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Oxidative stress and microcirculatory flow abnormalities
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Patients with atrial fibrillation (AF) often present with typical angina pectoris and mildly
elevated levels of cardiac troponin (non-ST-segment elevation myocardial infarction) during
an acute episode of AF. However, in a large proportion of these patients, significant coro-
nary artery disease is excluded by coronary angiography, which suggests that AF itself
influences myocardial blood flow. The present review summarizes the effect of AF on the
occurrence of ventricular oxidative stress, redox-sensitive signaling pathways and gene
expression, and microcirculatory flow abnormalities in the left ventricle.

Keywords: angiotensin, atrial fibrillation, microvascular flow, oxidative stress

INTRODUCTION
Angina pectoris is a typical symptom in patients with parox-
ysmal atrial fibrillation (AF). In most of these patients, angina
pectoris is associated with mildly elevated cardiac troponin (cTn)
levels suggesting a non-ST-segment elevation myocardial infarc-
tion (NSTEMI). However, in a large proportion of these patients,
significant coronary artery disease can be excluded by coronary
angiography despite clinical symptoms (Fuster et al., 2006; Brown
et al., 2007). Although the elevated ventricular rate during AF
may contribute to the symptoms of angina pectoris (Fuster et al.,
2006), angina pectoris develops also in patients with a slow ven-
tricular rate and most patients tolerate fast ventricular rates in
sinus rhythm without any clinical symptoms (Van Gelder et al.,
2002; Wyse et al., 2002). Recent reports suggest that myocar-
dial blood flow is reduced, whereas coronary vascular resistance
is elevated in patients with AF (Kochiadakis et al., 2002; Range
et al., 2007). One potential link between AF, abnormal ventric-
ular perfusion, and cardiomyocyte dysfunction is the occurrence
of oxidative stress and the disruption of redox signaling through
activation of the nicotinamide adenine dinucleotide phosphate
oxidase (NADPH oxidase; Kern et al., 2006; Camici and Crea,
2007; Doughan et al., 2008). Repetitive episodes of AF-induced
ventricular ischemia may contribute to the development of a
pathological vicious cycle combining AF and left ventricular (LV)
dysfunction.

VENTRICULAR OXIDATIVE STRESS AND SIGNAL
TRANSDUCTION DURING AF
Reactive oxygen species (ROS) are generated under physiologi-
cal conditions in the cardiovascular system and act as second
messengers in numerous redox-sensitive signal transduction path-
ways (Figure 1). However, under pathophysiological conditions,
chronically elevated amounts of ROS may exert oxidative stress.
Historically, the term “oxidative stress” was defined as an imbal-
ance between the generation of ROS and the capacity of the defense
systems (Cadenas et al., 1982). During the past decade, this model
has evolved based on some key findings: the production of dif-
ferent oxidants affects distinct presets of target proteins through
modifications that are specific both with respect to the oxidant
and the site of modification, most frequently well-defined cys-
teinyl side chains. The so-called antioxidant redox systems in the
different cellular compartments, e.g., glutathione, NADPH, thiore-
doxin (Trx), and peroxidases such as the peroxiredoxins (Prx), are,
however, not in equilibrium and independently maintained at dis-
tinct redox potentials. Oxidative stress may thus, more timely, be
defined as the chronic disturbance of redox circuits and redox-
responsive signal transduction pathways (Ghezzi et al., 2005;Jones,
2006, 2008).

Oxidative stress has been implicated as playing a critical
role in the pathophysiology of heart and cardiovascular dis-
eases such as heart failure, LV hypertrophy, coronary heartdisease,
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FIGURE 1 | Schematic summary of different interactions between atrial fibrillation, oxidative stress, and flow abnormalities. Abbreviations should be
included here are explained in the text.

cardiac arrhythmia. It appears that the oxidative events initiate
the disease-dependent tissue remodeling and promote its prop-
agation. Oxidative stress is associated with microvascular flow
abnormalities and occurs immediately after new-onset AF likely
representing key initiator mechanisms of AF-related ventricular
remodeling. This has been shown in patients with lone recur-
rent AF and for rapid atrial pacing models (Kochiadakis et al.,
2002; Bukowska et al., 2008, 2012; Goette et al., 2009). Irreg-
ular RR intervals are considered to be responsible for compro-
mised coronary blood flow reserve, thus preventing the adequate
attainment of the increased oxygen demand due to tachycardia
(Kochiadakis et al., 2002). In addition, increased catecholamine
levels via α-adrenergic vasoconstriction may further contribute
to AF-induced ischemia (Heusch et al., 2000; Heusch, 2008). AF-
dependent cardiac remodeling, especially fibrosis, may well con-
tribute to long-term restriction of microcirculation (De Boer et al.,
2003). Resulting imbalances of myocardial oxygen supply and
myocardial oxygen demand lead to the specific activation of redox-
sensitive signaling pathways, that are either protective or part
of the pathophysiological process causing onset and progression
of AF.

Ischemia facilitates the onset of AF by altering cellular ionic
homeostasis, in particular via tachycardia-induced intracellular
calcium and sodium overload. Increased spontaneous ectopy is
due to increased NCX currents and spontaneous Ca2+-release
events (Nishida et al., 2011). In pulmonary veins (PV), hypoxia-
induced EAD, and delayed after-depolarizations (DAD) as well

as reoxygenation-induced PV burst firing represent important
proarrhythmogenic mechanisms (Lin et al., 2012).

Coronary flow can be estimated in vivo using wire-based sys-
tems (Goette et al., 2009; Bukowska et al., 2012). Coronary flow
reserve (CFR) measurements can be measured using a pressure
temperature sensor-tipped guidewires, which allow the simulta-
neous determination of the fractional flow reserve (FFR). CFR
measurements are influenced by flow abnormalities in the epicar-
dial arteries and the microcirculation. In contrast, reduced FFR is
specific to epicardial lesions. Recent studies can clearly show that
acute episodes of AF induce oxidative stress in the LV myocardium
and compromise microvascular blood flow (Goette et al., 2009;
Bukowska et al., 2012).

Although it is well established that ischemia creates a sub-
strate for AF maintenance (Sinno et al., 2003; Rivard et al., 2007),
the effects of AF on ventricular microcirculation and underlying
pathways are less well understood. Impaired intracellular Ca2+-
handling as described above together with elevated cardiac and
systemic angiotensin II levels are two important factors which very
likely contribute to the AF-dependent activation of redox-sensitive
signaling pathways in the ventricles. These will be discussed in
more detail below.

VASOCONSTRICTORY PEPTIDES REGULATING CORONARY FLOW
Angiotensin II
Vasoactive peptides such as angiotensin II (AngII) and endothe-
lin (ET) play important roles in the regulation of cardiovascular
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function as well as in the pathogenesis of heart and cardiovascular
diseases. AF has been associated with increased plasma and tissue
levels of angiotensin II (AngII) (Cardin et al., 2003; Goette et al.,
2008), which are resulting from increased expression/activity of
ACE (Goette et al., 2000).

Angiotensin II mediates its major hemodynamic and patho-
physiological effects via the AT1 receptor. Six hours of rapid atrial
pacing is sufficient to elevate plasma AngII levels suggesting the
very early involvement of this vasoactive molecule in the patho-
genesis of AF (Goette et al., 2008). The activation of the AT1
receptor induces a cascade of phosphorylation events that even-
tually activates MAP kinases, which stimulate the proliferation
of fibroblasts, cellular hypertrophy, and apoptosis. Furthermore,
activation via the AT1 receptor releases calcium from intracellu-
lar stores and activates protein kinase C (PKC). PKC regulates
the function of calcium and potassium channels, and phosphory-
lates p47phox regulatory subunit. The phosphorylation of p47phox

plays a pivotal role in the activation of NOX2/NOX1 by providing
physical binding domains to another regulatory subunit p67phox

(Fontayne et al., 2002). It is noteworthy that both the MAP kinase
as well as the calcium/PKC signaling pathways respond to ROS
themselves and are regulated by redox effector molecules from the
Trx family of proteins (Berndt et al., 2007; Matsuzawa and Ichijo,
2008).

At the atrial level, it is well established that AngII upon bind-
ing to its preferred receptor, AT1R, leads to the activation of
NADPH oxidase (Oudot et al., 2003; Doughan et al., 2008; Goette
et al., 2009). In blood vessels, AngII infusion resulted in increased
expression and activity of NADPH oxidase, which was dependent
on PKC to some extent (Mollnau et al., 2002). In the murine heart,
AngII increased superoxide generation and cardiac hypertrophy
involving NOX2 (Bendall et al., 2002). Increased NADPH oxidase
activity contributes to elevated ROS production, protein modi-
fication, and redox-related gene expression patterns observed in
AF (Carnes et al., 2001). Moreover, it has been identified as an
independent risk factor for post-operative AF (Kim et al., 2008).
Pre-operative treatment with ascorbate prevented AF to a signifi-
cant extent (Carnes et al., 2001). Similarly, ascorbate reduced the
recurrence of AF after cardioversion (Korantzopoulos et al., 2005).

Less is known about the effects of AF on ventricular func-
tion and underlying changes in redox-signaling pathway activity
and related gene expression. AF is associated with increased coro-
nary resistance, compromised vasodilation (Takahashi et al., 2002),
reduced coronary flow (Range et al., 2007), or flow reserve (Goette
et al., 2009; Bukowska et al., 2012). As these changes can be largely
attenuated by the administration of sartans (Goette et al., 2009).
AngII seems to be a major factor linking AF with LV malperfusion
and dysfunction. In support of this view, the RAP-induced Ang-II-
dependent activation of NADPH oxidase and down-stream effec-
tors of redox-activated signaling cascades, e.g., LOX-1 expression
and F2-isoprostane formation, were all attenuated by irbesartan
(Goette et al., 2009).

At the molecular level, ANG-II-receptor blockers (ARBs) have
been shown to increase NO availability and it is possible that this
effect is mediated by a stronger ANG-II-dependent activation of
AT2-receptors. ARBs also attenuate aortic intimal proliferation
and markedly decrease the enhanced LOX-1 expression in the aorta

of hypercholesterolemic animals (Chen et al., 2000). In a recent
study it was shown that application of irbesartan prevents ventric-
ular oxidative stress and microvascular flow abnormalities during
7 h of AF (Goette et al., 2009). Nevertheless, clinical trials like the
ACTIVE study failed to demonstrate a measurable benefit of long-
term ARB therapy in patients with AF (ACTIVE I Investigators
et al., 2011).

Endothelin-1
Endothelin-1 (ET-1) exerts its proarrhythmogenic effects by two
different ways. First, due to its strong vasoconstrictory activity,
ET-1 may induce ischemia which facilitates arrhythmia. Second,
upon binding to endothelin receptor A (ET-A), ET-1 affects intra-
cellular calcium handling and, in particular, provokes intracellular
Ca2+-waves via IP3-dependent Ca2+-release leading to DAD (Li
et al., 2005). Furthermore, ET-1 activates PKC and MAP kinases
(Sugden, 2003). Atrial stretch is a potent factor promoting the
production and release of ET-1 (Bruneau et al., 1997). ET-1 acti-
vates NADPH oxidase via the ET receptor-proline-rich tyrosine
kinase-2 (Pyk2)-rac1 pathway (Dammanahalli and Sun, 2008).
The GTPase, rac1, binds to p67phox and activates NADPH oxidase
in its GTP-bound state (Rinckel et al., 1999).

Heart failure (Galatius-Jensen et al., 1996; Zolk et al., 1999; Love
et al., 2000; Mayyas et al., 2010), valvular disease (Kinoshita et al.,
1993), primary pulmonal hypertension (Rubens et al., 2001), but
also AF are all associated with increased plasma and cardiac tissue
levels of ET-1. Atrial ET-1 levels were correlated with atrial rhythm,
atrial size, and hypertension and were associated with hypertro-
phy, fibrosis, and atrial dilatation (Mayyas et al., 2010). Changes
in cardiac and circulating levels of ET-1 have been described in
experimental models of myocardial ischemia and in patients with
acute myocardial infarction (Hasdai et al., 1994; Brunner et al.,
1997; White et al., 2001). Accordingly, a dual ET receptor antago-
nist has been demonstrated to prevent coronary vasoconstriction
during reperfusion of ischemic heart (Besse et al., 2001). AF-
dependent negative changes in the microcirculation (Goette et al.,
2009; Bukowska et al., 2012) contribute to and further enhance
increased gene expression and release of ET-1 which, in turn,
aggravates coronary vasoconstriction (Neubauer et al., 1991; Hiller
et al., 1997) and leads to oxidative stress (Nagase et al., 1990).
Although the AngII/ET-1-induced increase of ROS generation is
mostly associated with hemodynamic response and development
of hypertension, solid evidence shows that these vasoactive pep-
tides via activation of NADPH oxidase mediate changes in vascular
architecture and heart damage (Amiri et al., 2004; Zhang et al.,
2005).

NADPH oxidase
It has been suggested that the NADPH oxidase is an important
source of ROS in the left ventricle during atrial tachyarrhyth-
mia (Goette et al., 2009; Bukowska et al., 2012). NADPH oxidase
was originally discovered in neutrophils, where, during phago-
cytosis, millimolar quantities of superoxide can be released into
the extracellular (phagosomal) compartment. In non-phagocytic
cells such as cardiomyocytes, fibroblasts, and endothelial cells,
the amounts of produced superoxide are much lower and occur
mostly intracellularly (Li and Shah, 2003). The neutrophil NADPH
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oxidase is composed of membrane-associated subunits: p22phox,
and NOX, and four cytosolic regulatory subunits: p47phox, p67phox,
p40phox, and the small GTPase rac1 or rac2. NOX is the key cat-
alytic subunit of the NADPH oxidase and in non-phagocytic cells
possess several isoforms. Beside the phagocyte NADPH oxidase
(NOX2; gp91phox), the expression of six homologs (NOX1, NOX3,
NOX4, NOX5, Duox1, and Duox2) has been identified (Afanas’ev,
2011). While the cytosolic regulatory components translocate to
the membrane to form the active NADPH oxidase complex upon
activation in the neutrophil (Babior et al., 2002), in the non-
phagocytic cells preassembled functional enzyme complex is partly
present intracellularly (Bayraktutan et al., 2000; Li and Shah,
2003). Although the non-phagocyte NADPH oxidase is consti-
tutively active, its activity can be further up-regulated in response
to vasoactive peptides (AngII, ET-1), hormones, growth factors,
cytokines, and mechanical stress (Jaimes et al., 1998; Griendling
et al., 2000; Li et al., 2002; Yasunari et al., 2002).

The NOX-dependent ROS signaling is an important factor
responsible for development of many pathological processes in
the ventricles during cardiac hypertrophy, remodeling, and heart
failure (Murdoch et al., 2006). Recently, in an animal model of
acute AF, increased expression of NOX2, NOX1, and enhanced
expression of NOX4 were shown in the left ventricle after 6 h of
atrial pacing (Goette et al., 2009; Bukowska et al., 2012). The AT1
receptor antagonist, irbesartan, and the multichannel inhibitor,
dronedarone, efficiently prevented the up-regulation of NOX2
(Goette et al., 2009; Bukowska et al., 2012). The elevated expres-
sion of NOX2 and superoxide production in the left ventricle was
also observed in a rabbit model of chronic heart failure (Yasunari
et al., 2002). Several studies have shown a crucial role of NOX2
in the response to AngII-induced LV hypertrophy (Bendall et al.,
2002; Li and Shah, 2003; Li et al., 2007). It was found that the regu-
latory compound rac1 initiated hypertrophic response (Hingtgen
et al., 2006; Satoh et al., 2006). Amounts of the regulatory p47phox

(Hingtgen et al., 2006; Satoh et al., 2006) increase after myocardial
infarction in the left ventricle and contribute to the NADPH oxi-
dase dependent tissue remodeling (Doerries et al., 2007). NOX2
and NOX4 are the main isoforms expressed in the cardiac cells.
NOX4, in contrast to NOX2, does not require the presence of
regulatory oxidase proteins p47phox or the GTPase rac. Moreover,
NOX4 produces mainly hydrogen peroxide and only very small
amounts of superoxide intracellularly (Serrander et al., 2007) and
was found on internal membranes, in mitochondria (Ago et al.,
2010; Kuroda et al., 2010), and also in perinuclear endoplasmic
reticulum (Chen et al., 2008). The up-regulation in NOX4 expres-
sion was accompanied by mitochondrial dysfunction and apop-
tosis in the cardiomyocytes (Ago et al., 2010; Kuroda et al., 2010).
NOX1 is an important isoform expressed particularly in vascular
smooth muscle cells and is responsible for extracellular superox-
ide production in coronary arterial myocytes. Several studies have
provided evidence that NOX1 oxidase is involved in mediating the
hypertensive response to AngII in particular (Dikalova et al., 2005;
Matsuno et al., 2005).

Recent data suggests, however, that induction of atrial NADPH
oxidase activity or subunit expression is an early but transient
mechanism in the natural course of AF development and pro-
gression (Reilly et al., 2011). With increasing duration of AF,

ROS production is shifted from NADPH oxidase to mitochon-
drial oxidases and uncoupled eNOS in the right atrium (Reilly
et al., 2011). This is in full accordance with the observation that
statins, which reduce ROS production by NADPH oxidases via
inhibition of Rac1, are effective in acute models of AF and in
patients with post-operative AF, but fail to reduce ROS production
in models of long-lasting AF or patients with permanent AF. Pre-
operative statin-treatment was shown to reduce myocardial O2

−

and ONOO− production by reducing NADPH oxidase activity
(Antoniades et al., 2012).

VENTRICULAR MICROCIRCULATION DURING AF
An induced episode of AF of up to 6 h has no effect on FFR (marker
for epicardial flow) in pigs (Bukowska et al., 2012). In contrast,
CFR (index of microvascular abnormalities if FFR is normal) is
substantially reduced (about 50%) after an AF episode of 6 h. Inter-
estingly, application of irbesartan and dronedarone could prevent
microcirculatory flow abnormalities to occur whereas amiodarone
has no effect on CRF (Figure 2). These results correspond to latest
findings that dronedarone reduces the size and volume of induced
cerebral and myocardial infarcts (Engelhorn et al., 2011; Skyschally
and Heusch, 2011). Patients without previously documented coro-
nary artery disease sometimes develop chest discomfort with the
onset of AF (Fineschi et al., 2008). Furthermore, patients with AF
have ventricular-flow abnormalities and a higher incidence of car-
diac events (Abidov et al., 2004; Range et al., 2007). Consistent
with this notion, coronary artery resistance is markedly elevated
(by 62%), whereas myocardial blood flow is substantially reduced
in AF patients (Range et al., 2007). Vasodilatation in response
to exercise is also compromised during AF (Berndt et al., 2007).
The Doppler-derived coronary vascular resistance index has been
reported to be increased by 67% in an experimental AF model
(Range et al., 2007). Induction of AF for up to 6 h has no effect on
FFR (marker of epicardial flow) in pigs (Bukowska et al., 2012);
by contrast, CFR (index of microvascular abnormalities if FFR
is normal) is substantially reduced (about 50%) by short-term
AF. Interestingly, irbesartan and dronedarone could prevent the
occurrence of microcirculatory flow abnormalities whereas amio-
darone had no effect (Figure 2). These results are in keeping with
recent findings indicating that dronedarone reduces the size and
volume of induced cerebral and myocardial infarcts (Engelhorn
et al., 2011; Skyschally and Heusch, 2011).

AF ALTERS VENTRICULAR EXPRESSION OF
ISCHEMIA/HYPOXIA-RELATED GENE PANELS
Atrial fibrillation provokes rapid and profound changes in the ven-
tricular expression of ischemia/hypoxia-related genes (Bukowska
et al., 2012). These expression changes were associated with and
may result partially from microcirculatory abnormalities. Both
the observed RAP-dependent limitation of flow reserve and the
expression changes could be prevented by dronedarone. Interest-
ingly, amiodarone does not reduce AF-induced flow abnormal-
ities in the microvascular tree (Figure 2). The positive effect of
dronedarone in brief episodes of AF is supported by the ATHENA
trial, which found a reduced rate of acute coronary syndromes and
reduced cardiovascular mortality in patients with AF (Hohnloser
et al., 2009).
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A recent study could show that acute application of
dronedarone during an induced myocardial infarction reduced
the infarct size substantially (Figure 3). Nevertheless, in long-
lasting (6 month) AF, myocardial NADPH is not activated (Reilly
et al., 2011), and thereby, positive effects through inhibition of
NADPH are unrealistic to exist. Thus, the antioxidant effects of
dronedarone should not be present in permanent AF. This is sup-
ported by the PALLAS trial, which showed negative outcome if
patients with permanent AF are treated with dronedarone. In PAL-
LAS, rates of stroke, myocardial infarction, and heart failure were
almost doubled in dronedarone treated patients (Connolly et al.,
2011). Thus, the therapeutic effect of dronedarone depends on the
duration of AF, which is quite a unique finding.

Transcriptome analyses provided a first mechanistic insight
into the pathophysiological processes mediating or even counter-
acting coronary and ventricular dysfunction during AF. Among
the genes the expression of which was changed in response to RAP

FIGURE 2 | Induction of ventricular-flow abnormalities in the ventricles
during rapid atrial pacing (RAP) in comparison to unpaced controls
using a porcine model. Effects of dronedarone and amiodarone
demonstrated. Abbreviations are explained in the text adopted from
Bukowska et al. (2012).

were HIF-1, VEGFA, and PPARGC1α, all of them known to be
induced in response to hypoxia or deprivation of nutrients (Arany
et al., 2008). The regulation of VEGF expression in response
to hypoxia is mediated by HIF-1α (Ferrara et al., 2003). Under
the same conditions, and independent of this canonical HIF-
pathway, increased PPARGC1α exerts its strong angiogenic activity
and induces VEGF expression by co-activating ERR-α (Arany et al.,
2008). Thus, both HIF-1α and PPARGC1α appear to be criti-
cally involved in the angiogenic response to AF-dependent flow
alterations and may provide protection against ischemic damage.

Rapid atrial pacing also led to an activation of the NF-κB
pathway in the left ventricle (Bukowska et al., 2012). ROS as intra-
cellular messengers and redox effector molecules such as Trx and
glutaredoxin (Grx) lead to the activation and nuclear translocation
of this redox-sensitive transcription factor (Lillig and Holmgren,
2007). Consistent with the RAP-dependent ventricular activation
of NF-κB, the expression of a panel of established down-stream
targets of NF-κB including VEGFA (Kiriakidis et al., 2003; Martin
et al., 2009), Fn14, CCL2 (Lawrence et al., 2006), HIF1A (Kunsch
and Medford, 1999; Bonello et al., 2007) as well as DnaJ fam-
ily members, DNAJA4 and DNAJB9, that have been described
as co-chaperones for the ATPase activity of Hsp70 and func-
tion to protect stressed cells from apoptosis (Qiu et al., 2006),
was up-regulated in the left ventricle (Bukowska et al., 2012).
Both DNAJA4 and DNAJB9, but also thioredoxin (Trx1; Bloom
and Jaiswal, 2003) and peroxiredoxin I (PrxI; Ago et al., 2008)
are antioxidant response element (AREs) regulated genes acti-
vated through nuclear factor-erythroid 2-related factor 2 (Nrf2) in
response to oxidative stress. After phosphorylation by, e.g., PKC,
Nrf2 translocates to the nucleus where it binds to AREs and trans-
activates target genes of, e.g., enzymes such as PrxI that regulate the
intracellular amounts of ROS (Bloom and Jaiswal, 2003). It seems
reasonable to assume that increased expression of anti-oxidative
response genes, e.g., peroxiredoxins and DnaJ family members, is
aimed at limiting stress-mediated tissue-damage. In this in vivo
model of acute AF, dronedarone attenuated most of the ven-
tricular changes in gene expression. In addition, RAP-dependent

FIGURE 3 | Effect of dronedarone on size of acute myocardial infarctions adopted from Qiu et al. (2006).
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PKC phosphorylation, NADPH isoform expression, isoprostane
release, and IκBα phosphorylation were decreased. This, together
with the attenuation of negative flow alterations may indicate that
dronedarone beneficially affects very early steps of RAP-associated
ventricular pathology, very likely by preventing ischemia/hypoxia
itself.

PPARGC1, the multi-functional co-activator, is also involved
in the regulation of cardiac mitochondrial functional capacity
and cellular energy metabolism. In accordance with the observed
increase in PPARGC1 and HIF-1α expression, RAP provoked
profound changes in the ventricular expression of important
metabolic genes including hexokinase 2 (HK2), glycogen syn-
thase kinase 3β (GSK-3β), muscle isoform of glycogen phospho-
rylase (PYGM), and acyl-coenzyme A dehydrogenase (ACADL;
Bukowska et al., 2012). Interestingly, these metabolic changes were
not affected by dronedarone, which suggests that other factors
than deprivation of oxygen and nutrients contribute to the overall
change of ventricular gene expression during AF.

It is fully established that even mild ischemia is associated
with compromised mitochondrial function and requires meta-
bolic adaption to maintain adequate ATP generation and cardiac
output (Shohet and Garcia, 2007). Again, the activation of redox-
sensitive transcription factors, namely HIF-1α and PPARGC1, is
responsible for these protective changes in the metabolism that

generally mediate the shift from aerobic metabolism and fatty acid
utilization to glucose utilization via pyruvate oxidation or even
to glycolytic metabolism (Bolukoglu et al., 1996; Seagroves et al.,
2001). HIF-1, together with c-myc, mediates the induction of HK2
which contributes to shift glucose away from mitochondrial uti-
lization and has also anti-oxidative effects (Ahmad et al., 2002; Kim
et al., 2006). On this background, the observed ventricular induc-
tion of glycolytic gene expression during AF completely fits to the
increased expression levels of HIF-1α and PPARGC1 and, most
importantly, demonstrate that the compromised microcirculatory
flow leads to ischemia-like conditions. The latter activate multiple
signaling pathways that are aimed at the improvement of oxygen
supply, angiogenesis, cell survival, and adaption of metabolism
(Figure 1).

CONCLUSION
AT induces oxidative stress in the atrial and ventricular
myocardium. In the ventricles, AF causes alterations in gene
expression and activation of specific signal transduction pathways.
As a consequence, microcirculation is impaired, troponin can be
released, which is associated with causing clinical symptoms like
angina pectoris and dyspnea. It remains to be determined if these
alterations are also related to the increased rate of death in AF
patients shown by several epidemiologic studies.

REFERENCES
Abidov, A., Hachamovitch, R., Rozan-

ski, A., Hayes, S. W., Santos, M. M.,
Sciammarella, M. G., Cohen, I., Ger-
lach, J., Friedman, J. D., Germano,
G., and Berman, D. S. (2004). Prog-
nostic implications of atrial fibrilla-
tion in patients undergoing myocar-
dial perfusion single-photon emis-
sion computed tomography. J. Am.
Coll. Cardiol. 44, 1062–1070.

ACTIVE I Investigators, Yusuf, S.,
Healey, J. S., Pogue, J., Chrolavicius,
S., Flather, M., Hart, R. G., Hohn-
loser, S. H., Joyner, C. D., Pfeffer, M.
A., and Connolly, S. J. (2011). Irbe-
sartan in patients with atrial fibrilla-
tion. N. Engl. J. Med. 364, 928–938.

Afanas’ev, I. (2011). ROS and RNS
signaling in heart disorders: could
antioxidant treatment be success-
ful? Oxid. Med. Cell. Longev. 2011,
293769. doi: 10.1155/2011/293769

Ago, T., Kuroda, J., Pain, J., Fu, C.,
Li, H., and Sadoshima, J. (2010).
Upregulation of NOX4 by hyper-
trophic stimuli promotes apopto-
sis and mitochondrial dysfunction
in cardiac myocytes. Circ. Res. 106,
1253–1264.

Ago, T., Liu, T., Zhai, P., Chen, W., Li,
H., Molkentin, J. D., Vatner, S. F.,
and Sadoshima, J. (2008). A redox-
dependent pathway for regulating
class II HDACs and cardiac hyper-
trophy. Cell 133, 978–993.

Ahmad, A., Ahmad, S., Schneider, B. K.,
Allen, C. B., Chang, L. Y., and White,

C. W. (2002). Elevated expression
of hexokinase II protects human
lung epithelial-like A549 cells against
oxidative injury. Am. J. Physiol. Lung
Cell Mol. Physiol. 283, L573–L584.

Amiri, F., Virdis, A., Neves, M. F.,
Iglarz, M., Seidah, N. G., Touyz,
R. M., Reudelhuber, T. L., and
Schiffrin, E. L. (2004). Endothelium-
restricted overexpression of human
endothelin-1 causes vascular remod-
eling and endothelial dysfunction.
Circulation 110, 2233–2240.

Antoniades, C., Demosthenous, M.,
Reilly, S., Margaritis, M., Zhang, M.
H., Antonopoulos, A., Marinou, K.,
Nahar, K., Jayaram, R., Tousoulis,
D., Bakogiannis, C., Sayeed, R., Tri-
antafyllou, C., Koumallos, N., Psar-
ros, C., Miliou, A., Stefanadis, C.,
Channon, K. M., and Casadei, B.
(2012). Myocardial redox state pre-
dicts in-hospital clinical outcome
after cardiac surgery effects of short-
term pre-operative statin treatment.
J. Am. Coll. Cardiol. 59, 60–70.

Arany, Z., Foo, S. Y., Ma, Y., Ruas, J.
L., Bommi-Reddy, A., Girnun, G.,
Cooper, M., Laznik, D., Chinsom-
boon, J., Rangwala, S. M., Baek, K.
H., Rosenzweig, A., and Spiegelman,
B. M. (2008). HIF-independent reg-
ulation of VEGF and angiogen-
esis by the transcriptional coac-
tivator PGC-1alpha. Nature 451,
1008–1012.

Babior, B. M., Lambeth, J. D., and
Nauseef, W. (2002). The neutrophil

NADPH oxidase. Arch. Biochem.
Biophys. 397, 342–324.

Bayraktutan, U., Blayney, L., and
Shah, A. M. (2000). Molecular
characterization and localization
of the NAD(P)H oxidase com-
ponents gp91-phox and p22-phox
in endothelial cells. Arterioscler.
Thromb. Vasc. Biol. 20, 1903–1911.

Bendall, J. K., Cave, A. C., Heymes, C.,
Gall, N., and Shah,A. M. (2002). Piv-
otal role of a gp91(phox)-containing
NADPH oxidase in angiotensin II-
induced cardiac hypertrophy in
mice. Circulation 105, 293–296.

Berndt, C., Lillig, C. H., and Holmgren,
A. (2007). Thiol-based mechanisms
of the thioredoxin and glutaredoxin
systems: implications for diseases
in the cardiovascular system. Am.
J. Physiol. Heart Circ. Physiol. 292,
H1227–H1236.

Besse, S., Tanguy, S., Riou, B., Boucher,
F., Bulteau, A. L., Le Page, C., Swyn-
ghedauw, B., and de Leiris, J. (2001).
Coronary and aortic vasoreactivity
protection with endothelin receptor
antagonist, bosentan, after ischemia
and hypoxia in aged rats. Eur. J.
Pharmacol. 432, 167–175.

Bloom, D. A., and Jaiswal, A. K. (2003).
Phosphorylation of Nrf2 at Ser40
by protein kinase C in response to
antioxidants leads to the release of
Nrf2 from INrf2, but is not required
for Nrf2 stabilization/accumulation
in the nucleus and transcriptional
activation of antioxidant response

element-mediated NAD(P)H:
quinone oxidoreductase-1 gene
expression. J. Biol. Chem. 278,
44675–44682.

Bolukoglu, H., Goodwin, G. W.,
Guthrie, P. H., Carmical, S. G.,
Chen, T. M., and Taegtmeyer, H.
(1996). Metabolic fate of glucose in
reversible low-flow ischemia of the
isolated working rat heart. Am. J.
Physiol. 270(Pt 2), H817–H826.

Bonello, S., Zahringer, C., BelAiba, R.
S., Djordjevic, T., Hess, J., Michiels,
C., Kietzmann, T., and Görlach,
A. (2007). Reactive oxygen species
activate the HIF-1alpha promoter
via a functional NFkappaB site.
Arterioscler. Thromb. Vasc. Biol. 27,
755–761.

Brown, A. M., Sease, K. L., Robey, J.
L., Shofer, F. S., and Hollander, J.
E. (2007). The risk for acute coro-
nary syndrome associated with atrial
fibrillation among ED patients with
chest pain syndromes. Am. J. Emerg.
Med. 25, 523–528.

Bruneau, B. G., Piazza, L. A., and de
Bold, A. J. (1997). BNP gene expres-
sion is specifically modulated by
stretch and ET-1 in a new model
of isolated rat atria. Am. J. Physiol.
273(Pt 2), H2678–H2686.

Brunner, F., Leonhard, B., Kukovetz,
W. R., and Mayer, B. (1997).
Role of endothelin, nitric
oxide and L-arginine release in
ischaemia/reperfusion injury of rat
heart. Cardiovasc. Res. 36, 60–66.

Frontiers in Physiology | Cardiac Electrophysiology July 2012 | Volume 3 | Article 236 | 6

http://www.frontiersin.org/Cardiac_Electrophysiology
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Cardiac_Electrophysiology/archive


Goette et al. Ventricular oxidative stress during AF

Bukowska, A., Hammwöhner, M., Six-
dorf, A., Schild, L., Wiswedel, I.,
Röhl, F. W., Wolke, C., Lendeckel,
U., Aderkast, C., Bochmann, S.,
Chilukoti, R. K., Mostertz, J., Bram-
lage, P., and Goette, A. (2012).
Dronedarone prevents microcircu-
latory abnormalities in the left ven-
tricle during atrial tachypacing. Br.
J. Pharmacol. 166, 964–980.

Bukowska, A., Schild, L., Keilhoff, G.,
Hirte, D., Neumann, M., Garde-
mann, A., Neumann, K. H., Röhl,
F. W., Huth, C., Goette, A., and
Lendeckel, U. (2008). Mitochondr-
ial dysfunction and redox signaling
in atrial tachyarrhythmia. Exp. Biol.
Med. (Maywood) 233, 558–574.

Cadenas, E., Wefers, H., Müller, A.,
Brigelius, R., and Sies, H. (1982).
Active oxygen metabolites and their
action in the hepatocyte. Studies on
chemiluminescence responses and
alkane production. Agents Actions
Suppl. 11, 203–216.

Camici, P. G., and Crea, F. (2007). Coro-
nary microvascular dysfunction. N.
Engl. J. Med. 356, 830–840.

Cardin, S., Li, D., Thorin-Trescases,
N., Leung, T. K., Thorin, E., and
Nattel, S. (2003). Evolution of
the atrial fibrillation substrate in
experimental congestive heart fail-
ure: angiotensin-dependent and -
independent pathways. Cardiovasc.
Res. 60, 315–325.

Carnes, C. A., Chung, M. K., Nakayama,
T., Nakayama, H., Baliga, R. S.,
Piao, S., Kanderian, A., Pavia, S.,
Hamlin, R. L., McCarthy, P. M.,
Bauer, J. A., and Van Wagoner,
D. R. (2001). Ascorbate attenuates
atrial pacing-induced peroxynitrite
formation and electrical remodeling
and decreases the incidence of post-
operative atrial fibrillation. Circ. Res.
89, E32–E38.

Chen,H.,Li,D.,Sawamura,T., Inoue,K.,
and Mehta, J. L. (2000). Upregula-
tion of LOX-1 expression in aorta of
hypercholesterolemic rabbits: mod-
ulation by losartan. Biochem. Bio-
phys. Res. Commun. 276, 1100–1104.

Chen, K., Kirber, M. T., Xiao, H., Yang,
Y., and Keaney, J. F. Jr. (2008). Reg-
ulation of ROS signal transduction
by NADPH oxidase 4 localization. J.
Cell Biol. 181, 1129–1139.

Connolly, S. J., Camm, A. J., Halperin, J.
L., Joyner, C., Alings, M., Amerena,
J., Atar, D., Avezum, Á., Blomström,
P., Borggrefe, M., Budaj, A., Chen,
S. A., Ching, C. K., Commerford, P.,
Dans, A., Davy, J. M., Delacrétaz, E.,
Di Pasquale, G., Diaz, R., Dorian,
P., Flaker, G., Golitsyn, S., Gonzalez-
Hermosillo, A., Granger, C. B., Hei-
dbüchel, H., Kautzner, J., Kim, J. S.,

Lanas, F., Lewis, B. S., Merino, J. L.,
Morillo, C., Murin, J., Narasimhan,
C., Paolasso, E., Parkhomenko, A.,
Peters, N. S., Sim, K. H., Stiles, M.
K., Tanomsup, S., Toivonen, L., Tom-
csányi, J., Torp-Pedersen, C., Tse, H.
F., Vardas, P., Vinereanu, D., Xavier,
D., Zhu, J., Zhu, J. R., Baret-Cormel,
L., Weinling, E., Staiger, C., Yusuf,
S., Chrolavicius, S., Afzal, R., Hohn-
loser, S. H., and PALLAS Investiga-
tors. (2011). Dronedarone in high-
risk permanent atrial fibrillation. N.
Engl. J. Med. 365, 2268–2276.

Dammanahalli, K. J., and Sun, Z. (2008).
Endothelins and NADPH oxidases
in the cardiovascular system. Clin.
Exp. Pharmacol. Physiol. 35, 2–6.

De Boer, R. A., Pinto, Y. M., and Van
Veldhuisen, D. J. (2003). The imbal-
ance between oxygen demand and
supply as a potential mechanism in
the pathophysiology of heart failure:
the role of microvascular growth and
abnormalities. Microcirculation 10,
113–126.

Dikalova, A., Clempus, R., Lassègue,
B., Cheng, G., McCoy, J., Dikalov,
S., San Martin, A., Lyle, A., Weber,
D. S., Weiss, D., Taylor, W. R.,
Schmidt, H. H., Owens, G. K.,
Lambeth, J. D., and Griendling, K.
K. (2005). NOX1 overexpression
potentiates angiotensin II-induced
hypertension and vascular smooth
muscle hypertrophy in transgenic
mice. Circulation 112, 2668–2676.

Doerries, C., Grote, K., Hilfiker-Kleiner,
D., Luchtefeld, M., Schaefer, A., Hol-
land, S. M., Sorrentino, S., Manes,
C., Schieffer, B., Drexler, H., and
Landmesser, U. (2007). Critical role
of the NAD(P)H oxidase subunit
p47phox for left ventricular remod-
eling/dysfunction and survival after
myocardial infarction. Circ. Res. 100,
894–903.

Doughan, A. K., Harrison, D. G.,
and Dikalov, S. I. (2008). Mole-
cular mechanisms of angiotensin
II mediated mitochondrial dysfunc-
tion. Linking mitochondrial oxida-
tive damage and vascular endothe-
lial dysfunction. Circ. Res. 102,
488–496.

Engelhorn, T., Schwarz, M. A., Heusch,
G., Doerfler, A., and Schulz, R.
(2011). Reduction of cerebral infarct
size by dronedarone. Cardiovasc.
Drugs Ther. 25, 523–529.

Ferrara, N., Frantz, G., LeCouter, J.,
Dillard-Telm, L., Pham, T., Drak-
sharapu, A., Giordano, T., and
Peale, F. (2003). Differential expres-
sion of the angiogenic factor genes
vascular endothelial growth fac-
tor (VEGF) and endocrine gland-
derived VEGF in normal and

polycystic human ovaries. Am. J.
Pathol. 162, 1881–1893.

Fineschi, M., Bravi, A., and Gori,
T. (2008). The “slow coronary
flow” phenomenon: evidence of
preserved coronary flow reserve
despite increased resting microvas-
cular resistances. Int. J. Cardiol. 127,
358–361.

Fontayne, A., Dang, P. M., Gougerot-
Pocidalo, M. A., and El-Benna, J.
(2002). Phosphorylation of p47phox
sites by PKC alpha, beta II, delta, and
zeta: effect on binding to p22phox
and on NADPH oxidase activation.
Biochemistry 41, 7743–7750.

Fuster, V., Ryden, L. E., Cannom, D. S.,
Crijns, H. J., Curtis, A. B., Ellenbo-
gen, K. A., Halperin, J. L., Le Heuzey,
J. Y., Kay, G. N., Lowe, J. E., Olsson,
S. B., Prystowsky, E. N., Tamargo, J.
L., Wann, S., Smith, S. C. Jr., Jacobs,
A. K., Adams, C. D., Anderson, J. L.,
Antman, E. M., Halperin, J. L., Hunt,
S. A., Nishimura, R., Ornato, J. P.,
Page, R. L., Riegel, B., Priori, S. G.,
Blanc, J. J., Budaj, A., Camm, A. J.,
Dean, V., Deckers, J. W., Despres, C.,
Dickstein, K., Lekakis, J., McGregor,
K., Metra, M., Morais, J., Osterspey,
A., Tamargo, J. L., and Zamorano,
J. L. (2006). ACC/AHA/ESC 2006
Guidelines for the Management of
Patients with Atrial Fibrillation: a
report of the American College of
Cardiology/American Heart Associ-
ation Task Force on Practice Guide-
lines and the European Society of
Cardiology Committee for Practice
Guidelines (Writing Committee to
Revise the 2001 Guidelines for the
Management of Patients With Atrial
Fibrillation): developed in collab-
oration with the European Heart
Rhythm Association and the Heart
Rhythm Society. Circulation 114,
e257–e354.

Galatius-Jensen, S., Wroblewski, H.,
Emmeluth, C., Bie, P., Haunsø,
S., and Kastrup, J. (1996). Plasma
endothelin in congestive heart
failure: effect of the ACE inhibitor,
fosinopril. Cardiovasc. Res. 32,
1148–1154.

Ghezzi, P., Bonetto, V., and Fratelli,
M. (2005). Thiol-disulfide balance:
from the concept of oxidative stress
to that of redox regulation. Antioxid.
Redox Signal. 7, 964–972.

Goette, A., Bukowska, A., Dobrev, D.,
Pfeiffenberger, J., Morawietz, H.,
Strugla, D., Wiswedel, I., Röhl, F.-W.,
Wolke, C., Bergmann, S., Bramlage,
P., Ravens, U., and Lendeckel, U.
(2009). Acute atrial tachyarrhyth-
mia induces angiotensin II type
1 receptor-mediated oxidative
stress and microvascular flow

abnormalities in the ventricles. Eur.
Heart J. 30, 1411–1420.

Goette, A., Bukowska, A., Lendeckel,
U., Erxleben, M., Hammwohner,
M., Strugala, D., Pfeiffenberger, J.,
Rohl, F. W., Huth, C., Ebert, M. P.,
Klein, H. U., and Rocken, C. (2008).
Angiotensin II receptor blockade
reduces tachycardia-induced atrial
adhesion molecule expression. Cir-
culation 117, 732–742.

Goette, A., Staack, T., Rocken, C., Arndt,
M., Geller, J. C., Huth, C., Ansorge,
S., Klein, H. U., and Lendeckel,
U. (2000). Increased expression of
extracellular signal-regulated kinase
and angiotensin-converting enzyme
in human atria during atrial fib-
rillation. J. Am. Coll. Cardiol. 35,
1669–1677.

Griendling, K. K., Sorescu, D., and
Ushio-Fukai, M. (2000). NAD(P)H
oxidase: role in cardiovascular biol-
ogy and disease. Circ. Res. 86,
494–501.

Hasdai, D., Kornowski, R., and Battler,
A. (1994). Endothelin and myocar-
dial ischemia. Cardiovasc. Drugs
Ther. 8, 589–599.

Heusch, G. (2008). Heart rate in the
pathophysiology of coronary blood
flow and myocardial ischaemia:
benefit from selective bradycardic
agents. Br. J. Pharmacol. 153,
1589–1601.

Heusch, G., Baumgart, D., Cam-
ici, P., Chilian, W., Gregorini, L.,
Hess, O., Indolfi, C., and Rimoldi,
O. (2000). Alpha-adrenergic coro-
nary vasoconstriction and myocar-
dial ischemia in humans. Circulation
101, 689–694.

Hiller, K. H., Roder, F., Adami,
P., Voll, S., Kowallik, P., Haase,
A., Ertl, G., and Bauer, W. R.
(1997). Study of microcirculation by
coloured microspheres and NMR-
microscopy in isolated rat heart:
effect of ischaemia, endothelin-1
and endothelin-1 antagonist BQ
610. J. Mol. Cell. Cardiol. 29,
3115–3122.

Hingtgen, S. D., Tian, X., Yang, J., Dun-
lay, S. M., Peek, A. S., Wu,Y., Sharma,
R. V., Engelhardt, J. F., and Davisson,
R. L. (2006). Nox2-containing
NADPH oxidase and Akt activation
play a key role in angiotensin
II-induced cardiomyocyte hyper-
trophy. Physiol. Genomics 26,
180–191.

Hohnloser, S. H., Crijns, H. J., van
Eickels, M., Gaudin, C., Page, R. L.,
Torp-Pedersen, C., Connolly, S. J.,
and ATHENA Investigators. (2009).
Effect of dronedarone on cardiovas-
cular events in atrial fibrillation. N.
Engl. J. Med. 360, 668–678.

www.frontiersin.org July 2012 | Volume 3 | Article 236 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Cardiac_Electrophysiology/archive


Goette et al. Ventricular oxidative stress during AF

Jaimes, E. A., Galceran, J. M., and Raij,
L. (1998). Angiotensin II induces
superoxide anion production by
mesangial cells. Kidney Int. 54,
775–784.

Jones, D. P. (2006). Redefining oxida-
tive stress. Antioxid. Redox Signal. 8,
1865–1879.

Jones, D. P. (2008). Radical-free biology
of oxidative stress. Am. J. Physiol. Cell
Physiol. 295, C849–C868.

Kern, M. J., Lerman, A., Bech, J. W., De
Bruyne, B., Eeckhout, E., Fearon, W.
F., Higano, S. T., Lim, M. J., Meuwis-
sen, M., Piek, J. J., Pijls, N. H., Siebes,
M., and Spaan, J. A. (2006). Physio-
logical assessment of coronary artery
disease in the cardiac catheterization
laboratory: a scientific statement
from the American Heart Associa-
tion Committee on Diagnostic and
Interventional Cardiac Catheteriza-
tion,Council on Clinical Cardiology.
Circulation 114, 1321–1341.

Kim, J. W., Tchernyshyov, I., Semenza,
G. L., and Dang, C. V. (2006). HIF-
1-mediated expression of pyruvate
dehydrogenase kinase: a metabolic
switch required for cellular adap-
tation to hypoxia. Cell Metab. 3,
177–185.

Kim, Y. M., Kattach, H., Ratnatunga,
C., Pillai, R., Channon, K. M., and
Casadei, B. (2008). Association of
atrial nicotinamide adenine dinu-
cleotide phosphate oxidase activity
with the development of atrial fib-
rillation after cardiac surgery. J. Am.
Coll. Cardiol. 51, 68–74.

Kinoshita, O., Yoshimi, H., Nagata, S.,
Ishikura, F., Kimura, K., Yamabe,
T., Takagaki, K., Miyatake, K., and
Omae, T. (1993). Rapid increase
in plasma endothelin concentrations
during percutaneous balloon dilata-
tion of the mitral valve in patients
with mitral stenosis. Br. Heart J. 69,
322–326.

Kiriakidis, S., Andreakos, E., Monaco,
C., Foxwell, B., Feldmann, M., and
Paleolog, E. (2003). VEGF expres-
sion in human macrophages is NF-
kappaB-dependent: studies using
adenoviruses expressing the endoge-
nous NF-kappaB inhibitor Ikappa-
Balpha and a kinase-defective form
of the IkappaB kinase 2. J. Cell. Sci.
116, 665–674.

Kochiadakis, G. E., Skalidis, E. I., Kale-
bubas, M. D., Igoumenidis, N. E.,
Chrysostomakis, S. I., Kanoupakis,
E. M., Simantirakis, E. N., and Var-
das, P. E. (2002). Effect of acute
atrial fibrillation on phasic coronary
blood flow pattern and flow reserve
in humans. Eur. Heart J. 23, 734–741.

Korantzopoulos, P., Kolettis, T. M.,
Kountouris, E., Dimitroula, V.,

Karanikis, P., Pappa, E., Siogas, K.,
and Goudevenos, J. A. (2005). Oral
vitamin C administration reduces
early recurrence rates after electri-
cal cardioversion of persistent atrial
fibrillation and attenuates associated
inflammation. Int. J. Cardiol. 102,
321–326.

Kunsch, C., and Medford, R. M. (1999).
Oxidative stress as a regulator of
gene expression in the vasculature.
Circ. Res. 85, 753–766.

Kuroda, J.,Ago, T., Matsushima, S., Zhai,
P., Schneider, M. D., and Sadoshima,
J. (2010). NADPH oxidase 4 (NOX4)
is a major source of oxidative stress
in the failing heart. Proc. Natl. Acad.
Sci. U.S.A. 107, 15565–15570.

Lawrence, D. M., Seth, P., Durham, L.,
Diaz, F., Boursiquot, R., Ransohoff,
R. M., and Major, E. O. (2006).
Astrocyte differentiation selec-
tively upregulates CCL2/monocyte
chemoattractant protein-1 in
cultured human brain-derived
progenitor cells. Glia 53, 81–91.

Li, J. M., Gall, N. P., Grieve, D. J., Chen,
M., and Shah, A. M. (2002). Activa-
tion of NADPH oxidase during pro-
gression of cardiac hypertrophy to
failure. Hypertension 40, 477–484.

Li, J. M., and Shah, A. M. (2003).
ROS generation by nonphagocytic
NADPH oxidase: potential relevance
in diabetic nephropathy. J. Am. Soc.
Nephrol. 14(Suppl. 3), S221–S226.

Li, X., Zima, A. V., Sheikh, F., Blat-
ter, L. A., and Chen, J. (2005).
Endothelin-1-induced arrhythmo-
genic Ca2+ signaling is abolished
in atrial myocytes of inositol-1,4,5-
trisphosphate(IP3)-receptor type
2-deficient mice. Circ. Res. 96,
1274–1281.

Li, Y. L., Gao, L., Zucker, I. H., and
Schultz, H. D. (2007). NADPH
oxidase-derived superoxide anion
mediates angiotensin II-enhanced
carotid body chemoreceptor sensi-
tivity in heart failure rabbits. Cardio-
vasc. Res. 75, 546–554.

Lillig, C. H., and Holmgren, A. (2007).
Thioredoxin and related molecules –
from biology to health and disease.
Antioxid. Redox Signal. 9, 25–47.

Lin, Y. K., Lai, M. S., Chen, Y. C., Cheng,
C. C., Huang, J. H., Chen, S. A.,
Chen, Y. J., and Lin, C. I. (2012).
Hypoxia and reoxygenation mod-
ulate the arrhythmogenic activity
of the pulmonary vein and atrium.
Clin. Sci. 122, 121–132.

Love, M. P., Ferro, C. J., Haynes, W.
G., Plumpton, C., Davenport, A. P.,
Webb, D. J., and McMurray, J. J.
(2000). Endothelin receptor antag-
onism in patients with chronic heart
failure. Cardiovasc. Res. 47, 166–172.

Martin, D., Galisteo, R., and Gutkind,
J. S. (2009). CXCL8/IL8 stimu-
lates vascular endothelial growth
factor (VEGF) expression and the
autocrine activation of VEGFR2
in endothelial cells by activat-
ing NFkappaB through the CBM
(Carma3/Bcl10/Malt1) complex. J.
Biol. Chem. 284, 6038–6042.

Matsuno, K., Yamada, H., Iwata, K.,
Jin, D., Katsuyama, M., Matsuki, M.,
Takai, S., Yamanishi, K., Miyazaki,
M., Matsubara, H., and Yabe-
Nishimura, C. (2005). NOX1 is
involved in angiotensin II-mediated
hypertension: a study in NOX1-
deficient mice. Circulation 112,
2677–2685.

Matsuzawa, A., and Ichijo, H. (2008).
Redox control of cell fate by MAP
kinase: physiological roles of ASK1-
MAP kinase pathway in stress sig-
naling. Biochim. Biophys. Acta 1780,
1325–1336.

Mayyas, F., Niebauer, M., Zurick,
A., Barnard, J., Gillinov, A. M.,
Chung, M. K., and Van Wag-
oner, D. R. (2010). Association of
left atrial endothelin-1 with atrial
rhythm, size, and fibrosis in patients
with structural heart disease. Circ.
Arrhythm. Electrophysiol. 3, 369–379.

Mollnau, H., Wendt, M., Szöcs, K.,
Lassègue, B., Schulz, E., Oelze, M.,
Li, H., Bodenschatz, M., August, M.,
Kleschyov, A. L., Tsilimingas, N.,
Walter, U., Förstermann, U., Mein-
ertz, T., Griendling, K., and Münzel,
T. (2002). Effects of angiotensin II
infusion on the expression and func-
tion of NAD(P)H oxidase and com-
ponents of nitric oxide/cGMP sig-
naling. Circ. Res. 90, E58–E65.

Murdoch, C. E., Zhang, M., Cave, A.
C., and Shah, A. M. (2006). NADPH
oxidase-dependent redox signalling
in cardiac hypertrophy, remodel-
ling and failure. Cardiovasc. Res. 71,
208–215.

Nagase, T., Fukuchi, Y., Jo, C., Ter-
amoto, S., Uejima, Y., Ishida, K.,
Shimizu, T., and Orimo, H. (1990).
Endothelin-1 stimulates arachido-
nate 15-lipoxygenase activity and
oxygen radical formation in the rat
distal lung. Biochem. Biophys. Res.
Commun. 168, 485–489.

Neubauer, S., Zimmermann, S., Hirsch,
A., Pulzer, F., Tian, R., Bauer, W.,
Bauer, B., and Ertl, G. (1991).
Effects of endothelin-1 in the iso-
lated heart in ischemia/reperfusion
and hypoxia/reoxygenation injury. J.
Mol. Cell. Cardiol. 23, 1397–1409.

Nishida, K., Qi, X. Y., Wakili, R., Com-
tois, P., Chartier, D., Harada, M.,
Iwasaki, Y. K., Romeo, P., Maguy, A.,
Dobrev, D., Michael, G., Talajic, M.,

and Nattel, S. (2011). Mechanisms
of atrial tachyarrhythmias associated
with coronary artery occlusion in
a chronic canine model. Circulation
123, 137–146.

Oudot, A., Vergely, C., Ecarnot-
Laubriet, A., and Rochette, L.
(2003). Angiotensin II activates
NADPH oxidase in isolated rat
hearts subjected to ischaemia-
reperfusion. Eur. J. Pharmacol. 462,
145–154.

Qiu, X. B., Shao, Y. M., Miao, S., and
Wang, L. (2006). The diversity of
the DnaJ/Hsp40 family, the crucial
partners for Hsp70 chaperones. Cell.
Mol. Life Sci. 63, 2560–2570.

Range, F. T., Schafers, M., Acil, T.,
Schafers, K. P., Kies, P., Paul, M., Her-
mann, S., Brisse, B., Breithardt, G.,
Schober, O., and Wichter, T. (2007).
Impaired myocardial perfusion and
perfusion reserve associated with
increased coronary resistance in per-
sistent idiopathic atrial fibrillation.
Eur. Heart J. 28, 2223–2230.

Reilly, S. N., Jayaram, R., Nahar, K.,
Antoniades, C., Verheule, S., Chan-
non, K. M., Alp, N. J., Schotten,
U., and Casadei, B. (2011). Atrial
sources of reactive oxygen species
vary with the duration and substrate
of atrial fibrillation: implications for
the antiarrhythmic effect of statins.
Circulation 124, 1107–1117.

Rinckel, L. A., Faris, S. L., Hitt, N. D.,
and Kleinberg, M. E. (1999). Rac1
disrupts p67phox/p40phox binding:
a novel role for Rac in NADPH oxi-
dase activation. Biochem. Biophys.
Res. Commun. 263, 118–122.

Rivard, L., Sinno, H., Shiroshita-
Takeshita, A., Schram, G., Leung,
T. K., and Nattel, S. (2007).
The pharmacological response of
ischemia-related atrial fibrillation
in dogs: evidence for substrate-
specific efficacy. Cardiovasc. Res. 74,
104–113.

Rubens, C., Ewert, R., Halank, M.,
Wensel, R., Orzechowski, H. D.,
Schultheiss, H. P., and Hoeffken,
G. (2001). Big endothelin-1 and
endothelin-1 plasma levels are cor-
related with the severity of primary
pulmonary hypertension. Chest 120,
1562–1569.

Satoh, M., Ogita, H., Takeshita, K.,
Mukai, Y., Kwiatkowski, D. J., and
Liao, J. K. (2006). Requirement of
Rac1 in the development of cardiac
hypertrophy. Proc. Natl. Acad. Sci.
U.S.A. 103, 7432–7437.

Seagroves, T. N., Ryan, H. E., Lu, H.,
Wouters, B. G., Knapp, M., Thibault,
P., Laderoute, K., and Johnson, R. S.
(2001). Transcription factor HIF-1 is
a necessary mediator of the Pasteur

Frontiers in Physiology | Cardiac Electrophysiology July 2012 | Volume 3 | Article 236 | 8

http://www.frontiersin.org/Cardiac_Electrophysiology
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Cardiac_Electrophysiology/archive


Goette et al. Ventricular oxidative stress during AF

effect in mammalian cells. Mol. Cell.
Biol. 21, 3436–3444.

Serrander, L., Cartier, L., Bedard, K.,
Banfi, B., Lardy, B., Plastre, O.,
Sienkiewicz, A., Fórró, L., Schlegel,
W., and Krause, K. H. (2007). NOX4
activity is determined by mRNA lev-
els and reveals a unique pattern of
ROS generation. Biochem. J. 406,
105–114.

Shohet, R. V., and Garcia, J. A. (2007).
Keeping the engine primed: HIF
factors as key regulators of car-
diac metabolism and angiogenesis
during ischemia. J. Mol. Med. 85,
1309–1315.

Sinno, H., Derakhchan, K., Liber-
san, D., Merhi, Y., Leung, T.
K., and Nattel, S. (2003). Atrial
ischemia promotes atrial fibril-
lation in dogs. Circulation 107,
1930–1936.

Skyschally, A., and Heusch, G. (2011).
Reduction of myocardial infarct
size by dronedarone in pigs –
a pleiotropic action? Cardiovasc.
Drugs Ther. 25, 197–201.

Sugden, P. H. (2003). An overview of
endothelin signaling in the cardiac
myocyte. J. Mol. Cell. Cardiol. 35,
871–886.

Takahashi, N., Ishibashi, Y., Shimada,
T., Sakane, T., Ohata, S., Sug-
amori, T., Ohta, Y., Inoue, S.,
Nakamura, K., Shimizu, H., Katoh,
H., and Murakami, Y. (2002).
Impaired exercise-induced vasodi-
latation in chronic atrial fibril-
lation – role of endothelium-
derived nitric oxide. Circ. J. 66,
583–538.

Van Gelder, I. C., Hagens, V. E.,
Bosker, H. A., Kingma, J. H., Kamp,
O., Kingma, T., Said, S. A., Dar-
manata, J. I., Timmermans, A. J.,
Tijssen, J. G., and Crijns, H. J.
(2002). A comparison of rate con-
trol and rhythm control in patients
with recurrent persistent atrial fib-
rillation. N. Engl. J. Med. 347,
1834–1840.

White, M., Rouleau, J. L.,
Hall, C., Arnold, M., Harel, F.,
Sirois, P., Greaves, S., Solomon,
S., Ajani, U., Glynn, R., Hen-
nekens, C., and Pfeffer, M. (2001).
Changes in vasoconstrictive
hormones, natriuretic peptides,
and left ventricular remodeling
soon after anterior myocardial
infarction. Am. Heart J. 142,
1056–1064.

Wyse, D. G., Waldo, A. L., DiMarco, J.
P., Domanski, M. J., Rosenberg, Y.,
Schron, E. B., Kellen, J. C., Greene,
H. L., Mickel, M. C., Dalquist, J. E.,
and Corley, S. D. (2002). A com-
parison of rate control and rhythm
control in patients with atrial fib-
rillation. N. Engl. J. Med. 347,
1825–1833.

Yasunari, K., Maeda, K., Nakamura,
M., and Yoshikawa, J. (2002).
Pressure promotes angiotensin
II – mediated migration of human
coronary smooth muscle cells
through increase in oxidative
stress. Hypertension 39(2 Pt 2),
433–437.

Zhang, Y., Griendling, K. K., Dikalova,
A., Owens, G. K., and Taylor, W.
R. (2005). Vascular hypertrophy in
angiotensin II-induced hyperten-
sion is mediated by vascular smooth
muscle cell-derived H2O2. Hyper-
tension 46, 732–737.

Zolk, O., Quattek, J., Sitzler, G.,
Schrader, T., Nickenig, G., Schn-
abel, P., Shimada, K., Takahashi,
M., and Böhm, M. (1999).
Expression of endothelin-1,
endothelin-converting enzyme, and
endothelin receptors in chronic

heart failure. Circulation 99,
2118–2123.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 22 January 2012; accepted: 11
June 2012; published online: 05 July 2012.
Citation: Goette A, Bukowska A, Lillig
CH and Lendeckel U (2012) Oxidative
stress and microcirculatory flow abnor-
malities in the ventricles during atrial
fibrillation. Front. Physio. 3:236. doi:
10.3389/fphys.2012.00236
This article was submitted to Frontiers in
Cardiac Electrophysiology, a specialty of
Frontiers in Physiology.
Copyright © 2012 Goette, Bukowska,
Lillig and Lendeckel. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

www.frontiersin.org July 2012 | Volume 3 | Article 236 | 9

http://dx.doi.org/10.3389/fphys.2012.00236
http://www.frontiersin.org
http://www.frontiersin.org/Cardiac_Electrophysiology/archive
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	Oxidative stress and microcirculatory flow abnormalities in the ventricles during atrial fibrillation
	Introduction
	Ventricular oxidative stress and signal transduction during AF
	Vasoconstrictory peptides regulating coronary flow
	Angiotensin II
	Endothelin-1
	NADPH oxidase


	Ventricular microcirculation during AF
	AF alters ventricular expression of ischemia/hypoxia-related gene panels
	Conclusion
	References


