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LIST OF ABBREVIATIONS 

2-ME   2-mercaptoethanol 

AEC   3-amino-9-ethylcarbazole 

ALS   anti-mouse lymphocyte serum 

BMT   bone marrow transplantation 

BSA    bovine serum albumin 

BW   body weight 

CD   cluster of differentiation 

CNI   calcineurin inhibitors 

CsA   cyclosporine-A 

e.g.   exempli gratia = for example 

ELISA   enzyme-linked immunosorbent assay 

ELISPOT  enzyme-linked immunosorbent spot assay 

FBS   fetal bovine serum 

FITC   fluorescein isothiocyanate 

GVHD   graft versus host disease 

HBSS   Hank’s balanced salt solution 

H&E   hematoxylin and eosin 

i.e.   id est = that means 

IFN-γ   interferon-gamma 

i.p.    intraperitoneal 

IPGTT   intraperitoneal glucose tolerance test 

M   Molar  

mg/kg/d  mg/kg per day 

MR1   anti-CD154 (anti-CD40ligand) monoclonal antibody 

n/a   not available 
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NaCl   sodium chloride 

NO   nitric oxide 

NOD   non-obese diabetic  

PBS   phosphate buffered saline 

PE   phycoerythrin 

PE-50   polyethylene 50 tubing 

PEC   resident peritoneal cells 

POD   postoperative day  

RPMI-1640  Roswell Park Memorial Institute culture medium Number 1640 

s.c.   subcutaneous 

SRL   sirolimus 

STZ   streptozotocin 

TGF-ß   transforming growth factor-beta 

Th1 / 2  T helper cell type 1 / 2 

vs.   versus 
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Introduction 

Type 1 diabetes mellitus is a chronic autoimmune disease that results in most cases 

from a T cell-regulated destruction of the insulin-producing pancreatic beta-cells in 

the islets of Langerhans (1-4). It accounts for about 5-10% of all diabetes cases and 

the worldwide incidence of this disease ranges between 0.57 and more than 40 per 

100,000 per year depending on varying genetic susceptibility in different racial 

populations and environmental factors (1; 2). An autoimmune disease develops when 

the humoral and cellular immune systems fail to distinguish self from non-self. It is 

thought, that in genetically susceptible individuals, type 1 diabetes mellitus can be 

initiated during a viral infection, when viral proteins share an amino acid sequence 

with a beta-cell protein, e.g. glutamic acid decarboxylase, that lead to self-reactive T 

cell clones (2). This process is known as molecular mimicry. Alternatively, an 

infection with a beta-cell-tropic virus, like Coxsackie strain B4, could lead to an 

increased local cytokine release, resulting in the activation of cytotoxic T cells as well 

as B cells, augmentation of the local inflammatory response and consecutively to 

islet cell loss (2; 5). Treatment of choice for type 1 diabetes mellitus is exogenous 

insulin administration accompanied with glucose self-monitoring and nutritional 

planning. Since prolonged exposure to hyperglycemia in diabetic patients can lead to 

neurological, micro- and macrovascular long-term complications (6), near physiologic 

control of glucose levels is the goal in the management of the disease (7). However, 

intensive insulin treatment often cannot fully achieve this target (1), and some 

diabetics experience severe hypoglycemic events and a reduced quality of life (8).  

 

A different approach to the treatment of diabetes is pancreas transplantation that was 

first performed by Kelly, Lillehei and co-workers at the University of Minnesota in the 

late 1960s (9). Over the years the surgical procedures, graft preservation and 
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outcomes have greatly improved (10). However, due to the risks associated with this 

major operation as well as the immunosuppression, this treatment remains mostly 

available for diabetic patients with end-stage renal disease. In such a setting, 

combined kidney-pancreas transplantation has advantages over kidney 

transplantation alone (11).  

 

A promising treatment option is the transplantation of pancreatic islets of Langerhans 

that can lead to restoration of normoglycemia and insulin independence after only 

minimally invasive surgery or with a radiological percutaneous method and 

ultrasound guidance (12). After harvesting a donor pancreas, islets of Langerhans 

can be extracted by collagenase digestion followed by density centrifugation using an 

automated technique (13; 14). In the clinical setting, islets are commonly delivered 

into the portal vein (Figure 1) and, following their embolization in the liver, they form a 

new blood supply (12). Since the first islet transplantation in rodent models in 1972 

(15), techniques of islet isolation, transplantation and peri-transplant management 

have evolved tremendously (12). In 2000, Shapiro and co-workers published their 

groundbreaking series of islet transplants using a new glucocorticoid-free 

immunosuppression protocol, the ‘Edmonton Protocol’ (16). The group reported that 

all diabetic patients treated with this protocol received islets isolated from two to four 

donor pancreases and achieved normal blood glucose control and insulin 

independence out to 14 months (16). This report was followed by others 

transplanting islets isolated from two to three pancreases (17-21), from a single 

donor pancreas (22; 23), and, in a first recipient, from a living donor hemipancreas 

(24). Currently, the insulin independence rate is approximately 70% at one-year after 

islet transplantation, but long-term results still need to improve (12). For islet 

transplantation to become a more available and affordable treatment option, diabetes 
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reversal must be achieved and maintained, as with pancreas transplants, with a 

single donor pancreas on a consistent basis. Furthermore, the significant risks of the 

long-term side effects of immunosuppressive drugs (25) limit the use of current 

transplant protocols to diabetic patients with severe treatment difficulties, like 

hypoglycemia unawareness (12). 

 

 
 
Figure 1. Systematic overview of the islet transplantation procedure in the clinical 
setting. After harvesting a donor pancreas, islets can be extracted by collagenase 
digestion followed by density gradient separation. The transplantation of islets is 
performed by portal vein infusion using radiological guidance or a surgical procedure. 
Figure by B.J. Hering, Diabetes Institute for Immunology and Transplantation.  
 

Tolerance induction to islet allografts has the potential to overcome both problems: 

The requirement for chronic immunosuppression and the need for multiple donors. It 

has been shown that islet autotransplant recipients require a much lower number of 

islets than recipients in the ‘Edmonton Protocol’ to establish insulin independence 
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(26-30). Thus, the presence of tolerance towards an islet allograft might reduce the 

number of islets needed to reverse diabetes, due to the elimination of allo- and 

autoreactivity in addition to the elimination of drug toxicity towards the graft. It is 

known that the existence of autoimmunity seems to be very resistant towards 

commonly used immunosuppression (31-33), and reported findings on the roles of 

adaptive immunity and immunosuppression on islet engraftment seem to be 

conflicting (34-36).  

 

After the pioneering work of Medawar, Owen and others, beginning more than 50 

years ago, researchers have known that hematopoietic chimerism can be associated 

with donor-specific tolerance (37-39). Mixed hematopoietic chimerism refers to a 

state in which donor and host hematopoietic cell lineages coexist in the recipient and, 

in contrast to full chimerism, mixed chimeras retain a superior immunocompetence 

(40). Due to intrathymic deletion of donor- and host-reactive T cells in addition to 

peripheral tolerance mechanisms that are not yet fully understood, the recipient is 

tolerant towards the bone marrow donor while normal immune responses to third-

party antigens are preserved (41-43). Mixed hematopoietic chimerism represents an 

attractive candidate for clinical use in organ transplantation and can be induced by 

transplantation of hematopoietic stem cells into an appropriately conditioned host. In 

the setting of islet transplantation, it appears that low levels of stable donor 

chimerism may be sufficient to induce transplant tolerance and control autoreactivity 

(44-47). In experimental studies, mixed chimerism can be achieved with 

nonmyeloablative regimens of minimal toxicity using costimulatory blockade in 

conjunction with bone marrow transplantation (48-51).  
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In this study, the non-obese diabetic (NOD) mouse model was used, since it 

represents an interesting model of type 1 diabetes mellitus with spontaneous 

diabetes development based on autoimmune mechanisms (52; 53). Mixed 

hematopoietic chimerism was induced with an irradiation-free, nonmyeloablative 

regimen and costimulatory blockade of CD40ligand. After islet transplantation, 

diabetes reversal rates were compared with NOD mice treated similar to the 

‘Edmonton protocol’ with polyclonal T cell antibodies, tacrolimus and sirolimus (SRL).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 11 - 

Materials and Methods 

 

Animals 

Female NOD mice were obtained from Jackson Laboratories (Bar Harbor, ME). 

Starting at the age of 12 weeks, mice were screened weekly for diabetes by tail vein 

glucose measurements. As soon as hyperglycemia was present, mice were treated 

with daily subcutaneous (s.c.) injections of human NPH insulin (Novo Nordisk 

Pharmaceuticals, Princeton, NJ) until postoperative day (POD) -1 

(immunosuppressed mice) or POD -22 (bone marrow recipients). Animals receiving 

bone marrow were implanted with insulin pellets (LinShin Inc., Scarborough, ON, 

Canada) on POD -20 and pellets were removed on POD -1. All mice were diabetic 

with blood glucose levels greater than 400 mg/dl for at least two weeks before they 

received bone marrow or immunosuppressive drugs. Male Balb/c, C3H and C57BL/6 

mice were purchased from Charles River Laboratories (Wilmington, MA) or Taconic 

Farms (Germantown, NY).  

Donor and recipient mice were housed in microisolator cages under specific 

pathogen-free conditions and were given standard food pellets and water ad libitum. 

Animals receiving bone marrow were given autoclaved food and water containing 

sulfamethoxazole and trimethoprim (Qualitest Pharmaceuticals, Inc., Huntsville, AL) 

and their cages were autoclaved for the following three weeks. All experiments were 

performed according to the protocols reviewed and approved by the University of 

Minnesota Institutional Animal Care and Use Committee.   

 

Experimental Groups 

The following study groups were established (Table 1): In Group 1 (n=31) NOD mice 

received conditioning therapy, including fludarabin phosphate (Fludara, 400 mg/kg, 
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Berlex Laboratories, Wayne, NJ) and cyclophosphamide (Cytoxan, 200 mg/kg, 

Bristol-Myers Squibb Co, Princeton, NJ), which were both given intraperitoneally (i.p.) 

on POD –22. In addition, anti-CD154 monoclonal antibody (MR1, 0.4 mg i.p., 

Bioexpress, West Lebanon, NH) was administered daily from POD -21 to -17, then 

on POD -15, -12 and -8, similar to previously described (17).  Bone marrow cells 

were transfused (BMT) on POD -21. 100 to 400 Balb/c islets were transplanted on 

POD 0. Group 2 (n=36) recipients received tacrolimus (Prograf, 0.5 mg/kg/day s.c., 

Fujisawa Healthcare, Deerfield, IL) and SRL (Rapamune, 1 mg/kg/day orally by 

gavage, Wyeth Laboratories, Philadelphia, PA) daily from POD –2. Rabbit anti-

mouse lymphocyte serum (ALS, 0.3 ml i.p., Accurate Chemical and Scientific 

Corporation, Westbury, NY) was given on POD –1 and 0. In Group 3 (n=7), C57BL/6 

mice received a single i.p. injection of 220 mg/kg streptozotocin (STZ, Sigma, St. 

Louis, MO) between POD -20 and -10 before being transplanted with a low-dose (75 

and 100 islets) syngeneic islet graft on POD 0. Starting on POD 60 or 100, these 

mice were immunosuppressed with the same dose and schedule of tacrolimus and 

SRL as Group 2 recipients. In Group 4 (n=5), NOD mice received an islet transplant 

of 100 islets after conditioning therapy and BMT. In addition, these mice were 

administered tacrolimus and SRL at the same dose and schedule as Group 2 starting 

on POD -2. Group 5 (n=6) animals were given the same treatment as Group 1 

animals; on POD 250 these animals underwent graft nephrectomy and, after return to 

hyperglycemia, were retransplanted with 100 or 200 Balb/c islets to the right kidney 

capsule. In Group 6 (n=2), conditioning therapy and BMT were followed by third-party 

C3H islet transplants on POD 0. Group 7 included untreated diabetic NOD mice that 

received Balb/c islets (n=6). Animals in Groups 8 (n=9) and 9 (n=5) received the 

same treatment as Group 1 and 2 mice, respectively. Following the transplantation of 

200 islets on POD 0, resident peritoneal macrophages were harvested on POD 1.  
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In Groups 1, 4, 5 and 6 islet transplants were only performed in animals with 

chimerism levels >40%. Group 8 mice had chimerism levels >20%.  

 

 

  Table 1. Treatment Groups 

 

 

 

 

Group  Number 
of 

Animals 

Islet Donor Recipient Recipient Treatment Days to Normoglycemia Normoglycemia at 
POD 30 

Histological signs 
of rejection at POD 

30 

1 31 Balb/c NOD Fludara 400 mg/kg, 
cyclophosphamide 
200 mg/kg, MR1 0.4 
mg x8, BMT 

100 islets: 2,3,10,19,19, >30 
200 islets: 1,1,1,1,5,6,6,6,9 
300 islets: 1,1,1,1,1,1,1,6 
400 islets: 1,1,1,1,2,3,4,7 

100 islets: 5/6 
200 islets: 9/9 
300 islets: 8/8 
400 islets: 8/8 

100 islets: 0/6 
200 islets: 0/9 
300 islets: 0/8 
400 islets: 0/8 

2 36 Balb/c NOD ALS 0.3 ml x2, SRL 1 
mg/kg/d, tacrolimus 
0.5 mg/kg/d 

100 islets: >30,>30,>30,>30 
200 islets: 1,1, >30 x10 
300 islets: 1,1,1,1,1,1,>30x6 
400 islets: 1,1,1,1,1,6,>30x2 

100 islets: 0/4 
  200 islets: 2/12 
  300 islets: 6/12 

400 islets: 6/8 

100 islets: 0/4 
  200 islets: 0/12 
  300 islets: 0/12 
400 islets: 0/8 

3 7 C57BL/6 C57BL/6 STZ, stable islet 
grafts, SRL 1 
mg/kg/d, tacrolimus 
0.5 mg/kg/d 

n/a n/a n/a 

4 5 Balb/c NOD Fludara 400 mg/kg, 
cyclophosphamide 
200 mg/kg, MR1 0.4 
mg x8, BMT, SRL 1 
mg/kg/d, tacrolimus 
0.5 mg/kg/d 

100 islets: 2, >30x4 
 

100 islets: 1/5 100 islets: 0/5 

5 6 Balb/c NOD Fludara 400 mg/kg, 
cyclophosphamide 
200 mg/kg, MR1 0.4 
mg x8, BMT, islet 
retransplantation on 
POD 250 

100 islets: 4,5,9 
200 islets: 2,3,3 

100 islets: 3/3 
200 islets: 3/3 

n/a 
n/a 

6 2 C3H NOD Fludara 400 mg/kg, 
cyclophosphamide 
200 mg/kg, MR1 0.4 
mg x8, Balb/c BMT 

400 islets: 2,2 400 islets: 0/2 400 islets: 2/2 

7 6 Balb/c NOD - 400 islets: 1,1,1,2,2,3 400 islets: 0/6 400 islets: 6/6 

8 9 Balb/c NOD Fludara 400 mg/kg, 
cyclophosphamide 
200 mg/kg, MR1 0.4 
mg x8, BMT 

n/a n/a n/a 

9 5 Balb/c NOD ALS 0.3 ml x2, SRL 1 
mg/kg/d, tacrolimus 
0.5 mg/kg/d 

n/a n/a n/a 
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Bone Marrow Transplantation 

Femoral and tibial bones from 4- to 6-week-old male Balb/c mice were removed and 

the marrow was flushed out with Dulbecco’s PBS (phosphate buffered saline, Gibco, 

Grand Island, NY) containing 2 µl/ml gentamicin (Elkins-Sinn, Inc., Cherry Hill, NJ) 

using a 10 ml syringe with a 26-gauge needle. Bone marrow cell suspensions were 

washed twice with PBS and a total of 8x107 viable cells were transfused via the tail 

vein. 

 

Determination of Chimerism Levels 

To determine donor chimerism levels, blood was collected on POD -3 via sinus 

orbitalis puncture and heparinized. Cells were incubated on ice for 30 minutes with 1 

µg anti-H-2Dd, anti-H2-Db, anti-CD3 and anti-CD45R/B220 primary antibodies 

conjugated with fluorescein isothiocyanate (FITC), phycoerythrin (PE) or CyChrome 

(all from BD PharMingen, SanDiego, CA). Red blood cells were lysed (PharmLyse, 

PharMingen, San Diego, CA) and thereafter washed in PBS and 2% fetal calf serum. 

Stained cells were measured in a fluorescence-activated cell sorter (FACScan, 

Becton Dickinson, Mountain View, CA) and analyzed with Cellquest software (Becton 

Dickinson, Mountain View, CA). Lymphocyte, granulocyte and monocyte populations 

were gated for multilineage analysis and two-color flow cytometric analysis was used 

to distinguish between donor and host cells. Percentage of mixed chimerism was 

calculated by dividing the net percentage of donor cells by the total net percentage of 

donor plus host cells of that lineage.  

 

Islet Isolation and Transplantation 

Pancreatic islets were isolated and transplanted as previously described (54; 55). 2.5 

ml of Hank’s balanced salt solution (HBSS, Life Technology, Gaithersburg, MD) 



 - 15 - 

containing 2 mg/ml collagenase from clostridium histolyticum (Serva, Heidelberg, 

Germany) was injected into the pancreatic duct. The distended pancreas was 

removed and dissociated at 37 ºC for 16 minutes. Islets were purified by 

centrifugation on gradients comprising three different densities (1.130, 1.110 and 

1.070 g/cm3, OptiPrepTM, Accurate Chemical, Westbury, NY). Thereafter, the islet 

layer was collected, the islets washed with Medium E199 Solution (Mediatech 

Cellgro, Herndon, VA) and then handpicked and counted. Only islets measuring 150 

to 250 µm in diameter, free of acinar cells, vessels, lymph nodes and ducts, were 

used for transplantation (55; 56). Recipient mice were anesthetized with 

tribomoethanol (Avertin, 0.0120 ml/g i.p.) and the left kidney was exposed through a 

lumbar incision (Figure 2a). PE-50 polyethylene tubing (Becton Dickinson, 

Parsippany, NJ) containing 100, 200, 300 or 400 islets was inserted beneath the 

kidney capsule at the lower pole and gently pushed to the upper one (Figure 2b). The 

islets were seeded at the upper pole (Figure 2c) by aid of an attached Hamilton 

syringe (Hamilton Company, Reno, NV). The capsular incision was then sealed with 

a cautery loop (Aaron Medical Industry, St. Petersburg, FL) and the animal was 

closed.   

 

Assessment of Graft Function 

In each recipient, non-fasting blood glucose levels and body weight was measured 

daily from POD 0 to 7 and three times a week thereafter until the end of the 

experiment. Restoration of stable normolycemia was defined as permanent reduction 

of elevated blood glucose levels <200 mg/dl before POD 21 and maintenance of 

normoglycemia through POD 30. The first day of stable normoglycemia was recorded 

as the first of five consecutive days of normoglycemia. Grafts that resulted in only 

temporary normoglycemia were considered unsuccessful.   
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All recipients underwent islet graft nephrectomy on POD 30 (or POD 250 and 280 in 

Group 5) to confirm that normoglycemia, if present, was due to the islet graft and to 

procure tissue for graft histology. 

 

b)a)

c)

 

Figure 2. Transplantation of pancreatic islets in the mouse model. In anesthetized 
mice, the left kidney was exposed through a lumbar incision (a) and PE-50 tubing 
containing islets was inserted beneath the kidney capsule (b). 100 to 400 islets were 
seeded at the upper pole (c) by aid of a Hamilton syringe and the capsular incision 
was thereafter sealed. Pictures by Hannes Kalscheuer. 
 

Intraperitoneal Glucose Tolerance Test  

An intraperitoneal glucose tolerance test (IPGTT) was performed in fasted mice with 

reversed diabetes on POD 30. Following infusion of glucose (1 g/kg/BW, i.p., in 0.3 

ml NaCl), blood glucose was measured at 0, 10, 20, 30 and 60 minutes. 
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Graft Histology and Immunohistochemistry 

The examination of the islet-bearing kidney was performed on POD 30 (or POD 250 

and 280 in Group 5). The specimens were divided as follows: One part of the graft 

was fixed in 10% neutral-buffered formalin, embedded in paraffin and sections 

stained with hematoxylin and eosin (H&E) for histological examination. The second 

part of the graft was snap frozen in liquid nitrogen, and serially sectioned in cryostat. 

Immunostaining for CD4-, CD8-cells, B220+ B cells, CD11b+ macrophages and 

insulin was performed to identify the phenotype of the infiltrating cells.  

In addition, sections of pancreases from Group 1 on POD 30 as well as Group 5 

animals on POD 280 were stained for insulin. 

Group 1 and 5 mice were also examined for evidence of graft versus host disease 

(GVHD). Therefore, H&E-tissue sections were generated and examined from the 

lungs, the skin, the small intestine and the tongue. 

 

Anti-donor Interferon-gamma-Analysis 

Enzyme-linked Immunosorbent Spot (ELISPOT) assays were performed on POD 30 

to determine the frequency of antigen-specific T cells secreting interferon-gamma 

(IFN-γ) in response to Balb/c and NOD cells (48; 57). ELISPOT plates (Cellular 

Technology Ltd., Cleveland, OH) were prepared with 100 µl coating antibodies for 

IFN-γ (4 µg/ml, PharMingen, San Diego, CA) per well and incubated at 4 ºC 

overnight. The plates were thereafter blocked with PBS-1% bovine serum album 

(BSA, Sigma, St. Louis, MO) and washed three times with PBS. Spleens were 

harvested from individual Group 1, 2 and 7 mice as well as untreated littermates and 

0.5 x 106 splenic mononuclear cells were added per well. After addition of an equal 

number of irradiated (3 Gy) T cell-depleted stimulator cells in HL-1 medium 

(BioWhittaker, Walkersville, MD), the plates were incubated at 37 ºC and 5% CO2 for 
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24 hours. Cells were removed and wells were washed with PBS-0.025% Tween. 

Biotinylated rat anti-mouse detection antibodies for IFN-γ (1 to 5 µg/ml, PharMingen, 

San Diego, CA), diluted in PBS-Tween-1% BSA, were added to each well and the 

ELISPOT plate was incubated overnight at 4 ºC. Plates were washed and incubated 

for 90 minutes at room temperature with streptavidin-horseradish peroxidase (Dako 

Corporation, Carpinteria, CA), diluted in PBS-Tween-1% BSA. Spots were developed 

with 3-amino-9-ethylcarbazole (AEC, 10 mg/ml in N,N-dimethylformamide, Pierce, 

Rockford, IL) and then counted on a computer-assisted Immunospot Image Analyzer 

(Cellular Technologies, Ltd., Cleveland, OH). 

 

Resident Peritoneal Macrophage Culture  

Resident peritoneal cells (PEC) were cultured as previously described (58). PEC 

from chimeric (Group 8) or immunosuppressed (Group 9) mice were harvested one 

day following islet transplantation by three injections of 5 ml PBS. PEC were 

resuspended in RPMI-1640, 1 x 10-2 M morpholinopropane sulfonic acid, 5 x 10-5 M 

2-mercaptoethanol (2-ME), BSA (2.5 mg/ml), transferrin (10 µg/ml) and insulin (1 

µU/ml). Tissue culture reagents were obtained from Life Technologies (Gaithersburg, 

MD) or Sigma (St. Louis, MO). This medium was purposely employed to avoid the 

contribution of transforming growth factor–beta 1 (TGF-ß1) found in fetal bovine 

serum (FBS) and other serum supplement. All medium components contained less 

than 0.0015 ng endotoxin/ml. PEC were plated at 3 x 106/ml in 0.2 ml in replicate 

microtiter wells, incubated at 37 ºC in an atmosphere of 7% CO2 for 48 hours and 

supernatants were collected. Experiments, comparing PEC from chimeric and 

immunosuppressed mice, were “head to head”, being performed on the same day 

with the same media and reagents. 
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Transforming growth factor-beta1-Determination  

TGF-ß1 in PEC supernatants was measured using a commercially available kit (R&D 

Systems, Minneapolis, MN). Total TGF-β1 (active and latent) was measured; the 

sensitivity limit of the assay was 7 pg/ml.  

 

Statistical Analysis 

The time course and diabetes reversal rates of the immunosuppressed and chimeric 

mice were compared for significant differences by Kaplan-Meier analysis. Results of 

the IPGTT and the TGF-ß1 levels were expressed as mean +/- standard error of 

mean. Student’s t-test was used to determine the significance of differences between 

control and treatment groups in anti-donor T cell frequencies in ELISPOT assays as 

well as the glucose areas under the curve in IPGTTs. P values <0.05 were 

considered statistically significant.  
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Results 

Significantly reduced islet number required to achieve normoglycemia in 

chimeric NOD mice compared to immunosuppressed animals 

All diabetic NOD mice made tolerant pretransplant with the mixed chimerism protocol 

named above achieved normoglycemia following transplantation of 200 (9/9), 300 

(8/8) or 400 (8/8) Balb/c islets (Table 1; Figure 3b-d, 4b). Of the chimeric mice 

receiving 100 islets, 83% (5/6) became normoglycemic by POD 30 (Table 1; Figure 

3a, 4a). In marked contrast, it was necessary to transplant 400 islets to 

immunosuppressed mice to restore normoglycemia in about the same proportion of 

recipients (6/8) (Table 1; Figure 3d). Transplanting fewer islets, 300 or 200 (Table 1; 

Figure 3b/c, 4d), into immunosuppressed mice further decreased the percentage of 

normoglycemic mice and significantly fewer animals achieved stable normoglycemia 

posttransplantation (p<0.05 for 300 islets, p<0.001 for 200 islets). None of the 

immunosuppressed mice receiving 100 islets became persistently normoglycemic 

(Table 1; Figure 3a, 4c, p<0.05 vs. chimeric animals). 

 

Tight posttransplant glucose control in tolerant mice in contrast to animals 

treated similar to the ‘Edmonton’ protocol 

Thirty days following islet transplantation, an IPGTT was performed on fasted 

chimeric and immunosuppressed mice that were normoglycemic by postoperative 

day 30. Chimeric mice that had received 100 to 400 islets maintained normoglycemia 

throughout the entire test (Figure 5). In contrast, islets transplanted into 

immunosuppressed recipients clearly exhibited less glucose control. This was 

particularly evident in the small percentage of immunosuppressed mice that achieved 

normoglycemia with 200 islets (16.7%, 2/12), which became hyperglycemic with 

mean glucose levels above 300 mg/dl by 10 minutes after glucose administration.  
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Figure 3. Percentage of persistent normoglycemia in chimeric (blue) versus 
immunosuppressed (red) NOD mice after transplantation of a) 100 (p<0.05), b) 200 
(p<0.001), c) 300 (p<0.05) and d) 400 (p=0.33) allogeneic Balb/c islets below the 
kidney capsule. The addition of sirolimus (1 mg/kg/day) and low-dose tacrolimus (0.5 
mg/kg/day) to NOD mice with established mixed chimerism reduced the percentage 
of normoglycemic animals from 83% (5/6) to 20% (1/5; p=0.08) with a 100 Balb/c islet 
graft (a, black line). 
 

Graft morphology showed intact islets in all grafts, but is markedly different in 

chimeric and immunosuppressed mice  

The analysis of islet grafts in chimeric recipients in Groups 1 and 4 on POD 30 and in 

Group 5 on POD 250 and 280 showed numerous, well-preserved and well-

granulated islets with no evidence of cellular infiltration or scattered peri-islet 

infiltration of CD4+ T cells and macrophages (Figure 6 a, b; 7 a-d).  Analyses of islet 

grafts in immunosuppressed Group 2 recipients showed a dense, peri-islet cellular 

infiltrate without disruption of the islet architecture (Figure 6 c and d).   
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Figure 4. Non-fasting plasma glucose levels after transplantation of 100 (left panel) 
and 200 (right panel) Balb/c islets below the kidney capsule. The individual lines 
represent the plasma glucose levels of each animal. Recipient animals were chimeric 
(a,b), received ‘Edmonton’ like immunosuppression (c,d) and were given sirolimus (1 
mg/kg/day) and tacrolimus (0.5 mg/kg/day) in addition to established mixed 
hematopoietic chimerism (e). After removal of the islet-bearing left kidney 250 days 
after transplantation, chimeric animals received a second islet transplant below the 
right kidney capsule (here POD 0) following the return to hyperglycemia (f, g).  
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Figure 5. An IPGTT was performed 30 days after islet transplantation in persistent 
normoglycemic animals following the transplantation of a) 100 islets (n=3; open 
squares) as well as a) 200 (n=7), b) 300 (n=3) and c) 400 (n=5) islets in chimeric 
(open circles) NOD mice. IPGTTs in immunosuppressed, normoglycemic NOD mice 
following the transplantation of a) 200 (n=2; p=0.16 vs. chimeric), b) 300 (n=4; 
p=0.77) and c) 400 (n=5; p=0.35) islets are shown with closed diamonds. D) IPGTT 
in B6 mice with stable, low-numbered isografts before (open circles) and after (closed 
diamonds) 30 days of administration of sirolimus (1 mg/kg/day) and tacrolimus (0.5 
mg/kg/day; p=0.12). Values are shown as averages with standard error of the mean. 
 
 
The infiltrate was comprised predominantly of CD4+ T cells and, to a lesser extent, 

also of CD8+ T cells, macrophages and B cells (Figure 7 e-h).  

Histological examination of islet grafts in non-chimeric, non-immunosuppressed 

Group 7 animals revealed only a few islet remnants with massive infiltration of 

mononuclear cells (Figure 6 e, f). Staining for insulin in pancreases of chimeric 

animals on POD 30 (Group 1) as well as POD 280 (Group 5) revealed no viable islet 

cells (data not shown). 
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Tolerance induction and immunosuppression markedly reduce anti-donor T 

cell responses 

Balb/c islet transplantation into untreated diabetic NOD recipients caused a marked 

rise in Balb/c antigen-specific splenic IFN-γ-positive lymphocytes as measured by a 

rise from 1.4 IFN-γ ELISA spots/5 x 105 cells pretransplant to 50.4 spots at POD 30 

(Figure 8). In striking contrast, spleen cells from chimeric NOD mice only exhibited 

very low IFN-γ levels upon stimulation with Balb/c antigens (1.33 spots) at POD 30. 

In comparison to untreated mice, immunosuppression also caused a reduction of 

donor antigen-specific IFN-γ-secreting cells with normoglycemic recipients averaging 

5.4 spots (p=0.2 vs. chimeric) and hyperglycemic animals 7.2 spots (p=0.01 vs. 

chimeric).  There was no significant difference in the anti-donor T cell responses 

between immunosuppressed animals that achieved persistent normoglycemia and 

those who did not (p=0.63).  

Figure 6. Histological analysis (H&E) of islet Balb/c grafts in chimeric (a, b), 
immunosuppressed (c, d) and untreated NOD mice (e, f). An immense peri-islet 
infiltrate in grafts of immunosuppressed animals was noticeable, whereas untreated 
mice rejected their transplants and only islet remnants could be seen on POD 30. 
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To test the diabetogenic effects of the immunosuppressive regimen used in this 

study, tacrolimus and SIR were administered to stable C57BL/6 islet isograft 

Figure 7. Paired photomicrographs of immunohistochemical labeling for CD4 (a, e), 
CD8 (b, f), CD11b (c, g) and B220 (d, h) in chimeric (left panel) and 
immunosuppressed (right panel) NOD mice 30 days after islet transplantation. Islet 
grafts in chimeric mice had no or a minimal infiltrate, whereas grafts of 
immunosuppressed animals demonstrated numerous CD4+ T as well as B cells and 
macrophages surrounding the islet grafts. Islets in both groups appeared well-
preserved.  
 

 

 

Immunosuppression slightly influences stable islet isografts, but has 

detrimental effects in the early posttransplant period of islet allografts  
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recipients over 30 days in the same concentration as in Group 2 animals. Non-fasting 

blood glucose levels did not alter before and after this treatment (159.18 mg/dl ± 35.6 

before versus 159.96 mg/dl ± 56.5 after immunosuppression). However, an 

intraperitoneal glucose tolerance test revealed that a 30 day course of 

immunosuppression showed a trend towards decreased islet function in these mice 

(Figure 5d; p=0.12). 

In contrast to the lack of a strong inhibitory effect of immunosuppression on an 

established islet graft, this same treatment reduced the ability of 100 allogeneic islets 

(Group 4) to restore normoglycemia in NOD recipients with mixed hematopoietic 

chimerism from 83% (5/6) to 20% (1/5; p=0.08, Figure 3a, 4e). 

 

Recurrence of hyperglycemia in long-term chimeric NOD mice was promptly 

reversed after transplantation of a second graft. Chimeric animals rejected 

third-party islet grafts.  

The procedures, immunosuppressive regimens and conditioning therapy in this study 

were well tolerated. No signs of GVHD were evident by histological analyses of the 

lungs, skin, small intestine and tongue in chimeric NOD mice on POD 30 or 280 (data 

not shown).  

In Group 5, posttransplant monitoring was extended to POD 250. All recipients of 

low-dose islet-allografts (100 or 200 islets) showed stable normoglycemia through 

POD 250 at which time they underwent graft nephrectomy. After return to 

hyperglycemia, these animals were retransplanted with 100 or 200 Balb/c islets to 

the right kidney. Again, all mice became normoglycemic and remained so until POD 

280 (Figure 4f, g). Third-party C3H islets transplanted to chimeric NOD mice on POD 

0 (Group 7) were rejected by day 22 (Table 1).  
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Figure 8. An ELISPOT assay for IFN-γ producing cells of six chimeric (blue bar), two 
untreated, antigen exposed (black bar) as well as five immunosuppressed 
normoglycemic (red bar) and five hyperglycemic (white bar) NOD mice in response to 
syngeneic NOD stimulator cells and donor-strain Balb/c antigens was performed 30 
days after the transplantation of islet cells. Values are shown as averages with 
standard error of the mean.  
 

Slightly elevated TGF-ß1 levels in chimeric animals compared to 

immunosuppressed NOD mice 

To examine the role of the immunoregulatory cytokine TGF-ß1 in the early 

posttransplant period, PEC of chimeric (Group 8) as well as immunosuppressed 

(Group 9) animals were recovered to measure TGF-ß1 production of peritoneal 

macrophages one day after islet transplantation. Figure 9 demonstrates that chimeric 

mice exhibited elevated TGF-ß1 levels in comparison to immunosuppressed islet 

recipients. However, the difference was not significant (p=0.49) and TGF-ß1 

production did not correlate with chimerism levels (data not shown).  
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Figure 9. TGF-ß1 production in NOD mice with chimerism levels >20% (white bar) 
and immunosuppressed animals (black bar) were determined in resident peritoneal 
macrophages one day after islet transplantation (p=0.49). Values are shown as 
averages with standard error of the mean. 
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Discussion 

Transplantation of islets of Langerhans can safely restore endocrine function and has 

the potential of preventing and even reversing diabetic long-term complications (59) 

as seen in pancreas transplant recipients (60). However, due to the high islet number 

required in the ‘Edmonton protocol’, only 0.5% of all diabetic patients could be 

treated (61).  

The results of this study demonstrate that in order to achieve stable diabetes reversal 

with a probability of about 80%, fourfold less islets are required after islet 

allotransplantation in diabetic NOD mice made tolerant prior to transplantation. The 

islet mass that was found to be sufficient to restore normoglycemia in chimeric mice 

was also low in comparison to previous reports of experimental islet 

allotransplantation in NOD mice with 500 to 700 islets (62-68). With the exception of 

the specific antibody used for induction immunosuppression, the immunosuppressive 

regimen applied in this study has been the standard protocol in clinical islet 

transplantation since the report of the Edmonton group in 2000 (16). The findings of 

this study suggest that this currently used immunosuppression protocol greatly 

compromises the ability of marginal mass human islet transplants to restore 

normoglycemia in type 1 diabetics. An improved understanding of the mechanisms 

causing the strikingly different diabetes reversal rates in tolerant, non-

immunosuppressed versus immunosuppressed islet allograft recipients will be 

necessary to achieve the clinically-needed improvement in the marginal mass islet 

transplant success rate. In the experiments presented here, the failure of 

immunosuppressed animals to become normoglycemic after low-dose islet 

transplantation seems to be primarily due to inhibitory effects of tacrolimus and SRL 

on islet engraftment and not due to inhibition of islet function or sub-optimal immune 
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response suppression. This distinction can be critical to the design of future 

immunotherapeutic regimens. 

The detrimental effects of combined administration of glucocorticoids and calcineurin 

inhibitors (CNI) such as cyclosporine-A (CsA) and tacrolimus on insulin secretion and 

sensitivity in islet transplant recipients are well documented (69). Shapiro et al. 

replaced glucocorticoids with SRL and a lowered tacrolimus dose. The enhanced 

islet transplantation results with this new protocol were ascribed to its reduced 

diabetogenicity in addition to an increased islet mass (16). However, recent studies 

reported an unexpected high frequency of new-onset diabetes after kidney 

transplantation even with glucocorticoid-free protocols (70). Also, the rate of diabetes 

development was greater when SRL was added to tacrolimus (70). SRL has 

inhibitory effects on insulin secretion in isolated islets (71-74) and induces insulin 

resistance in vivo (75-77). Furthermore, the combination of low-dose tacrolimus with 

SRL has been shown to cause diabetes in healthy rats (78). However, Shapiro and 

co-workers have demonstrated that the combination of low doses of sirolimus and 

tacrolimus in NOD mice had a strong synergistic effect in preventing diabetes 

recurrence following syngeneic islet transplantation (79).  

To test the potential diabetogenic effects of the glucocorticoid-free combination of 

tacrolimus and SRL on islets independently of any islet immune response, SRL and 

tacrolimus were administered to normoglycemic animals that were bearing a stable 

minimal mass of syngeneic islets. The IPGTT after 30 days of drug administration 

revealed a trend towards decreased glucose tolerance. However, the non-fasting 

glucose levels did not change, suggesting no major inhibitory effect on stable islet 

grafts although the mice only received a transplant of 75 or 100 islet cells. 

Conversely, the administration of the same regimen starting on POD -2 in relation to 

islet transplantation to tolerant NOD mice (Group 5) lowered the diabetes reversal 
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rate of 100-islets allografts from 83% in Group 1 to 20%. Thus, these results 

demonstrate the striking inhibitory effect on islet engraftment during the early 

posttransplant period.  

After the isolation process, pancreatic islets are completely avascular and it has been 

shown that vascularization begins two to four days after islet transplantation and 10 

to 14 days are needed to establish a new microvascular network (80; 81). The graft 

becomes revascularized from intra-islet as well as recipient-derived endothelial cells 

(82-84). SRL is known to inhibit the proliferation and differentiation of endothelial 

cells (85-87) and, with relevance to islet transplantation, it has been demonstrated to 

inhibit the outgrowth of endothelial cells from freshly isolated human islets along with 

the formation of capillary-like structures in vitro and in vivo (88; 89). Furthermore, 

SRL showed a dose-dependent adverse impact on engraftment of syngeneic and 

allogeneic islets in murine models (56; 74), plus caused a dose-dependent incidence 

of primary nonfunction after hamster-to-mouse islet xenotransplantation (90).  

Antiangiogenic properties of CNI have been shown in vitro and in vivo as well (88; 

91; 92). In murine models, CsA inhibited vascular ingrowth into transplanted islets 

(93) and decreased the graft insulin content (94). In a canine intrasplenic islet 

autograft model, four of six CsA-treated recipients showed graft failure by POD 6, 

whereas normoglycemia persisted in all eight non-immunosuppressed autografted 

control-animals until the end of the study (35). However, when CsA was started on 

POD 10, all islet recipients remained normoglycemic for more than 30 days (95).  

Conversely, both CNI and SRL inhibit islet engraftment, and the profound impairment 

of early islet allograft function presented here suggests that tacrolimus and SRL 

synergize in inhibiting islet engraftment. It is also conceivable that islets are more 

sensitive to direct toxic effects mediated by CNI (96-101) and SRL (71; 72; 74) until 

full vascular incorporation has occurred (95). These effects might be even more 
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important in the setting of intraportal islet transplantation, since peak 

immunosuppressant levels as well as the area under the curve in portal blood relative 

to systemic levels for orally administered drugs have been shown to be dramatically 

elevated (102).  

 

Immunologic graft loss as a reason for hyperglycemia in a subgroup of 

immunosuppressed animals was excluded through splenic lymphocytes IFN-γ 

responses and histology of all grafts. As a Th1 cytokine, IFN-γ appears to play a 

critical role in islet destruction following transplantation as well as in autoimmune 

diabetes (103-108). Specifically, this is the principal cytokine that activates 

macrophages to produce nitric oxide (NO) and other islet-noxious products that are 

upregulated in type 1 diabetic mice (109; 110) and rats (111). In line with these 

observations, there was a marked increase in the frequency of Balb/c donor antigen-

specific IFN-γ-positive splenic lymphocytes in untreated NOD islet recipients. In 

contrast, in NOD recipients of Balb/c bone marrow that exhibited >40% donor 

chimerism, the frequency of IFN-γ-positive splenic lymphocytes was reduced to 

background levels. Thus, strong donor-specific tolerance was achieved in these 

chimeric mice as previously observed in chimeric NOD mice prepared using 

irradiation and more intensive immunosuppression (112). The frequency of IFN-γ-

positive lymphocytes was also markedly reduced in NOD islet recipients treated with 

contemporary immunosuppression. Moreover, there was no significant difference in 

the number of IFN-γ-positive lymphocytes between immunosuppressed animals that 

were normoglycemic and those that never achieved persistent normoglycemia. 

Therefore, although the mechanisms responsible for the reduction in IFN-γ-positive 

cells in chimeric and immunosuppressed mice may have been different, both 

treatments effectively reduced this response.  
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The foregoing interpretation is supported by histological analyses of the islet grafts. 

Intact islets could be found in all mice regardless of whether they achieved 

normoglycemia or not. In contrast, histological examinations of islet grafts in non-

chimeric, non-immunosuppressed Group 7 animals revealed only a few islet 

remnants with massive infiltration of mononuclear cells. However, islet grafts in 

chimeric mice showed minimal or no leukocyte infiltration, whereas immunostaining 

of grafts in the immunosuppressed group demonstrated an extensive infiltration of 

predominantly CD4+ and CD8+ lymphocytes surrounding the islets. Peri-islet 

infiltrations have been demonstrated in functioning islet (63; 79; 113) as well as in 

pancreas (114) grafts before. Infiltrates can also be observed in NOD mice and 

Gazda et al. discriminated between benign and malignant autoimmunity (115). The 

group reported that no destruction of beta cells or diabetes development occurs 

during the benign phase, despite profound insulitis. Green et al. showed that mainly 

Th2 cytokine expression was present in these benign infiltrations, thus demonstrating 

the non-aggressive nature (116). Others revealed immunoregulatory cells in these 

infiltrates (117). Therefore, these findings suggest that benign peri-islet infiltrates 

have no major adverse influence on functioning islet cells; however, the exact impact 

on islet cell function still needs to be determined.  

 

Rejection of third-party cells in Group 7 mice showed immunocompetence of 

chimeric animals. Normoglycemia for 250 days after islet transplantation in Group 5 

animals demonstrated the robust donor-specific tolerance and reversed 

autoimmunity. Furthermore, following the return to hyperglycemia after nephrectomy 

of the graft-bearing left kidney, transplantation of 100 or 200 Balb/c islets resulted in 

normoglycemia in all mice. In turn, these findings demonstrate that the superior 

outcomes in tolerant, non-immunosuppressed Group 1 mice compared with Group 2 
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recipients was not due to conditioning therapy nor anti-CD154 monoclonal antibody 

(mAb) exposure. Kiener (118) and Dechanet (119) described the release of islet-

noxious nonspecific inflammatory mediators upon stimulation of human monocytes 

and endothelial cells via the CD40 pathway. Others demonstrated the beneficial 

effect of anti-CD154 treatment on islet survival in murine (120) and rhesus monkey 

models (121). Quesenberry et al. reported that hamster anti-CD154 mAb levels were 

detectable in murine blood for up to 15 weeks, but could not detect any levels 36 

weeks after initial mAb course (122). Although the retransplantations of low-dose islet 

allografts in Group 5 animals were performed about 260 days, i.e. about 37 weeks, 

after the last administration of anti-CD154, the diabetes reversal rates were 

comparable to those observed in Group 1 animals. Thus, an influence of conditioning 

therapy and anti-CD154 treatment on diabetes reversal rates was excluded. 

 

In addition, the return to hyperglycemia after nephrectomy of the graft-bearing kidney 

on POD 30, 250 or 280 excluded insulin production outside the graft and pancreatic 

beta cell regeneration (123). These results were further confirmed by 

immunohistological examinations of pancreases with no positive staining for insulin 

(data not shown).  

 

Initial experiments found the production of TGF-ß1 by resident PEC one day after 

islet transplantation to be elevated in NOD islet recipients, especially when high 

chimerism levels were exhibited. Since elevated TGF-ß1 production was found in 

PEC of chimeric NOD recipients away from the kidney capsule site of islet 

implantation, the results suggested that the induction of chimerism induced a 

systemic increase in leukocyte TGF-ß1. This cytokine is now recognized to play a 

key immunoprotective role in NOD mice (124; 125) and in islet transplantation (113; 



 - 35 - 

126). Specifically, it has been demonstrated that the release of TGF-ß in islet cells 

can prevent autoimmune diabetes via expansion of regulatory T cells in transgenic 

NOD mice (125). Co-transplantation of TGF-ß-producing Sertoli cells with islet cells 

resulted in a significant lower isograft rejection rate in NOD mice (113). Furthermore, 

macrophage islet–protective TGF-ß1 production has been shown to be inversely 

related to macrophage production of islet-toxic NO (58). Thus, a systemic elevation 

of TGF-ß1 could have a beneficial impact on islet graft survival. However, further 

experiments could only demonstrate a non-significant increase of TGF-ß1 production 

in chimeric NOD mice and there was no correlation between percentage of 

chimerism and TGF-ß levels (data not shown). It is known that TGF-ß1 and NO 

production vary between mice strains (58), with NOD mice exhibiting decreased 

TGF-ß1/NO ratios (111). Balb/c macrophages have been shown to be high 

producers of TGF-ß1 (58), thus it was conceivable that, after transplantation of Balb/c 

bone marrow into NOD mice, islet-protective TGF-ß1 levels could be elevated in the 

host. However, Shapiro et al. have shown that the combination therapy of sirolimus 

and tacrolimus in NOD mice with islet grafts resulted in upregulated TGF-ß1 

expression as well (79), making an important role of this cytokine in the experimental 

setting presented here unlikely. Future studies need to determine whether mixed 

chimerism induces the release of other factors that would promote islet engraftment 

and function.  

 

This study demonstrated that an extraordinary low mass of allogeneic islets is 

sufficient to restore normoglycemia in recipients with autoimmune diabetes if islet 

engraftment is allowed to occur in the absence of both adaptive immunity and 

immunosuppressive drug toxicity. These findings corroborate and extend the report 

by Kumagai et al., who demonstrated improved allograft function if islets were 
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allowed to revascularize in the absence of alloimmunity and CsA (36). The group 

prevascularized isolated islets under the autologues kidney before subsequent 

transplantation as a composite islet-kidney allograft into allogeneic, 

immunosuppressed dogs. Considering the current high demand of islet cells to 

achieve normoglycemia in humans, a reduction of the number of islets would make 

the available donor pancreases accessible to more diabetic patients. Furthermore, if 

an as high reduction of the islet number as seen in these experiments could be 

achieved in a clinical setting, in the future, living-donor transplantation (24) might be 

a possible treatment for diabetic patients on a regular basis.  

 

In summary, combined administration of tacrolimus and SRL has detrimental effects 

on islet engraftment. Avoiding these drugs in the early posttransplant period by 

pretransplant induction of donor-specific tolerance and restoration of self-tolerance 

facilitates diabetes reversal with a very low islet mass. It is conceivable that other 

tolerance and immunotherapeutic strategies that control adaptive immunity without 

interfering with islet engraftment will be equally effective. First successful tolerance 

induction protocols, using successive bone marrow and kidney transplantation for the 

treatment of myeloma patients with chronic kidney failure, are currently being 

investigated in clinical trials (127). Extended administration of depleting T cell 

antibodies facilitating delayed initiation of CNI or SRL (22) or substitution of non-

angiocidal immunotherapeutics for CNI and SRL (121) are likely to improve the 

success rate of marginal mass human islet allografts. 
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Summary 

Islet transplantation can restore normoglycemia in diabetic patients. However, its 

application is limited by the high number of islets required to reverse diabetes. As the 

mass and potency of most human islet preparations are marginal, a large impact on 

the applicability of islet transplantation is expected from the implementation of 

strategies that improve engraftment of these islet preparations. The roles of adaptive 

immunity and immunosuppression on islet engraftment are not well studied. 

Therefore, the effects of currently used immunosuppression with antilymphocyte 

serum, tacrolimus and sirolimus on islet engraftment were separated from their 

impact on immunity and diabetes reversal rates were compared after islet 

allotransplantation in immunosuppressed and chimeric, non-immunosuppressed 

NOD mice. Both strategies prevented rejection of islet allografts and reduced the 

frequency of donor-specific, IFN-γ-secreting T cells. However, in order to achieve 

stable diabetes reversal with a probability of about 80% after islet allotransplantation 

in diabetic NOD mice, a fourfold higher islet mass (400 islets) was required in 

immunosuppressed recipients, compared with non-immunosuppressed recipients 

made tolerant pretransplant by induction of mixed hematopoietic chimerism (100 

islets). The failure of immunosuppressed mice to become normoglycemic after low-

dose islet transplantation primarily resulted from the inhibitory effects of tacrolimus 

combined with sirolimus on islet engraftment and not from the inhibitory effects of this 

combination on islet graft function. These data suggest that immunotherapeutic 

strategies that control adaptive immunity without interfering with islet 

neovascularization or other processes critical to islet engraftment are likely to 

improve the success rate of marginal mass human islet allografts.  
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