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Abstract

For the goal of individualized medicine, it is critical to have clinical phenotypes at hand which represent the individual

pathophysiology. However, for most of the utilized phenotypes, two individuals with the same phenotype assignment may

differ strongly in their underlying biological traits. In this paper, we propose a definition for individualization and

a corresponding statistical operationalization, delivering thereby a statistical framework in which the usefulness of a

variable in the meaningful differentiation of individuals with the same phenotype can be assessed. Based on this

framework, we develop a statistical workflow to derive individualized phenotypes, demonstrating that under specific

statistical constraints the prediction error of prediction scores contains information about hidden biological traits not

represented in the modeled phenotype of interest, allowing thereby internal differentiation of individuals with the same

assigned phenotypic manifestation. We applied our procedure to data of the population-based Study of Health in

Pomerania to construct a refined definition of obesity, demonstrating the utility of the definition in prospective

survival analyses. Summarizing, we propose a framework for the individualization of phenotypes aiding personalized

medicine by shifting the focus in the assessment of prediction models from the model fit to the informational content of

the prediction error.
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1 Introduction

The classificatory systems and thus our nomenclatures of health and disease like the ICD-10 are not designed to
deliver the full pathophysiological picture of an individual patient.1–3 The same is true for a broad range of
classical risk factors like age or the body mass index (BMI) which can be seen as proxies for underlying
pathophysiological processes, but they can clearly not be identified with the underlying biology.4–6 From a
conceptual point of view, it is therefore the difference between our phenotypes (mostly nomenclatures and risk
factors) and the actual pathophysiology ongoing in a patient which represents a major obstacle in the development
of individualized metrics describing health and disease. For the goal of personalized medicine, statistical modeling
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should therefore aim at delivering metrics fitting to the individual biology instead of delivering the best fit to an
observable phenotype. Moreover, when thinking of economic pressure in modern health systems, data-driven
predictors would have to prove a substantial informational surplus in comparison to the classical risk assessments
and diagnostic procedures to be accepted and refunded.7 For example, there would be no reason to spend money
on quantifying the urine metabolome8 or the epigenome9 to measure biological age if the simple question ‘‘How
old are you?’’ would deliver the same information as a potentially complicated and expensive Omics analysis.

This paper deals with the question how to generate such individualized metrics of health and disease and how to
test their validity. We will present a definitional statistical framework and derived a generally applicable workflow
to individualize risk factors and phenotypes, by shifting the criterion of successful modeling from the model fit to
the informational content of the prediction error. Utilizing measurement error theory,10,11 we prove that the
prediction error can be used for meaningful internal differentiation of individuals showing the same observable
phenotype if certain statistical prerequisites are fulfilled. We shall note that our arguments have been implicitly
already used in biomedical research, especially in the construction of biological age measures, without clarifying
the underlying assumptions and methodology.8,9,12–14

2 Theoretical background

In this part, we concretize our understanding of individualization and introduce the statistical concept of an
individualization instrument. We define the concept of individualization as follows:

2.1 Definition 1: Individualization (conceptual)

Individualization is the differentiation of subjects showing the same phenotypic manifestation despite underlying
biological differences such that the assigned differences correspond to the underlying biological differences.

This definition of individualization makes thus only sense conceptually if a bijection between phenotype and
biology is not possible. If this would the case, the phenotype could already be called individualized. We will therefore
assume in the following paragraphs that at least some aspects of the underlying biology are not observed. Before
transferring the definition of individualization to statistical terms, we concretize the term proxy phenotype:

2.2 Definition 2: Proxy phenotype

Let T, X1, X2,. . ., XI be random variables with T representing a hidden trait and the Xi representing observable
variables. We call Xi a proxy phenotype for T if

(i) Xi and T are not statistically independent : Xi �� T
(The observable variable Xi carries information about the hidden biological trait)

(ii) Xi and T are not statistically independent given all other Xj : Xi �� Tj [Ij¼1, j 6¼i Xj

(The observable variable Xi carries information about the hidden biological trait given all other observable
variables.)

By this definition, we include genotypes into the class of proxy phenotypes as long as they are observed. In the context
of individualization, this makes sense because individuals having the same genotype may differ in their biology regarding
a certain hidden trait. Thus, the classical differentiation between genotype and phenotype has no meaning inside our
framework. We translate now the above made definition of individualization into statistical terms.

2.3 Definition 3: Individualization (statistical)

Let M, X and T be three random variables. We call the observable M an individualization in the context of the
hidden trait T and the corresponding proxy phenotype X if the following attributes for X,T and M are given:

(i) M and T are not statistically independent : M�� T
(The individualization carries information about the hidden biological trait)

(ii) M and T are not statistically independent given X : M��TjX
(The individualization carries information about the hidden biological trait given the phenotype X)
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In the context of metric phenotypes and metric hidden traits, we call M individualization metric. At first sight, it
might be plausible to demand additionally that the individualization M should be independent of the proxy
phenotype X given the hidden trait T. However, this would exclude the case in which T is a function of the
individualization M and the proxy phenotype X. In this case, conditioning on T could lead to statistical
dependence between M and X (in terms of causal inference theory, T would be a collider15). Still, the
individualization M would carry information regarding the latent trait T not represented in X. Next, we derive
conditions under which a variable Z associated to X may be useful in deriving individualizations, and here indeed,
we will demand conditional independence between Z and X given T.

2.4 Definition 4: Individualization instrument

Let Z, X and T be three random variables. We call the observable Z an individualization instrument in the context of
the hidden trait T and the corresponding proxy phenotype X if the following attributes for X,T and Z are given:

(i) Z and T are not statistically independent : Z�� T
(The individualization instrument carries information about the hidden biological trait)

(ii) X and Z are statistically independent given T : X�� ZjT
(The phenotype carries no information about the individualization instrument given the value of the hidden
biological trait.)

This collection of statistical dependencies corresponds to three possible Bayesian nets which can be visualized
by directed acyclic graphs:

(a) Z T!X
(b) Z!T!X
(c) Z T X

These directed acyclic graphs may have causal interpretations and it may be helpful to think of these relations in
causal terms (in the sense of Pearl15), but we do not rely in our framework on the notion of causality. It follows
from (i)-(ii) directly that X�� Z and Z�� TjX. The latter means that the individualization instrument Z contains
information about T in individuals showing the same phenotypic occurrence. Thus, an individualization
instrument is a statistical individualization in the sense of definition 3. The converse statement is obviously not
true. Consider the acyclic graph (d):

(d) Z!T X

In this case, Z is not an individualization instrument, because Z is not independent of X given T (once again T
can be seen as a collider), but Z is clearly an individualization. The justification for the exclusion of the case (d)
(and other cases of individualizations) from the definition of an individualization instrument is given later on when
we will discuss the construction of individualized proxy phenotypes from a set of observable variables.

An example for an individualization instrument is C-reactive protein measures in serum (variable Z) as a
marker for chronic low-grade inflammation in the context of hidden trait biological age (variable T) and the
proxy phenotype chronological age (variable X). The biological age variable T is a function of the chronological
age variable X. Chronic low grade inflammation is a function of biological age and therefore C-reactive protein
measures are dependent on age. By this conceptualization, C-reactive protein measures fulfill the criteria of
constituting an individualization instrument. In this case, the directed acyclic graph (c) seems to be appropriate.

Until now, we abstractly defined the attributes of an individualization instrument in the terms of conditional
statistical independencies. In many clinical applications, however, statements about metric attributes would be
useful or even necessary when the hidden trait T and the phenotype X may be understood as metric variables.
In this case, we can interpret the relation between T and X in terms of measurement error models. Following our
definition above, phenotypes like diseases or risk factors can be conceptualized as proxies for the underlying
hidden biological traits. For example, chronological age is for sure a very good proxy of biological age, but still
two individuals of age 70 may have different biological ages because of individual habits like smoking and alcohol
consumption or biological traits like genetic predispositions. Using measurement error models, a metric proxy
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phenotype X can be modeled using equation (1), where T is the hidden biological trait variable, and Ec is an
unrelated error term regarding T, following the classical measurement error model10

X ¼ Tþ EC with T � Ec,Var ECð Þ4 0, classical measurement error model CMEMð Þ ð1Þ

This is, however, not the only way to conceptualize the relation between an observable proxy and a hidden
biological trait. For the example of biological age, it may be more appropriate to use equation (2) with T being the
sum of X and an error term E unrelated to X, also called the Berkson error model10,11

T ¼ Xþ EB with X � EB,Var EBð Þ4 0, Berkson measurement error model BMEMð Þ ð2Þ

Whether equation (1) or (2) is closer to the reality of the data is a conceptual decision which has to be made
anew for each study design and each phenotype. Actually, the BMEM corresponds to the acyclic graph (c) whereas
the CMEM is represented by the graphs (a) and (b). We can conclude directly that for an individualization
instrument Z and the CMEM Z � EC holds, whereas in the BMEM Z�� EB is true: Hence, in the CMEM the
non-informative part Ec of X regarding T is not represented in Z, whereas in the BMEM the informative Eb is
represented in Z.

In conclusion, by understanding phenotypes as proxies for hidden biological traits, we can derive simple
conditions in terms of statistical dependencies which identify variables which will be helpful in the biologically
meaningful individualization of phenotypes.

3 An abstract methodology for deriving individualization metrics

After these clarifications, we will explicate the abstract methodology to derive an individualization metric in the
context of a hidden trait T and a corresponding proxy phenotype X regarding using p individualization
instruments Z1,. . .Zp. In the following paragraphs, we only discuss statistical models derived from the class of
the general linear model, but extensions can be achieved easily. The goal of the methodology is to construct the
individualization metricM as a linear combination of Z1,. . .Zp such that the square covariance of T given X andM
Cov M,TjXð Þ

2 is maximized or at least greater zero. Note that for the CMEM we get

Cov M,TjXð Þ :¼ Cov M,T�
Cov T,Xð Þ

Var Xð Þ
X

� �
¼ Cov M,T�

Cov T,Tþ ECð Þ

Var Xð Þ
Tþ ECð Þ

� �

¼ Cov M,T� T
Cov T,Tð Þ

Var Xð Þ

� �
þ Cov M,

Cov T,Tþ ECð Þ

Var Xð Þ
EC

� �

¼ Cov M,T� T
Cov T,Tð Þ

Var Xð Þ

� �
¼ 1�

Var Tð Þ

Var Xð Þ

� �
Cov M,Tð Þ

ð3Þ

In the derivation, we used that T and X are linear to each other, the definition of the CMEM and that
Cov M,ECð Þ ¼ 0. Analogously by using the definition of the BMEM, we get for the BMEM

Cov M,TjXð Þ ¼ Cov M,T�
Cov T,Xð Þ

Var Xð Þ
X

� �
¼ Cov M,Xþ EB �

Cov Xþ EB,Xð Þ

Var Xð Þ
X

� �

¼ Cov M,Xþ EB �
Cov X,Xð Þ

Var Xð Þ
X

� �
¼ Cov M,EBð Þ

ð4Þ

Thus, the optimization of Cov M,TjXð Þ
2 can be achieved by maximizing the absolute values of Cov M,Tð Þ in

CMEM and CovðM,EBÞ in the BMEM. The methodology to derive an individualization metric M and tests its
possible clinical value consists of three steps.

3.1 Step 1: Predict X using Z1,. . .Zp and derive the prediction score Y

We use our predictors to construct a prediction score approximating X, for example we predict chronological age
with the Zi. As the Zi are conditional independent of X given T, any linear combination of Zi will be conditional
independent of X given T as long as the estimation of the coefficients will not introduce dependence, but this is
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generally not the case in the class of linear models. Consider for example the ordinary least squares (OLS)
multivariable regression of X on Z¼ (Z1,. . .Zp) and X satisfying the CMEM. Then, the prediction score Y is given by

Y ¼ Z ZTZ
� ��1

ZTX
� �

¼ Z ZTZ
� ��1

ZT Tþ ECð Þ

� �
¼ Z ZTZ

� ��1
ZTT

� �
ð5Þ

as ZTEC is the null-vector because of X � ZijT. Thus, Y is independent of EC. This argument is evenly true for Y
being a linear combination of the principle components of ZZT or a linear combination of directions derived by
partial least squares (PLS) algorithms or any kind of kernel regression.

In essence, every element of the linear span of Z will be itself an individualization instrument if it has a
covariance with X. In the consequence, the model Y can be derived via a wide range of estimation procedures
including machine learning techniques like vector support machines and methods exploring the latent structure of
the Zi like PLS or principle component analyses. This argument is equally true for the BMEM. From equation (5),
another important feature can be seen. The regression score Y is actually equivalent with the prediction
score which one would derive when one would know the hidden trait T and regress it on the Zi. Thus, under
the assumptions of OLS regression, Y is the optimal model (in terms of mean squared error) regarding T given the
predictor set Zi. This attribute would be lost if any of the Zi would violate the requirement of being conditional
independence of X given T. Moreover, a Zi which would not be correlated to X would not contribute to Y.
Therefore, the definition of individualization instruments secures that all Zi are correlated with X.

3.2 Step 2: Regress Y on X and derive the corresponding residual variable

We derive now the prediction error orthogonalized to X by regressing the prediction score Y on X and we define
this residual variable as the individualization variable M as we are most interested in information about T
captured by Y given X. Therefore, we regress Y on X and derive the prediction error in this way. We will now
demonstrate for both, the CMEM and the BMEM, that

Cov Y,TjXð Þ ¼ Cov T,YjXð Þ ð6Þ

We write down the residual variable Y� Ŷ after regressing Y on X

M :¼ Y� Ŷ ¼ Y�
CovðX,YÞ

VarðXÞ
X ð7Þ

For the covariance Cov T,YjXð Þ ¼ Cov T,Y� Ŷ
� �

in the case of the CMEM follows:

Cov T,Y� Ŷ
� �

¼ Cov T,Yð Þ � Cov T, Ŷ
� �

¼ Cov T,Yð Þ �
Cov X,Yð Þ

Var Xð Þ
Cov T,Xð Þ

¼ Cov T,Yð Þ �
Cov Tþ EC,Yð Þ

Var Xð Þ
Cov T,Tþ ECð Þ

¼ 1�
Var Tð Þ

Var Xð Þ

� �
Cov T,Yð Þ ¼ Cov Y,TjXð Þ

ð8Þ

as Var Tð Þ
Var Xð Þ � 1. For the BMEM, we get

Cov T,Y� Ŷ
� �

¼ Cov T,Yð Þ � Cov T, Ŷ
� �

¼ Cov T,Yð Þ �
Cov X,Yð Þ

Var Xð Þ
Cov T,Xð Þ

¼ Cov T,Yð Þ �
Cov T� EB,Yð Þ

Var Xð Þ
Cov Xþ EB,Xð Þ

¼ Cov T,Yð Þ � Cov T,Yð Þ þ Cov Y,EBð Þ ¼ Cov Y,EBð Þ ¼ Cov Y,TjXð Þ 6¼ 0

ð9Þ

Thus, the residual variable correlates with the hidden trait and contains an informational surplus in addition to
the observable phenotype. Hence, the residual (7) fulfills the criteria of being an individualization metric in the
context of T and X. For the CMEM, the residualM is actually the optimal (in OLS terms) individualization metric
reachable given the set of Zi. In the case of the BMEM, it is easy to see thatM is not the optimal model, because an
OLS regression of the Zi on T directly would yield a different prediction score with higher fit to TjX. However, the
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construction of the optimal model would require either observing of Eb or T. Hence, the proposed methodology
cannot deliver the optimal individualization in the BMEM, but, still, the model M is informative beyond the
observable phenotype and thus of potential clinical value.

In the context of individualization, the orthogonalized prediction error M is therefore not something to reduce,
but to utilize as it represents the individualizing information regarding T not represented in X. Logically, a model
which would predict X perfectly cannot be used for individualization and in the consequence, the model fit of a
prediction rule regarding the phenotype X is not necessarily a good indicator of its meaningfulness in the sense that
it delivers information not represented in X. One has to look on the informational content of the residuals after
regressing Y on X.

3.3 Step 3: Demonstrate the informational content of the residual variable
derived in step 2

This step is the crucial step to demonstrate the validity of the above derived metric M. Although we already have
seen that the residual variable M derived in step 2 has a covariance with the hidden trait T and is therefore
informative beyond the proxy X in a statistical sense, it is not clear whether the induced correlation is large enough
to be practically meaningful which refers to the explained utilitarian aspect of individualization in the clinical
context. Moreover, the critical prerequisite that the Zi are individualization instruments which cannot be tested
empirically may be violated, invalidating the methodology. Therefore, one needs other observable variables which
correlate with T to check the validity of the derived individualization metricM. The logic in behind is simply that if
M is informative for T then they should be informative for any variable related to T. The concrete procedure of
step 3 is dependent on the conceptualization of the hidden trait T. For example, for biological age it makes
absolutely sense to demonstrate the predictive value of the residuals derived in step 2 in survival analyses, but
for Alzheimer’s disease (with X being the formal diagnosis of Alzheimer’s disease) it may be suitable to take
neuropsychological measures or imaging markers for validation. Note that of course the parametrization of the
score Y has to be numerically stable to be potentially valid in the sense of step 3. Thus, overfitting is to be avoided,
e.g. by including penalty terms in the cost function.

4 Practical example: deriving a refined definition of ‘‘obesity’’ in the large
population-based Study of Health in Pomerania (SHIP)

Now, we will apply our methodology to real-life data from the SHIP cohorts16 and construct a refined definition of
‘‘obesity’’ in comparison to a pure anthropometric definition. As it is clear that obesity, while being one of most
potent risk factor besides age in Western societies, is not sufficiently described by anthropometric measures,17–19

this example is of clinical interest. The SHIP project includes population samples from north-eastern Germany
with longitudinal and comprehensive medical phenotyping. Here, we will use the SHIP-0 cohort (n¼ 4308) which
was sampled between 1997 and 2001 and had follow-up survival data until 2015. The investigations were
performed in accordance with the Declaration of Helsinki, including written informed consent of all
participants. The survey and study methods of the SHIP studies were approved by the institutional review
boards of the University of Greifswald. For details on SHIP, see Völzke et al.16 and the Supplementary
material, describing sampling strategies, measurements and phenotyping. The sample characteristics of SHIP-0

Table 1. Descriptive statistics for the utilized SHIP-0 cohort.

Women (n¼ 1826) Men (n¼ 1710)

Age, mean(SD) 48.47 (16.22) 50.66 (16.47)

Waist circumference in cm, mean(SD) 83.19 (12.89) 95.84 (11.51)

Body mass index in kg/m2, mean(SD) 26.97 (5.28) 27.70 (3.97)

Triglycerides in mmol/L, mean(SD) 1.55 (0.96) 2.08 (1.39)

Systolic Blood pressure in mmHg, mean(SD) 129.55 (20.84) 142.35 (19.23)

Glycated hemoglobin in percentage, mean(SD) 5.32 (0.84) 5.48 (0.88)

Diabetes (%) 7.78 10.54

Smoking (%) 27.29 34.49

SD: standard deviation.
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can be found in Table 1. All data used here can be accessed via the data application procedure on www.
community-medicine.de free of charge.

4.1 Step 1: Predict the waist circumference using measures indicative of metabolic
health and derive the prediction score Y

For the goal of deriving a refined measure of obesity, we extracted eight measures associated with metabolic
health. These measures were the glycated hemoglobin percentage, systolic blood pressure, cystatin C, C-reactive
protein measures (high-sensitive), triglycerides, total cholesterol to high density lipoprotein cholesterol ratio, red
blood cell counts and white blood cell counts. Complete information on these variables was available in 3547 cases
(men¼ 1716, women¼ 1831). We conceptualize the waist circumference as the phenotype X, the obesity-related
metabolic disruptions as T and the named predictors as Zi. The Zi are plausible individualization instruments,
because they are influenced by the metabolic disruptions caused by obesity. We assume that there is no path
directly from the waist circumference to any Zi, assuming thus conditional independence of the Zi and the waist
circumference given T. In essence, this means we conceptualize the variables in the sense of the BMEM where the
hidden trait T is influenced not only by obesity measured by the waist circumference, but also by other traits like
genetic variants or physical activity.

In the next step, a multivariable regression was fitted with the waist circumference as outcome variable and the
named variables as predictors. We used the multivariable fractional polynomial (MFP) approach20 to model
potential non-linearity of these variables and fitted the model for men and women separately, as it is plausible
that the used variables may not behave similarly for men and women.21 We allowed the transformations X�2, X�1,
X�0.5, log(X), X0.5 X, X2, and X3 with maximal five cycles of iterations. The model reached convergence after three
cycles of iterations in both sexes. For women, the model reached an adjusted R-squared of 0.43 and for men 0.33.
Ten-fold internal cross-validation using 15 repetitions with newly randomized separations supported the model fit
and showed no indication for overfitting as one could expect with around 200 observations per predictor.
The prediction scores were different for men and women in their parametrization and for both sexes, the final
model included several non-linear transformations. The full parametrization can be found in the Supplementary
material (Tables S1 and S2). Note that the mediocre R-squared is nothing that concerns us here as it is not the
crucial criterion for a good model in our sense as explained above.

The chosen variables are standard measures of health and widely available over cohort studies, so replication
can be easily conducted. Of course, there may be other variables enhancing the informational content of the
corresponding residual variables, but our aim here is to show that even with standard health indicators a refined
definition of obesity is possible, demonstrating on the way the usefulness of our approach to individualization.

4.2 Step 2: Regress the prediction score on the waist circumference and chronological
age and derive the corresponding residual variable M

In the next step, we regressed the prediction score described above on the waist circumference and additionally on
the chronological age, separately for men and women in an ordinary least squares regression. Chronological age
was used as covariate here to derive a score independent of chronological age. Subsequently, we calculated the
corresponding residual variables M. Conceptually, these residuals describe the difference between the individual
waist circumference and the prediction score which was expected given his/her true waist circumference and her/his
chronological age. Thus, these residuals are differentiating between two persons of the same waist circumference
and the residual variable can be seen as individualization metric. Our theoretical arguments predict that these
differentiation correlates with the true difference in metabolic health between person of the same anthropomorphic
obesity measure. This claim which is based on not easily falsifiable assumptions, of course, has to be tested on
validity which is done in the third step.

4.3 Step 3: Demonstrate the informational content of the residual prediction score on
prospective survival data

Now, we show thatM is indeed informative regarding survival (for details on the sampling of the survival data and
the definition of cardiovascular mortality, see the ‘‘Extended Methods section’’ in the Supplementary Material; for
further results see Supplementary Tables S3 and Supplementary Figures S1 and S2). From the individuals with
complete covariate vector, a total of 659 individuals died in the follow-up interval and the analyzed failure event
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was cardiovascular related mortality (206 deaths). In Cox regressions, the residual variable was predictive for
survival with a hazard ratio per point of 1.050 (95%-confidence interval: (1.023–1.077), p¼ 0.0002), adjusted for
sex and age. For the visualization of the effect, see Kaplan–Meier curves (Figure 1) displaying the sex specific
tertiles of the residual scores. In addition, one can find in the Supplementary Material, Kaplan–Meier curves for
the age-groups above 60 years and below 60 years (Figures S1 and S2). Clearly, the discriminative power of the
individualization metric is in the older individuals whereas in the younger individuals there was no indication of a
predictive value for the categorized residual variable. However, the low number of deaths in the younger age-
group means that this can be also merely a problem of statistical power. To achieve easier interpretation of the
individualization metric M, we rescaled M such that one unit represents the same increase in risk as one unit on
the usual BMI scale (kg/m2) conditional on age and sex. Now, we just summed up the residual variable and the
standard BMI variable for a measure of metabolic health that we call the metabolic BMI. We can now
refine common definitions of obesity, for example by applying a cut-off at 35. For a graphical representation,
see Figure 2. This procedure ends in a canonical definition of ‘healthy obesity’ and an ‘unhealthy lean’ status (see
Figure 2). Indeed, when testing this classification in prospective survival analyses, the ‘healthy’ obese individual
had no higher risk (HR: 0.99, 95% CI: 0.37–2.70, p¼ 0.992) than ‘‘healthy’’ subjects with a BMI< 35, while the
class of ‘‘unhealthy lean’’ individuals (n¼ 205) with a BMI< 35 had a HR of 2.19 (95% CI: 1.37–3.47, p< 0.001).
Naturally, the group with a BMI> 35 and a metabolic BMI> 35 had the highest hazard ratio of 3.76 (95% CI:
2.34–5.98, p< 0.001). This mirrors the fact that the BMI itself is predictive for cardiovascular mortality. As a
limitation, however, it should be noted that the ‘‘healthy obesity’’ group was rather small (n¼ 65). Thus, the
reported results as indicated by the wide confidence intervals have to be treated with care.

In conclusion, by applying our methodology we derived a refined definition of obesity which was statistically
superior in the prediction of cardiovascular death. Thus, regarding the risk of dying from cardiovascular causes,
our metric was able to differentiate individuals showing the same anthropometry and fulfill thereby our definition
of individualization.

5 Consequences for study design and statistical analyses

The basic message from the explicated methodology above is that multivariate prediction scores contain more
information about hidden traits than usually utilized and that this information is extractable and can be used for
individualization. This is in its core good news: it is already possible for researchers to go beyond the usual
classification systems of health and disease, delivering individualized metrics to the clinical sciences. However,

Figure 1. Kaplan–Meier curves regarding cardiovascular related mortality of the tertiles of the residual after regressing prediction

score on the chronological age and the WC. The curves are statistically different (log-rang test:�2(2)¼ 8.13, p¼ 0.017).
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doing so requires a paradigm shift in the way we evaluate and we build prediction scores. Until now, researchers
are mainly interested in good and stable model fit regarding the phenotypes under consideration.22–24 In contrast,
we argue that the informative ‘‘individualizing’’ content of a score lays within its prediction error (orthogonalized
to the modeled phenotype) which can be tested on a set of validation variables (step 3). From a more conceptual
viewpoint, one would not only ask how many cases and controls were correctly assigned to their classes, but what
information is given by the cases that were wrongly classified and what information is given by the distance to the
hyperplane which separates the groups. Our arguments above show that this could be actually very informative.
For a clinical example, it may be that in the case of cancer, misclassification is in line with a good prognosis.
Of course, such bold claims must be backed up by the corresponding data. This would be only possible if such
variables are part of the study design. Thus, it is clear that the procedure of step 3 should be considered in the
study design (ensuring that the necessary information is acquired). Moreover, the validation procedure should be
strictly pre-specified allowing falsification and a clear definition of what an individualized measure should satisfy in
the context of the research question and clinical application.

The construction of individualized phenotypes thus is a further example of the principle ‘‘no biology in,
no biology out’’. Given the fact that most of our phenotypes cannot be identified with the biology in behind,
the goal of individualization is not reachable by data-driven procedures alone. The construction of individualized
phenotypes implies a conceptual clarification of the relation among the observed variables and a conceptualization
of the implicitly modeled hidden trait.

Our arguments have also an impact on the way the predictors are selected in the modeling process of the
phenotype. Normally, one would choose reliable predictors which correlate strongly with the observable
phenotype.25–27 We think that this procedure is likely to lead to a set of predictors not consisting exclusively of
individualization instruments. To make this point clearer, we will introduce here the term ‘‘conceptual overfitting’’
(see Figure 3). Conceptual overfitting arises when in constructing the model Y a predictor Zi is included which is
related to the phenotype, but is not independent of the observable variable X conditional on the hidden trait T. In
this case, the model fit for Y regarding X would be truly higher if Zi is included, but it would not be necessarily
beneficial for the covariance of the residual variable with the hidden trait T. For an example, consider the risk
factor BMI which can be seen as a proxy of metabolic health. However, the BMI is biased regarding the true

Figure 2. Graphical representation of the refined definition of obesity. The metabolic BMI is the sum of the rescaled residual variable

resulting from regressing the prediction score on age and the anthropometric WC such as one point increase in this residual scale

equals one point increase in BMI regarding the hazard of dying from cardiovascular causes in the SHIP sample. The red line indicates

the identity.
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metabolic status by muscle mass.19 Predicting the BMI via metabolomics and including metabolites indicative for
muscle mass (creatinine, branched chain amino acids) would lead to a higher R-squared and a truly better model
for the BMI, but would result in an equally biased measurement for metabolic health. Excluding the metabolites
related to muscle mass may therefore lead to lower fit, but to higher informational content regarding the metabolic
health of an individual. Hence, predictor selection should be done if possible on theoretical grounds. As the
conditional independence assumptions given for the definition of individualization instruments can be seen in
the context of causal15 inference theory, one could apply directed acyclic graphs to choose an appropriate set of
predictors. Of course, it is often difficult and in the case of big data modeling often impossible to do so
comprehensively. Still, we believe it is important to notice that predictor selecting maximizing model fit is not a
sensible procedure when it comes to the individualization of risk factors and phenotypes.

6 Conclusions

We delivered a definition of individualization and then transferred it to statistical terms by defining
individualization in the context of a phenotype not perfectly correlated with the underlying biology. Thus,
it is clear that individualization is context-dependent. The context of every individualization (the proxy-
phenotype, the hidden biological trait) has to be always explicated and the respective choices have to be
motivated, otherwise the term ‘‘individualization’’ is without proper meaning. On the ground of these
definitions, we proposed an abstract methodology compatible with a wide range of estimation procedures,
targeting the individualization of phenotypes. We utilized measurement error theory to demonstrate that the
prediction error orthogonalized to the predicted phenotype is always correlated to the underlying, hidden trait
if the predictors fulfill the criteria of being individualization instruments. The central prerequisite states that
the predictors must be conditionally independent on the phenotype given the hidden trait variable which
implies that the conceptual relation of the predictors to the modeled phenotype has to be considered
when applying our workflow. As the underlying theoretical assumptions will be often hard to test empirically,
it is important to pre-specify testable conditions under which the newly derived phenotype is considered to be
valid (see step 3). We utilized the methodology with success on epidemiological data from the SHIP cohort to
construct a meaningful refined definition of obesity. In conclusion, when individualization is the goal of statistical

Figure 3. Graphical representation of conceptual overfitting: Z5 and Z6 would increase the fit of a prediction model regarding X, but

would invalidate the conditional independence assumption on which the informative content of the residual variable relies.
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modeling, the prediction error is not something to avoid but to utilize, leading to the meaningful differentiation of
individuals showing the same observable phenotype. We hope that our arguments are one step forward on the way
of individualized phenotypes into everyday clinics, a critical prerequisite for the facilitation of individualized
medicine.28
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