fit the p‖-formulation.

B.2.3 The mixed formulation

The so-called mixed formulation of the gyro-kinetic equations (see e.g. Refs. [69,70,94]) aims
to combine the best properties of the v‖- and p‖-formulation without adopting their respective
disadvantages. The idea was first developed in Ref. [93]. The particle Lagrangian and second-
order equations of motion for the particles were derived in a subsequent publication [70]. The
basic idea is to split the parallel vector potential into a Hamiltonian and a ‘symplectic’ part,
A‖ = Ah

‖ + As
‖. The transformation to a new coordinate in velocity space is carried out using

only the Hamiltonian part

ũ‖ = v‖ +
qs
ms

Ah
‖ . (B.32)

Defining the kinetic equation

∂fs
∂t

+ Ṙ · ∇fs + ũ‖
∂fs
∂ũ‖

+ µ̇
∂fs
∂µ

= 0 (B.33)

with this variable again leads to modified equations of motion [70]:

Ṙ =

[
ũ‖ −

qs
ms

〈
Ah
‖
〉]

b +
ms

qs

[
µB + ũ2

‖
BB?

‖
b×∇B +

ũ2
‖

BB?
‖

(∇×B)⊥

]

+ b× κ
ũ‖
B?
‖

(〈
As
‖
〉
−
〈
Ah
‖
〉)

+
1

B?
‖
b×∇

[
〈φ〉 − ũ‖

(〈
Ah
‖
〉

+
〈
As
‖
〉)] (B.34)

1The current density is defined as
〈
j‖,s
〉

= qs
∫

d3v d3R u‖fsδ (R + ρ− r) in the p‖-formulation. u‖ would
need to be exchanged with v‖ and ũ‖ in the v‖- and mixed formulation, respectively.
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˙̃u‖ = − µ∇B ·
[
b +

ms

qs

ũ‖
BB?

‖
(∇×B)⊥

]
− qs
ms

∂
〈
As
‖

〉

∂t

− qs
ms

b · ∇
[
〈φ〉 − ũ‖

〈
Ah
‖
〉]
−
ũ‖
B?
‖
b× κ · ∇

(
〈φ〉 − ũ‖

〈
Ah
‖
〉)

− µ

B?
‖

[
b×∇B · ∇

〈
As
‖
〉

+
1

B
∇B · (∇×B)⊥

〈
As
‖
〉]

(B.35)

µ̇ = 0. (B.36)

The magnetic curvature is denoted by κ. Ampère’s law in this formulation is [70]

−∇ · ∇⊥Ah
‖ +

∑

s

µ0n0q
2
s

ms
Ah
‖ = µ0

∑

s

〈
j‖,s
〉

+∇ · ∇⊥As
‖ (B.37)

and potentially still includes the cancellation problem. Similarly, the partial time derivative of
As
‖ is still present in the equations of motion. Both can be remedied by using the freedom that

the arbitrary splitting of A‖ provides to postulate another equation. Such an equation is needed
to close the system. Here, we choose ‘ideal Ohm’s law’

∂As
‖

∂t
+ b · ∇φ = 0, (B.38)

but only defined with the symplectic part of A‖. This is a good approximation for shear Alfvén

waves [69,93] and thus minimizes the skin term in Ampère’s law, which is proportional to Ah
‖ . It

further removes the partial time derivative of As
‖ in Eq. (B.35).

In order to permanently prevent the cancellation problem from re-appearing, the Hamiltonian
part of A‖ needs to remain small. Algorithmically this is achieved by resetting Ah

‖ after every

time step, by adding its value to As
‖ and then setting Ah

‖ = 0. The distribution function is
transformed back into v‖-space, which makes this approach well suited to incorporate collision
operators, which are naturally formulated using the physically meaningful v‖-coordinate. In
EUTERPE the collision step is performed after the distribution function is transformed back to
v‖-space, which happens after the particles have been advected along the characteristics of the
kinetic equation.

This formulation of the gyro-kinetic equations is used in article A.1, in which the implemen-
tation of pitch-angle collisions into the electromagnetic version of EUTERPE is benchmarked.
Simultaneously, the compatibility of the mixed formulation with collisions is validated. Such a
test is important, since the mixed formulation is the one used in fully gyro-kinetic EUTERPE
simulations. While in this thesis mainly the simplified CKA-EUTERPE model has been used,
we aim to perform non-linear simulations including collisions with the fully gyro-kinetic version
of EUTERPE in the future.

B.2.4 Comparison

Fig. B.1 shows a comparison of the v‖-, p‖-, and mixed formulation (used by EUTERPE in this
figure) of the gyro-kinetic equations. The analytical dispersion relation has been derived in
App. B.1. The example chosen for illustrative purposes is the kinetic Alfvén wave investigated
in article A.1. The simulations include a Krook operator [68], which necessitates the inclusion of
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Figure B.1: Comparison of the v‖-, p‖-, and mixed formulation (EUTERPE) of gyro-kinetics for the case of a
kinetic Alfvén wave in slab geometry presented in article A.1. The left-hand side shows the frequency of the mode.
The damping rate is shown on the right-hand side. The simulations include a Krook operator. As expected, all
approaches agree very well.

a correction term [95] in the p‖-formulation. The reason is that also in p‖ the Krook operator
needs to relax the distribution function to a Maxwellian defined with the physically meaningful
velocity (see also article A.1). On the left-hand side of the figure, which shows the frequency
dependence on k⊥ρs, all approaches agree perfectly. On the right-hand side, the damping rate
is shown. The agreement of all approaches is, again, very good. This confirms the correct
implementation of the Legendre approach for a problem that is analytically solvable. Note that
for very high values of k⊥ρs > 20 there is a slight discrepancy between the theoretical results
and the Legendre approach. This is most likely caused by insufficient numerical resolution (i.e.
the number of Legendre polynomials used to expand the distribution function).

B.3 Effect of collisions in velocity space (EUTERPE)

Article A.1 showed the direct influence of pitch-angle scattering on the structure of the perturbed
distribution function in velocity space (see Fig. 4 on page 48). However, the distribution function
was only calculated with the Legendre approach. (Since it did not fit the narrative of article
A.1, a comparison to EUTERPE was omitted.) Therefore, we present the comparison with the
EUTERPE results here.

Fig. B.2 shows the absolute value of the perturbed distribution function f
(1)
e , calculated by

EUTERPE, in velocity space. The left-hand-side column shows a collisionless simulation, while
the results including pitch-angle scattering are visible on the right-hand side. The resonance
condition is indicated as a black line in all plots. The mode numbers and the collision frequency
are the same as in Fig. 4 of article A.1.

Comparing these results with the ones shown here, it can be seen that both EUTERPE and
the Legendre approach agree very nicely for tΩi = 35 and tΩi = 70. Also in the EUTERPE
simulations (those without collisions) the perturbed distribution function becomes more and
more localized in the vicinity of the resonances.

The last row of Fig. B.2 shows the long-time behaviour, which was not investigated in article
A.1. On the right-hand side it can be seen that pitch-angle collisions have completely isotropized
the velocity space in the ξ′-variable, which is expected from analytical theory.
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Figure B.2: Perturbed electron distribution function in velocity space as calculated by EUTERPE for the same
case as shown in article A.1 (see Fig. 4 on page 48). Only the right-hand side includes pitch-angle scattering. The
distribution function calculated by EUTERPE shows the same behaviour as the one calculated with the Legendre
approach [94].
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B.4 The conservation scheme

All the collision operators introduced in Sec. 1.5 are not entirely complete. Following Ref. [66],
it must be taken into account that the linearized collision operator (F is a Maxwellian and f (1)

is the perturbation)

C (f) = C
(
f (1), F

)
+ C

(
F, f (1)

)
(B.39)

is composed of two parts. The first term describes the collisions of particles in the perturbation
with the background Maxwellian. The second term is the back-reaction on the Maxwellian.
Following standard convention these two parts will be referred to as the test-particle operator
Ctp

(
f (1)

)
, and the field-particle operator Cfp

(
f (1)

)
, respectively.

It is important to note that only the full operator conserves particle number, linear momentum,
and energy

∫
d3v

[
Ctp

(
f (1)

)
+ Cfp

(
f (1)

)]{
1, v‖, v

2
}

= 0. (B.40)

If, however, only the test-particle operator is taken into account, conservation of these moments
may be violated

∫
d3v Ctp

(
f (1)

){
1, v‖, v

2
}

= {∆N,∆P,∆E} . (B.41)

It is for this reason crucial that the field-particle operator is taken into account in numerical
simulations. To calculate it directly would however require the knowledge about the Rosenbluth
potentials [96] of the a-priori unknown f (1). Numerically, it would be possible to calculate f (1)

in each time step via binning procedures. But this operation is expensive and would introduce
particle noise [97,98] into the Rosenbluth potentials and thus ultimately also into the field-particle
collision operator. For these reasons it is numerically more advantageous to introduce an ansatz
for Cfp

(
f (1)

)
that ensures that the full operator is self-adjoined, has an H-theorem (increases

entropy), and obeys Eq. (B.40). As is reported in articles A.2 and A.7, EUTERPE uses the
scheme described in Refs. [99–101].

Thus we make the following ansatz for the field-particle operator

Cfp

(
f (1)

)
= [N (v)N + P (v)P + E (v) E ]F, (B.42)

where

N (v) = νD − 3

√
π

8
νEx

2 (B.43)

P (v) = νs

v‖
v2

th

(B.44)

E (v) = νEx
2. (B.45)

We have defined x = v/(
√

2vth) with vth =
√

kBT/m. The collision frequencies appearing in the
above equations are the deflection frequency, the slowing-down frequency, and the energy-diffusion
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frequency, respectively [66]. They are defined as

νD = ν0
Φ (x)−G (x)

x3
(B.46)

νs = 4ν0
G (x)

x
(B.47)

νE = −2νD +

(
2− 1

2x2

)
νs (B.48)

(B.49)

for self-collisions. (Work is currently in progress to extend the conservation scheme to be
applicable to inter-species collisions.) Furthermore,

ν0 =
nZ4e4 ln Λ

4πε20m
223/2v3

th

(B.50)

and Φ and G denote the error function and the Chandrasekhar function, respectively [66]. ln Λ
is the Coulomb logarithm.

The quantities N , P, and E have to be determined such that Eq. (B.40) is fulfilled in each
spatial bin of the simulation domain. This leads to a linear system

−




∆N
∆P
∆E


 =

∫
d3v

[
F




N (v) P (v) E (v)
v‖N (v) v‖P (v) v‖E (v)

v2N (v) v2P (v) v2E (v)



]

N
P
E


 (B.51)

of three coupled equations for the three coefficients which is solved by directly inverting the
3×3-matrix. (This is done only when there is more than one particle in the spatial bin. Otherwise
the matrix is singular. This sets a lower limit for the number of markers to be used in the
simulation. In practice, this limit is much lower than what is required to minimize particle noise
and thus not important.) The amount of ‘non-conservation’ (the ∆’s on the left-hand side of
Eq. (B.51)) are determined in each bin as differences after and before the test-particle collision
step. For the parallel momentum, this is done according to

∆P =
∑

p∈bin

wp

(
vafter
‖,p − vbefore

‖,p
)
, (B.52)

where p is the particle index and wp is the individual particle weight. ∆N and ∆E are treated
equivalently.

Note that some model test-particle collision operators conserve certain moments exactly. The
pitch-angle-scattering operator, for instance, conserves particle number and energy, but violates
the conservation of linear momentum. Still, all the terms in Eq. (B.42) will be kept to ensure
the conservation of all the moments also on the numerical level.

B.4.1 Benchmarking the conservation scheme

Before the conservation scheme can be used for realistic cases, it needs to be benchmarked in a
well-understood environment.

Besides its main purpose (testing the compatibility of pitch-angle collisions with the pullback
scheme [69,70]), the slab benchmark case reported on in article A.1 can also be used to verify the
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numerical implementation of the conservation scheme in the limit where only pitch-angle collisions
are included. For this purpose the Legendre approach (see article A.1) has been extended in the
sense that a momentum-conserving collision operator is now used on the right-hand side of the
kinetic equation. Formally, this corresponds to the substitution

L −→ C = L+ P (v)P
(
f (1)

e

)
Fe, (B.53)

where L is the pitch-angle-scattering operator used before. Note that for this analytical consid-
eration the fact that L conserves particle number and energy has been used. Only a momentum-
correction needs to be applied. In this case it is not necessary to solve a linear system of equations
numerically, since the analytical solution

P =

∫
d3v v‖νDf

(1)
e

/(
1

3

∫
d3v

v2

v2
th,e

νsFe

)
(B.54)

can be found. Furthermore, using the same decomposition of the perturbed distribution function
into Legendre polynomials as in article A.1, one finds for the integrals

∫
d3v v‖νDf

(1)
e =

4π

3

∫
dv v3νDf1Fe (B.55)

1

3

∫
d3v

v2

v2
th,e

νsFe =
4π

3

1

v2
th,e

∫
dv v4νsFe, (B.56)

which leads to

Pl = v2
th,e

∫
dv v3νDflFe∫
dv v4νsFe

. (B.57)

Hence, the kinetic equation in the v‖-formulation including the momentum-conserving collision
operator (first and second term on the right-hand side of the equation) is

∂

∂t

(
fl +

qe

me

v

v2
th,e

A‖δl,1

)
+ ik‖v

(
l + 1

2l + 3
fl+1 +

l

2l − 1
fl−1

)

= −νD

2
l (l + 1) fl +

νsv

v2
th,e

Plδl,1 −
qe

me
ik‖

v

v2
th,e

φδl,1

(B.58)

and can be compared to Eq. (40) from article A.1 (see page 49).
We are now in a position to compare the conservation scheme of EUTERPE with the (more

analytical) Legendre approach presented above. Note that EUTERPE also implements particle
number and energy conservation, which the Legendre approach does not. It has been found,
however, that these quantities are conserved to high accuracy (almost machine precision) for
electron-electron pitch-angle collisions.

The results of this benchmark are summarized in Fig. B.3. Next to the data already shown in
article A.1 without the momentum-conserving collision operator (black circles) the results using
momentum conservation can be seen as triangles. Note the good agreement between EUTERPE
(red) and the Legendre approach (blue). Employing the conservation scheme generally leads
to a less stable mode, i.e. it reduces the damping rate. The damping rates get closer to the
collisionless results, which are shown as a black dashed line in Fig. B.3. It can be concluded that,
for this case, neglecting momentum conservation leads to an over-estimation of the damping rate.

165



Appendix B. Additional unpublished material

-10
-5

-10
-4

-10
-3

-10
-2

-10
-1

0.1 1 10

ν0=0.15Ωi

γ
/ 
Ω

i

k⊥ ρs

EUTERPE: no momentum correction
EUTERPE: with momentum correction

Legendre approach: with momentum correction

Figure B.3: Benchmarking the momentum-conserving pitch-angle collision operator for a kinetic Alfvén wave in
slab geometry as presented in article A.1 (compare with Fig. 2 on page 47). The black line shows the EUTERPE
results without accounting for the conservation of linear momentum in the collision step. The coloured curves
show the effect of a momentum-conserving collision operator. EUTERPE and the Legendre approach agree. The
black dashed line is the damping rate without any collisions.

The same has been found in article A.2 for a more relevant tokamak case. This comparison of
the Legendre approach with EUTERPE has only been done for the three highest mode numbers
(largest k⊥ρs), since under these conditions the Legendre approach is stable in the v‖-formulation.
This is the formulation used for the implementation of the conservation scheme into the Legendre
approach. Also note that a higher particle number than in article A.1 (4.0 · 106 vs. 107 markers)
was used for EUTERPE in the case with the momentum-conserving collision operator. This is
done in order to ensure that enough particles reside in each spatial bin, which is important for
the conservation scheme to work properly.

Fig. B.4 shows a measure of the total momentum non-conservation (red circles) before the
correction step is performed in EUTERPE. The amount by which the momentum is corrected
is shown in blue. Especially when looking at the small insert, which shows a zoomed-in view,
it can easily be confirmed that the red and blue circles lie on top of each other. This is
additional confirmation that the conservation scheme is working correctly. The average value of
the momentum violation (and therefore also the correction) oscillates in time. This corresponds
to oscillations of the perturbed distribution function (and the electrostatic potential) with the
same frequency.

B.5 Implementation of the fast-ion collision operator

If one considers a plasma with a fast-ion population that is much faster than the Maxwellian
background-plasma ions it is possible to simplify the Fokker-Planck collision operator introduced
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Figure B.4: Diagnostic output of EUTERPE showing a measure of the total non-conservation of linear momentum
(red) and the subsequent correction (blue) for the largest-k⊥ρs case shown in Fig. B.3. The violation is corrected
exactly (see insert).

in Sec. 1.5 and to obtain the so-called fast-ion collision operator2 [66]

C (ff) =
1

v2τs

∂

∂v

[(
v3 + v3

c

)
ff

]

︸ ︷︷ ︸
slowing-down

+
mi

mf

v3
c

v3τs
L (ff)

︸ ︷︷ ︸
pitch-angle

. (B.59)

Here, τs is the slowing-down time and vc denotes the critical velocity. The collision operator
is composed of two terms which relate to different physical processes: The first term describes
the drag that the fast ions feel because of their interaction with the electrons and ions of the
background plasma. It is responsible for slowing down the fast ions. (Note that, because of the
first-order derivative with respect to velocity, this term can be understood as a force acting on
the fast ions.) The second term in Eq. (B.59) characterizes pitch-angle collisions of the fast ions
with the bulk ions, which are comparable in mass. The operator L is given as

L =
1

2

∂

∂ξ

(
1− ξ2

) ∂
∂ξ

(B.60)

and denotes the pitch-angle collision operator introduced in Sec. 1.5. This part of the whole
operator is more important at low fast-ion velocities and includes effects such as the isotropization
in velocity space. Pitch-angle collisions between fast ions and electrons are neglected because of
their mass difference.

Before this operator is included in EUTERPE, an operator splitting is performed. Since
the slowing-down part of Eq. (B.59) only includes a first-order derivative with respect to the
velocity v, it can be integrated into the existing advection step of EUTERPE in which the
numerical particles are pushed along the characteristics of the kinetic equation. Combining the

2For the reasons given in article A.5 a more complete version of the fast-ion collision operator is used in the
standard EUTERPE simulations.
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slowing-down part with the existing advection step is beneficial, since a more accurate numerical
integrator can be used (usually a fourth-order Runge-Kutta method). Ref. [67] and article A.1
describe how a first-order stochastic scheme is used for the remaining pitch-angle part.

However, one subtlety remains: Eq. (B.59) is defined in a (v, ξ) velocity space, while
EUTERPE operates in

(
v‖, µ

)
space. Hence, the equations of motion, which for the slowing-

down part of Eq. (B.59) are given as

v̇ = −v
3 + v3

c

v2τs
, ξ̇ = 0, (B.61)

have to be transformed according to

v =
√
v2
‖ + 2µB, ξ =

v‖
v
. (B.62)

Inverting this system yields

v‖ = vξ, µ =
v2
(
1− ξ2

)

2B
(B.63)

making it possible to transform the equations of motion from (v, ξ) to
(
v‖, µ

)

v̇‖ = v̇ξ + vξ̇ = −v
3 + v3

c

v2τs

v‖
v

= −
v‖
(
v3 + v3

c

)

v3τs
(B.64)

µ̇ =
2vv̇

(
1− ξ2

)
− 2v2ξξ̇

2B
(B.65)

=
vv̇
(
1− ξ2

)

B
= −v

3 + v3
c

v2τs

v

B

(
1− ξ2

)
= −v

3 + v3
c

vBτs

(
1− ξ2

)
. (B.66)

Note that this simplified fast-ion collision operator was derived under the assumption that the
fast ions are much faster than the background-plasma ions, but slower than the electrons [66].
In a particle simulation, the fast ions are loaded with a velocity distribution, which means that
there exist ‘slow’ fast ions which are slower than the bulk ions. While for the initial benchmark
presented below Eqs. (B.64) and (B.66) have been implemented, physically more meaningful
cases have been investigated in articles A.3, A.4, and A.5 using a less simplified collision operator,
which behaves asymptotically correctly for small velocities. Its derivation is presented in article
A.5.

B.5.1 Testing the implementation

The implementation of the slowing-down part of the fast-ion collision operator (recall that the
pitch-angle part has already been tested in article A.1) is now verified for a simplified case. The
kinetic equation

∂ff

∂t
− 1

v2τs

∂

∂v

[(
v3 + v3

c

)
ff

]
= Sδ (v − vbirth) (B.67)

is solved only for the fast-ion species. Bulk ions and electrons are not considered in this simulation.
The parameters of this case are chosen as (in normalized EUTERPE units)

τs = 1, vc = 1, B = 1, vbirth = 2 (B.68)

for simplicity.
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Figure B.5: Initial distribution of particles in velocity space. The particles are uniformly distributed in a
spherical velocity space.

We start with an initial distribution of particles in velocity space as shown in Fig. B.5. This
distribution is chosen to be proportional to v−2 since this corresponds to uniformly distributed
particles in a spherical velocity space. More precisely, f (v) J = const., with J being the Jacobian,
is enforced. When the simulation begins, the 106 numerical particles that make up the initial
distribution are pushed towards v = vbirth. However, at this stage, the particles do not follow
their ‘real’ equations of motion. Instead, v̇ = −1 is used. This corresponds to

v̇‖ = −
v‖
vτs

(B.69)

µ̇ = −v
(
1− ξ2

)

Bτs
(B.70)

in the EUTERPE implementation. The reason why these ‘artificial’ equations of motions are
used in the initial phase of the simulation is to account for the fact that the flow of particles
should be incompressible until they reach v = vbirth. Together with the choice of the initial
shape of the distribution, this provides a particle source that is constant in time.

Once a particle fulfils the condition v ≤ vbirth for the first time, its velocity is reset to
v = vbirth and it is assigned a random pitch angle ξ = cos [πU (0, 1)], where U is a uniform
distribution of random numbers. From this the initial values for v‖ and µ can be calculated.
Furthermore, from now on the ‘real’ equations of motion are solved for that particle and its
weight is allowed to evolve. The weight equation is given as

ẇ = Sδ (v − vbirth) (B.71)

where, for numerical reasons, the delta distribution is extended to a narrow rectangle centred
around vbirth. Thus, in practice the right-hand side of the weight equation is

Sδ (v − vbirth) =

{
1 for |v − vbirth| ≤ 0.025

0 otherwise
. (B.72)
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Figure B.6: Final distribution of particles in velocity space. The simulation result (red) matches the theoretically
expected shape for the slowing-down distribution function (black), which is the analytical solution of Eq. (B.67)
in steady state [66].

After 104 time steps with ∆t = 5.0 · 10−4 a final particle distribution as depicted in Fig. B.6
is formed. This distribution is obtained by generating a histogram of the final particle velocities
taking into account the numerical weight of each particle. Furthermore, the result is divided by
v2, proportional to the Jacobian in spherical coordinates. Note how the red curve obtained by
EUTERPE and the theoretical curve (black) agree very well. The theoretical curve corresponds
to the steady-state solution of Eq. (B.67)

ff (v) =
const.

v3 + v3
c

H (vbirth − v) (B.73)

with H denoting the Heaviside step function. The constant in Eq. (B.73) is calculated from
a fit to the EUTERPE result. The reason why the EUTERPE result becomes more noisy for
lower velocities is that, in the original curve, where the division by v2 was not yet performed,
only few particles are present at low velocities. Therefore the particle noise, inherent to any
PIC simulation (see, for instance, Refs. [97, 98]), is stronger. Obviously, the noise level could be
decreased by using more particles.

For v ≤ 0.25 no data are available from EUTERPE, since a numerical cut-off for low velocities
has been implemented, the reason being that the equation of motion for v is highly non-linear
and |v̇| increases rapidly for v → 0. After a particle has crossed into the region of the numerical
cut-off its equations of motion are no longer integrated in time. Avoiding the need of a cut-off is
part of the reason why the operator was modified in article A.5. Furthermore, if µ is very small
it can become negative due to small numerical errors. As this is not physical, the sign of µ is
then changed artificially.
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B.6 Evolving multiple modes in a single simulation

Here, we show first results of the newly implemented multi-mode version of CKA-EUTERPE,
in which multiple modes are evolved together in a single simulation. This is a significant
improvement of the previous model as it allows for the transfer of energy between the modes.
Furthermore, the modes can influence each other via their combined interaction with the fast-ion
distribution function in a non-linear simulation. We thus expect the non-linear results (like
frequency chirping and the initial and long-term saturation levels) to change in a multi-mode
simulation. Note that in realistic experimental conditions a variety of modes can ‘be active’ at
the same time (see e.g. Refs. [4, 88]), a fact that is accounted for in the multi-mode model.

We have shown in previous simulations (see articles A.2 and A.3) that a single Alfvén
eigenmode saturates non-linearly by wave particle trapping [8, 73] accompanied by a local
flattening of the fast-ion density profile. The present case, including multiple modes, could be a
scenario in which the combination of multiple modes leads to a flattening of the fast-ion density
profile throughout the entire radial domain.

In CKA-EUTERPE, the multi-mode model is implemented as follows [102]: As before, the
CKA code [71] is used to determine the frequency and eigenmode structure of the Alfvén waves.
But now, more than one mode is considered and transferred to EUTERPE. The power transfer
remains mode-specific, meaning that it is calculated for each mode k individually

Pk = −
∫

dΓ B?
‖
[ m

ZeB
b×

(
v2
‖κ + µ∇B

)
·
(
Ze∇⊥φ∗k (r, t) f (1)

)]
. (B.74)

Accordingly, the amplitude equations are modified to

∂φ̂k
∂t

= iωk

(
Â‖,k − φ̂k

)
+ 2 (γk (t)− γd,k) φ̂k and

∂Â‖,k
∂t

= iωk

(
φ̂k − Â‖,k

)
, (B.75)

where

γk(t) =
∑

l

T−1
kl Pl (B.76)

and γd,k are the mode-specific growth rates and an array of externally specified damping rates,
respectively. As is shown below, we can use STAE-K (see article A.6) to calculate the damping
rates. The quantity

Tkl = exp [i (ωk − ωl) t] φ̂kφ̂∗l
∫

d3r
mini

2B2
(∇⊥φ0,k) · (∇⊥φ0,l)

∗ (B.77)

is the so-called mode coupling matrix. This hermitian matrix ultimately governs the exchange of
energy of the modes and thus couples their temporal evolution. In a non-linear simulation, it is
important that the particles react to the combined perturbed field, which is calculated according
to

φ (r, t) =
∑

k

φ̂k (t)φ0,k (r) exp (iωkt) (B.78)

as a linear superposition of all modes. A‖ is treated equivalently. Considering only one mode,
the whole system of equations (Eq. (B.74) – Eq. (B.78)) reduces to the previous single-mode
case. (See Eq. (12) – Eq. (15) on pages 57 and 58.)
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Figure B.7: Shear Alfvén wave continuum for the multi-mode benchmark case. The black circles indicate the
continuum modes. The three horizontal lines illustrate the frequencies of the eigenmodes in the TAE gap. The
length of the lines is equal to the full width at half maximum of the respective radial eigenfunctions.

B.6.1 Case description

As a first test case for the multi-mode version, we use a variant of the ITPA tokamak benchmark
case [43,44]. A notable difference is that we reduce the major radius to R0 = 3 m, resulting in
an aspect ratio of R0/a = 3. The q-profile is chosen as

q (s) = 1.71 + 0.48s [1− erfc (4s)] (B.79)

in an effort to yield broad modes with sufficient radial overlap. s denotes the normalized toroidal
flux. For simplicity, the equilibrium used for the VMEC [103] calculations has zero pressure,
i.e. β = 0. The fast-ion density profile is chosen as

nf (s) = nf,0 (1− 0.95s) (B.80)

with nf,0 = 2.0 · 1017 m−3. The temperature profiles of the fast ions and the bulk plasma are
flat with Tf,0 = 400 keV and Tb,0 = 1 keV, respectively. All other parameters are as defined in
Refs. [43, 44]. For simplicity, collisions have been neglected throughout this section.

The shear Alfvén wave continuum for this case, calculated by the CONTI code [104], is
depicted in Fig. B.7. We limit the view to the TAE gap, which due to the choice of parameters,
is open throughout the entire minor radius. Within this gap, three discrete eigenmodes are
found by CKA. Their radial structure is shown in Fig. B.8. Due to their radial localization the
modes are labelled ‘core’, ‘middle’, and ‘edge’, respectively. As can be seen in the figure, the
middle and edge mode overlap strongly. The core mode, on the other hand, is less coupled to the
other two. The real frequencies of the modes are: ωcore = 1.31 · 106 s−1, ωmiddle = 1.16 · 106 s−1,
and ωedge = 1.01 · 106 s−1. For this benchmark, we choose modes with the same toroidal mode
number (n = −6), but different poloidal mode numbers. Thus, the modes couple linearly via the
mode coupling matrix. Non-linearly the modes couple via the fast-ion density profile.
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Figure B.8: Radial structure of the global eigenmodes (all TAEs) considered in this scenario. Due to their radial
localization the modes are labelled ‘core’, ‘middle’, and ‘edge’ (from left to right), respectively. There is significant
radial overlap between the middle and edge mode.
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Figure B.9: Contributions of various physical mechanisms to the overall damping rates of the modes. The
calculations are carried out using STAE-K (see article A.6). The left-hand side shows the damping rates in
SI-units, the right-hand side normalized to the mode-specific linear growth rates. For all modes electron Landau
damping is the largest contributor. On the other hand, ion Landau damping can be neglected.

Note that Ref. [105] reported that the number of particles required to achieve converged
results increases with the number of modes considered in the simulation. In the EUTERPE
simulations, we use Np = 106 numerical marker particles to get converged results. The time step
is ∆t = 20 Ω−1

i .

B.6.2 Damping rates

Recall that in the CKA-EUTERPE model the damping rate γd is an external parameter. It has
to be calculated by another code. Since CKA-EUTERPE is intended to be used for stellarators,
we need a tool which can compute the damping rates of the eigenmodes in stellarator geometry.
Here, we use STAE-K (introduced in article A.6) for this purpose. It can compute the total mode
damping which is a combination of continuum [41,45], radiative [47], and background-plasma
Landau damping [46]. All these contributions to γd are shown in Fig. B.9. Note that in the new
multi-mode version, each mode is generally damped differently. The left-hand side of the figure
shows the damping rates in SI-units. On the right-hand side the damping rates are normalized
to the individual growth rates of the modes (using linear growth rates measured in a non-linear
calculation without damping which is not shown here). For all modes, electron Landau damping
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Table B.1: Initial growth rates (including damping) of the Alfvén eigenmodes in the linear phases of the
simulations for both the single-mode and multi-mode model.

mode γ/s−1 (single-mode) γ/s−1 (multi-mode)

core −2.90 · 103 −2.95 · 103

middle 1.57 · 104 1.51 · 104

edge 1.36 · 104 1.43 · 104
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Figure B.10: Comparing the temporal development of the mode amplitudes in single-mode (light colours) and
a multi-mode simulation (dark colours). The damping rates have been calculated by STAE-K. Considering the
modes as independent or evolving them together leads to significant differences. This is most apparent for the
core and middle modes and less so for the edge mode.

is the largest contributor. The strengths of radiative and continuum damping depend very much
on the mode itself. The core mode has negligible continuum damping, since it is highest in
frequency and therefore lies entirely in the TAE gap. As expected, background-ion Landau
damping could have been neglected.

The ratio γd/γL equals 1.51, 0.44, and 0.49 for the core, middle, and edge mode, respectively.
Hence, the damping outweighs the drive for the core mode. It is expected to be stable in a
single-mode simulation.

B.6.3 Multi-mode results

Knowing now the damping rates of all modes, we can perform a non-linear multi-mode simulation
including both damping and fast-ion drive. The effective linear growth rates, γ = γL − γd,
are listed in Tab. B.1, where we compare the single-mode results with the ones obtained in
the multi-mode simulation. As expected, the growth rates are similar, but some measurable
differences are visible. The largest change is seen for the edge mode, for which γ changes by 5%.
In Fig. B.10 we directly compare the time evolution of the mode amplitudes in the single-mode
simulations (light colours) to the multi-mode results (dark colours). Very clearly, differences
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Figure B.11: Fast-ion density profile at the beginning (dashed black line) and end of the single-mode (coloured
lines) and multi-mode (black line) simulations. Considering the single-mode simulations, only the edge mode can
flatten the fast-ion density profile. In a multi-mode simulation, however, the flattening is much stronger.

are visible: While the core mode, due to its low growth rate in the absence of damping, is
stable – once damping is taken into account – and saturates at a very low level in a single-mode
simulation, the same mode is destabilized in the multi-mode simulation. It then grows with a
rate similar to that of the other two modes. The saturation level is enhanced by four orders of
magnitude, which clearly shows that estimates linking the linear growth rate and the saturation
level (like the ones in Refs. [9, 10,73, 106]) should be taken with care. Overall, the behaviour of
the core mode is strongly linked to the dynamics of the other two.

A similar observation, albeit not quite as extreme, can be made for the middle mode. In the
single-mode simulation this mode decays after its initial saturation (first maximum of the mode
amplitude after the linear phase) at t ≈ 0.6 ms. In the multi-mode simulation, on the other
hand, the mode continues to grow, which results in a significantly enhanced saturation level. The
difference is between one and two orders of magnitude. In the multi-mode simulation the middle
mode shows short-period oscillations that could be linked to frequency chirping. The edge mode,
despite having a higher γd/γL-ratio exhibits no oscillations. Moreover, the edge mode shows
only small differences as far as comparing the single and multi-mode simulation is concerned.

Note that Fig. B.10 is very reminiscent of Fig. 13 in Ref. [105], which shows features like
significantly enhanced saturation levels and originally stable modes becoming destabilized by
the multi-mode interactions that we also observe. This can be expected due to the closeness
of the models (here: STAE-K and CKA-EUTERPE vs. the LIGKA / HAGIS model [107] in
Ref. [105]) even though different cases have been considered.

The effects that the modes have on the fast-ion density profile individually and combined,
respectively, is shown in Fig. B.11. The initial profile is shown as a dashed black line. The final
profiles at the end of the non-linear simulations are shown as full lines. Colour indicates the
single-mode results, while the black line corresponds to the multi-mode simulation including
the combined effect of all modes. It can be observed that the core and middle mode alone do
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not lead to any measurable change in the density profile. This is expected due to their very low
saturation levels in the single-mode simulations. The edge mode, with its practically unchanged
saturation level on the other hand, can flatten the density profile non-linearly.

In the multi-mode simulation, however, a much stronger flattening is observed. This can be
attributed to two leading causes: Firstly, the saturation levels of all modes (though mainly core
and middle mode) are enhanced in the multi-mode simulation. Secondly, the radial overlap of
multiple modes present in a single simulation can lead to higher transport since the particles
‘see’ a much broader fluctuation. This assessment is supported by the fact that the profile is
most strongly flattened around s ≈ 0.4, which coincides with the location of the middle mode
that saturates on a lower level than the edge mode.

The plan for the future is to verify this multi-mode version of CKA-EUTERPE against the
LIGKA / HAGIS model [105,107] and then to perform simulations for W7-X.
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Nomenclature

Abbreviations

AE Alfvén eigenmode

ASDEX-U Axisymmetric Divertor Experiment Upgrade, a tokamak in Germany

BAE Beta-induced Alfvén eigenmode

EAE Ellipticity-induced Alfvén eigenmode

EPM Energetic-particle mode

FLR Finite Larmor radius

FOW Finite orbit width

GAE Global Alfvén eigenmode

HAE Helicity-induced Alfvén eigenmode

ICRH Ion-cyclotron-resonance heating

ITPA International Tokamak Physics Activity

JT-60U Japan Torus-60 Upgrade, a tokamak in Japan

KAW Kinetic Alfvén wave

KTAE Kinetically modified TAE

LHD Large Helical Device, a stellarator in Japan

MAE Mirror-induced Alfvén eigenmode

MHD Magnetohydrodynamics

NBI Neutral beam injection

NSTX National Spherical Torus Experiment, a tokamak in the United States of America

PIC Particle in cell

TAE Toroidicity-induced Alfvén eigenmode
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Nomenclature

TFTR Tokamak Fusion Test Reactor, a tokamak previously operated in the United
States of America

TJ-II Tokamak de la Junta de Enerǵıa Nuclear II, a stellarator in Spain

W7-AS Wendelstein 7-AS, a stellarator previously operated in Germany (predecessor of
W7-X)

W7-X Wendelstein 7-X, a stellarator in Germany

Codes

ASCOT A particle-following code able to calculate the distribution function of fast ions in
tokamaks and stellarators [6, 7, 108]

CKA An eigenvalue code able to calculate Alfvén eigenmode frequencies and mode
structures in tokamaks and stellarators [71]

DKES A local drift-kinetic neoclassical transport code [109]

EUTERPE A three-dimensional non-linear particle-in-cell code that can be used to calculate
frequencies, growth rates, and mode structures of electrostatic micro-turbulence
and electromagnetic Alfvén eigenmodes (used for the majority of the work pre-
sented in this thesis)

NTSS A neoclassical transport code especially designed for stellarators [75]

SFINCS A drift-kinetic neoclassical transport code for non-axisymmetric configurations,
includes full linearized Fokker-Planck collision operator [110]

STAE-K A shooting code, including kinetic effects non-perturbatively, able to calculate
frequencies, growth and damping rates, as well as mode structures of Alfvén
eigenmodes in tokamaks and stellarators [57]

General

a(0) Unperturbed part of a general quantity a

a(1) Perturbed part of a general quantity a

a⊥ Part of a general vector a that is perpendicular to the magnetic field

a‖ Part of a general vector a that is parallel to the magnetic field

i, e, f Labels ions, electrons, and fast ions, respectively

Symbols

A Vector potential

a Minor radius of the toroidal device

Ah
‖ Hamiltonian part of A‖

As
‖ Symplectic part of A‖
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β Kinetic pressure of the plasma normalized to magnetic pressure (plasma beta),
β = 2µ0kBTn/B

2

B Vector of the magnetic flux density (called ‘magnetic field’ throughout the thesis)

b Unit vector along the background magnetic field

B Magnitude of the magnetic field

B?
‖ The Jacobian of gyro-centre coordinates

C Collision operator

Cfp Field-particle collision operator

Ctp Test-particle collision operator

δB Perturbed magnetic field (usually denotes the poloidal component)

δBsat The value of δB at saturation (first maximum after the linear phase)

δf Deviation of the distribution function from the chosen control variate (usually
the background)

δn Density change induced by the presence of a mode

∆N,∆P,∆E Errors made in the conservation of particle number, linear momentum, and energy
by just including the test-particle collision operator

∆t Time step in the simulation

∆ Usually denotes the Shafranov shift

δω A frequency change

δl,l′ Kronecker delta

dΓ Infinitesimal phase-space element

ε0 Vacuum permittivity, ε0 = 8.854 · 1012 Fm−1

E Electric field

e Elementary charge, e = 1.602 · 10−19 C

Emax Maximum injection energy of the NBI system

Er Radial electric field

F (also f (0) and f0) Equilibrium (background) distribution function, fM specifically
denotes a Maxwellian background

f Distribution function (also denotes the mode frequency in Hz)

f (1) (also f1) Perturbed part of the distribution function
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Nomenclature

fl Coefficients for the expansion into Legendre polynomials

γ Imaginary part of the complex frequency: growth or damping rate

γd Damping rate (external parameter in CKA-EUTERPE)

γL Linear growth rate

H Heaviside step function

ι Rotational transform

i Imaginary unit

j Vector of the current density

κ Curvature of the magnetic field lines

k Wave vector of the mode, with perpendicular and parallel components k⊥ and k‖
(also km,n), respectively

kB Boltzmann constant, kB = 1.381 · 10−23 JK−1

ln Λ Coulomb logarithm

L Pitch-angle collision operator

µ Magnetic moment per mass, µ = v2
⊥/(2B) (also denotes mode coupling in poloidal

direction)

µ0 Vacuum permeability, µ0 = 4π · 10−7 Hm−1

m Poloidal mode number (also denotes particle mass, which is sometimes denoted
by M)

N ,P, E Coefficients in the field-particle collision operator

ν Collision frequency (also denotes mode coupling in toroidal direction)

νD Pitch-angle scattering frequency

νE Energy diffusion frequency

νKrook Rate at which the distribution function is rebuilt using a Krook operator

νs Slowing-down frequency

ν‖ Parallel velocity diffusion frequency

n Toroidal mode number (also denotes particle density, which is sometimes denoted
by N)

N,P,E Functions used as a linear combination in the field-particle collision operator

Np Number of numerical marker particles used in simulations (also denotes number
of field periods, which is sometimes denoted by N)
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Ω Gyration frequency, Ω = qB/m

ω Mode frequency in rad/s−1

ωb Bounce frequency of a particle trapped in the wave

φ̂, Â‖ Complex amplitudes of φ and A‖ in the CKA-EUTERPE framework

φ (also Φ) Electrostatic potential

φ1 Neoclassical electrostatic potential variation on a flux surface

ϕ (also φ) Toroidal angle

p Pressure

p‖ Parallel canonical momentum, p‖ = mv‖ + qA‖

Pl The lth Legendre polynomial

q Safety factor (also denotes particle charge)

R Gyro-centre position of the particle

r Spatial position

ρ (thermal) gyro-radius of a particle, ρ = vth/Ω (also denotes the mass density of
the plasma)

ρs Sound gyro-radius, ρs =
√
kBTemi/(qiB)

R0 Major radius of the toroidal device

s Normalized toroidal flux, s = r2/a2 (radial coordinate usually used in stellarators)

τs Slowing-down time

θ (also Θ) Poloidal angle

T Temperature

t Time

ũ‖ Parallel velocity coordinate in the mixed formulation, ũ‖ = v‖ + q/mAh
‖

u Magnitude of the velocity in the p‖-formulation

u‖ Parallel velocity coordinate in the p‖-formulation, u‖ = v‖ + q/mA‖

v Magnitude of the particle velocity in the v‖-formulation

vA Alfvén velocity, vA = B/
√
µ0mini

vc Critical velocity

vth Thermal velocity, vth =
√
kBT/m
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Nomenclature

v‖ Parallel velocity in the v‖-formulation

ξ Pitch-angle variable, ξ = v‖/v

ξ′ Pitch-angle variable in the p‖-formalism, ξ′ = u‖/u

Z Charge number of the particle (also denotes the plasma dispersion function)

z Direction parallel to the magnetic field
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