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Introduction
Personalized medicine relies on prediction models, which 
quantify a patient’s or a tooth’s risks for experiencing a disease 
(periodontitis) or a complication (tooth loss) in the future. To 
do so, prediction models learn patterns from available data 
(training) and are then applied to other data (testing/predic-
tion). Calls for more rigorous development and validation of 
such models have been raised (Kundu et al. 2017).

A range of factors should be considered by modelers during 
the development and validation of prediction models.

1) Model complexity. For example, regression models or 
decision trees result in interpretable models that are easier to 
communicate to decision makers. They usually also consider a 
predetermined, smaller number of prediction variables. 
Alternative, more complex ensemble models, such as gradient 
boosting models, could be applied but are more difficult to 
interpret by a human decision maker and may require signifi-
cant computational resources. They also allow one to consider 
a larger number of prediction variables, while model applicants 
may want to gauge the model by assessing if “logical” predic-
tors (e.g., those known to be associated with the disease or 
event) are employed by the model for prediction making.

2) Sample size and imbalanced class sizes. In general, most 
classification algorithms perform better with larger sample 
sizes and more balanced class sizes. For imbalanced data sets 
(e.g., most tooth loss data sets, where tooth loss occurs less 
often than tooth retention), specific model performance met-
rics are more appropriate than others.

3) The prediction period—that is, if predictions are made 
over short-, medium-, or long-term periods.
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Abstract
Prediction models learn patterns from available data (training) and are then validated on new data (testing). Prediction modeling is 
increasingly common in dental research. We aimed to evaluate how different model development and validation steps affect the predictive 
performance of tooth loss prediction models of patients with periodontitis. Two independent cohorts (627 patients, 11,651 teeth) were 
followed over a mean ± SD 18.2 ± 5.6 y (Kiel cohort) and 6.6 ± 2.9 y (Greifswald cohort). Tooth loss and 10 patient- and tooth-level 
predictors were recorded. The impact of different model development and validation steps was evaluated: 1) model complexity (logistic 
regression, recursive partitioning, random forest, extreme gradient boosting), 2) sample size (full data set or 10%, 25%, or 75% of cases 
dropped at random), 3) prediction periods (maximum 10, 15, or 20 y or uncensored), and 4) validation schemes (internal or external 
by centers/time). Tooth loss was generally a rare event (880 teeth were lost). All models showed limited sensitivity but high specificity. 
Patients’ age and tooth loss at baseline as well as probing pocket depths showed high variable importance. More complex models 
(random forest, extreme gradient boosting) had no consistent advantages over simpler ones (logistic regression, recursive partitioning). 
Internal validation (in sample) overestimated the predictive power (area under the curve up to 0.90), while external validation (out of 
sample) found lower areas under the curve (range 0.62 to 0.82). Reducing the sample size decreased the predictive power, particularly 
for more complex models. Censoring the prediction period had only limited impact. When the model was trained in one period and 
tested in another, model outcomes were similar to the base case, indicating temporal validation as a valid option. No model showed 
higher accuracy than the no-information rate. In conclusion, none of the developed models would be useful in a clinical setting, despite 
high accuracy. During modeling, rigorous development and external validation should be applied and reported accordingly.
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4) The training and testing (i.e., validation) strategy. Prediction 
models may not be externally validated but trained and tested in 
the same cohort (internal validation)—for example, by applying 
a training-test split, where a portion of the data set is assigned as 
a training set and the other part as a holdout test set (“out-of-
sample performance”). In dentistry, in many cases, not even such 
internal validation is performed, but only the in-sample perfor-
mance is reported (training and testing on the same data, where 
not even a separate test data set is used; Mejare et al. 2013; Du  
et al. 2018; Schwendicke et al. 2018). If a prediction model, how-
ever, will be applied in clinical reality, the “test” data set will 
always stem from another cohort. Hence, external validation—
for example, testing on a sample from a different period or a dif-
ferent population—is usually recommended over internal testing 
to gauge a model’s generalizability (Zhan et al. 2014; Steyerberg 
and Harrell 2016; Steyerberg et al. 2017). Only generalizable 
models provide additional value to the treating dentist.

Predicting tooth loss in patients with periodontitis is rele-
vant for treatment planning and decision making before and 
during active and supportive periodontal therapy (APT and 
SPT). Predicting during treatment planning if teeth can or can-
not be retained may lead to less invasive treatment plans, better 
health outcomes, and reduced long-term costs (Schwendicke  
et al. 2017; Schwendicke et al. 2018). It is unclear, at present, 
what relevance the different outlined steps for developing and 
validating tooth loss predictions models have on their apparent 
predictive power (in sample) and true predictive power (out of 
sample, ideally externally validated). We aimed to evaluate the 
impact of model complexity, sample size, prediction periods 
and training, and validation strategies on tooth loss prediction 
models in patients with periodontitis.

Methods
This study follows the TRIPOD reporting guidelines (Moons 
et al. 2015) for developing prediction models and the reporting 
guidelines to address common sources of bias in risk model 
development (RiGoR; Kerr et al. 2015). Note that our aim was 
not to develop a model for clinical application at this stage but 
to demonstrate the impact of different development and valida-
tion steps on model performance. Our analyses hence serve to 
assess how vulnerable prediction performance is to different 
aspects of modeling (e.g., building the model on too small 
sample sizes, training and validating it only internally).

Source of Data, Participants, and Therapy

Two cohorts, 1 at the University of Kiel and 1 at the University 
of Greifswald, were established in the 1980s and 1990s, 
respectively. Patients were consecutively included. During 
APT (T0 to T1), patients received mainly nonsurgical mechan-
ical root debridement, with or without surgical therapy. Patients 
received SPT (T1 to T2) for ≥9 y (Kiel) and ≥4 y (Greifswald; 
T1 until last visit, T2) at individualized intervals. The study 
was approved by the local ethics committees (Kiel: D489/13; 
Greifswald: BB91/10). Details on the cohorts and treatment 
concepts are available in the Appendix.

Outcome

The prediction outcome was tooth loss during SPT (T1 to T2). 
Tooth loss was not restricted to that due to periodontitis, as in 
many cases 1) the reasons for tooth removal were multiple or 
2) the reasons could not be ascertained. Also note that we did 
not include tooth loss during APT (T0 to T1) in our assessment, 
as this is mainly guided by therapy decisions and thus not the 
subject of prediction making. Tooth loss was not assessed 
blind; that is, dentists were likely aware of the initial dental 
status. The risk of bias stemming from this, however, is very 
low, as tooth loss is a hard outcome and not easy to bias.

Predictors

From both cohorts, 4 patient-level and 6 tooth-level predictors 
were available. Predictors were not assessed blindly but within 
routine care. As all predictors were recorded prior to the out-
come (tooth loss) being able to occur, the risk of bias stemming 
from this is very low. Note that some predictors were assessed 
only at T0, not T1, usually to avoid repeated radiographic 
assessment. We do not assume any significant change in the 
status to have occurred from T0/T1 onward. On the patient 
level, we assessed the following: age and sex at T0; the number 
of teeth after APT (i.e., at T1); and smoking status, which was 
assessed categorically as never/former (i.e., quit >5 y ago) and 
current (Lang and Tonetti 2003) at T0. The number of smoked 
cigarettes was not assessed for all patients and hence could not 
be employed. Also note that smoking status may have changed 
over the long-term follow-up, which we did not account for, as 
prediction making is mainly interested in the initial smoking 
status to allow better decisions early on.

Diabetes status was not uniformly assessed and comprehen-
sively available in both cohorts and is thus not included here.

On the tooth level, a full dental status was recorded once 
yearly. Data for third molars were not included. The following 
variables were available:

•• Tooth type (molar or not)
•• Probing pocket depths (PPDs), which were evaluated at 

6 sites per tooth; only the maximum recorded PPD per 
tooth at T1 was used.

•• Mobility at T1, classified by degrees 0 to 3 (Lindhe and 
Nyman 1977)

•• Relative radiographic bone loss at T0, categorized into 
≤25%, >25% to 70%, and >70% (Graetz et al. 2011)

•• The furcation involvement of molars according to 
Hamp et al. (1975) at T1; only the highest degree of 
furcation involvement for each molar was used 
(McGuire and Nunn 1996).

•• Dental arch (lower or upper)

Note that variations in periodontal therapy (e.g., tooth splint-
ing, root resection, and tunneling, as described in the Appendix) 
were not employed as predictors, as these may reflect dentists’ 
preference and expertise as much as periodontal affection. 
Also, further treatments provided during SPT or SPT intervals 
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were not accounted for, as these will not be known at baseline, 
when predictions are made. Notably, though, they likely have 
an impact on tooth loss.

Statistical Experiments

A number of experiments were performed to assess the impact 
of model complexity, sample size, prediction periods, and 
training and validation strategies on the predictive power of a 
model.

1) Complexity: We considered 4 binary classification mod-
els. Sorted by complexity (defined by the number of tuneable 
hyperparameters), these were logistic regression (logR), recur-
sive partitioning (RPA), random forest (RFO), and extreme 
gradient boosting (XGB). We assessed the predictive perfor-
mance of these models and further explored which predictors 
were preferably employed by different models. Further details 
are provided in the Appendix.

2) Sample size: To evaluate the impact of the sample size, 
we dropped 10%, 25%, and 75% of individuals at random.

3) Prediction period: The impact of prediction periods was 
evaluated by censoring the follow-up period to 10, 15, and  
20 y or not at all. Note that this analysis was performed only 
for the Kiel cohort, as this cohort showed sufficiently long 
follow-up. If a tooth was lost after the censoring period, this 
outcome was not included for modeling.

4) Training and validation strategies: Each model was 
trained on a training set and evaluated via resampling and 
cross-validation (thereby providing a confidence interval) and, 
apart from that, on a holdout test set. All applied data set splits 
were stratified with respect to the outcome variable to keep the 
patient-level tooth loss in the training and test set as close as 
possible to that in the full data set. To evaluate different model 
validation schemes, all 4 binary classification models (RPA, 
RFO, XGB, logR) were applied on 6 validation scenarios, rep-
resenting different training and test approaches. For scenario 
S1, the baseline scenario, we applied a stratified random 75/25 
split on the full data set (75% training of the combined Kiel-
Greifswald cohort, 25% test data also in the complete cohort). 
For scenarios S2 and S3, we split the data along the centers of 
data collection (training in Kiel and test in Greifswald and vice 

versa). For scenarios S4 and S5, we split the data within each 
center of data collection (training in Kiel and test in Kiel, train-
ing in Greifswald and test in Greifswald). In S6, we evaluated 
the impact of temporally external validation by splitting the 
data set into a training set (constituting the cohort from 1980 to 
1995) and a test set (constituting the cohort from 1995 onward). 
Note that for S6, only Kiel data were used, as sufficiently long 
follow-up periods were available.

Note that data were analyzed at the tooth level for all mod-
els. In a sensitivity analysis (see Appendix) we applied logR 
with a random subject term being introduced (mixed effect 
logR) to account for clustering effects. This, however, did not 
affect the model performance (Appendix Tables 1 and 2). 
While implementation of the clustered structure in the other 
models was not feasible, thus prohibiting us from exploring 
how the within-mouth correlation of teeth affects their accu-
racy and confidence intervals, we assumed the impact of clus-
tering to be limited.

Modeling and Performance Metrics

We used the area under the receiver operating characteristic 
curve, the accuracy and its 95% CI, as well as sensitivity and 
specificity as performance metrics. A class threshold of 0.5 
was applied. Furthermore, we reported the no-information rate 
(NIR), which corresponds to the percentage of the majority 
class in the training data. The NIR provides information on 
how accurate guessing would be if a “prediction” would be 
built on only “predicting” this majority class. In case the events 
are very rare, for example, guessing that no event occurs can 
have a high accuracy. A 1-sided binomial hypothesis test was 
applied to test if the predicted accuracy was higher than the 
NIR. Further details are provided in the Appendix.

Results

Sample and Tooth Loss

The characteristics of both cohorts are shown in Table 1. The 
Kiel cohort was larger and SPT longer than in Greifswald. The 
age at T0 was not significantly different between the cohorts, 
while in Greifswald, the mean tooth loss per patient was higher 
than in Kiel. Patients who lost teeth were initially older and 
more often smokers than nonsmokers or former smokers. On 
the tooth level, molars; teeth with higher PPD, furcation 
involvement, and bone loss; mobile teeth; and lower teeth were 
more often lost (Table 2).

Impact of Model Complexity

Results from different models trained and tested in the complete 
2-cohort data set (base case, scenario S1) are shown in Table 3; 
the receiver operating characteristic curve is shown in Figure 
1a. All models showed low sensitivity and high specificity. The 
classification accuracy was generally high (95% CI, 0.90 to 
0.95). Notably, the NIR was similarly high, and none of the 

Table 1. Characteristics of the Sample at Different Time Points.

n or Mean ± SD

Parameter Kiel Greifswald

Patients, male:female 164:226 102:135
Age at T0, y 45.9 ± 10.2 47.1 ± 10.4
SPT (T1 to T2), y 18.2 ± 5.6 6.6 ± 2.9
Smoker:former smoker:never 

smoker (T0)
50:88:252 31:81:125

No. of tooth loss / (patient × 
year) (SPT)

0.11 ± 0.15 0.14 ± 0.58

APT ranged from T0 to T1 (first visit to last APT visit) and SPT from T1 
to T2 (last APT visit to last SPT visit).
APT, active periodontal therapy; SPT, supportive periodontal therapy.
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models performed significantly better than making informed 
guesses based on prior knowledge of the class proportions.

The area under the curve (AUC) of each model on the train-
ing data set (in-sample AUC) was consistently higher than the 
AUC on the test data set (out-of-sample AUC). Especially 
more advanced models were prone to overfitting: they nearly 
perfectly “learned” the available data of the training data set, 
and when applied to the test data set, the AUC dropped. More 
complex models did not have significant advantages over sim-
pler models. The different models also relied on different pre-
dictor variables, as shown in Figure 1b. RPA used age, number 
of teeth at T1, PPD, furcation involvement, and tooth type very 
often, while other models mostly built on age, PPD, and num-
ber of teeth at T1.

Impact of Sample Size and Prediction Period

We further performed analyses on restricted data sets to explore 
the impact of sample size and prediction period (Fig. 2). 
Randomly dropping individuals from the cohort was per-
formed to shrink it and assess the impact of sample size (Fig. 
2a). All models tended to lose accuracy when trained on 
smaller data sets; the degree of loss was similar across models. 
However, for more complex models, such as XGB, a threshold 
effect was apparent. Dropping a limited amount of data had 
little impact, but dropping 75% of the data showed a signifi-
cant decrease in the models’ predictive power.

Censoring the prediction period was performed to assess if 
short-term predictions are more accurate to make than long-
term ones (Fig. 2b). Notably, censoring to 20-, 15-, or only 

10-y prediction periods had a limited impact on model 
outcome.

Impact of Validation Schemes

A range of analyses were performed where different training and 
test data sets were applied. Results for the base case model (the 
whole 2-cohort data set was split into a training and a test data 
set; internal validation) have been introduced already (Table 3). 
As discussed, the “apparent” performance measured in sample 
was always higher than the out-of-sample performance.

We further performed cross-center testing, where training 
was performed in one cohort and testing in the other. RPA was 
particularly sensitive to such cross-center testing: accuracy 
dropped to 0.62 when trained in Greifswald and tested in Kiel, 
but also more advanced models lost accuracy. The scenario of 
training in Kiel and testing in Greifswald was more accurate 
(XGB reached an AUC of 0.82 in this case). This asymmetry 
relates to the higher prevalence of tooth loss in Greifswald 
(0.14 ± 0.58) as compared with Kiel (0.11 ± 0.15).

Cross-temporal training and testing found AUCs close to 
the base case, indicating this as a possibly valid validation 
scheme. No model showed higher accuracy than the NIR 
regardless of the validation scheme.

Discussion
The application of prediction models in medicine is supposed 
to increase health benefits, lower side effects, improve effi-
ciency, and allow optimal resource allocation by estimating the 

Table 2. Distribution of Tooth Loss according to Different Patient- and Tooth-Level Variables in the Full (Unrestricted) Data Set.

Patient Level Patients with Tooth Loss, n (%) Tooth Level Teeth Lost, n (%)

Age at T1, y a Tooth type  
 Lost 47.1 ± 9.5  Molar 466 of 3,107 (15.0)
 Retained 45.6 ± 10.9  Nonmolar 414 of 8,544 (4.8)
Smoking status Probing pocket depth, mm  
 Never 191 of 377 (50.7)  <5 529 of 9,848 (5.4)
 Former smoker  75 of 169 (44.4)  5 to 7 294 of 1,654 (17.8)
 Current smoker 50 of 81 (61.7)  >7 57 of 149 (38.3)
Sex Furcation involvement  
 Male 132 of 266 (49.6)  Grade 0 to 1 682 of 10,813 (6.3)
 Female 184 of 361 (51.0)  Grade 2 to 3 198 of 838 (23.6)
 Bone loss  
  ≤25 104 of 3,810 (2.7)
  >25 to 50 311 of 5,253 (5.9)
  50 to 70 325 of 2,153 (15.1)
  >70 140 of 435 (32.2)
 Mobility  
  0 685 of 10,685 (6.4)
  1 115 of 645 (17.8)
  2 48 of 257 (18.7)
  3 32 of 64 (50.0)
 Dental arch  
  Lower 530 of 5,293 (10.0)
  Upper 350 of 6,358 (5.5)

N = 627 patients, 11,651 teeth.
aMean ± SD.
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Table 3. Metrics for the Different Model Validation Schemas.

AUC (95% CI)  

Model Test Training Specificity Sensitivity Accuracy (95% CI) NIR P Value

Scenario 1: Base case. Training set: 8,821 teeth, 472 patients. Test set: 2,830 teeth, 155 patients.
RPA 0.74 0.76 (0.74 to 0.78) 0.97 0.13 0.91 (0.9 to 0.92) 0.92 0.999
RFO 0.77 0.84 (0.83 to 0.85) 0.99 0.1 0.92 (0.91 to 0.93) 0.92 0.846
XGB 0.76 0.84 (0.84 to 0.85) 0.98 0.16 0.91 (0.9 to 0.92) 0.92 0.962
logR 0.8 0.8 (0.79 to 0.81) 0.99 0.1 0.92 (0.91 to 0.93) 0.92 0.406

Scenario 2: Training Greifswald–test Kiel. Training set: 4,141 teeth, 237 patients. Test set: 7,510 teeth, 390 patients
RPA 0.62 0.72 (0.68 to 0.77) 1.0 0.03 0.9 (0.9 to 0.91) 0.9 0.402
RFO 0.75 0.9 (0.88 to 0.91) 1.0 0.0 0.9 (0.9 to 0.91) 0.9 0.587
XGB 0.72 0.89 (0.88 to 0.9) 1.0 0.03 0.9 (0.9 to 0.91) 0.9 0.632
logR 0.77 0.84 (0.82 to 0.86) 1.0 0.03 0.9 (0.9 to 0.91) 0.9 0.343

Scenario 3: Training Kiel–test Greifswald. Training set: 7,510 teeth, 390 patients. Test set: 4,141 teeth, 237 patients
RPA 0.76 0.75 (0.73 to 0.77) 0.95 0.21 0.93 (0.92 to 0.93) 0.96 ≥0.999
RFO 0.78 0.84 (0.83 to 0.85) 0.97 0.19 0.94 (0.93 to 0.94) 0.96 ≥0.999
XGB 0.79 0.83 (0.83 to 0.84) 0.98 0.2 0.95 (0.94 to 0.96) 0.96 ≥0.999
logR 0.82 0.8 (0.79 to 0.8) 0.98 0.21 0.96 (0.95 to 0.96) 0.96 0.989

Scenario 4: Training Kiel–test Kiel. Training set: 5,694 teeth, 294 patients. Test set: 1,816 teeth, 96 patients
RPA 0.74 0.73 (0.71 to 0.75) 0.95 0.15 0.88 (0.86 to 0.89) 0.91 ≥0.999
RFO 0.77 0.84 (0.83 to 0.84) 0.98 0.12 0.9 (0.89 to 0.92) 0.91 0.73
XGB 0.73 0.84 (0.83 to 0.85) 0.97 0.17 0.9 (0.88 to 0.91) 0.91 0.949
logR 0.81 0.79 (0.78 to 0.8) 0.99 0.15 0.91 (0.89 to 0.92) 0.91 0.488

Scenario 5: Training Greifswald–test Greifswald. Training set: 3,127 teeth, 178 patients. Test set: 1,014 teeth, 59 patients
RPA 0.68 0.66 (0.6 to 0.71) 1.0 0.04 0.95 (0.94 to 0.97) 0.95 0.48
RFO 0.77 0.88 (0.86 to 0.9) 1.0 0.08 0.95 (0.94 to 0.97) 0.95 0.422
XGB 0.76 0.88 (0.86 to 0.9) 1.0 0.08 0.95 (0.94 to 0.96) 0.95 0.538
logR 0.75 0.85 (0.83 to 0.86) 1.0 0.02 0.95 (0.94 to 0.96) 0.95 0.594

Scenario 6: Training Kiel–test Kiel. Training set (cohort from 1980 on, censored by 15 y) 4,397 teeth, 233 patients. Test set (cohort from 1995 on, 
censored by 15 y): 3,113 teeth, 157 patients

RPA 0.72 0.75 (0.73 to 0.78) 0.97 0.15 0.9 (0.89 to 0.91) 0.91 0.999
RFO 0.77 0.84 (0.82 to 0.86) 0.99 0.1 0.91 (0.9 to 0.92) 0.91 0.838
XGB 0.75 0.85 (0.83 to 0.86) 0.98 0.14 0.91 (0.89 to 0.92) 0.91 0.939
logR 0.81 0.8 (0.78 to 0.82) 0.99 0.11 0.91 (0.9 to 0.92) 0.91 0.39

Six scenarios were tested, with 4 models being tested in each scenario. AUC, sensitivity, specificity, accuracy, NIR, and P value for the comparison 
between the accuracy and NIR for the different models.
AUC, area under the curve; logR, logistic regression; NIR, no-information rate; RFO, random forest; RPA, recursive partitioning; XGB, extreme 
gradient boosting.

Figure 1. Baseline models. (a) Receiver operating characteristic curves of the different models and AUC values. The different models showed similar 
performance. (b) Standardized variable importance for different models (see Appendix for details). Different models built on different predictor 
variables. AUC, area under the curve; logR, logistic regression; PPD, probing pocket depth; RFO, random forest; RPA, recursive partitioning; XGB, 
extreme gradient boosting.
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Figure 2. Analyses on restricted data sets, testing the impact of (a) sample size and (b) prediction periods. Receiver operating characteristic curves of 
the different models and AUC values are displayed. (a) Dropping individuals from the cohort was performed to shrink it, assessing the impact of cohort 
size on model performance. Lower sample sizes came with lower model performance. (b) Censoring the prediction period was performed to assess if 
short-term predictions are more accurate to make than long-term ones. Prediction periods had only limited impact on model performance. AUC, area 
under the curve; logR, logistic regression; RFO, random forest; RPA, recursive partitioning; XGB, extreme gradient boosting.



1094 Journal of Dental Research 98(10) 

chances of a positive or negative event a priori. To fulfill this 
purpose, prediction models should be robustly developed, reli-
able, and generalizable. In the present study, we demonstrated, 
using data from 2 cohorts, how various development and vali-
dation strategies for tooth loss prediction models affected 
model performance.

Various performance metrics were used to describe the pre-
dictive power of each model. It was apparent that the in-sample 
AUC, yielded from resampling and evaluating the developed 
model within the training data set, was high for all models and 
outperformed the out-of-sample AUC yielded in the test data set. 
This effect was evident for more complex models, such as RFO 
and XGB, and less obvious for simpler models, such as RPA and 
logR. Only reporting and displaying the in-sample model perfor-
mance metrics seems insufficient to assess model performance, 
as it does not permit one to assess generalizability.

Also, the classification accuracy was apparently very high 
(often exceeding 0.90). However, none of the models signifi-
cantly outperformed the NIR, which is the proportion of the 
data with the majority class. Randomly guessing the majority 
class (a tooth is retained) based on a priori knowledge (tooth 
loss is a rare event) was as accurate as complex prediction 
models. Our finding demonstrated the value of not only assess-
ing accuracy values but also comparing them critically against 
the accuracy of chance (the NIR) and considering further met-
rics, such as sensitivity and specificity. Providing performance 
metrics, such as positive or negative predictive values or the 
area under the precision-recall curve, may also be considered 
when dealing with imbalanced data sets. The precision-recall 
curve does not suffer from class imbalance but is not common 
in dentistry so far (Saito and Rehmsmeier 2015). Future devel-
opments in dental prediction modeling may want to focus on 
models that specifically address the problem of an imbalanced 
data set. Moreover, investigators should consider replacing the 
use of randomly selected data with outcome-based sampling 
schemes, such as case-control designs, to increase the fre-
quency of tooth loss in these data, as this may allow for better 
use of the modeling strategies that we examined.

We used a range of models, expecting that more complex 
models yield higher accuracies than less complex ones. 
Unexpectedly, we found only limited differences among mod-
els, and only in specific analyses was the simpler RPA clearly 
inferior to models such as RFO and gradient boosting. This is 
related to the fact that training on highly imbalanced data sets 
(as discussed) causes the model to learn representations of the 
majority class (tooth is retained) much better than those of the 
minority class (tooth is lost). Several methods to deal with 
class imbalance for machine learning have been proposed, such 
as over- and undersampling or synthetic minority oversampling 
(Sun et al. 2009). Applying such techniques was beyond the 
scope of this study.

Shrinkage of the data set was performed by dropping ran-
dom patients from it. We found that data shrinkage affected 
model performance. Training on fewer events was found to 
severely affect the performance of more complex models 
(Steyerberg et al. 2017). We also expected that making predic-
tions over longer periods is more difficult than over the short or 

midterm, as predictors may change (e.g., smoking status or 
PPD) either by behavior change or via treatment provided, for 
example. Hence, we tested how censoring affected model  
performance. However, the effect of prediction time was  
limited, possibly as baseline risks remained relatively stable 
long-term.

We also evaluated the impact of different validation 
schemes. As discussed, most studies in dentistry use some 
form of naive or internal validation (Faggion et al. 2007; Avila 
et al. 2009; Saminsky et al. 2015; Martinez-Canut et al. 2018; 
Schwendicke et al. 2018). We demonstrated that this may 
result in overfitting (especially for more complex models) and 
lead to high apparent (in-sample) performance. When models 
were externally validated across centers, model performance 
decreased (Zhan et al. 2014). Our findings demonstrate the 
need for careful external testing and awareness of statistical 
differences in the different populations to find out the true 
transportability (generalizability) of tooth loss prediction mod-
els. Notably, temporal validation, with training of models in 1 
period and validation against another, seemed valid. We found 
the accuracies yielded by such cross-time validation to be 
rather stable. This was notable, as over time, secular (external) 
factors may apply on oral health (and risk of tooth loss), and 
treatment concepts may have changed to some degree (e.g., by 
technological advances). However, we want to highlight that 
this validation was possible within only the Kiel cohort, as 
here, data were gathered over >15 y.

This study has a number of strengths and limitations. First, 
we built on 2 large long-term followed cohorts of patients 
treated for periodontitis. As the cohorts were rather different in 
size, follow-up periods, and risk profiles, we assume the per-
formed cross-center validation to be useful to assess transport-
ability. In both cohorts, a similar treatment strategy was 
performed; extraction was executed very restrictedly during 
APT; and teeth doomed for extraction according to conven-
tional textbook knowledge were retained. Thus, a number of 
teeth with a questionable or hopeless periodontal prognosis 
could be followed during SPT and were expected to be lost 
during maintenance (Graetz et al. 2011). A range of patient- 
and tooth-level predictors was employed, while admittedly, 
further parameters (even those beyond periodontal health), 
such as bruxism, diabetes, restorative status, and splinting of 
teeth, may be relevant for tooth loss (Martinez-Canut 2015; 
Graetz et al. 2018; Martinez-Canut et al. 2018). Our outcome, 
tooth loss, is relevant for patients from a quality-of-life per-
spective but also health economically. Second, a number of 
analyses were performed to assess the impact of modeling. To 
our knowledge, this is the first study in dentistry with this 
scope. Third, and as a limitation, the cohorts demonstrated 
high selection bias—for example, these subjects were very 
compliant (Lee et al. 2015) and smokers were underrepre-
sented (Buchwald et al. 2013). Fourth, a rather conservative 
treatment regimen was applied. Testing the models in a very 
different cohort (practice based; e.g., with more teeth being 
removed or patients being less compliant) probably affects 
model performance. Also, as discussed, tooth loss was not nec-
essarily due to periodontitis, as described, and the employed 
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predictors, which mainly assess periodontal conditions, may 
have not been fully suited to capture other factors affecting 
tooth loss risk. Last, we evaluated only a specific set of model-
ing aspects, while many more affect model bias, stability, and 
performance. These should be evaluated by future studies.

Conclusion
Within the limitations of this study, more complex models did 
not have advantages over simpler ones to predict tooth loss. 
Patients’ age and tooth loss at baseline as well as PPDs showed 
high variable importance. Internal validation came with a high 
risk of overfitting and only “apparently” high model perfor-
mance. Shrinking the data set, thereby simulating smaller sam-
ple sizes, decreased the models’ predictive power. Overall, the 
models predicted tooth loss in patients with periodontitis with 
moderate discrimination ability. However, class imbalance sig-
nificantly affected model performance, and none of the devel-
oped models would be useful when applied clinically. During 
modeling, rigorous development and validation should be 
applied and consequently reported.
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